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Virtual Worlds: Fast and Strategyproof Auctions for
Dynamic Resource Allocation

Chaki Ng � David C. Parkes � Margo Seltzer �

ABSTRACT
We consider the problem of designing fast and strategyproof ex-
changes for dynamic resource allocation problems in distributed
systems. The exchange is implemented as a sequence of auctions,
with dynamically arriving requests from agents matched with each
auction. Each auction is associated with some consignment of the
resources from a single seller. We provide a simple Virtual Worlds
(VW) construction, that extends a fast and strategyproof mecha-
nism for a single auction to apply to this sequence-of-auctions set-
ting. Rather than match each buyer with a single auction, the VW
mechanism allows buyers to be considered for multiple auctions
while retaining strategyproofness.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; J.4 [Computer Applications]: Social and Behav-
ioral Sciences—Economics.

General Terms
Algorithms, Economics.

1. INTRODUCTION
Computation is increasing distributed and performed by devices

representing multiple individuals and businesses. Consider a data
staging scenario, in which multiple users with PDAs are in Times
Square and trying to read and access corporate databases. Each
user would like to stage (encrypted) data within nearby physical
environment to reduce latencies. A socially-efficient allocation of
data staging capabilities in Times Square would allocate capacity
to maximize the total value across all users.

With cooperative users, and other computational considerations
aside, one could simply ask devices to state their utilities for vari-
ous outcomes and then implement the socially-efficient allocation.
However, rational and self-interested users would overstate their
utility for the ability to stage their own data, and cause the system
performance to quickly unravel.

In this paper we propose a fast and scalable mechanism for dy-
namic resource allocation. The mechanism is novel, in that it al-
lows agents to be matched against a sequence of auctions while
�
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retaining strategyproofness. We view this as a step towards the de-
velopment of general infrastructure-level support for strategyproof
computing in distributed systems [3].

2. THE VIRTUALWORLDS MECHANISM
To start, we model a simplified problem with one seller, with �

units of a homogeneous resource available in each period of time�
. Request agent � arrives at time

���
, with private information about

her value � � for 	 � units of resource for duration 
 � . All request
agents (RA’s) are assumed to have patience � , which is the amount
of time that any RA will wait to receive the resource. We assume
that the arrival time, and patience, is known to the system.1

The VIRTUAL WORLDS (VW) mechanism partitions the avail-
able resources into ���������������� auctions, where auction � provides
��� units of resource, of duration 
�� , starting at time

� � . Let ��� de-
note the set of RA’s that arrive into the system between auction
��� � and auction � . We refer to each new auction as a new period.
The mechanism allows an RA to be matched against a sequence of
auctions. The RA receives resources from the first auction in which
it is a winner, and immediately upon a successful match. However,
the RA’s final payment is not determined until the first period � ,
with

� �"! ���$# � (i.e. after its patience duration). Let %'&)( *,+)-.�0/
denote the current payment calculated for agent � . This is defined
to be zero for an agent that has not yet received a match, and oth-
erwise will monotonically decrease while the agent remains in the
system.

The VW mechanism maintains a set of active bidders, 12� , at the
start of each period. These are the RA’s with

� � �"�43 � � 3 � � ,
that are either winners in some previous period with %'&5( *,+6-.�0/87�9 ,
or have not yet received a successful match. The set 12� includes
the agents ��� that have arrived into the system between period �:�;�
and period � . Let <=�?>@1?� denote the set of active bidders that are
already winners, at the start of period � . This captures the essential
information about the state of the system. In VW, each winner has
an associated virtual world while it is active.

Definition. The Virtual World for active bidder � in period � defines
the state of the system that would exist if bidder � had not arrived
until period � but everything else was unchanged.

Let ACBD� denote the set of active bidders that are already win-
ners at the start of period � , and also the bidders that win for the
first time in period � . The set of winners, < � -.�0/E>@1 � , that would
exist if bidder � had just arrived in period � , captures the essential
state information about the virtual world.

In describing the VW mechanism, we are careful to distinguish
F
See Friedman & Parkes [1] for a recent discussion of a VCG-

based approach to online mechanism design, where agents can mis-
state arrival times.



between the “real world”, in which resource allocation decisions
are made and initial payments determined, and the virtual worlds
in which the agent’s payments are refined. In each period, the VW
mechanism performs the following two phases:

Phase I. Run the greedy auction scheme of Lehmann et al. [2]
(hereafter LOS) to clear the auction in the real world. In particular,
we take bids from the subset of agents not yet matched, 1 �HG < � ,
that request resources that fit within the capacity �H� and duration

,� offered in period � .2 These are bids from all agents I��J � �@K
�MLN12� G <=�O�6	 � 3P���O��
 � 3D
��Q� . The LOS scheme clears auction
� as follows:

[1] Sort the bids in I�� in order of decreasing � �0R 	 � , with � F R 	 F !
��S R 	TS8!P�����U!@��V R 	TV .

[2] Let W � L � 9����X� denote whether bid � is accepted. Initialize
W � P9 for all � . Walk down the bids from 1 to 1 . Greedily accept
bid Y while ���Z!\[ � W � 	 �]# 	�^ , and set W�^�_� . Let W � denote
this solution.

[3] For each winner � , with W �� `� , repeat step [2] with all bids
I � except this bid. Call this solution Wba

�
. Let % � denote the per-

unit bid price, �5^ R 	�^ of the first bid Y that is not a winner in W � but
is a winner in W a

�
, or zero if there is no such bid.

[4] Implement allocation W � , with each winner � with W �� 4�
making payment 	 � % � .

The payment %c&)( *,+6-.�d/ to a winning agent is initialized to the pay-
ment computed in this LOS scheme. In addition, the new winners
are added to the set of agents with virtual worlds, A�BD� . Then, in
the virtual world for agent � , the set of winners <=��-.�d/ is initialized
to <=� .
Phase II. For each virtual world, �CLeA�Bf� , run the LOS scheme
twice. First, run the LOS scheme with 12� G <g�U-.�d/ , where this in-
cludes agent � . If bidder � is a winner, then update the price %'&)( *,+6-.�d/ ,
to the smallest of the current % &)( *,+ -.�0/ and the price in this virtual
world. Second, run the LOS scheme with 12� G -h<g�U-.�d/jik�d/ , i.e.
without bidder � . Propagate this as the state of the virtual world for
the next period. The first stage of Phase II is not necessary in the
first period that the VW is created.

The effect of Phase II is to compute the payment in period � for
an RA that has been matched in the previous period, as though it
just arrived into the system for the first time in period � . If the RA
wins for a lower payment in period � , then this payment becomes
the new VW payment.

Interestingly, we can establish the strategyproofness of the VW
mechanism as a simple corollary to the incentive properties of LOS.
The VW mechanism maintains properties:

Exactness. Bids are either accepted in full or denied.
Monotonicity. If a bid -h	 � ��� � / loses, then a bid -h	�l� �m�Ol� / with
	�l� !D	 � and �Ol� 3"� � also loses.

Participation. Only winners make payments.
Critical. The payment is exactly equal to the minimal price at

which a bid, for the true size, would have still been accepted.
Taken together, these properties are sufficient for strategyproof-

ness, and imply our main result:

THEOREM 1. Truth-revelation of -h	 � ��
 � �m� � / is a dominant strat-
egy for RA’s in the VIRTUALWORLDS mechanism.

PROOF. (sketch) Exactness and participation trivially hold, while
monotonicity is inherited from the greedy LOS scheme. The VW
S We are careful to allocate an RA with reported length 
 � to any
auction with 
 � !n
 � , rather than some subset of auctions with 
 �
“close” to 
 � . Otherwise, there could be an incentive for an RA
to overstate its required duration 
 � in order to change the pool of
auctions with which it is matched and change its payment.

New Requests

Pool 1

Pool 2

Pool N

…..

New Services

Active
Services

ConsignmentRound-Robin

Figure 1: Exchange architecture

construction provides the critical property by explicit construction
across all periods in which the agent is equally happy to receive a
match.

3. EMBEDDING WITHIN AN EXCHANGE
In a practical resource allocation mechanism there are multiple

sellers, in addition to multiple buyers. In this section, we briefly
explain how the VW mechanism is embedded within a two-sided
exchange via a consignment and pooling mechanism. The reader is
referred to the full paper for complete details [4].

Figure 1 depicts the overall architecture of the exchange. First, to
provide scalability, incoming RA’s are divided into multiple pools,
with each pool associated with a single VW mechanism. New RAs
are queued up in the system. Before starting a new round of auc-
tions, each queued RA is assigned to join one of the auction pools,
in round-robin fashion. Second, arriving SA’s are also queued,
before the resources are chunked into a consignment of resources
and scheduled to a sequence of auctions (possibly within multiple
pools). Each auction is associated with a consignment of resources
from a single SA. The auction pools operate independently of each
other and are monitored by the exchange. The basic information a
pool needs to start a new auction is the current RAs assigned to the
pool, the SA assigned to the next auction, and the consignment of
capacity that it will make available.

Arriving SA’s report a capacity �j^ and total duration 
 ^ . The
consignments are constructed to provide each SA with access to the
same total number of auctions, irrespective of its reported -h�j^���
 ^o/ .
Instead, the consignment within a single auction is scaled. This
is useful because it removes any incentive for an SA to overstate
its available capacity. In the longer version of this paper [4], we
analyze the remaining, but limited, opportunity that can exist for
an SA to understate its capacity and increase its payments.

We have implemented VIRTUALWORLDS on Sun’s JXTA plat-
form and Berkeley DB and obtained initial positive results. We are
deploying pools on multiple servers for scalability and are currently
conducting further validation of the performance across a number
of different resource allocation scenarios. For the future, we will
extend and deploy the mechanism for computational grids.
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