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ABSTRACT
It is useful to prove that an implementation correctly follows
a specification. But even with a provably correct implemen-
tation, given a choice, would a node choose to follow it? This
paper explores how to create distributed system specifica-
tions that will be faithfully implemented in networks with
rational nodes, so that no node will choose to deviate. Given
a strategyproof centralized mechanism, and given a network
of nodes modeled as having rational-manipulation faults,
we provide a proof technique to establish the incentive-,
communication-, and algorithm-compatibility properties that
guarantee that participating nodes are faithful to a sug-
gested specification. As a case study, we apply our methods
to extend the strategyproof interdomain routing mechanism
proposed by Feigenbaum, Papadimitriou, Sami, and Shenker
(FPSS) [7], defining a faithful implementation.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; J.4 [Computer Applications]:
Social and Behavioral Sciences—Economics.; I.2.11 [Distri
buted Artificial Intelligence]:

General Terms
Algorithms, Design, Economics.

Keywords
Distributed Algorithmic Mechanism Design, Computational
Mechanism Design, Rational Manipulation, Algorithm Com-
patibility, Communication Compatibility, Incentive Com-
patibility, Failure Models, Rational Failure

1. OVERVIEW
This paper considers how to create provably faithful speci-

fications that are implemented on networks of rational nodes.
In these networks, a node acts in self-interested fashion to
better its outcome in some distributed mechanism.

It is not hard to find evidence of rational behavior in ex-
isting distributed systems. Internet users can game their
TCP settings to obtain better service at the expense of oth-
ers [27]. Users cheat in distributed computations in order to
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drive up their “contributed computation” credit [15]. There
is interesting work documenting the “free rider” problem [1]
and the “tragedy of the commons” [12] in a data centric peer
to peer setting.

This behavior can be classified as a type of failure, which
should stand independently from other types of failures in
distributed systems and is indicative of an underlying in-
centive problem in a system’s design when run on a network
with rational nodes. Whereas traditional failure models are
overcome by relying on redundancy, rational manipulation
can also be overcome with design techniques such as prob-
lem partitioning, catch-and-punish, and incentives. In such
a network one can state a strong claim about the faithfulness
of each node’s implementation. This claim of faithfulness,
like traditional distributed systems claims (e.g: safety and
liveness [35]), is made with particular assumptions about the
knowledge available to network participants. Typical dis-
tributed systems knowledge assumptions include node fail-
ure characteristics: for instance, a given specification might
state safety properties on the assumption that no link fail-
ures will occur in the network. The knowledge assumptions
particularly relevant to our scenario are drawn from eco-
nomics and known as equilibrium concepts. This paper fo-
cuses on (and justifies) the use of ex post Nash (without
collusion) as a reasonable knowledge assumption. The ex
post Nash solution concept does not require nodes to have
any knowledge of the private information of other nodes, but
does assume that nodes are rational utility-maximizers and
model other participants as such.

When one can prove that a specification will be faithfully
followed by rational nodes in a distributed network, one can
certify the system to be incentive-, communication-, and
algorithm-compatible (IC, CC and AC). Such a system is
provably robust against rational manipulation.

We introduce a general decomposition proof technique,
that splits a distributed algorithm into disjoint phases, each
of which can be proven IC, CC, and AC by showing that a
node cannot benefit from any combination of deviation from
the specification relevant to that phase. To ensure that one
phase is disjoint from the next, a phase is certified before
the subsequent phase begins.1

To demonstrate this decomposition technique, we modify
a well-defined lowest cost interdomain routing problem pro-
posed by Feigenbaum, Papadimitriou, Sami, and Shenker

1This decomposition technique is similar in spirit to offline
compositional reasoning proof techniques in distributed sys-
tems [18], where automata are examined and proved correct
in order to extrapolate correctness of the overall system.



(FPSS) [7], to create a specification that is ex post Nash
incentive-, communication-, and algorithm-compatible. Un-
like the original FPSS, we do not assume that nodes will be
faithful in their computation or message passing.

2. RELATED WORK
The ideal prerequisites and reference reading for this pa-

per are found in the distributed systems and algorithmic
mechanism design literature. A “short list” in distributed
systems would include a paper characterizing failure models
[29], as well as an introduction to specifications and their
proof techniques [35]. The economics subfield of mechanism
design (MD) studies how to build systems that exhibit good
behavior in equilibrium, when self-interested nodes pursue
self-interested strategies. Readers unfamiliar with the fun-
damentals of mechanism design may wish to seek out a con-
cise introduction [24, 13].

Algorithmic mechanism design (AMD) [21, 22] assumes
centralized decision making, with nodes reporting complete
private information to a center, but seeks to make the central
computation tractable. Indirect mechanisms, on the other
hand, provide an increased computational role to nodes,
but still remain largely centralized in that nodes are di-
rectly connected to a center and are limited to what we
term “information-revelation” actions [24].

Distributed algorithmic mechanism design (DAMD) [7, 8]
considers MD in a network setting with no center, and dis-
tributes computation across the self-interested nodes. DAMD
is full of new challenges since one can no longer assume an
obedient networking and mechanism infrastructure where
rational players control the message paths and mechanism
computation. In concluding their seminal work on AMD,
Nisan and Ronen noted the “set of problems” that come
in implementing a mechanism in a network [23], suggest-
ing that cryptography and distributed payment handling be
considered. Feigenbaum et al. [7] identify the problem in
DAMD as “the need to reconcile the strategic model with
the computational model.”

Our work attempts a comprehensive treatment of rational
manipulation in distributed systems, and provides a frame-
work and a way of reasoning about faithful behavior in mech-
anisms. Specifically, we are concerned with bringing all as-
pects of the distributed algorithm itself into an equilibrium.
In a companion paper focused on problems in distributed
AI [25], we consider a variant on the model in this paper
in which there is still a center and trusted communication
with nodes, but in which the goal is to off-load as much of
the computation as possible onto nodes. Some of the gen-
eral principles (the partition-, information-revelation, and
redundancy principles) in that work also prove useful when
dealing with fully-distributed implementations on networks.
The specific contribution here is to provide general proof
techniques and to extend the ideas to apply to networks
without a center.

A number of research projects can be viewed as foreshad-
owing aspects of achieving general algorithm faithfulness.
Some TCP research has focused on modifying the specifi-
cation and introducing obedient participants to bring faith-
ful computation into line [27]. Other work has assumed
trusted communication (or a totally connected communi-
cation graph), but no trusted entity to perform computa-
tion and made heavy use of cryptography [3]. In mobile
networks, some work has looked at achieving faithful mes-

sage passing in resource-constrained environments [36, 14],
through the use of payments and penalties. Message pass-
ing has also been studied in the context of an auction over a
peer to peer network, with a centralized obedient auctioneer
but nodes that may wish to drop or change bids from their
neighbors [20].

3. RATIONAL MANIPULATION
Imagine that a designer specifies a leader-election algo-

rithm to select a computation server in a network whose
nodes are distributed across many administrative domains.
The winner of this leader election is responsible for running
some CPU-intensive task. The designer wants the most pow-
erful node to be selected and specifies an algorithm where
each node is to submit its true computation power and then
come to a distributed consensus as to which node should
be leader. The designer provides a correct implementation,
but is dismayed to find that in practice, the protocol fails to
elect the most powerful node. What has gone wrong?

In this toy election problem, it is possible that nodes
(representing users) do not want to participate faithfully in
the distributed algorithm. By truthfully revealing a node’s
computational power and following the distributed election
protocol, a node is in danger of being tasked with a cpu-
intensive chore that would take resources away from local
jobs. The selfish administrator of that node might like
to change the election-protocol code to execute something
other than the code provided by the system designer.

Researchers have previously characterized the nuances of
node failure according to observed behavior and failure rem-
edy [28, 17, 5, 9]. Into the traditional taxonomy that ranges
from Failstop to Byzantine, it is appropriate to introduce ra-
tional manipulation as a class of system failure. Extending
the typical distributed systems failure taxonomy to include
rational manipulation is justified for several reasons:

• The Internet is already showing evidence of rational ma-
nipulation in algorithms that were not designed to handle
this type of failure. An anecdotal list appears in previous
work [30].

• The behavior of a node that is deviating from a speci-
fication for selfish reasons would currently be classified
in distributed systems failure taxonomies as a subset of
Byzantine behavior. However, rational failures are pre-
dictable and motivated because a node will only manip-
ulate in order to increase its own utility in the mech-
anism. This provides new opportunities for designing
against failure, through tools such as incentives and care-
ful problem partitioning.

• It is either suboptimal, or impossible, to use Byzantine
Fault Tolerance (BFT) techniques to build systems ro-
bust to rational-manipulation failure [30]. BFT requires
minimum levels of obedient connectivity and computa-
tion to work [18], whereas we might want to design sys-
tems in which every participant is capable of rational
manipulation. BFT algorithms can be suboptimal in the
sense that they require a large processing overhead.

3.1 Modeling Node Behavior
Before defining a distributed mechanism specification we

need a language for specifications. This language will also
make clear the range of behaviors available to a node. We
find it useful to consider a mechanism specification expressed



in terms of behaviors generated by state machines [35]. A
state machine SM consists of the following components:

1. A set L of states, a subset of which are initial states.

2. A set A = {IA,EA} of actions, of which set IA are
internal actions and set EA of external actions.

3. A set T of state transitions of the form (s, a, s′) where
s and s′ are states in L and a is an action in A.

Given this state machine SM , a specification s : L → A,
defines an action s(l) ∈ A for each state l ∈ L. A node’s state
captures all relevant information about its role in a mecha-
nism. For instance, the state will include received messages,
partial computations, private knowledge about itself, and
derived or estimated knowledge about other nodes and the
world. External actions in a distributed computational sys-
tem represent actions with some external effect; these ac-
tions generate a message to one or more neighbors. These
messages can represent the results of calculations, messages
forwarded from other nodes, or simply contain information
about this node. Internal actions are those that do not gen-
erate a message. Internal actions can eventually cause an
external action to occur.

3.2 Traditional Mechanism Design
State machines are a good way to describe a mechanism

specification. Traditional mechanism design (MD), however,
often assumes that the only actions available to a node are
information revelation actions. Here, a node is allowed to
provide input into a center, which is often described as a
function from everybody’s information revelation to some
mechanism outcome.

In mechanism design language, consider a system with
nodes, i ∈ I. There are N nodes altogether. Traditional
MD considers an implementation problem, in which nodes
have private information θi ∈ Θi (often referred to as the
type of a node) and the goal is to implement an outcome
f(θ) ∈ O with useful properties (as defined by the designer),
from a set of feasible outcomes O. A node’s type defines all
relevant information that pertains to the outcome decision,
as well as capturing information about its preferences for dif-
ferent outcomes. Notation θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN )
denotes the type vector without node i.

A centralized (often called a direct-revelation) mechanism,

M = (f, Θ) asks nodes to report types θ̂ ∈ Θ = Θ1×. . .×ΘN

to a trusted obedient center that then selects the outcome
f(θ̂). Nodes need not be truthful, but are instead modeled as
game-theoretic utility-maximizers (rational), with a utility
function, ui(o; θi) ∈ R, that induces a preference ordering
s.t. ui(o1; θi) < ui(o2; θi) implies that node i prefers o2 to
o1. Incentives are provided so that node i chooses to report
θ̂i = θi in equilibrium.

In this model, the center can collect type information from
nodes without interference from other nodes, and then com-
pute the outcome, report the outcome to the nodes, and
finally enforce the outcome. But, in problems such as leader
election there is no trusted center and we need to involve
the self-interested nodes themselves in computing, commu-
nicating, and enforcing the outcome of the mechanism.

3.3 Distributed Mechanism Specification
Distributed mechanism design should encompass actions

beyond private information revelation. Rather than dis-

cussing a node’s reported type θ̂i, it makes sense to talk of
a node’s strategy s(θ), which captures how it behaves in all
states of the world. Rather than an outcome rule f(θ) ∈ O,
that depends on the reported type information, we now must
speak of an outcome rule g(s(θ)) ∈ O that depends on the
sequence of actions taken by a node. We now present the
distributed state machine description in an alternate form,
in which the actions, states, and transitions are subsumed
by strategy and outcome function.

Definition 1. Distributed mechanism specification, dM

= (g, Σ, sm) defines an outcome rule, g, a feasible strategy
space Σ = (Σ1× . . .×ΣN ), and a suggested strategy, sm =
(sm

1 , . . . , sm
N ).

It is helpful to think of the suggested strategy sm
i ∈ Σi as

the algorithm that the designer would like node i to follow.
Strategy sm

i is conditioned on the type θi of a node, with
sm

i (θi) defining the specification of the action that node i
with type θi should take in each state (within the state-
machine model of node behavior). The feasible strategy
space, Σi, places no constraints on internal actions but can
constrain external actions. Outcome rule, g(s(θ)) ∈ O, de-
scribes the outcome when nodes follow strategy s and have
types θ.

Suggested strategy sm
i decomposes into three strategies,

sm
i = (rm

i , pm
i , cm

i ), with information-revelation strategy rm
i ,

message-passing strategy pm
i , and computational strategy

cm
i . Each sub-strategy is responsible for generating one of

three kinds of external actions (those corresponding with
the sub-strategy), which we formally define in Section 3.4.
Formally, we can model this as each strategy simulating the
entire specification, sm

i (θi), but only performing its corre-
sponding external actions. Notice that because only one
action is taken in each state, no pair of sub-strategies will
engage in multiple external actions simultaneously.

Given a distributed mechanism specification we are inter-
ested in understanding whether nodes have any incentive to
deviate from the suggested actions.

3.4 Action Classification
The leader election example shows the three components

of a strategy: information revelation, in providing an input
to the election algorithm; message passing between nodes;
and computation, in following the consensus algorithm. We
now provide a formal classification of the external actions in
a mechanism specification.

Information Revelation. A node may be asked to reveal
information about its private type, such as its computational
power in the leader-election setting. We also extend the no-
tion of type to include the concept of semi-private type in-
formation. The type θi in traditional MD is most usually
viewed as private information to a node. Alternatively, some
information can be common knowledge to all nodes or some
subset of nodes. In distributed systems it is useful to define
the notion of semi-private type information. Semi-private
type information exists when some subset of the type of
a node is known to at least one other node, but not to all
nodes. A good example is network topology: we can imagine
that the link between node A and node B is common knowl-
edge to both nodes, while other type information (such as
node transit cost) remains private, and other nodes need not
know about the existence of this link.



Definition 2. External actions ri ∈ EA are information-
revelation actions when the only effect is to reveal consis-
tent (perhaps partial and untruthful) information about a
node’s type to some other node(s).

Here, we use consistent to mean that there is a single type
θ̂i that would have sent these messages in the suggested
specification.

We can provide a careful definition of the information-
revelation actions in the suggested specification.2 Suppose
for exposition that all nodes except node i follow the sug-
gested specification. Then, the information-revelation ac-
tions for node i in sm

i (θi) are those for which any deviation
on any subset of the actions will do no more than imple-
ment an outcome that would be selected by following the
suggested specification for some (perhaps untruthful) type

θ̂i. Formally, g(s′, sm
−i(θ−i)) = g(sm

i (θ̂i), s
m
−i(θ−i)), for all

s′ that deviate from sm
i (θi) only in information-revelation

actions, and for all θi and all θ−i. Thus, information- reve-
lation actions provide a node with no more power to manip-
ulate than that available to a node in a centralized mecha-
nism.3

Message passing. A node may be asked to pass messages
as part of the mechanism computation. For instance, if two
nodes are communicating over a logical direct connection,
there may still be rational nodes acting as part of the phys-
ical underlay.

Definition 3. External actions pi ∈ EA are message-
passing actions when the only effect is to send a message,
received from another node, to one (or more) neighbors.

Computation. A node may be asked to take part in a
mechanism calculation. For instance, a node in the lowest-
cost interdomain-routing setting can be asked to perform
part of a distributed computation to determine the lowest-
cost path, or to determine payments.

Definition 4. External actions ci ∈ EA are computa-
tional actions when the action can affect the outcome rule
used in the distributed mechanism specification (and when
the action is more than simple message-passing).

Computational actions have a wider effect than simply
forwarding a message or revealing type information. Unlike
information-revelation actions, these computational actions
introduce opportunities for a node to affect the outcome of a
mechanism that do not exist in centralized mechanisms! By
definition, a computational action is one for which there is
at least one deviation from the suggested specification that
will implement an outcome that would not be selected by
g(sm(θ̂i, θ−i)) for any report θ̂i by the node.

2Notice that we need to rule out the possibility that an agent
can provide inconsistent information about its type, for ex-
ample different information to different neighbors, because
a deviation from any number of information-revelation ac-
tions must have no more effect than that of misreporting the
agent’s type and following the suggested specification.
3The definition excludes actions in which useful computa-
tion is also “smuggled” within the message, for example
“solve problem P1 (and report the solution) if your value
is v1 and solve problem P2 (and report the solution) if your
value is v2.” We classify these kinds of actions as compu-
tational actions when the solutions to P1 or P2 can change
the outcome rule g, and not just the information that a node
reveals during an implementation.

3.5 Knowledge Assumptions
A formal definition of rational manipulation requires that

we are clear about the knowledge assumptions that we, as
designers, make of nodes in a system. In an economic con-
text, these knowledge assumptions must support the equilib-
rium solution concept that is adopted to model the behavior
of rational nodes.

In traditional MD, it is common to design for a dominant-
strategy equilibrium. Recall that a traditional mechanism
M = (f, Θ) implements outcome f(θ̂) ∈ O based on reports

θ̂, perhaps untruthful. A mechanism is strategyproof when
truth-revelation is a dominant-strategy equilibrium.

Definition 5. Centralized mechanism M = (Θ, f) is strat-

egyproof if ui(f(θi, θ−i); θi) ≥ ui(f(θ̂i, θ−i); θi) for all θi,

all θ̂i 6= θi, and all θ−i.

Strategyproofness is particularly useful because it makes
an extremely weak knowledge assumption. Nodes need not
know the types of other nodes, and nodes need not even be-
lieve that other nodes will be rational. In this work we adopt
ex post Nash equilibrium as our solution concept, which re-
quires correspondingly stronger knowledge assumptions.

Definition 6. A strategy profile s∗ is an ex post Nash
equilibrium in distributed mechanism specification dM =
(g, Σ, sm) if s∗i satisfies ui(g(s∗(θ)); θi) ≥ ui(g(s′i(θi),
s∗−i(θ−i)); θi), for all nodes, for all s′i 6= s∗i , for all types θi,
and for all types θ−i of other nodes.

In an ex post equilibrium no node would like to deviate
from its strategy even if it knows the private type infor-
mation of the other nodes. Thus, as designers we can be
agnostic as to whether or not nodes have any knowledge
about the private type of other nodes. The main assump-
tion when adopting ex post Nash is that the rationality of
nodes is common knowledge amongst nodes. Although a
stronger assumption than required for a strategyproof mech-
anism, we view this as a necessary cost in moving away from
centralized computation on a trusted node. Nodes are now
involved in implementing the rules of a mechanism, and it
seems unlikely that arbitrary deviations by other nodes will
still sustain the appropriate incentives for a node to behave
faithfully.

The knowledge assumption in ex post Nash is still much
weaker than that required in the more standard Nash equi-
librium solution concept, which has received greater atten-
tion in recent literature on network games [26]. Adopting
this notion of Nash equilibrium in our setting would require
a node to have knowledge of other nodes’ private informa-
tion, which is usually unrealistic.

Remark 1. We assume that nodes, although self-interested,
are also benevolent in the sense that a node will implement
the suggested strategy as long as it does not strictly prefer
some other strategy. Thus, a weak ex post Nash equilibrium
(in which a node can have other equally good best-responses)
is considered sufficient for a faithful implementation.

Remark 2. A distributed mechanism may have multiple
equilibria, but we are content to achieve implementation in
but one of these equilibria. We agree with Brafman and Ten-
nenholtz [2], that the fact that we are considering computa-
tional systems makes this assumption more palatable. The
typical problem that arises with multiple equilibria is that of



selection: how can nodes select the same equilibrium. By
distributing an implementation of a suggested specification,
it is reasonable to expect that some nodes will be obedient
and follow the suggested specification. This acts as a corre-
lating device, preventing other nodes from playing another
equilibrium.

Remark 3. Although truth-revelation may remain a domin-
ant-strategy for nodes given that all nodes follow the sug-
gested computational and message-passing actions, in equi-
librium a rational node must also reason about whether or
not other nodes will follow these suggested computational
and message-passing actions. Thus, the equilibrium solu-
tion concept must adopt the “lowest-common denominator,”
which is ex post Nash in our model.

3.6 Rational Manipulation
We use the term rational node to describe a node that

attempts rational manipulation.

Definition 7. A node exhibits rational manipulation if it
fails to implement the suggested specification in an attempt
to selfishly better its outcome in a distributed mechanism,
given a particular knowledge assumption about other nodes.

Formally, if sm
i ∈ Σi is the suggested strategy, and if

s−i is the set of strategies that node i believes all other
nodes will follow, then a node exhibits rational manipula-
tion if it follows some alternate strategy si 6= sm

i for which
ui(g(si, s−i); θi) > ui(g(sm

i , s−i); θi).
Nodes are actively working to change the actions, tran-

sitions, and states in both their internal state machine and
in the state machines of other nodes (through the effect of
messages sent to these nodes) for selfish reasons.

We are seeking specifications with the following property:

Definition 8. Distributed mechanism specification dM =
(g, Σ, sm) is an (ex post) faithful implementation of out-
come g(sm(θ)) ∈ O when suggested strategy sm is an ex post
Nash equilibrium.

3.7 Useful Properties: IC, CC and AC
We introduce communication- and algorithm compatibil-

ity as ways of describing mechanisms tolerant to rational
manipulation. We also extend the idea of incentive compat-
ibility, found in the mechanism design literature, to allow
for incremental information-revelation.

Each statement can be defined for a particular equilib-
rium concept, that itself must be justified by a knowledge
assumption. To keep these definitions concrete we adopt
ex post Nash, which seems to be useful when considering
distributed implementations of strategyproof mechanisms.

Definition 9. A distributed mechanism specification dM =
(g, Σ, sm) is incentive compatible (IC) when there exists
an ex post Nash equilibrium in which node i cannot receive
higher utility by deviating from the suggested information-
revelation strategy rm

i (θi), for all nodes i and all types θ.

Most commonly, the suggested information-revelation strat-
egy for a node will expect the node to reveal truthful infor-
mation about its private type through communication with
other nodes. IC means that a rational node will choose to
follow these actions.

Definition 10. A distributed mechanism specification dM =
(g, Σ, sm) is communication compatible (CC) when there

exists an ex post Nash equilibrium in which node i cannot re-
ceive higher utility by deviating from the suggested message-
passing strategy pm

i (θi), for all nodes i and all types θ.

CC means that a rational node will choose to partici-
pate in the suggested message-passing actions within the
distributed-mechanism specification.

Definition 11. A distributed mechanism specification dM =
(g, Σ, sm) is algorithm compatible (AC) when there exists
an ex post Nash equilibrium in which node i cannot receive
higher utility by deviating from the suggested computational
strategy cm

i (θi), for all nodes i and all types θ.

AC means that a rational node will choose to participate
in the suggested computational actions within the distributed-
mechanism specification. Properties IC, CC and AC are re-
quired for a faithful distributed implementation. Moreover,
IC, CC and AC are sufficient for a faithful implementation:

Proposition 1. A distributed mechanism specification dM =
(g, Σ, sm) in which suggested strategy sm = (rm, pm, cm) is
IC, CC and AC in the same ex post Nash equilibrium is a
faithful implementation of outcome g(sm(θ)) ∈ O.

Proof. IC, CC and AC provide for the existence of an equi-
librium in which nodes will follow suggested information-
revelation rm

i , and similarly for message-passing pm
i and

computation cm
i . To achieve faithfulness we simply need

that there is an equilibrium that achieves each one of these
simultaneously.

3.8 Strong AC and Strong CC
This section provides a general proof method to demon-

strate specification faithfulness in networks with rational
nodes. We define strong-AC and strong-CC, and show that
together with the strategyproofness of the corresponding
centralized mechanism, strong-AC and strong-CC provide
IC, and in turn a faithful implementation.

We reduce the problem of proving (ex post Nash) faithful-
ness to that of:

1. Demonstrating that the corresponding centralized mech-
anism is strategyproof.

2. Strong-CC: a rational node should always follow its
suggested message-passing strategy (whatever its infor-
mation-revelation and computational actions).

3. Strong-AC: a rational node should always follow its
suggested computational strategy (whatever its inform-
ation-revelation and message-passing actions).

In fact, we will further break-up the proof, by advocating
a further decomposition into disjoint mechanism phases.

Definition 12. A distributed mechanism specification dM =
(g, Σ, sm) is strong-CC if a node cannot receive higher util-
ity by deviating from the suggested message-passing actions
ĉi, whatever its computational and information-revelation
actions, when other nodes follow the suggested specification.

Definition 13. A distributed mechanism specification dM =
(g, Σ, sm) is strong-AC if a node cannot receive higher util-
ity by deviating from the suggested computational actions p̂i,
whatever its message-passing and information-revelation ac-
tions, when other nodes follow the suggested specification.



Together, strong-CC and strong-AC rule out any useful
joint deviations in which a node changes its communica-
tion, computational, and its information-revelation actions
to gain an advantage.

Proposition 2. A distributed mechanism specification dM =
(g, Σ, sm) is a faithful implementation of outcome g(sm(θ))
when the corresponding centralized mechanism is strategyproof
and when the specification is strong-CC and strong-AC.

Proof. To prove that the specification is an ex post Nash
equilibrium we first assume that every node except i is fol-
lowing suggested specification, sm

−i. By strong-CC and strong-
AC, node i will follow the suggested message-passing and
computation actions. (Notice that we can rule out joint de-
viations of both message-passing and computation actions).
To prove IC, we can now assume that all nodes follow sug-
gested communication- and message-passing actions. Let
f(θ) = g(sm(θ)) denote the outcome rule in the correspond-
ing centralized mechanism. By definition of information-
revelation actions, the space of possible outcomes becomes
g(sm

i (θ̂i), s
m
−i(θ̂−i)), but g(sm

i (θ̂i), s
m
−i(θ̂−i)) = f(θ̂i, θ̂−i), and

ui(f(θi, θ̂−i); θi) ≥ ui(f(θ̂i, θ̂−i); θi) for all θ̂−i, all θi, and all

θ̂i 6= θi by strategyproofness of g(sm(θ)) = f(θ).

Remark 4. In applying Proposition 2 one must be care-
ful to ensure that actions labeled as “information-revelation”
within the suggested specification satisfy the technical re-
quirement of consistent information-revelation which can re-
quire consistency checking.

Remark 5. Distributed implementations of mechanisms in-
troduces a new issue not encountered in traditional central-
ized MD, which is that the outcome computed by nodes must
be enforced (we call this the “execution phase” in the in-
terdomain routing example). Typically, the execution ac-
tions that correspond with the outcome must themselves be
shown to be strong-AC and strong-CC. In interdomain rout-
ing, this means that nodes choose to follow lowest-cost paths
and choose to respect payments.

3.9 A General Proof Technique
For faithful adherence to a specification, we need to demon-

strate strong-CC and strong-AC as well as the consistency
of information-revelation actions. The following approaches
are useful to this end:

Break Into Phases. A distributed mechanism can be
decomposed into disjoint phases, each of which is proven
strong-CC and strong-AC without worrying about joint de-
viations involving actions in other phases. Phases are sepa-
rated during runtime with checkpoints where some node(s)
certify a phase outcome and start a subsequent phase. One
must be sensitive to the added computational and communi-
cation complexity in using checkpoints. This decomposition
technique is powerful because it can allow an exponential
reduction in the number of joint manipulation actions that
must be checked in a faithfulness proof.

Tools for Strong-AC, Strong-CC and Consistency.
Strong-AC, strong-CC, and information-revelation consis-
tency can be achieved within a phase through the use of vari-
ous techniques. Payments can be used to avoid untruthful
information revelation, and also to provide incentives for
nodes to perform faithful computation and message pass-
ing. Redundancy can be powerful, with computational

and message-passing actions that deviate from a specifica-
tion detected and penalized (via catch and punish). Catch
and Punish can also be used without redundancy, when a
subset of “checker” nodes can combine forces to completely
monitor the behavior of a third node. Another technique is
problem partitioning. At one extreme, partitioning could
mean mean running the mechanism on nodes that cannot
benefit from the mechanism outcome, with nodes split and
one half computing the mechanism outcome for the other.
More interestingly, we can also structure the computation
so that a node is not involved in a calculation where it has a
vested interest in the outcome [25]. Finally, cryptography
can be used to make deviations from a specified algorithm
detectable [3], and to make it impossible to rationally change
a message, which can be useful for communication compat-
ibility [20].4

4. EXAMPLE: INTERDOMAIN ROUTING
The remainder of the paper will focus on building a dis-

tributed mechanism specification that is faithful. The spec-
ification extends an interdomain routing distributed mech-
anism created by Feigenbaum, Papadimitriou, Sami, and
Shenker (FPSS) [7]. FPSS is the first research to com-
bine mechanism design ideas with a common Internet al-
gorithm (the Border Gateway Patrol (BGP) interdomain
routing protocol). The importance of this section is to show
how various techniques can be used to prove strong-CC and
strong-AC in a real system.

4.1 FPSS Interdomain Routing
The Internet is composed of many separate domains known

as autonomous systems (ASs) such as Harvard, Berkeley, Mi-
crosoft, etc. Each AS can be modeled as a rational node.
The goal in FPSS is to maximize network efficiency by rout-
ing packets along lowest cost paths (LCPs) for various traffic
source-destination pairs.

A
B

C

D

Z

X

5

1000

6

1

1

100

Figure 1: LCPs from Z.

Each node incurs a
per-packet transit cost
for transiting traffic on
behalf of other nodes.
The cost represents the
additional load imposed
by external traffic on
the internals of an in-
dividual node. It costs
nothing for a node to
transit a packet origi-
nating or terminating at
that node.

For instance, Figure 1
shows a network with

the LCPs from Z to all other nodes drawn with bold lines.
Numbers are the per-packet transit node costs incurred by
each node. Assuming that the numbers in this figure rep-
resent true transit costs, the total LCP cost of sending a
packet from X to Z is 2; the cost of sending a packet from
Z to D is 1. The cost of sending a packet from B to D is 0
since there are no transit nodes between B and D.

To compensate a transit node for its routing services, each

4The problem with cryptography is the cost: if a system
relies heavily on this technique, computation and communi-
cation complexity can become prohibitive.



transit node is given a payment for carrying traffic. FPSS
observes, however, that “under many pricing schemes, a
node could be better off lying about its costs; such lying would
cause traffic to take non-optimal routes and thereby interfere
with overall network efficiency.”
Example 1: In Figure 1, path X-D-C-Z is the lowest cost
path between X and Z; if C declared a cost of 5, X-A-Z
would become the X to Z LCP. C can benefit from this
manipulation, even if it loses the X to Z traffic, if it can
make up the financial loss with higher payments received by
transiting D to Z traffic. This has damaged overall efficiency
- packets from X to Z are now being routed over a path whose
true cost is higher.

FPSS seeks a pricing scheme that is dominant strategy in-
centive compatible (strategyproof), meaning that nodes can
do no better than to declare their true transit costs. They
achieve this by using a Vickrey-Clarke-Groves (VCG) mech-
anism [34, 11, 6] where transit nodes are paid based on the
utility that they bring to the routing system plus their de-
clared cost. The FPSS algorithm is distributed; lowest cost
paths (LCPs) and pricing tables are computed by each node
using information from neighbors in an iterative calculation.
Following the abstract model of the Border Gateway Proto-
col (BGP) proposed by Griffin & Wilfong (GW) [10], FPSS
assumes a static environment. FPSS also assumes a bicon-
nected graph to ensure that the VCG payments well-defined.
The abstract model of GW is extended to add additional in-
formation to the local state stored at nodes and to messages
sent.

We find it useful to describe FPSS in terms of construc-
tion and execution phases. A construction phase deals
with mechanism set-up, while execution deals with actual
usage. Each node maintains three types of data for the
mechanism construction phases:

• [DATA1] Transit cost list. Contains this node’s knowl-
edge about declared transit costs of other nodes in the
network.

• [DATA2] Routing table. Each entry in this table
contains the shortest path from this node to each desti-
nation, along with a ordinal representing the aggregate
path cost.

• [DATA3] Pricing table. This sparse table contains
the per-packet payment to be made by this node to each
transit node on the shortest path, for each destination.

In the first construction phase the transit-cost informa-
tion [DATA1] is constructed. In the second construction
phase, routing and pricing tables are computed and stored
as [DATA2] and [DATA3]. Nodes relay any changes of local
data to their neighbors. Neighbors, in turn, update their
local data with this new information and propagate changes
to their neighbors. This continues until the information con-
verges. Nodes can then use the mechanism to route traffic,
and FPSS enters the execution phase. FPSS uses one addi-
tional type of data for mechanism execution:

• [DATA4] Payment list. Contains the amount of money
that this node owes others for having originated traffic
that traversed those transit nodes.

Each node is expected to use the pricing table correctly to
calculate and store the payments that it owes transit nodes.
This payment is compensation for requiring those nodes to
transit packets originated locally. FPSS suggests that this

list of total payments ([DATA4]) can be reported to an ac-
counting and charging mechanism, that we call a bank.

This specification could be formalized with a state ma-
chine. The external actions already in the original FPSS
would be included in this state machine, as follows: declar-
ing the transit cost and providing connectivity information
are information-revelation actions; relaying other nodes’ tra-
nsit-cost announcement are message-passing actions; and
updating and forwarding routing and pricing tables are com-
putation actions. An additional computation action comes
in a node’s reporting payments to the bank, and message
passing actions exist for those nodes on the path to the bank.
Message-passing is also used during execution for routing
along LCPs.

4.2 Extending the FPSS Specification
In FPSS there is nothing to prevent nodes from rationally

manipulating routing and pricing tables, or lying about con-
nectivity information in the construction phase, or reporting
inaccurate payments during execution (indeed, this was not
their research goal). In addition, other nodes are in a po-
sition to intercept and selfishly modify payment tallies sent
to the bank. In building a faithful specification based on
FPSS, the key challenge is to prove strong-CC and strong-
AC. (The corresponding centralized mechanism is already
strategyproof for transit-cost declarations, and manipula-
tions of the semi-private connectivity information will be-
come apparent in the routing table calculations.)

In unpublished work, Mitchell et al. [19] have explored the
use of cryptographic signing between routing nodes to en-
sure truthful connectivity declarations, and have suggested
that this technique could extend to mechanism computa-
tion as well. In our presentation, we will instead favor re-
dundancy, catch and punish, and problem partitioning, and
bring the entire specification— message-passing and compu-
tation and execution —into equilibrium. We, too, are forced
to rely on a small amount of cryptographic signing (in our
case, to ensure communication compatibility) but the use of
the three other techniques makes this signing requirement
small. Given certain network topologies, it may be possible
to eliminate signing altogether.5

We introduce a new role for nodes, that of checker nodes.
These checker nodes perform redundant computation, which
creates the opportunity for a catch-and-punish scheme that
provides incentives for rational nodes to be faithful. The
assignment of the checker nodes is very important: every
neighbor of a node is assigned as a checker for that node.
The node that is being checked is known as the principal,
to refer to its role in the core distributed algorithm. Every
node in the biconnected network plays the role of both a
principal node and a checker node for all of its neighbors.

5Two examples when this may happen: The first example is
when the network of rational nodes is an overlay that runs
on top of an obedient underlay, similar to how many peer
to peer applications work today. Here, certain messages to
nodes outside of the mechanism (such as a bank) can fol-
low an obedient overlay. The second example is when in a
network of rational nodes a node is able to establish a path
to some endpoint where all intermediate nodes are guaran-
teed to be partitioned from any information contained in the
message. A special case of this scenario assumed by some
previous work [3], is when the communication graph is fully
connected, and therefore there are no intermediate nodes
that could have an interest in the message.
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Figure 2: A computation or message passing deviation

by Principal node (P) can be checked by checker nodes.

The checker nodes execute a redundant computation that
mirrors what the principal is computing, and must receive
a complete set of the messages received by the principal.
Even though some checkers rely on the principal to for-
ward these messages, there is always at least one checker
that will catch any attempted deviation from the suggested
specification. Ultimately, we rely on the bank to compare
state-information reported by the principal and checker and
penalize nodes for any deviation.

Our bank goes beyond (in FPSS language) “whatever ac-
counting and charging mechanisms [that] are used to en-
force the pricing scheme.” In our specification, the bank is
a trusted and obedient entity that can also perform simple
comparisons, and enforce penalties when it detects a prob-
lem. The way that problems are detected is phase specific.
In the construction phases, this penalization takes the form
of not allowing the mechanism to progress to the next phase.
In the execution phase, this penalty is a well-defined mone-
tary unit that is epsilon-above the attempted deviation.6 All
communication between the bank and a node is signed with
acknowledgments to ensure communication compatibility of
these messages.

As an example, Figure 2 illustrates the role of checker
nodes C1, C2 and C3 in monitoring principal P . Each checker
node is asked to perform the internal computation of P
based on the copies it receives of P ’s messages. First, one
should establish that the checker will follow this algorithm
in equilibrium with a faithful P . This can be argued in our
FPSS setting through partitioning— a checker cannot indi-
vidually benefit from allowing a deviation by P . Second,
suppose P is supposed to forward m to nodes C2 and C3

to allow them to replicate its calculations, but deviates and
forwards the message as m′. Although this might change
the view that C2 and C3 have of P ’s input, checker C1 was
on the incoming path of m and still has the correct view.
Also, P cannot deviate in its calculation without deviating
in its message-passing because the checkers will perform the
correct calculations and when a check is made of internal
state there will be a discrepancy.7

6The bank is not as powerful as the traditional mechanism
center. It does not actually perform the distributed mecha-
nism computation, and instead checks results performed by
others. The complexity of bank operation is described in
the longer technical report [33]. It is an open problem to
design a distributed bank that runs on the same network of
rational nodes.
7Furthermore, the principal cannot report its true routing
table but follow another routing table later because checks
are made during the execution phase against the (correct)
routing tables in checker nodes.

4.3 Faithfulness Proofs
In this section, we show how a faithfulness proof can be

constructed for our extension to FPSS. The entire proof can-
not be presented due to space constraints. We opt instead
to show strong-AC, strong CC and consistent information
revelation for the second construction phase and leave the
rest to the extended version of this paper [33].

For each phase, we must show strong-AC, strong-CC, and
consistent information revelation irrespective of a node’s be-
havior in other phases of the mechanism. Once this is shown
for each phase, one can use Proposition 2 to show that the
entire mechanism is faithful. We assume that every node
wishes to make progress in the mechanism, and indeed has
a strong negative value when a construction phase does not
progress. We further assume that the checkpointing node
responsible for halting one phase and “green-lighting” the
next phase is the bank node. Keeping with the FPSS spec-
ification, we assume a static network in these proofs.

Given strong-AC and strong-CC, the first construction
phase terminates, and terminates with common transit cost
tables [DATA1] across all nodes. The goal in the second-
construction phase is to establish correct routing tables
([DATA2]) and pricing tables ([DATA3∗]). Finally, the goal
in the execution phase is to ensure that packets are sent along
the LCPs and that correct network usage logs are recorded
and correct payments collected. Our extensions to FPSS
add more information to [DATA3]:

• [DATA3∗] Pricing table (extended). This sparse
matrix of per-node prices is the same as in [DATA3], but
in addition, it is important to store an identity tag. This
tag identifies the node that triggered the most recent
FPSS pricing table update. (In the case of a pricing tie,
this tag field actually contains the union of the nodes
that suggested the same pricing entry.)

This second-construction phase uses problem partitioning,
node redundancy, and catch-and-punish for strong-AC and
strong-CC. It needs no cryptography in intra-node messages,
but for CC between a node and the bank, we do assume that
messages to and from the bank are signed.

Checker nodes completely surround a principal in the net-
work, and act as a clone of the principal in all computa-
tion respects. The difference between the principal and the
checker is that the checker does not send outputs of com-
putations to neighbors. It is critical to understand the role
and limitation of these checkers: the checkers perform the
“heavy lifting” of checking a computation, but do not ac-
tually catch manipulation problems; this task is left to the
checkpointing bank. In this phase, a deviation in calculating
routing or pricing tables results in the bank not proceeding
to the execution phase.

We can divide the tasks in this phase into actions taken by
a [PRINC]ipal, actions taken by the principal’s [CHECK]er
nodes, and the actions taken by the [BANK].

• [PRINC1] On receiving routing table update from
neighbor: Message Passing: Forward message to all
checkers. Computation: Recompute LCPs based on new
information; send recomputed LCPs as a routing table
update to all neighbors.

• [PRINC2] On receiving pricing table update from
neighbor: Message Passing: Forward message to all
checkers. Computation: Recompute pricing tables based
on new information; update tag information for every



changed pricing entry to reflect source of change; send
new pricing tables to all neighbors.

• [CHECK1] When the principal forwards a rout-
ing update: Computation: Verify that declared LCP
is correct with local cost information. Re-run the LCP
routing update. Check for consistency between the checker
node’s own LCP (acting as a principal) and the LCP
stored on behalf on the foreign principal.

• [CHECK2] When the principal forwards pricing
tables: Computation: Ignore messages with identity
tags that are not checker nodes of the principal; Re-run
the pricing table computation.

• [BANK1] At a network quiescence point, ask all princi-
pals and checkers for routing table information [DATA2]
(a hash of the entire table is sufficient) and check for a
deviation (difference). If there is a deviation, then signal
all nodes to restart this phase. Otherwise, run [BANK2].

• [BANK2] Ask all principals and checkers for pricing
table information [DATA3*] (again, a hash is sufficient)
and check for a deviation. If there is a deviation, then
signal all nodes to restart this phase. Otherwise, “green-
light” the execution phase.

In fact, the original FPSS formulation already exhibits
limited problem partitioning. The price-update rules are
specified in a way that prevents a node from increasing its
incoming payment through changing the pricing messages.8

However, problem partitioning alone cannot ensure strong
faithfulness properties. There remain the following possible
manipulations, which must be considered jointly:

1. A node can (in [PRINC1]) drop, change, or spoof (create)
forwarded routing table update messages.

2. LCPs can be miscomputed (in [PRINC1]) and new LCP
updates can be dropped, changed, or spoofed.

3. A node can (in [PRINC2]) drop, change, or spoof for-
warded pricing table update messages.

4. Pricing tables can be miscomputed (in [PRINC2]) and
new pricing table updates can be dropped, changed, or
spoofed.

The goal of these manipulations is either to increase in-
coming payment from other nodes, or decrease the outgoing
payment due to other nodes. It is important that at the end
of this phase, the correct LCPs are reflected in the routing
tables, and the pricing tables are accurate and refect the cor-
rect per-message prices as defined by the FPSS algorithm.
We show that this phase is strong-AC and strong-CC. There
is no revelation of private (transit cost) information, and
deviations in revelation of semi-private connectivity infor-
mation revelation are protected against though strong-AC
and strong-CC (because such a deviation would require not
forwarding messages along some link or not performing ap-
propriate updates to internal LCP tables).

First, observe that the suggested specification for checkers
in this phase is strong-AC and strong-CC. No checker wants
to deviate if the other nodes (in their role as principals and
checkers) are faithful, because deviation would cause the
phase to be restarted.

8In Section 6 of FPSS, notice that while a pricing update
message has the potential to trigger a series of pricing table
updates on various nodes, each of these nodes ignores (by
the pricing update rules) the node that caused the update.

For any principal-destination pair, one checker must be
on the shortest path from principal to destination. That
checker has a correct view of the cost of that path (in its
other role as a principal in the network), because each node
has a local transit cost table by the end of the first phase.
Assume the behavior specified in [CHECK1]. Now, all check-
ers ignore LCP information that is not judged correct through
their local transit cost table (known as a principal). The re-
sult is that a principal has no way to successfully change
the LCP information stored by every checker. Any routing
table deviation shows up by comparing a hash of [DATA2]
between the principal and its multiple checkers. This means
that manipulations (1-2 above) are caught by [BANK1].

Manipulations in the pricing table information (3-4 above)
are more subtle, since here a checker node does not have an
innate ability to verify messages based on internal informa-
tion that it already has as a principal. Also notice that while
problem partitioning ensures a node has no reason to modify
its newly created outgoing pricing update messages (since its
utility is not affected by changes caused by these messages),
a node might like to change the pricing table that it must use
for its own originated traffic. To show how checking nodes
make these manipulations detectable, assume the behavior
specified in [CHECK2]. Now, consider a principal A and a
pair of checker nodes B and C. First, dropping a pricing-
table message received from B (ie. not forwarding to C) will
result in an inconsistency between B and C and therefore a
restart by the bank. The same argument holds for changing
an incoming message. More difficult is the third case, where
a principal can spoof a new fake message. However, this
spoof will create an inconsistency in the identity tag infor-
mation in [DATA3*]. This inconsistency will be caught by
[BANK2].

To see strong-AC and strong-CC, and to also see why
joint deviations are not possible, notice that the routing and
pricing information are two disjoint sets that must be kept in
agreement with all checker nodes. A deviation is potentially
useful only if the principal can cause every checker to deviate
in a way that generates the same routing and/or pricing
tables. By the arguments above, this is not possible since
each manipulation has a disjoint side effect with every other
manipulation. Any such deviation would cause a restart.

Theorem 1. The extended FPSS specification is a faithful
implementation of the VCG-based shortest-path interdomain
routing mechanism.

Proof. By Proposition 2, and since all phases of this specifi-
cation are strong-AC, strong-CC, and have consistent infor-
mation-revelation, and since the corresponding centralized
mechanism is strategyproof.

5. DISCUSSION
While this paper concerns rational manipulation, it has

taken a fairly narrow view of rationality. For example, cer-
tain nodes may make worsening the outcome of other nodes
the main goal besides maximizing their own utility. In the
real world, companies are willing to take a short-term loss to
drive competitors out of business. Such anti-social behavior
has been previously characterized [4]. Other nodes might
act maliciously, where their rational behavior is described
as bringing down a system. imply introducing other fail-
ures, such as general omissions or even failstop, may cause



the system to falsely detect and punish manipulation. Fur-
ther work needs to explore how other failure models affect
faithfulness in systems with the rational-manipulation fail-
ure model.
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