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Abstract

Computational systems are now distributed by de-
fault, and designed, owned and used by multiple
self-interested parties. In the face of this grow-
ing system complexity, we need a unifying de-
sign paradigm, that supports continued innova-
tion and competition while promoting easy deploy-
ment, operation, and use. Focusing on the central
problem of resource allocation—the arbitration of
shared resources among the competing demands of
users—we introduce a paradigm of strategyproof
computing, a vision in which individual users can
treat other resources as their own. We layout the
benefits of strategyproof computing, and identify
five AI challenges in making this vision a reality.

1 Introduction
The widespread deployment of high-speed Internet access,
including rapid build-out of WiFi capability, is leading to
massively distributed computing systems, that are designed,
owned and used by multiple self-interested parties. Witness
the explosion of next-generation systems, including peer-to-
peer systems, pervasive systems [48; 39], computational grids
[14], 3G cell-phone services, and server farms providing on-
demand computing for businesses.

Two points cannot be understated. First, these systems are
truly open, with innovation and competition, and little central
control beyond agreement on fundamental communication
protocols such as those within the current Internet. This open
nature is vital for the continued design and deployment of
new and rich capabilities, and must be explicitly recognized
and embraced.1 Second, the actors in these systems are truly
self-interested (at least to the same extent that people and
businesses in human societies are self-interested) and hetero-
geneous in both their capabilities and their goals. This self-
interest is natural as computing systems increasingly adopt
characteristics of economies, and must be explicitly recog-
nized and embraced.

1Indeed, the original Internet design was built around an end-
to-end principle, that explicitly left the “smarts” to the edges of the
network to allow for the development and deployment of rich and
unanticipated applications [36].

Resource allocation—the arbitration of shared resources
among the competing demands of self-interested users—is
among the most basic functions of a distributed computing
system. Taking this as our focus, we introduce the paradigm
of strategyproof computing, a vision which embraces and
enables innovation and competition by defining principles
while promoting “plug-and-play” build-out, and addresses
self-interest by allowing individual users to treat other re-
sources as their own. Strategyproof computing builds on two
intellectual threads: the theory of economic mechanism de-
sign, and market-based approaches to resource allocation. In
particular, we seek to use mechanism design to design dis-
tributed systems that simplify the game-theoretic problem fac-
ing agents, while promoting competition across mechanisms
and the development and deployment of new mechanisms
around new services.

Strategyproof computing can be viewed within the emerg-
ing research agenda of autonomic computing. The thesis of
autonomic computing is that the complexity of distributed
systems, with multiple tuning parameters, massive scale, het-
erogeneity, and dynamic interactions, which require systems
that can self-configure and self-repair. Naturally, one of the
key challenges in the autonomic-computing agenda is to ad-
dress the issue of decentralized autonomy, namely how to
define standards for interoperability and how to define high-
level protocols to promote the effective collective behavior
in multiagent systems. Strategyproof computing provides a
compelling paradigm with which to address this particular
challenge.

Indeed, strategyproof computing can be viewed as a sub-
set of autonomic computing. Within strategyproof comput-
ing there are both autonomous elements— individual mecha-
nisms of limited scope —and aspects of adaptive and decen-
tralized control, with the emergence of new mechanisms and
the tuning of existing mechanisms. As such, strategyproof
computing will require an extensive use of AI techniques such
as learning, search, description languages, and concepts of
bounded-rationality.

In a companion paper we lay out a related set of systems-
related challenges [29]. Here, we focus on some of the AI-
related research challenges in making the vision of strate-
gyproof computing a reality.



2 Strategyproof Computing
In this section, we first layout the guiding principles and in-
tellectual threads that underpin the paradigm of strategyproof
computing. Continuing, we define the central components of
strategyproof computing.

SPC is best distinguished from previous proposals for
market-based methods for the control of distributed systems
(e.g. [12; 41; 47; 18; 16; 4; 42; 23; 35; 11; 44]) in that it is
designed for large and complex systems in which it is infeasi-
ble to suppose a single entity with the authority to impose and
implement a single resource allocation mechanism. Instead,
SPC is an infrastructure-level effort to support the massive
deployment and interoperation of competing economic mech-
anisms. We contend that no single mechanism can possibly
be appropriate for all requirements in a heterogeneous multi-
agent system.

Central research questions include that of design, i.e. the
construction of local mechanisms with robust incentive prop-
erties, validation, i.e. the validation of the incentive proper-
ties of mechanisms, and composition, i.e. the development
of algorithmic methods and mechanisms that make it easy for
participants to compose services across multiple mechanisms.
We return to these questions in Section 3.

Strategyproof computing (SPC) is most applicable in dis-
tributed computing environments in which resource alloca-
tion decisions are ubiquitous and exposed to users (or their
computational agents), and in which users (or their agents)
are sophisticated and have figured out how to behave in order
to maximize their individual utility.

2.1 Guiding Principles.
We start with five guiding principles for the design of stan-
dards to promote effective collective behavior in distributed
computational systems.

incentives-first Resource allocation decisions should be
made in a framework that considers the incentives of
participants and assumes that users will try to extract
as much individual benefit from a system as possible.
Models that assume cooperation and ignore incentives
are not useful when defining systems with useful long-
term equilibrium behavior.2

utility-based Resource allocation decisions should be made
in a framework that considers the utility of users for dif-
ferent outcomes as the basis for arbitration. Moreover,

2Current systems seldom expose the rules of resource allocation
arbitration to participants, and instead rely on users downloading
cooperative software layers. A good example is Kazaa, which relies
on enough users choosing to provide files for upload to other users.
Those systems that do expose the rules of resource allocation, such
as emerging computational grids for scientific experiments (e.g. Gri-
PhyN), currently provide users with a simple priority-based method
to request and allocate resources. The allocation mechanisms (e.g.
Condor) are not incentive-compatible, and users can improve their
allocation by misstating priorities for jobs. While current grids ap-
pear to be working well for small groups of friendly scientists local
to the organization that provides the resources, incentive issues will
surely arise as grids are expanded to include corporations and inter-
organization computing.

this utility should be measured in terms of a common
currency, to allow for an explicit tradeoff between mul-
tiple users and across between different components of
a system.3

simple As designers we should seek to simplify the deci-
sions facing participants in distributed multiagent sys-
tems, such as the optimal statements to make about the
local capabilities (e.g. available storage space, speed of
Internet connection, etc.), or the optimal statements to
make about the utility of a party for different levels of
resources (e.g. bandwidth connectivity).

open Systems must be open to allow for innovation and com-
petition in the design of new computing services. Rather
than advocating one particular mechanism for resource
allocation, we propose to provide an infrastructure in
which multiple mechanisms can be designed and de-
ployed within an open system.

decentralized The control structure in distributed comput-
ing systems must be decentralized, both to respect the
autonomy of the nodes that own the property rights to
resources, but also for reasons of computational scale
and timeliness of information.

2.2 Intellectual Threads.
In support of these principles— incentives-first, utility-based,
simple, open, and decentralized —we seek to infuse funda-
mental ideas from economic mechanism design and markets
into the microstructure of distributed system design, while re-
taining the principle of supporting the decentralized and open
build-out of new functionalities and services.

We build on two intellectual threads: market-based ap-
proaches and economic mechanism design. Price-based
markets are interesting because when equilibrium prices,
when exist they support an efficient allocation of resources.
Market-based schemes (e.g. [12]) are intrinsically decentral-
ized, with resource allocations left to individual participants
(and coordinated via equilibrium prices). Moreover, there are
simple (but usually centralized) tâtonnenment schemes to ad-
just prices towards equilibrium, with guaranteed convergence
properties in classical economies [10].

Economic mechanism design (MD) presents an alternative
approach, in which each participant is modeled as a game-
theoretic agent and a protocol is selected to achieve partic-
ular desiderata (e.g. allocative efficiency, fairness, or maxi-
mal throughput) in equilibrium (e.g. [20; 25]). Mechanism
design formulates the design of an allocation scheme as a
constrained optimization problem, in which an optimal set
of rules are selected subject to incentive constraints [28]. The
theory of mechanism design extends to very general prob-
lems, and there are a number of celebrated mechanisms ad-
dressing various requirements (e.g., [46; 17]).

However, both approaches have their limits. First, price-
based methods are inapplicable when resources are indivisi-
ble or when the preference structure of the economic agents

3Shenker (e.g. [40]) has long advocated the use of utility-based
metrics rather than more traditional systems metrics such as through-
put and utilization. Recently, Vadhat [43] has promoted a utility-
based computing research agenda.



are more expressive and complex (such as “I only want
�

if
I also get � ”), because equilibrium prices often fail to exist
[5]. Second, although MD presents an elegant mathematical
theory it is often unworkable in practice (e.g. [21]). Diffi-
culties include problems that are not analytically solvable for
any but the simplest settings; formulations that are centralized
and ignore the computational constraints on a solution; lack
of general agreement on desiderata; and inability to capture
the entire scope of a problem within a single mechanism.

2.3 Basic Elements.
In strategyproof computing we seek to combine the decentral-
ized resource-allocation aspects and open nature of traditional
price-based market models with the generality and clarity of
mechanism-based approaches.

We mentioned “plug and play” in the introduction, as a
useful characteristic of a SPC system. Briefly, the intention
is that new services and new resources can be plugged into
a SPC infrastructure, along with an accompanying public in-
terface to describe their incentive- and performance charac-
teristics. Then, the existing user base can seamlessly start to
play the new services and resources, because the appropri-
ate method with which a self-interested user should interact
with a new service is already clear. The companion paper on
systems related issues makes these components more precise.

For now, we content ourselves with defining the central el-
ements of the SPC paradigm.

Limited Scope.
Individual parties can design and deploy mechanisms with
limited scope, to implement resource allocation decisions for
the resources and overlay services under their control. Realis-
tic mechanisms must necessarily have limited scope, both to
maintain a reasonable computational and informational scale
and because the sphere of influence and control for a single
party must necessarily be limited (see [49] for a related dis-
cussion).

Strategyproof.
Each mechanism must be locally strategyproof (LSP). Tech-
nically, this means that truth-revelation is a dominant strat-
egy for a user that can express her utility for resources and
services within the scope of a mechanism independently of
other events in the world, and chooses to submit requests for
those resources exclusively to that mechanism. For example,
if I know that I want ice-cream for desert irrespectively of the
kind of pie that I acquire, then I should be able to truthfully
express my value for different flavors of ice-cream to a LSP
mechanism.

A little more formally, but sticking with a special case, con-
sider a set of items � that are partitioned �����	��
���������������
such that ��������������� for all  !�" $# and % � ���&��� . Now, con-
sider a family of LSP mechanisms ' � , each defined on one
of the components � � of the partition. As long as the valua-
tion (*)�+$,.-0/21 of agent 3 for bundle ,546� is additive across
the partition, i.e. (7)�+$,.-8�:9 � (*)<; �=+$,>�<- where ,?�@�A,B�C��� ,
for restricted valuations ( )<; � +=D - , then agent 3 should submit its
true valuation function ( ) to each mechanism (perhaps within
a bidding language that restricts this valuation to the subset
of goods ��� ).

We advocate locally strategyproof mechanisms because of
their simple game-theoretic properties. A self-interested par-
ticipant need not model the strategies and behaviors of other
parties [45]. This, the computational benefits and strategic ro-
bustness provided by strategyproofness are very compelling.
Indeed, one driving vision of strategyproof computing is that
parties can begin to treat the resources of the network as
though they were their own, with no need to game the sys-
tem.

By itself, local strategyproof (LSP) mechanisms are not
sufficient to completely remove any need for game-theoretic
reasoning. In general, it is not necessary that the patchwork
of mechanisms exactly partition the outcome space, nor that
agents’ valuations exactly decompose along the boundaries of
the patchwork. In this case, there remain strategic questions
facing participants that cannot decompose their local prob-
lems to fit the decomposition in the world provided by the
patchwork of mechanisms, and also for participants that want
to get the best deal across multiple mechanisms.

However, as we noted earlier, it is most definitely neces-
sary to relax the extreme position of MD theory in which one
can (informally speaking) build one combinatorial auction for
the entire world. We return to the question of composition
across LSP mechanisms in the next section, when we identify
a number of important research challenges.

Open.
Strategyproof computing allows anyone with property rights,
for example resource or service providers, or intermediaries,
to define and deploy a LSP mechanism. We envision an open
and competitive market for mechanisms, in which economic
forces should naturally lead this to the emergence of mech-
anisms with the right scope and the right complexity. This
decision about scope represents a tradeoff between provid-
ing a large enough scope to sufficiently simplify the game-
theoretic decision facing a participant— for example bringing
resources that are complementary for a large number of users
into the same scope —while maintaining a small enough
scope to build computationally reasonable resource allocation
mechanisms.

3 AI Challenges
Progress in this research agenda calls for a careful synthesis
of a number of AI techniques. In this section we identify five
AI-related challenge areas in making progress towards this
strategyproof computing vision.

A companion paper lays out some of the systems-centric
challenges [29]. These systems challenges include those of
providing development tools for LSP mechanisms, develop-
ing methods to validate and certify LSP mechanisms, issues
of scalability and decentralization, deployment issues, and
the need to find effective methods to measure the performance
of strategyproof systems.

3.1 Design
We need to build useful LSP mechanisms, with good com-
putational properties—for both agents and the mechanism
infrastructure— and good economic properties. There has al-
ready been some progress in designing strategyproof mecha-



nisms (e.g. [2; 24; 32; 27]). For example, a general paradigm
has emerged that observes that the family of strategyproof
mechanisms for combinatorial auction settings can be com-
pletely characterized by price-based mechanisms in which
each agent faces a set of prices that are entirely determined
by the information announce by other agents. Computa-
tional mechanism design (see [33, chapter 3] for an intro-
duction) has considered topics such as the design of bid-
ding languages (e.g. [8; 31]), and winner-determination algo-
rithms that can leverage the structure in problems (e.g. [38;
6]).

Of course, the intention in SPC is not to include as a sub-
component the entire agenda of computational mechanism
design. Rather, it seems more pertinent to focus on three im-
portant directions that will be required for successful mecha-
nisms within computational systems: a) approximation and
relaxed definitions of strategyproofness (e.g. [13; 22]); b)
online mechanisms in which systems are “always on” and
agents can dynamically arrive and leave over time (e.g. [15;
30]); and c) two-sided mechanisms in which there is interme-
diation across both buyers and sellers of resources (e.g. [34;
26; 3]).

3.2 Description
We need languages to describe the resources provided by a
mechanism, the semantics of messages that a user can send
to a mechanism, and the incentive properties of mechanisms.
In particular, the incentive properties must be stated with re-
spect to some assumptions about the utilities of users. For
example, “my mechanism is LSP for a user that only wants
access to WiFi bandwidth for a single minute.” In the context
of a market for mechanisms, it also seems useful to enable
a mechanism to describe the utility that users have received
from its service to promote market transparency. These util-
ity statistics should aid in the composition problem that faces
participants in systems with multiple mechanisms.

3.3 Verification
Perhaps the central role of the infrastructure, in the support of
strategyproof computing, is in its ability to verify the stated
incentive properties and utility statistics of a mechanism, or
at least to enable the verification of these properties by other
parties. This is essential, because the truth-revealing equilib-
rium of well-designed mechanisms can quickly unravel with-
out the ability to commit to a particular set of rules. Consider
a Vickrey (second-price sealed-bid) auction in which the auc-
tioneer cannot commit to clearing the auction at the second
highest price. Such an auction would degenerate into a first-
price auction.

One interesting direction would require that mechanisms,
and users, maintain a (partial) audit trail, to record sequences
of requests for resources and decisions made. Collected (re-
ported utility, outcome) tuples from successive queries can
be used to check that no user could have received a better
outcome with respect to her reported utility by reporting the
utility of another user. This can be viewed as a problem in
reinforcement learning: given the data try to learn a better
strategy than truthful reporting. The challenge is to investi-
gate how much data is necessary to provide enough counter-

factual information to validate a mechanism’s incentive prop-
erties, and to understand the best way to use existing data and
to augment the data, as necessary, with additional queries. In
Ng et al. [29] we term this distinction the difference between
passive- and active checking.

3.4 Composition
We need to be able to compose the resources and services
provided across multiple mechanisms. This problem occurs
because of the limited scope of individual mechanisms. There
has been some progress on the design of trading agents to par-
ticipate in multiple sequential (e.g. [7]) and parallel (e.g. [1])
auctions, but less emphasis on the design of general meth-
ods to support composition. The basic problem is one of
exposure, which can occur when what is desired in one ne-
gotiation is contingent on the outcome of another negotia-
tion.4 One natural idea is to provide LSP mechanisms that
offer real options to users, such that the most useful option
is offered through a truthful statement about a user’s util-
ity. This reduces the problem to a decision-theoretic prob-
lem, with a user able to select the appropriate combination of
options once they have been awarded. We are aware of only
one mechanism that grants options [19], although the options
in that mechanism are not designed to be held for any length
of time after the auction clears. Options are closely related
to the idea of leveled commitment contracts, that have been
proposed to address exposure to risk in the setting of decen-
tralized bilateral negotiation between multiple parties [37].

3.5 Learning
Given that mechanisms are of limited scope, and that the de-
sign of individual mechanisms represents a difficult tradeoff
between expressiveness and complexity, it seems that ma-
chine learning techniques will be useful to promote the au-
tomatic adaption of mechanisms of the right scope and to
identify and introduce new mechanisms to act as intermedi-
aries for certain combinations of resources.5 One very useful
property of SPC is that the information is available to en-
able learning because users are revealing utility information
directly through their requests to mechanisms.

For a fixed set of resources and in a fixed environment, it
will be interesting to explore whether reinforcement learning,
and search, can be used to adapt towards mechanism rules
with useful properties. Similarly, given a limit on the num-
ber of mechanisms, and again for a fixed environment, it will
be interesting to explore whether reinforcement learning (or
perhaps evolutionary computing methods) can be used to rec-
ognize a useful resource scope for mechanisms.

Another related topic is that of the automatic tuning of the
parameters within a particular mechanism. The family of
false-name bid proof mechanisms due to Yokoo et al. [50]

4This was recognized early on in the FCC auction design prob-
lem, with bidders in a non-combinatorial auction becoming exposed
to one license without being able to win the complementary license
[9].

5This is akin to the role of arbitrager agents in stock markets,
where the role of arbitrage is to identify and fix pricing inefficiencies
across markets and improve liquidity by executing complex deals
such as swaps and portfolio rebalancing trades.



are examples of mechanisms that are tunable, e.g. via reserve
prices. One subtle problem with this will be to maintain in-
centives along the path of learning.

4 Conclusions
We have introduced the paradigm of strategyproof comput-
ing, in which resources and services are wrapped around
an economic mechanism interface that provides local strat-
egyproofness. Individual mechanisms compete in an open
marketplace, with deployment enabled through a shared in-
frastructure that enables the description and validation of
the incentive properties of mechanisms. We identified five
AI-specific challenges areas in strategyproof computing, that
provide a compelling and rich research agenda.

We believe that strategyproof computing presents a com-
pelling vision to simplify the development of decentralized
systems in which there are multiple self-interested parties and
incentives matter. Further, we believe that strategyproof com-
puting provides an intellectually stimulating research agenda
around at the interface between AI, systems, and economics.
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