
 

Using Redundancy to Improve Robustness of Distributed
Mechanism Implementations

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Shneidman, Jeffrey, and David C. Parkes. 2003. Using redundancy
to improve robustness of distributed mechanism implementations.
In EC '03: Proceedings of the 4th ACM Conference on Electronic
Commerce: June 9-12, 2003, San Diego, C.A., 276-277. New
York: ACM Press.

Published Version doi:10.1145/779928.779997

Accessed February 18, 2015 3:16:32 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4101236

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/4101236&title=Using+Redundancy+to+Improve+Robustness+of+Distributed+Mechanism+Implementations
http://dx.doi.org/10.1145/779928.779997
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4101236
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Using Redundancy to Improve Robustness of Distributed
Mechanism Implementations

Jeffrey Shneidman � David C. Parkes �

ABSTRACT
This paper introduces computation compatibility and communica-
tion compatibility as requirements for a distributed mechanism im-
plementation. Just as payments are used to create incentive com-
patible mechanisms, some technique must be used to create com-
putation/communication compatible mechanisms. This paper ex-
plores computation redundancy and communication redundancy as
two such techniques. This paper uses interdomain routing as an ex-
ample domain, and considers where redundancy can succeed and
fail in addressing cheating with respect to computation and com-
munication.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; J.4 [Computer Applications]: Social and Behav-
ioral Sciences—Economics.

General Terms
Algorithms, Economics.

1. INTRODUCTION
Mechanism design (MD) studies how best to specify the strate-

gic situation, or “rules of the game”, so that the system as a whole
exhibits good behavior in equilibrium when self-interested nodes
pursue self-interested strategies. Classical MD assumes that the
players feed their calculated strategies to a special obedient cen-
ter that performs the mechanism calculation and declares the out-
come. This classic approach is not realistic in many computational
settings, where networks may consist of strategizing agents and a
special center may not exist, with computation and communication
spread over several rational nodes. Distributed algorithmic mech-
anism design (DAMD) [2] more accurately models network situa-
tions, where both agents and resources are distributed.

One large problem in implementing distributed mechanisms is
that mechanism design ideas were originally intended to reason
only about agent inputs [4]. It is always assumed in traditional MD
literature that messages from agents to the center flow freely and
that the center performs all necessary computation. In this paper,

�
Division of Engineering and Applied Sciences, 33 Ox-

ford Street, Harvard University, Cambridge, MA 02138.�
jeffsh,parkes � @eecs.harvard.edu. Supported in part by NSF grant

IIS-0238147.

Copyright is held by the author/owner.
EC’03, June 9–12, 2003, San Diego, California, USA.
ACM 1-58113-679-X/03/0006.

we are concerned with equilibrium message passing and computa-
tion behaviors by strategic nodes, when the computational nodes
and strategic nodes are the same.

2. COMPUTATION AND COMMUNICATION
COMPATIBILITY

MD often assumes that a player’s strategy stops at the point of
information revelation—namely, a strategy only concerns a node’s
input choice into a mechanism. In a network setting, however, an
agent may be asked to do more than provide a value. Specifically,
in DAMD, an agent may be asked to relay other agent’s values or
other data, and implement part of a distributed mechanism compu-
tation. We explicitly extend the definition of an agent strategy (and
type) to define an agent’s behavior when asked to pass messages
and perform computation as part of a distributed mechanism.

One nice goal in mechanism design is to create mechanisms that
are incentive compatible. Payments are used in mechanism design
to bring private-value truth revealing into an agent’s equilibrium
strategy. This paper introduces the analogous ideas of computation
compatibility and communication compatibility as two desirable
mechanism implementation properties.
Definition. A distributed mechanism is computation compatible if
every agent chooses to follow a computation specification dictated
by the mechanism creator and perform all computation obediently.

Definition. A distributed mechanism is communication compati-
ble if every agent chooses to follow a communication specification
dictated by the mechanism creator and forward all messages obe-
diently.

Computation compatibility and communication compatibility are
intended to address computation and communication manipulation,
just as incentive compatibility is intended to address information-
revelation manipulation. Unlike incentive compatibility, which takes
truth-revelation as the “gold standard” of behavior, computation
and communication compatibility must be stated with respect to
some externally designed specification.

In the absence of appropriate techniques, it is quite likely that
an agent will want to deviate from a computation or drop/change
messages from others (cheat) in order to better its own outcome
[4]. Just as mechanism designers use payments to create incentive
compatible systems, one must use something to create communica-
tion compatible and computation compatible systems.

This paper explores two forms of redundancy that might help
designers build mechanisms where full message passing and obe-
dient computation behaviors are enacted by strategic nodes. Re-
dundancy is just one of several approaches, and additional ideas
are mentioned elsewhere [4].



3. REDUNDANCY AS A TOOL
Redundancy can be used as a tool to build distributed systems

that are computation- and communication compatible. Intuitively,
redundancy is a device that can promote coordination around the
computation and communication specification provided by a mech-
anism creator. In this work, we assume that redundancy is used to
check whether an individual node has deviated, in which case the
mechanism is terminated and no outcome is implemented. We as-
sume that all nodes prefer that a mechanism computes some out-
come rather than no outcome, and rely on this in order to avoid
having to explicitly define methods to punish deviating nodes.1

We consider two forms of redundancy. The first is redundant
communication. Informally, this means that multiple disjoint paths
exist between nodes and are used to relay copies of messages (e.g.
node inputs or details of mechanism computation). Sending mes-
sages down multiple paths in a biconnected network, where there
are at least two independent paths from any node to any other node,
can ensure that single node deviations can be detected.2

The second form of redundancy is redundant computation. This
idea proposes that nodes be required to perform parallel (hopefully
identical) computations for comparison purposes by a third party.
In the centralized mechanism case, this can mean designating an-
other node as a redundant center. In the decentralized mechanism
case, where computation is spread throughout the network, some
set of alternate nodes might be assigned to receive and the same
information and perform identical computations.

4. EXAMPLE: INTERDOMAIN ROUTING
It helps to explore the problem of computation- and commu-

nication compatibility in the context of a previously stated prob-
lem. Feigenbaum et al. [1] (hereafter FPSS) have previously de-
fined a distributed algorithm to implement a BGP-based mecha-
nism for lowest cost interdomain routing. FPSS focus on whether
a Vickrey-Clarke-Groves (VCG) mechanism can be implemented
without a center and without requiring an unreasonable amount of
additional communication or computation, but focus less on the is-
sue of computation- and communication- compatibility.

There are two logical phases in FPSS. In the first phase, a node
finds the lowest cost paths to all possible routing destinations. In
the second phase, a node executes a pricing calculation that deter-
mines transit node payments (how much it must pay each transit
node for traffic originating at it and traveling to the various desti-
nations.) In FPSS, a complete message to a neighbor (and thus the
totality of what can be manipulated) consists of three items: a rout-
ing table which consists of paths and total path costs, a list of the
declared costs of transit nodes, and a sparse pricing table.

A rational node will cheat to achieve at least one of two goals.
First, a node can try to increase the amount of money it is paid.
Second, a node can try to decrease the amount of money is must
pay. We consider each phase in turn.
Phase I. A node broadcasts paths and forms LCPs. Since FPSS as-

�
More sophisticated punishment strategies will be necessary in

practice, to prevent the loss of economic efficiency that would arise,
for example due to one irrational or faulty node.�

An example of this redundant communication technique occurs
in previous work on Distributed Games [3]. That work explores
a centralized auction mechanism that executes in a ring-topology
network of rational nodes. In this model, it is irrational for a node
to drop a message, as this behavior can be detected by the center
upon receiving a message via the alternate path. In addition, when
redundancy is combined with other information-theoretic tools it
becomes irrational for a node to change a message, as this change
will not better the outcome of the deviant node [3].

sume a static biconnected environment in which no nodes enter or
leave the system, and there are no articulation points, it can be seen
that any misreporting of a neighbor cost will reset the algorithm as
inconsistent information prevents network quiescence. In the FPSS
model, inconsistencies are detected through redundant communica-
tion since the network is biconnected. Furthermore, it is irrational
for a node to drop a message since doing so can only make that
node appear less desirable to others. Thus, the first logical phase is
communication compatible. Phase I also contains computation, but
again, we can show that it is computation compatible.
Phase II. Once the LCPs are calculated, a node is responsible for
calculating the payments that it owes to other nodes in the network,
and can try to change the amount of money it must pay. Because of
the manner in which Vickrey payments are calculated, it is already
the case that a node’s computation cannot change the amount of
money that it is paid by other nodes.

In this logical phase, no communication related to the pricing
calculation takes place - a node simply calculates prices that it must
pay to others. The problem in Phase II is one of computation com-
patibility, and redundant computation can help. By simultaneously
requiring one or more nodes to perform the pricing computation
on behalf of the original node, the rational behavior for an individ-
ual node can made compatible with the specified computation. The
mechanism is simply terminated whenever the computed payment
by the original node, and its checker, does not match.

As an alternative, FPSS suggest cryptographic signing of mes-
sages, as one way to detect when nodes deviate from their speci-
fied computation. All of the messages in Phase I are signed, and
then a payment-receiving node that suspects cheating can verify
that a pricing calculation was performed correctly. In compari-
son, the technique of redundant computation is more distributed
and more passive, in that a node doesn’t need to suspect misbehav-
ior before cheating will be caught. Node pricing calculations are
constantly checked, and this load is shared throughout the network.
The main challenge is to select checking nodes, and to get the re-
quired information to checking nodes without unreasonable com-
munication cost. We leave the complete details of redundant com-
putation within the context of interdomain routing to our longer pa-
per [5]. We demonstrate a solution that combines redundant com-
putation with a small amount of cryptographic signing, just to get
the required information to checking nodes.

5. REFERENCES
[1] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A

BGP-Based Mechanism for Lowest-Cost Routing. In Proc. of the
2002 ACM Symp. on Principles of Distributed Computing, pages
173–182, 2002.

[2] J. Feigenbaum and S. Shenker. Distributed Algorithmic Mechanism
Design: Recent Results and Future Directions. In Proc. of the 6th
Int. Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications, pages 1–13, 2002.

[3] D. Monderer and M. Tennenholtz. Distributed Games: From
Mechanisms to Protocols. In Proc. 16th Nat. Conf. on Artificial
Intelligence (AAAI-99), pages 32–37, July 1999.

[4] J. Shneidman and D. C. Parkes. Rationality and Self-Interest in Peer
to Peer Networks. In Proc. 2nd Int. Workshop on Peer-to-Peer
Systems (IPTPS’03), 2003.

[5] J. Shneidman and D. C. Parkes. Using Redundancy to Improve
Robustness of Distributed Mechanism Implementations. In Proc.
Fourth ACM Conf. on Electronic Commerce (EC’03), 2003. Shorter
version. Extended version available at
http://www.eecs.harvard.edu/� parkes/pubs/redundancy.pdf.


