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Computational-
Mechanism Design: 
A Call to Arms
Rajdeep K. Dash and Nicholas R. Jennings, University of Southampton

David C. Parkes, Harvard University

T he need is increasing for computer systems that operate a decentralized control

regime, are open (individual components can enter and leave at will), and con-

tain several components representing distinct stakeholders with different aims and objec-

tives. Relevant examples include Grid computing, the Semantic Web, pervasive 

computing, e-commerce, mobile computing, and
peer-to-peer (P2P) systems.

For these complex systems, agent-based ap-
proaches, which emphasize autonomous actions and
flexible interactions, are natural computational mod-
els.1 In designing such multiagent systems (MASs),
you must address two fundamental issues. First, you
must specify the protocols that govern the interactions.
These protocols cover issues such as how the agents’
actions translate into an outcome, the range of actions
available to the participants, and whether the interac-
tions occur over steps or are one-shot. Second, given
the prevailing protocol, you must define each agent’s
strategy (mapping from state history to action).

Sometimes, a designer might be able to impose
each agent’s protocol and strategy. In such settings,
the agents can cooperate to find a good systemwide
solution.2 However, usually this isn’t feasible
because the agents represent distinct stakeholders
with potentially conflicting goals that seek to maxi-
mize their own gains. Consequently, the best a de-
signer can achieve is a noncooperative strategic
analysis, in which the designer can impose only the
protocol and can’t control which strategies the agents
adopt. Against this background, we examine the field
of computational-mechanism design. CMD provides
an elegant mathematical framework in which to
study protocols that give the agents incentive to act
and interact in particular ways and that have useful
computational properties. It is an emerging field with
which MAS designers need to become familiar.
Moreover, the relatively new subfield of distributed-
computational-mechanism design—which has no

trusted center—is attracting considerable interest
because it is a better match with the computational
MAS model. However, this raises many additional
open questions because the agents that must imple-
ment the mechanism’s rules are those that stand to
benefit from its (mis)operation.

Designing MASs using 
mechanism design techniques

In contrast with competitive equilibrium theory,3,4

where agents respond solely to summary signals
(such as prices for different outcomes) about the mul-
tiagent problem, we assume CMD agents act in a
game-theoretic way, thereby modeling the effect their
actions will have on other agents’actions. This more
detailed modeling facilitates the design of predictable
systems of interacting agents and has caused MAS
designers to start looking at game theory5,6 and, more
recently, mechanism design. Specifically, MD deals
with how to design systems so that certain sys-
temwide properties (for example, efficiency, stabil-
ity, and fairness) emerge in equilibrium from the con-
stituent components’ interaction. MD is particularly
appealing for designing MASs with self-interested
agents because it provides methods for simplifying
the strategic problems facing agents at design time.

In its native form, MD is a beautiful but brittle
endeavor; it models agents as rational and then opti-
mizes with respect to this model. However, the the-
ory’s underlying assumptions can be inappropriate
in computational settings because software agents
are invariably bounded-rational. Also, the theory
focuses on centralized mechanisms engineered so
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that agents reveal their complete private
information, and the design problem is itself
often intractable. Furthermore, it’s assumed
that communication between agents and the
system is free and faultless and that the sys-
tem is closed, with a static agent population.
It’s also assumed that agents understand the
protocols that govern their interactions and
abide by them. These assumptions are prob-
lematic in MASs because

• Agents don’t have the unbounded compu-
tational power that might be required to cal-
culate their preferences for all possible out-
comes or calculate equilibrium strategies

• The mechanism infrastructure in a cen-
tralized mechanism might be unable to
compute the outcome because the prob-
lem might be intractable

• Communication is not necessarily cost-
free and could also be error-prone

• Most real MASs are dynamic, and the set
of agents varies with time owing to the
system’s open nature

• Semantic interoperation between different
participants in an open system is difficult
to attain, as is a machine-understandable
specification of all the associated interac-
tion protocol’s aspects

CMD seeks to address these limitations
and thereby apply MD techniques to com-
putational problems. You might imagine that
a new field isn’t required because we can
decompose the problem of using MD in a
MAS into its economic part (MD) and its
computational part (MAS), then attack it in
a modular fashion. However, this approach
fails to recognize that we must address both
economic and computational principles at
each stage of design. In fact, often principles
from one area can help solve a problem in
the other. For example, you could make find-
ing an undesirable equilibrium strategy (an
economic problem) an intractable problem
(a computational solution) for agents. Simi-
larly, you could make optimal strategies
tractable (a computational problem) by
designing mechanisms with a simple truth-
revealing equilibrium (an economic solu-
tion). However, we will not discuss the other
side of the interplay between MD and com-
puter systems—namely, using computing
techniques to discover good mechanisms.7,8

MD theory
MD considers a setting with a set of agents

N, each holding private information θi about

its preferences (θi is also known as the type
of the agent i). The type describes how each
agent values all possible outcomes, and it is
drawn from each agent’s available type set
Θi. Agent i with type θi has utility ui(θi, o) for
outcome o ∈ ϑ, where ϑ is the set of possi-
ble outcomes. We let the outcome define pay-
ments, in addition to decisions in the world,
such as task or resource allocations. A mech-
anism is then a tuple M = (Σ, g) that comprises
a strategy space (the set of possible actions)
Σ and an outcome rule g(σ) ∈ϑ for σ = (σ1,
σ2, ... σ|Ν|) ∈Σ|Ν|. A strategy si(θi) ∈Σ defines
the actions an agent selects in the mechanism
for all possible types θi. The outcome rule
takes the actions agents selected and imple-
ments a particular outcome. The mechanism,
together with the agent types, defines a game.
We assume that agents are autonomous and
economically rational and that they select a
best-response strategy to maximize their
expected utility in equilibrium with other
agents. This means no agent can benefit from
any unilateral deviation. We assume the
mechanism can commit to the outcome rule
and implement an outcome. 

Mechanism desiderata
The goal in traditional MD is to design a

system in which rational agents interact in a
way that leads to equilibriums with desired
systemwide properties. These properties are
encapsulated in the social choice function
(SCF) f : Θ →ϑ, which defines a desired out-
come for each possible set of agent types. For
example, we might wish to achieve efficiency
in the system by maximizing the total utility
gained across all agents, in which case

You can imagine allocating computational
resources to maximize agent utility or divid-
ing tasks to minimize the system’s total cost.
In short, the SCF describes the properties that
the designer would like MAS outcomes to
possess. Given this, the designer’s problem
is to provide incentives so that agents choose
to act in a way that implements a particular
SCF. Here are some typical desired proper-
ties (desiderata) of SCFs:

• Pareto optimality: Implementing an out-
come that is not Pareto-dominated by any
other outcome, so no other outcomes make
one agent better-off while making other
agents worse-off.

• Maximized social welfare: Implementing
an outcome that maximizes the total util-
ity across agents. This is often called the
efficient outcome.

• Maximized utility to a particular agent:
Maximizing the expected utility to a sin-
gle agent, typically the center, across all
possible mechanisms. A common setting
is a revenue-maximizing auction, in which
the goal is to design a mechanism that
maximizes the auctioneer’s revenue.

• Budget balance: The total payment that
agents make equals exactly zero (a strict
budget balance), so money isn’t injected
into or removed from a system. Or, the
total payment is nonnegative (a weak bud-
get balance), so the mechanism doesn’t
run at a loss. We can also consider an ex
ante budget balance, in which the mech-
anism is balanced on average, and an ex
post budget balance, in which the mech-
anism is balanced at all times, for all
instances.

• Individual rationality: The SCF gives
each agent nonnegative utility in equilib-
rium. We can consider interim individual
rationality, in which an agent has non-
negative utility in expectation given its
own type, and ex post individual rational-
ity, in which an agent always has non-
negative utility.

Budget balance is especially important in
systems that must be self-sustaining and
require no external benefactor to input
money or central authority to collect pay-
ments. Yet, budget balance often conflicts
with other desiderata, such as efficiency (we
return to this later). Individual rationality is
important when you can’t force agents to par-
ticipate in a mechanism.

Equilibrium solution concepts
We would like a mechanism M = (Σ, g) to

implement SCF f in equilibrium. We can use
several different solution concepts in MD to
predict the strategies agents will select. Each
solution concept differs in assumptions about
agents’rationality and about the knowledge that
agents have about the system’s other agents.

We present the three most useful solution
concepts, each successively requiring stronger
assumptions about agents (see the “Auctions
Illustrating Equilibrium Solution Concepts”
sidebar for example auctions). 

Dominant strategy. Each agent has a best-
response strategy no matter what strategy the

f u oo i i
i N

θ θϑ( ) = ( )∈
∈
∑max ,
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other agents select. Formally, we have

for all θi ∈ Θi.
A dominant-strategy equilibrium provides

a robust solution concept because an agent
doesn’t need to form beliefs about either
other agents’ rationality or the distribution
over the other agent types.

Ex post Nash. Each agent’s strategy is a best
response to other agents’strategies no matter
what their types, as long as they also play an
equilibrium strategy:

for all θi ∈ Θi, where s*
–i(θ–i) denotes the

equilibrium strategies played by other agents.
An ex post Nash equilibrium requires

common knowledge about the agents’ ratio-
nality but doesn’t require any knowledge
about type distributions. In this sense, ex post
Nash has a no-regret property, and an agent
doesn’t want to deviate from its strategy even
once it knows the other agents’ types.

Bayesian-Nash. Each agent selects a best-
response strategy to maximize its expected
utility given its beliefs about the distribution

over types, as long as the other agents also
play an equilibrium strategy:

for all θi ∈ Θi.
The Bayesian-Nash equilibrium is the

weakest solution concept adopted in MD. In
a BNE, every agent must hold both beliefs
about other agents’ rationality and correct
beliefs about the distribution on types of
other agents.

Incentive–compatible mechanisms
Given solution concepts and SCF desider-

ata, the central question in MD is, which set
of desiderata can be implemented in a MAS’s
game-theoretic equilibrium, given that the
agents are assumed to be self-interested? 
In this context, the revelation principle is a
key concept when it comes to generating
impossibility and possibility results.9 The
revelation principle (see the related sidebar)
states that any mechanism can be trans-
formed into an incentive-compatible (IC),
direct-revelation mechanism (DRM). In this
context, “direct” means the agents’ strategy
space is restricted to reporting their types and
“incentive compatible” means the equilib-
rium strategy for agents is truth-telling. In
the special case of a DRM in which truth rev-
elation is a dominant strategy, we say the
mechanism is strategyproof. 

The revelation principle is important in
MD for two reasons:

• Theoretical: It allows a focus on IC DRMs
for the development of impossibility and
possibility results.

• Practical: The properties that an IC DRM
can satisfy can provide a normative guide
for the outcome and payments that a real-
ized implementation must compute. This
mechanism need not itself be a DRM and
can have better computational properties
than the original mechanism.

A central possibility result from an analy-
sis of IC DRMs is the celebrated Vickrey-
Clarke-Groves mechanism, a strategyproof
mechanism that maximizes the social wel-
fare—that is, selects the outcome that maxi-
mizes the total utility across all agents.

Consider partitioning the outcome space
into a choice k and payments t. Outcome o = 
(k, t) defines a choice k ∈ K in the space of
feasible choices K and payments t = (t1, …, tN)
by agents. For instance, the choice set can
describe all feasible resource allocations to
agents. As is common in most auction theory,
we assume quasilinear utility functions with

ui(k, ti, θi) = vi(k, θi) – ti ,

where vi(k, θi) defines the value of allocation k
to agent i given its type θi. The VCG mecha-
nism receives claims θ^i from agents about their
valuations and implements the choice k* that
maximizes Σivi(k, θ^i). Each agent makes pay-
ment vi(k, θ^i) – (V(N) – V(N \ i)), where V(N)
is the total reported value of k*and V(N \ i) is the
total reported value of the choice that would
be implemented without agent i. The first two
terms of the payment align an agent’s incen-

s
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An example of a dominant-strategy implementation is the
second-price (Vickrey) auction, where the auction clears for
the second-highest price. In this case, the dominant strategy is
for an agent to truthfully reveal its valuation for the item. 

An example of an ex post Nash implementation is the Eng-
lish auction, an ascending-price auction in which the ask price
is ε above the current winning bid.1 A straightforward bidding
strategy is to bid at the ask price p whenever p ≤ vi for value vi.
This is an ex post Nash equilibrium—that is, as long as other
agents are also straightforward, an agent can do no better,
whatever the other agents’ values. However, straightforward
bidding is not a dominant strategy equilibrium. Consider an-
other agent that conditions a ”crazy’’ strategy such as “I will
bid to $1 million’’ if the price hits a particular target value. In
this case, an agent should submit a jump bid past this target

price to prevent this strategy from triggering. Preventing jump
bids in the English auction makes straightforward bidding a
dominant strategy.

An example of a Bayesian-Nash implementation is the first-
price sealed-bid auction. Given a symmetric equilibrium of
agent types with values that are identically and independently
distributed, vi ~ U(0,1), the symmetric BNE is for agents to play
si

* (vi) = (|N| – 1)vi / |N|.
All of these auctions implement the efficient allocation and

are revenue-equivalent in equilibrium.

Reference
1. R.P McAfee and J. McMillan, ”Auctions and Bidding,” J. Economics

Literature, vol. 25, 1987, pp. 699–738.

Auctions Illustrating Equilibrium Solution Concepts



tives with that of the mechanism and make
truth-revelation a dominant strategy. In equi-
librium, each agent receives as utility the mar-
ginal value that it contributes to the system.

The VCG mechanism is not budget bal-
anced, although it is weakly budget balanced
in some settings (for example, in the combi-
natorial-auction problem that we consider
later). In fact, one important impossibility
result, the Myerson-Satterthwaite theorem,9

shows that no efficient and balanced mecha-
nism can exist in many simple settings,
including a simple-exchange setting with a
single buyer and a single seller and uncer-
tainty about whether the efficient outcome is
to transfer the item from the seller to the
buyer. So, in general, if we choose to retain
budget balance, we must accept some effi-
ciency loss. Approaches to addressing the
budget-balance problem include adjusting
payments to get close to VCG payments but
retain budget balance,10 and retaining truth-
fulness but explicitly clearing exchanges sub-
optimally to sacrifice some efficiency in
return for budget balance.11

However, reiterating the point on practi-
cality, the revelation principle doesn’t imply
that direct mechanisms are the only ones that
are interesting in practice. What the revela-
tion principle does provide is a normative
guide for implementing SCFs with particular
properties in any particular mechanism real-
ization. In fact, theoretically applying the
revelation principle ignores all computational
considerations. We see that all equilibrium
and outcome calculations are moved to the
center, and we assume the agents can report
their complete types. So, any indirect mech-
anism (for example, an ascending-price auc-
tion) that implements an efficient allocation
in equilibrium must also implement the pay-
ments defined in a VCG mechanism.12

Designing MASs for self-interested agents
involves certain computational considerations.
Centralized CMD, like traditional MD, as-

sumes a centralized solution. We must also
resolve subtle interactions between desirable
computational and economic properties that
arise when considering the implementation of
a particular mechanism in a MAS. While
addressing these computational considerations,
we should consider the proposed solutions’
effect on the system’s economic properties.

CMD
The combinatorial-auction problem (CAP)

illustrates the need for CMD and helps iden-
tify the challenges. We discuss some meth-
ods to address these challenges in the context
of combinatorial auctions, which are popular
mechanisms for CAP.

Combinatorial auctions
A combinatorial auction helps determine

efficient allocations in settings with multiple
items and agents that wish to express com-
plements and substitutes across items (for
example, “I only want A if I can also get B”
or “I only want AB or CD”). Researchers
have proposed combinatorial auctions for
many settings, including wireless-spectrum-
rights allocation, takeoff and landing slots at
airports, and multiagent planning.13

If the goal is allocative efficiency, then the
VCG mechanism provides an economic
solution to the CAP. The agents must submit
bids on all item combinations (instead of
only on items). Then the center solves a win-
ner-determination problem to determine the
allocation that maximizes the reported value
given agent bids. Buyers must then pay their
bid prices for the bundles they receive in the
efficient allocation, minus the Vickrey dis-
count. (This is simply the difference between
the total value computed by the winner-deter-
mination problem with all bidders and the
total value computed by the winner-deter-
mination problem without that buyer.)

However, the VCG mechanism for the
CAP has several undesirable computational

characteristics. The winner-determination
problem in a combinatorial auction is NP-
hard and difficult to approximate (being
equivalent to the weighted set-packing prob-
lem13). Furthermore, it’s totally centralized,
with all agents reporting their complete and
exact valuations to the center and the center-
solving |N | + 1 winner-determination prob-
lems to determine the allocation and pay-
ments. As such, it provides a good canonical
example for CMD.

CMD challenges
Previously, we highlighted key issues con-

cerned with moving from MD to CMD. Of
these, the most important challenge relates to
bounded computational power, which presents
a problem at both the agent level (preference
formulation and strategy selection) and the
mechanism level (outcome determination).
Let’s consider each challenge in turn.

Preference formulation and communica-
tion complexity. Naively, we can ask an agent
to list all possible outcomes and provide val-
ues according to its type. In simple settings,
such as voting for candidates in an election,
this is easy and doesn’t require much com-
putation. However, in more complex settings
where the agent must decide between bun-
dles of items or formulate its preferences
according to multiple criteria, the problem
becomes harder. (This occurs commonly
when agents’ owners don’t specify prefer-
ence relationships over all outcomes. Rather,
they specify the criteria by which to rate
these outcomes—for example, specifying
preferences for make, color, and price range
on cars rather than for all available cars.) The
problem has two components. First, an agent
must determine its values. Second, an agent
must report its values.

One approach proposed to address the first
component is to consider indirect mecha-
nisms, such as iBundle,12 that let an agent
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The intuition behind this principle is simply a reduction ar-
gument. Take some arbitrary mechanism M’ with equilibrium
s*. Construct a new direct mechanism M, which asks agents to
report their types and then internally simulates equilibrium s*
in mechanism M’. Given that s* is an equilibrium of M’, then
truth-revelation is an equilibrium of M. So, M’ is incentive
compatible.

For example, consider the direct-revelation equivalent of the

English auction, in which straightforward bidding is an ex post
Nash equilibrium. The direct-revelation implementation of this
asks agents to reveal their valuations and then simulates the
English auction with these straightforward bidding strategies
on the basis of the revealed valuations. The effect is to sell the
item to the agent with the highest bid for the second-highest
bid, which is the well-known Vickrey auction. Truthful bidding
is a dominant strategy in the Vickrey auction.

The Revelation Principle



participate in a mechanism without comput-
ing or reporting its complete valuation func-
tion. Instead, iBundle is an ascending-price
combinatorial auction in which the agent
must compute only its best-response bundle
set given prices in each auction round.
Another approach is more explicit and aims
to formulate queries about agent valuations,
bypassing the need for agents to formulate
preferences for all outcomes.14

You can mitigate the second problem com-
ponent by carefully designing bidding lan-
guages to let agents communicate their valua-
tions compactly and expressively. This is
important because, for example, a naive-flat
bidding language in the CAP would require an
agent to specify 2|N | – 1 bids. However, in
many cases a bidder might be interested only
in a subset of the combinations and might also
have a valuation function with useful structure.

Numerous languages, typically based on
logical representations, exist for this pur-
pose.15 Generally speaking, the literature com-
pares the expressiveness and compactness
across families of languages. In the context of
indirect mechanisms, such as ascending-price
auctions, we also need languages to let agents
provide partial information about their pref-
erences—for example, “my value for bundle
S1 is at least my value for bundle S2.”12

Strategy selection. An agent must compute
its equilibrium strategy given its information
about the mechanism and the other agents in
the mechanism. If the agent knows a priori
that it has a dominant strategy, then the com-
putational problem is insignificant. However,
without this knowledge, the agent must com-
pute an equilibrium strategy. Computing the
Nash equilibrium in a game is notoriously
difficult. It becomes more difficult in an MD
context because we are often interested in a
Bayesian-Nash equilibrium across games in
which agents, owing to their continuous
types, can play an infinite number of strate-
gies.16,17 (Even in the tranquil setting of com-
plete-information matrix-form games, the
complexity of computing a Nash equilibrium
for a two-player, general-sum game—a game
in which a win-win and lose-lose situation
could arise—is unknown but suspected to be
not in P.)

We can mitigate the strategy selection
problem by designing IC mechanisms and,
in particular, using a dominant-strategy
implementation. Other approaches taken in
CMD have included designing mechanisms
that don’t require much computation from

the agents or developing mechanisms based
on models of computationally limited agents.
In the former approach, we could design dom-
inant-strategy-based mechanisms because
they require minimal agent computation.18

However, as we observed earlier, the range of
desiderata we can incorporate into mecha-
nisms with dominant strategies is limited. The
iBundle mechanism demonstrates the latter
approach.12 It adopts an iterative approach in
which agents play a myopic best-response
strategy—meaning they only consider the out-
comes in a limited time window—and only
reason about one stage of the game at a time.

Outcome determination. The computational
burden in DRMs lies with the mechanism.
From the agents’reported valuations, the cen-
ter must compute the SCF’s outcome. Depen-
dent on the SCF, the computation could
involve solving an NP-hard combinatorial
optimization problem, such as the winner
determination problem in the CAP, where the
center must compute the allocation of items
with the highest total value. The outcome
determination problem in mechanisms is
heavily researched and has probably been
investigated most in the form of the winner
determination problem in combinatorial auc-
tions. In this area, three main approaches exist.

The first is to identify and exploit struc-
ture. Researchers have identified polynomi-
ally solvable cases of the winner determina-
tion problem.13,15 We could use these cases to
impose a bid placement structure. However,
this leads to inefficient outcomes if the opti-
mal outcomes require bidding that can’t be
represented with the imposed structure.
Alternatively, we could use the algorithms
for polynomially solvable cases only when
such a structure is detected in the placed
bids.19 However, this structure doesn’t
always occur.

The second approach is to use approxima-
tions. Because finding an optimal outcome is
NP-hard, this approach attempts to find good
outcomes that are close to the optimal but
much easier to compute.17 The main chal-
lenge is to introduce approximations without
breaking a mechanism’s incentive properties.
For example, we can replace the winner
determination algorithm in a VCG mecha-
nism with an approximate one and retain
strategyproofness, but only if the algorithm
satisfies a property of maximal-in-range such
that it makes the right decision across a fixed
range of choices independent of the valua-
tions that agents report.17 (Intuitively, if we’re

not careful in setting the VCG mechanism,
we leave incentives for agents to try to mend
the approximations the mechanism intro-
duces through complex game-theoretic rea-
soning about what other agents will report.
This complicates strategy selection.) The lit-
erature shows a handful of positive results—
for instance, for the case of single-minded
bidders that desire at most one bundle20 and
for the case of multiunit allocation problems
for a slightly relaxed solution concept.21

The third approach is to use an indirect
approach. Here, agents interactively compute
a mechanism’s outcome. For example, they
might provide incremental information about
preferences or refine that information in
response to aggregate signals (via prices, for
example) from the mechanism. The basic
idea is to share the computational burden
between the agent and the mechanism. So,
the key questions are

• What kind of strategy space should be
designed for the agents if the agents can’t
just reveal their types?

• How much of the burden should shift to
the agents?

• Should we assume that all agents have the
same computational resources?

• Can we trust the agents to carry out their
share of the computational work? 

For example, in iBundle, agents following
straightforward strategies will submit bids for
bundles at the current auction prices.12 In sub-
mitting these bids, the agents are doing some
computation (for example, determining bun-
dles with maximal payoff at the current
prices). They’re also helping the auctioneer
by restricting its winner determination to find-
ing the revenue-maximizing allocation solu-
tion across the current bids submitted by
agents and not in terms of agent’s complete
valuation functions.

DMD
So far, we’ve focused on systems with cen-

ters for collecting information from agents
and determining and implementing an out-
come, and a closed set of agents. We’ve also
assumed in CMD that the agents have a
direct, trusted method to communicate with
the center, and that they all can report their
actions to the center simultaneously. How-
ever, these assumptions don’t always hold in
open distributed systems. For example, con-
sider grid computing, in which a set of
resources is distributed over wide-area net-
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works that can support large-scale distrib-
uted applications. The Grid is predominantly
concerned with coordinated resource shar-
ing and problem solving in dynamic, multi-
institutional, virtual organizations.22 As
another example, consider P2P systems,
which are similar to the Grid but typically
have more users with more widely varying
capabilities.23 Grid and P2P systems have
distinct stakeholders and a strong need for
effective resource allocation. A need clearly
exists for economic design and analysis, but
there’s no single central agent or controller
such as those in classic mechanism design.

At one extreme, we could dispense with
MD altogether and simply ask about the
“price of anarchy”24 or the economic cost of
just implementing distributed solutions with
no carefully designed mechanism. In many
cases, we believe that this cost will be too
high. So, the challenge remains to design dis-
tributed mechanisms that retain normative
MD goals (see the sidebar on using MD).

To this end, we explain how to apply DMD
while still considering the pertinent problems
that must be addressed. In DMD, we con-
sider how to implement an SCF under the
constraint that no central agent computes the
outcome. On one hand, such a constraint
might arise naturally owing to a system’s
computational structure. On the other hand,
such a distributed system has several advan-
tages over centralized MD (which are vital
if MD is to gain a central role in designing
MASs with self-interested agents):

• Tractability. A distributed mechanism trans-
fers the computational burden from a central
node in the mechanism to the agents. This is
like transforming the problem into a dis-
tributed optimization problem that exploits
many agents’ computational resources.

• Robustness. In a centralized mechanism,
the communication channels linking to the
center are critical for the system, and fail-
ure might incapacitate the entire system’s
operation. However, if these channels fail
in a decentralized setting, it won’t inca-
pacitate the mechanism, although it could
lead to a suboptimal solution.

• Trustworthiness. In a distributed mecha-
nism, because no single agent computes
the outcome, a higher degree of trust in the
mechanism can exist once you address
other incentive issues—why agents will
choose to perform their roles appropri-
ately, for example. (Trustworthiness in the
center is an ever-present problem in a cen-
tralized mechanism, which we believe has
influenced the limited use of Internet auc-
tions. For example, in the VCG mecha-
nism we discussed, the auctioneer might
proclaim a higher-than-actual second price
to increase its revenue.)

• Bottleneck reduction. In distributed mech-
anisms, communication must no longer
pass through a single point.

In DMD, we imagine distributing a mech-
anism’s rules across the agents so that agents
are asked, for example, to forward messages
following a mechanism-specified protocol or
to perform computation on the basis of mes-
sages received from other agents following a
mechanism-specified protocol. Immediately,
we see DMD’s intriguing new challenge: the
same agents that seek to manipulate a system
also run the mechanism. Why, then, wouldn’t
an agent choose to deviate from implement-
ing a mechanism’s proposed rules of the
game? So, although trusting a single central
agent isn’t necessary, we must now have dis-
tributed trust—we must trust each agent in a
distributed system to implement its piece of

the mechanism’s outcome.
A distributed Vickrey auction provides a

canonical example. Suppose there’s a center
but no trusted communication channel, and
agents must forward a bid from their neigh-
bor toward the center. The only effect that
forwarding the bid from its neighbor can
have on an agent is to increase competition
for the item. In such circumstances, a ratio-
nal agent would choose to simply drop bids
from other agents. One proposed approach
to this problem is using redundancy and
checker nodes to validate decisions on the
basis of revealed information, and partition-
ing so that either no agent computes out-
comes that affect its own utility, or agents
must perform computation only when it’s in
their own interests to be truthful.25

Another challenge in developing distrib-
uted mechanisms involves reducing the com-
plexity of message passing in the communi-
cation network. Consider an interdomain
routing problem on the Internet in which
individual autonomous systems (or agents)
must report their costs for forwarding mes-
sages to select the shortest paths between dif-
ferent domains. Incentives matter, but there’s
no center, and a DMD approach is required
to incite agents to reveal truthful information
and support shortest-path selection. How-
ever, the system should be able to compute
this efficient outcome without overburden-
ing the network with messages just to find it.
Although not too robust to agents that manip-
ulate the mechanism’s implementation, a
DMD-based solution is proposed for this
problem that only modestly increases the
routing-table size and convergence time.26

Furthermore, the network topology might
in itself affect the type of mechanism we can
implement in these systems.25 For example,
one study has considered the network com-
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In current P2P networks such as Gnutella and KaZaa, “free
riding”—agents using the system without providing resources
toward it—is well-documented.1 In response, one approach
has been to study the economics of tit-for-tat, where agents
can only receive resources to the degree that they contribute
them.2 However,this approach is blind to the heterogeneity
of local agents that will likely differ in their computational
resources and data content and quality. Simply stated, free-
riding is not necessarily a bad outcome when performed by
agents with little to contribute to the network. A mechanism
design approach would instead seek to provide incentives for

agents to truthfully report local resources (for example, files
available for upload, bandwidth speed, and so on) and com-
pute socially-efficient file-sharing solutions.
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plexity of implementing multicast commu-
nication on tree-based networks.27 This
might point to adopting a design methodol-
ogy similar to that in traditional MD, which
develops solutions and mechanisms for
restricted domains. 

DMD also highlights another issue in
applying MD in MASs. MD concentrates
almost exclusively on methods to handle
rational and self-interested agents’ behavior.
Yet, most realistic MASs contain various
agent behaviors, so this extreme assumption
might be too strong. For example, the agents
might be obedient (follow the protocol and
prescribed strategy), faulty (not function
properly or be “irrational” owing to hardware
or software failure), strategic (rational, as with
the game-theoretic model) or adversarial
(“irrational” owing to deviant behavior).28 A
debate already exists about why open P2P
systems such as KaZaa work at all given the
incentives for users to free-ride. One sugges-
tion is that naive users simply download and
run the default client, in which file sharing is
enabled. So, in reality we’ll need mechanisms
based on assumptions about a mixture of
agent behaviors, including obedient, strate-
gic, and faulty agents. Traditional equilibrium
solution concepts might be inappropriate in
these systems with mixed agent behaviors.

Another related problem that arises with
both CMD and DMD is that richer kinds of
strategic behavior exist than those assumed in
most MD theory. Most of MD focuses on the
idea that a single agent might unilaterally
seek to manipulate a mechanism’s outcome.
In reality, we might expect agents to collude
and form groups that act as one “superagent”
to benefit from the reduction in competition
and greater power the group wields. How-
ever, this behavior might harm the system’s
overall well-being. (Consider again the Vick-
rey auction. If the agents having the highest
[Agent 1] and second-highest [Agent 2] val-
uations collude, then these two agents can
benefit. For example Agent 1 might offer
Agent 2 half the difference between the sec-
ond-highest and third-highest valuation.)
Collusion problems can be more problem-
atic in electronic settings because people may
unleash several agents and thus easily adopt
multiple identities. Also, they might be bid-
ding across mechanisms, making collusive
behavior harder to detect.

Conclusions and 
general challenges

In addition to the challenges noted earlier,

a number of more general issues cut across
both CMD and DMD and still require further
investigation.

Online mechanisms
Many real MASs are dynamic. Rather than

taking a decision for a system of agents once,
some mechanisms must take a sequence of
decisions and maintain a state (for example, a
resource allocation) dynamically over time as
agents arrive and leave.29 For example, con-
sider the problem of Wi-Fi bandwidth alloca-
tion in an airport lounge. Clients arrive and
leave over time and have heterogeneous val-
uations for different Wi-Fi connection alloca-
tions. An online mechanism is a mechanism
that makes a sequence of decisions as the
agent types are dynamically revealed as they
arrive in the system. The challenge in online
MD is to provide appropriate incentive prop-
erties so that it’s an equilibrium strategy for
an agent to both report its true valuation func-
tion for different outcomes and announce its
arrival as soon as it enters a system. 

Adaptive mechanisms
A second challenge is adaptive-mecha-

nism design, in which the mechanism’s rules
change over time. Consider the same Wi-Fi
bandwidth allocation problem, but where the
mechanism doesn’t start with a good model
of the agents’ arrival dynamics or the distri-
bution across agent types. The problem has
two components. First, the mechanism must
have appropriate incentive properties at any
particular instance, even while learning is
still taking place and the rules are still sub-
optimal with respect to some desiderata. Sec-
ond, the mechanism’s dynamics must be
robust to withstand manipulation from an
agent that wishes to misstate its current type
to benefit from this action’s dynamic effect
on the mechanism’s rules later on.

Money
The presence of money, a common

denominator by which every good can be val-
ued, is important in traditional MD. How-
ever, in many MASs, such a common
denominator doesn’t exist naturally and must
often be constructed.

Machine-understandable 
specifications

Agents act on behalf of their owners. To be
effective, owners must communicate their pref-
erences to agents seamlessly. So, the agent’s
type should basically mirror its owner’s.

Semantic interoperation
Often, numerous institutions provide the

same service that an agent requires. So, the
agents must be able to operate in all such
institutions simultaneously. This should lead
to more efficient outcomes because, in this
case, the agents will maximize their utility
over the whole space of electronic institu-
tions. However, the ability for agents to effec-
tively understand and communicate in an
arbitrary institution is a major challenge fac-
ing computer scientists.

Regulation and binding contracts
To prevent a mechanism’s incentive prop-

erties from unraveling, the center must be
able to credibly commit to the game’s rules.
Similarly, an agent’s adherence to the rules
laid down by a mechanism can be critical to
system functionality. Commitment and trust
in the real world are typically built on an
intricate set of procedural and legal require-
ments. This is more difficult in virtual
worlds, where legal aspects are less well
understood or simply undefined. In MAS
systems, additional problems might exist,
owing to multiple identities, for example, or
because validating the existence (or lack) of
particular behaviors can be difficult.

Computational-mechanism design has an
important role to play in developing

complex distributed systems comprising
multiple interacting agents. It offers a pow-
erful suite of tools for analyzing, predicting,
and controlling the behavior of self-inter-
ested agents. However, several fundamental
scientific questions must still be addressed if
this nascent field is to reach its full potential
and become a significant paradigm for devel-
oping such systems. 
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