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On Learnable M echanism Design

David C. Parkes, Division of Engineering and
Applied Sciences, Harvard Univer sity,
par kes@eecs.harvard.edu

ABSTRACT Computation is increasingly distributed across open networks, and
performed by self-interested autonomous agents that represent individuals and busi-
nesses. Given that these computational agents are often in situations of strategic
interaction, it is natural to turn to economics for ideas to control these systems.
Mechanism design is particularly attractive in this setting, given its focus on the de-
sign of optimal rules to implement good system-wide outcomes despite individual
self-interest. Yet, these rich computational environments present new challenges for
mechanism design, for example because of system dynamics and because the com-
putational cost of implementing particular equilibrium outcomes is also important.
We discuss some of these challenges and provide a reinterpretation of the mathemat-
ics of collective intelligence in terms of Iearnable mechanism design for bounded-
rational agents.

1.1 Introduction

Far from confined to a desktop machine, computation is now ubiquitous, and
performed by heterogenous and networked computers, many of which are op-
erated by and used on behalf of self-interested users. As such, computational sys-
tems increasingly exhibit the properties of economies, and it is natural to turn to
incentive-based methods to construct systems with useful system-wide behaviors.
Indeed, as an alternative to traditional cooperative or adversarial assumptions in
computer science, a reasonable design principle for many distributed systems is
that computational devices will be programmed to follow selfish, self-interested,
behaviors [13, 52].

The framework of economic mechanism design (e.g. [27]) provides a rich theo-
retical backdrop for an economically-motivated approach to the control of decen-
tralized computational systems. Mechanism design was first proposed as a method
to implement social choices (e.g. [7, 23]). More recently, mechanism design has
been adapted to implement outcomes that are individually-optimal for a single
agent, for example in the setting of optimal auction design [41].

The key problem addressed within mechanism design is the information prob-
lem, in which agents have private information that the mechanism must elicit in
order to implement a good system-wide outcome. Participants must receive ap-
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propriate incentives to reveal information truthfully. This incentive-compatibility
requirement limits the outcomes that can be implemented in a game-theoretic
equilibrium (e.g. [42]). However, in certain contexts it has been possible to pro-
pose strategyproof mechanisms in which no participant can manipulate an out-
come to their own benefit whatever the strategy of any other agent [56].

In this chapter, we introduce some of the basic methods of mechanism de-
sign, and briefly discuss some of the new challenges in the application of ideas
from mechanism design to distributed computational systems. We focus here on
the particular problem of mechanism design in the presence of bounded-rational
agents that employ simple learning methods to adjust towards an equilibrium. We
suggest a collective-intelligence inspired approach for mechanism design in re-
peated games with these simple adaptive agents. No background is assumed in
either mechanism design or collective intelligence.

We first review the mathematics of mechanism design and the mathematics
of collective intelligence. Then, we reinterpret the factoredness and informative
methods of collective intelligence in the context of incentive-compatibility (truth-
revelation in equilibrium) and learnable mechanism design, in which payments
are selected to enable computational agents to learn equilibrium strategies. In par-
ticular, we introduce a VCG-WLU mechanism, which is a hybrid of the Groves
[23] family of mechanisms and the wonderful life local utility [58] of collective-
intelligence. We present simple experimental results, for a simple auction problem
and a simple congestion problem, to demonstrate the advantages of this approach
to mechanism design. In closing, we consider a broader agenda of learnable
mechanism design in which mechanisms are explicitly constructed to maximize
their performance with respect to a model of limited agent-rationality.

1.2 Mechanism Design

We begin with a formal introduction to mechanism design theory, and then outline
some problems with the approach as applied to distributed and dynamic compu-
tational systems. The problems arise because of practical limits on the amount of
computation and communication that is reasonable within a system. For a more
complete review of mechanism design, see Jackson [27], Chapter 23 of MasColell
et al. [37], or Chapter 2 of Parkes [46].

The mechanism design (MD) approach to solving problems in decentralized
systems with self-interested agents is to formulate the design problem as an op-
timization problem. The parameters of the design are the kinds of strategies that
will be available to agents, specified for example by the bidding language in an
auction, and the rules used to determine an outcome based on agent actions, for
example rules to determine the winning bids in an auction.

Perhaps the most successful application of MD has been to the theory of auc-
tions. In recent years auction theory has been applied to the design of a number
of real-world markets [38].
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The fundamental assumption made in MD is that participants in a mechanism
will follow a game-theoretic equilibrium strategy. Simply stated, each agent is
expected to select actions that maximize its expected utility, given the strategies
of the other agents and the rules of the game, as specified by the mechanism. As
such, MD makes a strong behavioral assumption about agents and about the in-
formation available to agents, and then selects the mechanism that will maximize
some system-wide performance measure, such as seller revenue, with respect to
the behavioral assumption.

As an example, suppose that a number of users are competing for access to the
data staging capabilities on a data server located in Times Square. In MD the val-
uations of users for different amounts of disk space are private, and the problem is
to design incentives, for example through the calculation of appropriate payments,
to allocate disk space to maximize the total value across users. One cannot simply
request that users report their valuations and then make an allocation based on re-
ported valuations, because self-interested agents can be expected to overstate their
values. Rather, a useful mechanism must design the rules of the game to provide
incentives for agents to announce truthful information about their preferences for
different outcomes.

1.2.1 Mechanism Design: Preliminaries

A mechanism defines a set of feasible strategies, that restrict the kinds of mes-
sages that agents can send to the mechanism. A mechanism also fixes a partic-
ular outcome rule, which selects an outcome based on agent strategies.! Game
theoretic methods are used to analyze the properties of a mechanism, under the
assumption that agents are rational and will follow expected-utility maximizing
strategies in equilibrium, given beliefs about the strategies of other agents and
knowledge of the rules of the mechanism.

Formally, a mechanism, M = (S, z), defines a strategy space, S, and an out-
come rule, z : SN — . The outcome rule selects outcome z(s’) in some
abstract set O, given strategy profile s’ = (s1(61),-..,sn(0n)). A strategy de-
fines an action for an agent in all possible states of the mechanism. For example,
a strategy in an ascending-price auction defines when an agent will bid, and what
price an agent will bid, for all possible states of the auction. The outcome rule in
the auction takes these strategies, and then implements the choice (an allocation
and payments) based on the strategies.

An agent, ¢ € Z, has a type, 8; € ©. This captures all the private information
about an agent that is relevant to its preferences for different outcomes. Formally,
a type, 6;, defines an agent’s utility, u;(o,8;), for outcome o € O. A complete
strategy description, s; : ©; — S, defines a strategy, s;(6}), for each possible

LA mechanism must be able to make a commitment to use these rules. Without this commitment
ability the equilibrium of a mechanism can quickly unravel. For example, if an auctioneer in a second-
price auction cannot commit to selling the item at the second-price than the auction looks more like a
first-price auction [50].
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type, 8; € ©,. Given a strategy profile, s' = (s},..., s%) and outcome rule z',
then agent 4’s utility is u;(z(s'), 6;).
A mechanism is said to implement a social choice function, f : @Y — O, if

where s* denotes an equilibrium strategy profile, given an outcome rule, z, and
strategy space, S. A number of different equilibrium solution concepts are typi-
cally considered, including Bayesian-Nash (BNE), ex-post Nash, and Dominant
Strategy.? Dominant strategy implementations are particularly robust because they
do not require agents to have correct beliefs about the types of other agents, or be-
liefs that other agents will play an equilibrium strategy. Ex post Nash equilibrium
also have useful robustness properties.

Two important classes of mechanisms are direct revelation and indirect reve-
lation mechanisms. A mechanism is a direct revelation mechanism (DRM) if the
strategy space available to an agent is restricted to its space of types, i.e. S; = 9;.
In words, an agent can only make a claim to the mechanism about its preferences.
An indirect mechanism is any mechanism in which the strategy space is some-
thing other than the type space of an agent. Computational concerns aside, the
revelation principle [21, 22] states that it is possible to restrict attention to DRMs,
with no loss in implementation power. In particular, anything that can be imple-
mented in some complex mechanism M can also be implemented in a DRM. The
intuition is that if mechanism M implements SCF, (), in equilibrium, then we
can construct a DRM, M, that will implement the same SCF by simulating agent
equilibrium strategies and mechanism M within mechanism M’. Moreover, the
revelation principle states that it is sufficient to consider mechanisms in which
agents will choose to announce truthful information about their preferences in
equilibrium. These truthful and direct-revelation mechanisms are referred to as
incentive-compatible mechanisms.

The revelation principle allows an analytic solution to the MD problem in a
number of interesting design problems. Examples of solved MD problems in-
clude: the bargaining problem [42, 6] in which there is a single buyer and a sin-
gle seller; the single-item optimal auction design problem [41] in which a seller
wishes to maximize her expected revenue; and the efficient mechanism design
problem in which the objective is to allocate resources to maximize the total value
across agents.

2A strategy profile, s*, is a Bayesian-Nash equilibrium if it maximizes the expected utility to every
agent, given the strategies of the other agents and given beliefs about the distribution over agent types.
Every agent is assumed to have probabilistic information about the types of the other agents. All agents
have the same information, and this is common knowledge. A strategy profile, s*, is an ex post Nash
equilibrium, strategy if it is a utility-maximizing strategy for every agent given the strategies of the
other agents, and whatever the types of the other agents. In a dominant strategy equilibrium, strategy
s¥(8;), for every 1, is a utility-maximizing strategy whatever the strategies and whatever the types of

1
the other agents.
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1.2.2 Example: Efficient Mechanism Design

It is illustrative to present the well known Vickrey-Clarke-Groves (VCG) mech-
anism [56, 7, 23]. The VCG mechanism is an incentive-compatible DRM for
the efficient allocation problem. In this setting, the outcome space, O, is de-
fined in terms of a choice, &, from a discrete set of possible choices, X, and
payments, p = (p1,...,pn), Where p; is the payment by the mechanism to
each agent. Agents are assumed to have quasilinear utility functions, such that
ui(k,p;) = vi(k,8;) + p;, given choice k, payment p;, and type ;. In an auc-
tion setting, an agent’s type, 6;, defines its valuation function. The system-wide
objective is to implement a choice, k* € K, that maximizes the total value across
all agents. We can imagine that a choice, k, specifies an allocation of resources
across agents. Given this, an efficient mechanism must always select the choice
to maximize the total value.

By the revelation principle, we can focus on incentive-compatible DRMs. The
outcome rule is defined in terms of an allocation rule, g : © — X, and a
payment rule, p : © — RY. Given reported types, 6, then choice g(6) is
implemented and agent i makes payment p; ().

The goal of efficiency, combined with incentive-compatibility (IC), pins down
the allocation rule:

gerr(0) = argmax ; v;(k,6;) (EFF)

for all § € ©. The remaining problem is to choose a payment rule that provides
incentive-compatibility.

A particularly strong version of incentive-compatibility is that of strategyproof-
ness, in which truth-revelation is a dominant strategy;, i.e. utility-maximizing what-
ever the strategies or preferences of other agents. Formally, strategyproofness re-
quires that the allocation and payment rules satisfy the following constraints:

vi(9(8i,0-:),8:) — p(8i,0—:) > vi(g(6i,0-:),0:) — p(8i,0_), Vi, V6;,V0;,¥6_;
(SP)

Strategyproofness is a useful property because agents can play their equilib-
rium strategy without game-theoretic modeling or counterspeculation about other
agents.

The Groves [23] mechanisms completely characterize the class of efficient and
strategyproof mechanisms [22]. The payment rule in a Groves mechanism is de-
fined as:

pgroves,i(a) = Z Vj (geﬁ (0)7 @j) — h; (‘9—2')
J#i
where h; : ©_; — R is an arbitrary function on the reported types of every
agent except ¢, or simply a constant. The Groves payment rule internalizes the
externality placed on the other agents in the system by the reported preferences of
agent ¢ and aligns each agent’s incentives with the system-wide goal of allocative-
efficiency.
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To understand the strategyproofness of the Groves mechanisms, consider the
utility of agent i, u;(6;), from reporting type ;, given geg and Pgroves, and fix
the reported types, 6_;, of the other agents. Then, ui(é,-) = (geﬁ‘(éj, 0_:),6;) +
pgroves,i(éia 6_;), and substituting for pgroves, We have ui(8;) = vi(ger (0i,0_:),0:)+
E#i v; (geg(éi, 0_i),6;) — hi(0_;). Truth revelation maximizes the sum of the
first two terms by construction, and the final term is independent of the reported
type. This holds for all reported types from other agents, and strategyproofness
follows.

From within the class of Groves mechanisms, the Vickrey-Clarke-Groves (VCG)
mechanism is especially important because it minimizes the expected total pay-
ments by the mechanism to the agents, across all incentive-compatible, efficient,
and individual-rational (IR) mechanisms [33]. An IR mechanism is one in which
participation is voluntary and agents can choose not to participate. In the VCG
mechanism, the payment py.,;, is computed as:

Puegi(0) = > 0(gem(0-4),0;) = > vi (g (8),6;)
J#i J#i

where geﬁs(é_i) is the efficient allocation as computed with agent ¢ removed from
the system. For a single item allocation problem, this VCG mechanism reduces to
the well-known Vickrey [56] auction, which is a second-price sealed-bid auction.

The VCG mechanism has received considerable attention within computer sci-
ence and operations research in recent years, in particular in application to dis-
tributed optimization problems with self-interested agents (e.g. [43, 46]). Later,
in Section 1.4, we will draw some connections between the payments in the VCG
mechanism and the mathematics of collective intelligence.

1.2.3 Computational Considerations

Computational and informational considerations are largely missing from eco-
nomic mechanism design. Simply stated, mechanism design assumes that all equi-
librium have the same cost. In fact, a pair of otherwise equivalent mechanisms can
have equilibrium solutions with vastly different computational properties.

Briefly, some computational considerations that can impact the choice of a
mechanism in practice, include:

e The computational cost, both to agents to compute an equilibrium strat-
egy and to the mechanism to compute the outcome based on agent strate-
gies. Strategyproof mechanisms are one compelling class of mechanisms
that do not place an unreasonable game-theoretic burden on participants.
Approximations to strategyproof mechanisms that are intractable to imple-
ment have been suggested for some problems, where the goal is to retain
strategyproofness but also simplify the problem facing the mechanism in-
frastructure (e.g. [35, 43]).
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e The informational cost of computing an equilibrium. Direct revelation mech-
anisms require that agents submit complete and exact information about
their types, to enable the mechanism to compute optimal outcomes for all
possible reports from other agents. This can be unreasonable, for exam-
ple when the preference elicitation problem involves collecting information
from users, or solving hard optimization problems to evaluate different out-
comes, of which their can be exponentially many. In comparison, agents
can often compute equilibrium strategies in indirect mechanisms with ap-
proximate information about their own types [45, 49, 8]. For example, in
an ascending-price auction an agent can bid with upper- and lower-bounds
on its value for the item. A number of recent studies consider the design
of mechanisms in settings with costly preference elicitation [25, 47, 9], and
the communication complexity of mechanisms [24, 44].

The basic idea in all of the aforementioned approaches to computational MD
is to reduce the complexity of the proposed solution until the equilibrium of the
mechanism is computable.

A fundamentally different approach is to perform MD with respect to a model
of the bounded-rationality of an agent. For example, to determine the optimal
mechanism given a model of satisficing agent behavior, such as myopic best-
response to prices, or simple reinforcement-learning behavior. Although some
studies have considered the performance of different mechanisms for models of
bounded-rational agents [49, 8, 48], there are currently no theories for the de-
sign of optimal mechanisms with respect to an explicit model of bounded-rational
agent behavior. It is an intriguing challenge, to develop an analytically tractable,
yet meaningful, model of agent bounded-rationality.

The mathematics of collective intelligence provides some useful insights into
the challenging issues that agent bounded-rationality introduced into mechanism
design. In particular, the methods of collective intelligence suggest a third ap-
proach, in which mechanisms are designed to explicitly support convergence to-
wards equilibrium outcomes by simple adaptive agents. We pick up on this in
more detail in Section 1.4.

1.2.4 Dynamic Considerations

Another place where traditional MD breaks down is in its assumption that all
agents are present in a system, and able to reveal their type information simulta-
neously within the mechanism. This assumption is often unreasonable in dynamic
systems, for example in open network environments such as the Internet, where
multi-period and asynchronous interactions across anonymous and shifting agent
populations is a more reasonable model [17].

It is interesting to consider the online mechanism design problem, in which
agents are continually entering and leaving a system and the goal is to make both
truth-revelation of valuations and truthful announcements of arrival an equilib-
rium of the system (see Friedman & Parkes [18]). Online MD is interesting, for
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example, in the context of ad hoc network formation across peer-to-peer WiFi net-
works in which services maintain robust overlay networks as nodes enter, leave,
and fail.

Once an agent’s arrival and departure time is introduced into its type, the reve-
lation principle continues to apply and reduces the problem to the space of mech-
anisms in which agents truthfully announce their type, and therefore also their
arrival time, in equilibrium. However, standard approaches, such as the family
of Groves mechanisms, only provide strategyproof solutions in combination with
optimal online algorithms that are able to make optimal sequential allocation deci-
sions as agents arrive and announce their type. Relaxing to Bayesian-optimal on-
line algorithms corresponds to Bayesian-Nash incentive-compatible mechanisms
[18]. A simpler special case of the online MD problem occurs when it is reason-
able to assume truthful arrivals, which can be justified if agents are myopic and
react to the current state of the system as soon as they arrive. The online/truthful
problem remains interesting because the sequential-decision aspect of the prob-
lem is retained.

This problem of online mechanism design with myopic agents is closely related
to the problem of endogenous network and group formation in economics (e.g.
[11, 26, 10, 28]). In this work, agents arrive into a system and choose an action
to maximize their myopic utility.® The focus is on identifying which network
structures can emerge from a sequence of myopic decisions by self-interested
agents. A typical setting is one of network formation, in which agents choose how
to add a new link into a network. Recently, there has also been some attention to
a stochastic model of network formation, in which agents arrive by some random
arrival process and then take a myopic decision (e.g. [57]). Dutta & Jackson [11]
identify the mechanism design approach as an important future direction for the
study of network formation, where payoff division rules are imposed by a designer
in order to promote the emergence of useful networks.

Finally, there is an interesting comparison to be drawn between the online
mechanism design problem and the recent literature on utility-based models to
explain the existence and generation of complex networks with particular statisti-
cal properties (see e.g. [1]). On one hand, one can view the structure and statistics
of complex networks from the perspective of solving a constrained global op-
timization problem [5]. On the other hand, recent models have provided local
optimization-based models to explain the existence of complex networks [12]. It
is interesting to ask whether there is an opportunity to leverage mechanism design
in the positioning of appropriate local incentives to align local agent decisions
with optimal system-wide performance, in order to encourage the emergence of
complex networks with desirable topologies and statistical properties.

3A few studies which have considered an extensive form game model of the sequential decisions
by a fixed set of agents, see for example Aumann & Myerson [3].
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1.3 Coallective Intelligence

In this section we review the mathematical theory of collectives (see Chapter
??Wolpert?? for an introduction to collective intelligence). We provide a simple
treatment that will enable a useful comparison to be drawn with the mathematics
of economic mechanism design. Although there are a number of important differ-
ences between collectives and the traditional setting of mechanism design, it will
nevertheless be useful to draw parallels between mechanism design and collective
intelligence.

The main distinction between collective intelligence (COIN) and MD is that the
approach of collective intelligence is fundamentally an indirect paradigm. Rather
than focusing on direct-revelation mechanisms in which agents reveal private in-
formation to the mechanism, that implements a particular outcome, the COIN
approach implements an optimal system-wide outcome through the direct actions
of agents.

Another distinction between COIN and MD is that in COIN it is assumed to
be possible to directly set the utility functions of agents in order to guide their
choices. In comparison, MD is more constrained because a designer can only
indirectly influence agent payoffs via her choice of the payment and outcome
rules.

Additional distinctions between COIN and MD include:

o Noprivateinformation. The center in COIN is assumed to have enough in-
formation about local agent preferences to compute the system-wide value
for a particular state.

e Limited rationality. The theory of COIN allows agents to have limited-
rationality, including agents that follow simple best-response dynamics in
response to an evolving multiagent system.

Finally, COIN has typically been implemented in multiple period problems, in
which agents are able to adjust their strategies across time. In comparison, MD
has traditionally been applied to static environments.*

The ability to adjust payoffs directly, coupled with the absence of private in-
formation, would render the COIN problem trivial from a MD perspective, be-
cause there are no incentive issues to solve. However, COIN focuses instead on
computational goals, such as providing payoffs to enable a system of bounded-
rational agents to quickly adjust to good system-wide outcomes. This focus in
COIN nicely complements the obsession with incentives, but relative compla-
cency about computational issues, within MD.

4One exception within mechanism design is the work on Repeated Implementation [30], in which
the center aims to implement an outcome in the long-run as agent strategies converge towards a Nash
equilibrium.
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1.3.1 Collective Intelligence: Preliminaries

We define in this section a standard and simple COIN model. To maintain nota-
tional consistency with MD, our notation will necessarily depart from the notation
in Chapter ??Wolpert??.

Let ¢ > 1 denote the time period, and 6! denote the type of agent . The type in
COIN is used analogously to the type in MD, and is intended to capture any infor-
mation that is relevant to the behavior and preferences of an agent. Since agents
in COIN may be bounded-rational, and not necessarily game-theoretic, the type
in COIN captures information that relates to an agent’s computational and belief
state, in addition to its preferences. Furthermore, the type is indexed with time
period, ¢, and allowed to change across periods to reflect changing preferences
and changing computational state. Finally, in the standard COIN model the type
can be directly controlled by the system designer.

An agent follows a strategy, st, which captures information about the actions
taken by the agent in period ¢. Taken together, the strategy and the type of an agent,
defines its state, which is denoted ¢! = (st,6%). Notation, & = (£},¢€2,...),
denotes the time sequence of states for agent 4, £&¢ = (&, ..., &%), denotes the
state of all agents in period ¢, and £ = (£1,£2,...) denotes the total state across
all periods. The individual utility, u;(6%,&) > 0, of agent ¢, is defined over the
total state, &£, of the system, and evaluated here with respect to its type at time ¢.
Shorthand, u%(€), is used to denote the restriction to states up to and including
period t.

The designer’s goal is to maximize the system-wide utility across all states, de-
noted G(€). Shorthand, Gt (&), is used to denote the restriction to the social value
for time periods up to and including ¢. The system-wide utility can depend on
both the strategies and types of agents, and need not be the sum over the individ-
ual agent utilities, but can be quite general.

The central solution concept in COIN is that of a factored system. A system is
factored if the individual utility of every agent is always aligned with the system-
wide utility:

ui(€) = G*&) — Ty (fi(¢",..., &) (FAC)
for all agents i and all time periods ¢. The function, f_;(¢!,.. ., &%), takes only
the components of states, £*, ..., £, that are independent of any state information

related to agent ¢, and I'; is an arbitrary function over that state information. In
words, a collective is factored if and only if a change at time ¢ to the state of agent
1 alone, when propagated across time, will result in an increased utility to agent 4
if and only if it results in an increase to the system-wide utility.

The factoredness of a system is a stronger concept than the game-theoretic im-
plementation concept in indirect MD. The main difference is that every agent
should always want to select its own strategy to maximize the social value, G(£),
whatever the state of the system. In comparison, an incentive-compatible mecha-
nism that implements a particular social-choice function must only ensure that an
agent’s incentives are aligned with the social good when other agents also play an
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equilibrium strategy. In this aspect, the factoredness solution concept of COIN is
reminiscent of the strategyproof solution concept of MD (although applied here
to indirect mechanisms), in that it does not require on-equilibrium play of other
agents.

We can readily verify that factoredness is sufficient to implement the choice
that maximizes the system-wide utility, G(&), in a dominant-strategy equilibrium.
Let &£* denote the optimal social choice. Consider agent i. The states, £, represent
a best-response choice because

&= argmﬁax G =& = argm{z{LXG(&,fii) =T (f-i(67))
=& = argmg}xui(&aﬁ)

However, we observe that full factoredness is a strong property, and is not
necessary for a system of agents to maximize the value of G in equilibrium.
As an example, suppose that each agent selects an action s; € [0,1], and that
G(s1,82) = f(s1)f(s2) where f(z) is a Gaussian function with mean 0.5 and
variance 1. Now, suppose that the system is factored for agent 1, with u (s1, s2) =
f(s1)f(s2), but not factored for agent 2, with

N f(82), if s; € [05 — 0.5+ 6]
uz(s1,82) = { 1— f(s2), otherwise

for some small, e > 0. Despite this failure of factoredness, the system is factored
in the neighborhood of the optimal system-wide outcome of s* = (0.5,0.5), and
this is a stable outcome.

Factoredness is a useful property for a dynamic system because it implies that
a rational agent will always play to maximize the social-value of the choice what-
ever the actions of other agents, and therefore gives useful robustness and stability
properties in environments with bounded-rational, or faulty, agents.

1.3.2 Informative Local Utilities

The key challenge in COIN is to select factored local utilities to promote good
convergence to a desired state. COIN agents are modeled as simple bounded-
rational agents, rather than as traditional game-theoretic agents. In particular, the
standard COIN model assumes that agents play a myopic best-response strategy
as the state of a system evolves, given their current beliefs about payoffs for dif-
ferent strategies.

Given a particular system-wide utility, G(£), the designer in COIN retains some
flexibility in her choice of factored utility functions for individual agents. Specif-
ically, the designer can choose the functions I'; and f_; in (FAC). The theory of
collective intelligence demonstrates that utility functions that are better able to
isolate the effect of an individual agent’s strategy on the system-wide utility are
more informative for simple learning agents, and improve the rate of convergence
to optimal system-wide agent strategies.



14 David C. Parkes, Division of Engineering and Applied Sciences, Harvard University, parkes@eecs.harvard.edu

An example of a factoring choice with poor information properties is to set-up
a team game [40], with

uta,i(§) = G'(€)

This is clearly factored, because every agent’s utility is exactly that of the over-
all system. However, team game utilities are not very informative because the
marginal effect of an agent’s own action on the system utility is likely to be
masked by the effect of the actions of the other agents.

In developing a factored utility, it is important that the function, f_;, leaves only
components of states (£1, .. ., &) that are independent of the states corresponding
to agent i. It is not, in general, sufficient to remove only those states, (¢1,...,&D),
that pertain directly to agent 4, because an earlier strategy of agent i can affect the
strategy and beliefs of another agent in a later round. Instead, it is also necessary
to remove any states for other agents that are potentially affected by the state of
agent 4 in some earlier round. This is referred to as the effect set of agent ¢, and
denoted eff (¢). The independent states are denoted £ \ eff (), with shorthand £ _;.

Another idea for a factored local utility is presented by the aristocratic utility
(AU), in which:

why,i(€) = G(€) — Bgeepy [GH(E-4,€")] (AU)

The expectation is defined with respect to current beliefs over the probability of
different states in the effect set of an agent.® This aristocratic utility is maximally-
informative, with respect to a reasonable definition of the information provided
by a reinforcement signal [58].

In the special case of a repeated single-stage game the effect-set of agent ¢ is
simply its own state, and the aristocratic utility simplifies to

UAU,@'(&) =G(§) - Es;ESi [G(&-i; S;)]

where the time index, ¢, is dropped, set .S; denotes the space of legal actions for
agent ¢, and the expectation is taken with respect to the distribution of actions
played by agent 4.

Another idea for a factored local utility, is presented by the wonderful life utility
(WLU). This can be a useful approximation to AU, in particular when AU is itself
difficult to compute. In WLU the states in the effect set of agent ¢ are replaced
with a single “clamped” set of states:

utyry,i(€) = G*(€) — G*(6-4, CLy) (WLU)

where CL;, is the clamping factor. This clamping defines a fixed strategy for every
agent in the effect set of agent ¢ across all periods.

S\t is important to notice in this construction that the dynamics of the combined state (£ _;, £') do
not need to be consistent with the dynamical laws of the system. They are purely used as a counterfac-
tual operator [54].
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In the special case of an iterated single-stage game the wonderful life utility
simplifies to:

uwLu,i(§) = G(§) — G(€-4, CL;)

where the time index, ¢, is dropped, and CL; € S; is some fixed strategy for agent
i. This is factored for any choice of clamping factor.

1.3.3 Back to VCG Mechanisms

Interestingly, the WLU factored local utility function brings us full circle, back
to the Vickrey-Clarke-Groves mechanism that was introduced in Section 1.2 as a
canonical example of a strategyproof solution in economic mechanism design.

Consider the special-case of a WLU with clamping factor, CL; = §, to repre-
sent a null move by agent 4. In this case an agent’s utility for some strategy £ is
equal to the marginal contribution of its own strategy to the system-wide utility.
Thus, WLU with a null clamping factor, implements the same equilibrium out-
come as the VCG mechanism in the special case of a revelation game in which
agent strategies define the revelation of type information and the system-wide
utility is the sum of individual agent utilities.

Looking at COIN, both theoretical and experimental results suggest that it is
better to use a WLU with a clamping factor that is equal to an agent’s expected
move. This provides a mean-field approximation to the AU, which itself has prov-
ably optimal informative properties. This suggests that the informativeness of the
information provided by payments in an economic mechanism will be of interest
in environments in which simple, but self-interested agents, are learning optimal
strategies through best-response dynamics, and should be considered in selecting
the appropriate mechanism from the class of Groves mechanisms. We pick up this
theme in Section 1.4, where we introduce a COIN-inspired approach to MD for
repeated games with simple adaptive agents.

1.3.4 Example: A Congestion Game

In this section, we present an example of COIN in the setting of a congestion
game and review experimental results from Wolpert & Tumer [58]. Consider a
simple variation on the El Farol bar problem [2]. Each player is deciding which
night in the week to attend a bar, and if too few people attend the bar is boring but
if too many people attend the bar is too crowded. This is a simple coordination
game, in which the system-wide goal is to spread the attendance evenly across the
nights.

Formally, there are IV players and 7 nights, and every player wants to attend for
the same number of nights, I. The value of [, which is selected from set {1, ..., 6},
defines different variations of the game. In particular, as [ increases, the bar will
become more crowded. In each period, ¢, every player chooses a strategy, st. This
defines a vector of 0’s and 1’s, e.g. (0110000), to indicate which nights the player
will attend.
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Given the joint strategies, s* = (st,..., sk, then the system-wide utility for a
particular week, ¢, is
7

G(s') = ) dlan(s"))

k=1

where z,(st) is the total attendance on night k. The congestion function, ¢(z) =
x e~%/¢forsome ¢ > 0, and attendance z, captures the idea that the bar should not
be too empty or too crowded on any single night. The function is maximized for
an attendance of exactly ¢. The optimal system-wide outcome has players making
a coordinated decision, with the same number of players attending on each night.
Notice that this problem has characteristics that are consistent with the COIN
approach, but different from the MD approach. First, the system-wide utility func-
tion is known to the mechanism. Second, the protocol is an indirect mechanism
in which the outcome is determined directly by the strategies of the players.
Experimental results [58] compare the performance of different WLUs, for dif-
ferent clamping factors. This is an iterated single-stage game, so the effect set for
player ¢ is simply its strategy in period ¢ and the clamping factor defines a static

strategy. Clamping factors CL; = ﬁ and CL; = _1> and CL; = [/7 are con-
sidered. Notice that it is not necessary that the clamping factors are legal moves.
Let k;(s;) denote the nights that player i chooses to attend with strategy s;. Then,
WLU for clamping factor CL; = (CL;y, ..., CL;7), is defined as:

7

uwLy,i(8i) = z¢($k(s)) - Z ¢ (zx(s) + CLik) + Z ¢ (zr(s) — 1+ CLy)

k=1 kk; kek;

_>

The mean-field approximation clamping factor, CL; = [/7 (i.e. with each
player assuming that the nights are well-balanced) is shown to outperform the
; . - —

other WLUs, with the ﬁ) clamp outperforming the 1 clamp except when the 1
clamp is a good approximation to the mean-field clamp. This can occur as conges-
tion increases and the number of nights that a player wants to attend approaches
6. The experimental results also demonstrate that all difference methods, with
u; (&) = G(&) — T'(f-:(&)), are more effective than team game methods, with

ui(§) = G(8).

1.4 Learnable Mechanism Design for Episodic
Systems

One approach to the problem of mechanism design with bounded-rational agents
is to consider agents with simple learning algorithms, that can adjust towards Nash
equilibrium strategies [51, 17]. Indeed, there is an established literature that con-
siders the ability of agents to learn to play equilibria in games [19, 20, 31, 53]. The
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emphasis is on simple learners that can adjust, for example through myopic best-
response, towards equilibrium strategies. A useful learnable mechanism would
provide information, for example via price signals, to maximize the effectiveness
with which individual agents can learn equilibrium strategies.

Given the focus on methods to address agents with limited-rationality in COIN,
it is interesting to reinterpret the methods of COIN in terms of designing learnable
mechanisms for episodic systems, such as iterated single-stage games. The meth-
ods of COIN suggest a new criteria for selecting a mechanism from within the
Groves family of mechanisms, namely to provide informative signals to agents
that are using simple learning methods to adjust towards equilibrium play.

1.4.1 The VCG-WLU Mechanism

Consider the following multi-period MD problem. Each period, ¢, is a single-stage
game, that is repeated across periods. There is a set of choices, I, to implement
in each period, and the goal is to implement the efficient choice, £*, which maxi-
mizes ), vi(k,0;), where v;(k, ;) > 0 is the value of agent 4 for choice k and 6;
is the type of agent 4. Consider a direct-revelation mechanism, with strategy space
S; = ©; for each agent, and choice rule,

gest (8 maxz v; (k, 6;)

for types 6 = (él, . ,éN). Given this choice rule, the system-wide utility func-
tion from COIN is A A
=Y vi(gen(d),6

Of course, in MD, there is uncertainty about this system-wide utility because
types, 6;, are private to agents. Consider a Groves mechanism, with payment

Dgroves, z Z U,] geff —h_ (é—z)
J#i

to agent ¢ given reported types 6, and some arbitrary function, h_;, on the reported
types of all agents except 4.

These payments, combined with outcome rule, ges, induce individual utility
functions on agents:

Ui(éiaé— i) = vi(gesr( é )+ ZUJ et é 9 _i(é_i)
J#i

These individual agent utility functions are not always factored. However, they are
factored when other agents, j # 4, follow equilibrium strategiesand 8_; = 6_;.
This follows from the incentive—compatibility of Groves mechanisms:

wi(0:,0-5) = vi(gew (6,65, 0:) + > _ v (gerr(B:,0-4),8;) — h_s(6_,)
J#i
=G (03,0 ;) —h_i(0_,)
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Although the Groves payments do not make the agent utilities factored out of
equilibrium, they are still sufficient to provide convergence towards equilibrium.
For any strategy, 6_;, from agents j # 4, the best-response, sy, 2(0 i), of agent ¢
is truth-revelation:

Sbr,i(0—;) = arg arlneaéc ui(65,0_;)

= arg max i (gesr (6] )+ ZUJ gert (8},0_5),0;) — h_s(6_;)
R j#i

=0,

This property follows directly from the strong dominant-strategy truth-revelation
properties of Groves mechanisms.

Economic MD suggests using additional properties, such as individual-rationality
and revenue-maximizing to select the function h_; and choose a particular Groves
mechanism. As an example, the VCG mechanism, with h_; (6_;) = 3" ;_.; v;(ge (0—4)),
is popular because it maximizes the expected revenue across all individual-rational
and efficient solutions [34].

In comparison, the theory of COIN suggests that a better choice than VCG
payments for a mechanism in which agents are bounded-rational, and adjusting
towards an equilibrium, is to set:

hoi(0-3) = vilgerr @,0-:),8:) + > v;(ge :,6-3),8;)  (VCG-WLU)
JF#i

where 8; is the ex ante average type of agent . This is analogous to setting a WLU
utility, in which the clamping parameter set to the average action of player i. We
will call this hybrid the VCG-WLU mechanism.

This payment rule forfeits ex post individual-rationality, because the equilib-
rium utility to an agent is:

ui(6) =) vi(ger(6),0:) — | vi(gerr(8:,6-),0:) + > vj(gerr (B, 6),065)
i i

This equilibrium utility is negative, unless 8; > 6;.

However, the following is sufficient to retain ex ante individual-rationality, such
that the expected utility to agent ¢ is non-negative:

> v (ger (6:,6-3),6;) | > vilger (0:,6-:),8:) + Y _ v;(ger(8i,0-5),6;)
j J#i

for every 6_;. This requirement is explored in the following example.
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Example.

Consider a Vickrey auction for a single item, in which agent the type, 6; € [0, 1]
specifies an agent’s value for the item. Then, ex ante IR requires:

Egi [max(&i, (9_1)] Z max(ai, O_i), ‘V’G_,
where 6; = 0.5. Let z(f_;) = max;; 6;, then we require:
Ey, [max(6;,2)] > max(;,z), Ve

By case analysis on z, this holds trivially when z > 0.5, and when z < 0.5 we
have:

1
Ep, [max(6;,z)] = .’L'+/ v—rdv=x+1/2—2+2?/2 > 1/2 = max(0;, )

Thus, the payments suggested by the WLU clamping 8; satisfy ex ante IR in this
simple example.

In the following sections we present experimental results to compare the effec-
tiveness of the VCG-WLU mechanism with the VCG mechanism in an auction
problem with simple adaptive agents, and also for a variant of the congestion
game that was introduced in Section 1.3.4.

1.4.2 Example: Auction Game

Consider a simple allocation problem, in which there is a single item to allocate
N agents each with type, 8;, uniformly distributed between 0 and 1. The type of
an agent defines its value for the item. Let z; = 1 if agent ¢ receives the item, and
x; = 0 otherwise, with 3, z; < 1 for all feasible allocations. The utility of agent
1 for outcome z and payment p; from the mechanism is

_J bi+pi ifzi=1
ui(x,p;, 0;) = { P; , otherwise

The social choice function is to maximize the allocative-efficiency of the outcome,
with
%

for feasible allocation z. A Groves mechanism for this single-item allocation
problem first asks each agent to report its type, and then implements the outcome
z(6) that maximizes G(z, ) such that 3, z; < 1,z; € {0,1}. Agent ¢ receives
payment
pgroves i 6 Z'U] 0 9 —h_ Z(G,i)
J7#i
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for some arbitrary function, h_;, defined on the reported types 6_; for agents
J # i. We consider the following choices, to complete the payment definitions:

h_z' (é_z) =max éj (VCG)
J#i
h_;(6_;) =0 (Groves-TG)
h_i(6_;) =max(, max 0;) (VCG-WLU)
JF

where § is the average type, in this example equal to 0.5.
Putting this together, and assuming that agent 1 announces the highest type and
agent 2 announces the second-highest type, then the payment rules simplify to:

b, ifi=1
Pvegii =1 , otherwise

o ifi=1
P16, = 6, , otherwise
—max(0,6,) ,ifi=1

PwLvs = { 6, —max(6,6,) , otherwise

In our experiments we adopt the approach in Wolpert & Tumer [58], and use
a simple reinforcement learning algorithm for individual agents. Each agent, i,
considers a linear strategy 6; = k6;, for some k£ € {0.6,0.7,0.8,0.9,1,1.1},
and maintains a 6-dimensional vector to estimate the utility it receives for each
strategy. Let 7f(k) denote the utility estimate by agent i in period ¢ for strategy
k. At the beginning of each period each agent picks the strategy to announce
at random, using a Boltzmann distribution defined over the six components of
the estimated utility vector. In particular, the probability of playing strategy &
is proportional to (i (¥)/temp®) The parameter, temp®, controls the amount of
exploration in period ¢.

At the end of each period the mechanism reports the allocation, z, and the
payment p; to each agent and the agent computes its utility for the outcome and
updates its estimates. For example, if agent ¢ plays strategy & in period ¢ and
receives utility s, then its new estimate for strategy & is computed as 7rf+1(k) =
(1 — XY)rt(k) + Aiw. The parameter, A*, controls the amount of adjustment in
period ¢.6 An uninformative prior sets each component of the estimated utility
vector to the average utility received during an initial training period in which
all agents choose random strategies. Finally, the parameters, temp®, and At, are
adjusted across periods according to decay factors 0 < a < 1and 0 < 8 < 1,
with temp!t! = atemp? and X! = BAL

In all experiments the initial temperature, temp?, is equated to the average util-
ity during the initial training period, and the decay rate, 3, for the learning-rate

6The use of this weighted average over an exponential decay function reflects the fact that the
environment is non-stationary.
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FIGURE 1.1. The Auction Problem with 5 Agents, comparing the VCG, VCG-WLU, and
TG payment rules. Learning begins after 200 periods. (a) Moving average of the mean
absolute error between agent strategies and truth-revelation. (b) Moving average of the
efficiency of the auction.

is set to fix the learning-rate at the end of the final period to 0.001. We experi-
mentally optimized the choice of the initial learning-rate, A, and the temperature
decay rate, «, for each different choice of design with a logarithmic search in
parameter space to select parameters that maximized the average efficiency and
minimized the average distance to the equilibrium strategy, across all periods.

Experimental Results.

In the first set of experiments we considered an auction with 5 agents, and set the
initial training period to 200 periods and the learning period to 2000 periods. All
results are averaged over 40 runs. In the second set of experiments we considered
an auction with 3 agents, having noticed that the payments in VCG approximate
those in VCG-WLU, and are different only when the average value of an agent is
greater than the second-highest reported value. For these experiments the initial
training period was 200, and the learning period was 1000. As with 5 agents, the
results are averaged over 40 runs.”

Figures 1.1 and 1.2 compare the performance of the mechanisms in the 5 agent
and 3 agent settings. First, we plot the convergence of agent strategy to the equi-
librium strategy, which is truth-revelation in all auctions. Given N agents, we
compute the mean absolute error in each period, as 1/N >~ |k; — k*|, where k;
is the strategy selected by agent ¢ and £* = 1 is the equilibrium strategy. Second,
we plot the efficiency of the outcome in each period, which is the ratio of the value
of the item to the agent that receives the item to the value of the agent with the

"With 5 agents, the parameters (o, A!) were set to (0.9973,0.05), (0.9978,0.2) and
(0.9969,0.1) in auctions VCG, VCG-WLU, and TG respectively. With 3 agents, the parameters
(a, A1) were set to (0.9944, 0.2), (0.9955,0.1) and (0.9932, 0.1).
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FIGURE 1.2. The Auction Problem with 3 Agents, comparing the VCG, VCG-WLU, and
TG payment rules. Learning begins after 200 periods. (a) Moving average of the mean
absolute error between agent strategies and truth-revelation. (b) Moving average of the
efficiency of the auction.

maximum value. In both cases, we find it convenient to plot the moving-averages
(with a window size of 100). This smoothes out random fluctuations from period-
to-period due to Boltzmann learning. Also, the first 200 periods represent the
initialization period, in which agents select random strategies.

As expected, the performance of the VCG and VCG-WLU auctions dominates
that of the TG auction with simple learning agents. Moreover, the VCG-WLU
method appears to slightly outperform the VCG method during the early learning
periods with 5 agents, both in terms of the accuracy of agent strategies and the
average efficiency. In addition, the effect of VCG-WLU is more striking with 3
agents, with the COIN-inspired VCG payments providing a clear performance
advantage over the regular VCG payments.

1.4.3 Example: Congestion Game

We illustrate the VCG-WLU mechanism on a direct-revelation variation of the
congestion game. Consider a simple variation on Arthur’s El Farol bar problem.
There are N players, one bar, and one night. The problem is interesting because
the type of each player defines its tolerance for congestion, and is private to each
player. Moreover, it is not certain which players will attend the bar.

On any night, the problem is to decide which players attend the bar. Let y; €
{0, 1} denote whether or not player  attends the bar (with y; = 1 for attendance).

Then, given a solution y = (y1,- -, yn), player ¢ with type 6; has value:
o/ ify; =1
) N Te T y;
vily, 6i) = { 0 , otherwise

where z =", y;.
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Giventypes, 8 = (61, ...,0n), the system-wide goal is to implement a solution
in which the attendance, y*, maximizes the total value:

max Y vi(y, 6, (1)

The problem is to strike a compromise between the different preferences of play-
ers for the level of crowdiness in the bar. For example, if enough players prefer a
crowded bar than it can be beneficial from the system-wide perspective to make
players attend even if that makes it more crowded than desirable for other players.

The difference from the earlier congestion game (in Section 1.3.4) is that the
mechanism itself implements a particular attendance profile, and must elicit infor-
mation about player types to implement an optimal solution.

The Groves mechanism for this problem first asks players to report their type,
6;, and then implements the outcome, y(é), that solves (1.1) given the reported
types. Player ¢ receives payment

Pgroves,i(0) = ZUJ (y(6),8;) — h_i(6_)
J#i

where, as before, h_; is some arbitrary function on the reported types of the other
players. We again consider the particular variations that implement the VCG,
VCG-WLU, and TG payments. The VCG payments require that the mechanism
computes an alternative solution without each player in attendance, while the
VCG-WLU payments require that the mechanism computes an alternative so-
lution with the type of each player replaced, in turn, with the average player type.

Experimental Results.

First, we consider the congestion game with 8 players, and possible types 8; se-
lected uniformly at random from {1,2,3,4,5,6}. Second, we consider this con-
gestion game with 4 players, and possible types {1, 2, 3}. We use the same Boltz-
mann learning method as in the auction example. Each player considers a lin-
ear strategy 6; = k6;, for some k € {0.6,0.7,0.8,0.9,1,1.1} and maintains an
estimate of the utility for each strategy. This induces a Boltzmann distribution
to define a probability with which the player selects a particular strategy. Util-
ity estimates are again initially set to an uninformative prior, during an initial
training period in which all players follow random strategies. We experimentally
optimized the choice of initial learning-rate and temperature decay rate for each
different choice of design.®

In the 8-player variation, we set the initial training period to 200 and the learn-
ing period to 1000. In the 4-player variation, we set the initial training period to

8For 8 players, the parameters (a, A') were set to (0.9947,0.2), (0.9978,0.05), and
(0.9932,0.05) in the VCG, VCG-WLU, and TG mechanisms respectively. For 4 players, the pa-
rameters were set to (0.9865, 0.1), (0.9991, 0.02), and (0.9861, 0.2).
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FIGURE 1.3. The Congestion Problem with 8 Players, comparing the VCG, VCG-WLU,
and TG payment rules. Learning begins after 200 periods. (a) Moving average of the mean
absolute error between player strategies and truth-revelation. (b) Moving average of the
efficiency of the outcome.

100 and the learning period to 500. The 8-player results are averaged over 20 runs
and the 4-player results are averaged over 60 runs. Again, we were interested to
compare the 8-player and the 4-player variations, because we expected the VCG-
WLU to VCG comparison to be more noticeable with less players.

Figures 1.3 and 1.4 compare the performance of the mechanisms in the 8 player
and 4 player settings. We plot the mean absolute error between the player strate-
gies and truthful strategies in each period, and the efficiency of the outcome in
each period, which in this problem is measured as the ratio between the total value
of the implemented outcome to the total value of the optimal outcome. We plot
the moving averages (window size of 50), to smooth out the random fluctuations
due to Boltzmann learning.

Just as in the auction example, the performance of the TG mechanism with sim-
ple learning agents, in terms of both the speed of convergence towards an equi-
librium strategy and the overall efficiency across periods, is dominated by both
the VCG and the VCG-WLU mechanisms. Most striking in this congestion game
example, is that the performance of VCG-WLU mechanism itself dominates that
of the VCG mechanism, both for the 8 player and the 4 player variations. This
provides some experimental justification for a collective-intelligence inspired ap-
proach to mechanism design in the presence of bounded-rational agents.

1.5 Summary: Towards Learnable Mechanism Design

The integration of methods from COIN into methods in mechanism design can be
viewed as a first step towards learnable mechanism design. Learnable mechanism
design is a natural direction to take mechanism design in complex decentralized
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FIGURE 1.4. The Congestion Problem with 4 Players, comparing the VCG, VCG-WLU,
and TG payment rules. Learning begins after 100 periods. (a) Moving average of the mean
absolute error between player strategies and truth-revelation. (b) Moving average of the
efficiency of the outcome.

settings. Classic mechanism design formulates an explicit normative model of
the equilibrium behavior of an agent, and selects mechanism rules that are op-
timal with respect to that model. In particular, the Myerson program formulates
the problem as a constrained optimization problem, in which one selects an out-
come rule that maximizes a set of desiderata subject to incentive-compatibility
constraints. In contrast, the idea presented in learnable mechanism design is to de-
sign a mechanism that is optimal with respect to a behavioral model of bounded-
rational agents, and in particular to worry about the performance along the path
towards equilibrium as well as in equilibrium itself.

The methods in this chapter assume simple Boltzmann learners, and adopt the
idea of informative utilities from COIN to select an instance of the Groves fam-
ily of mechanisms in which payments to agents are especially informative in the
feedback they provide about the effect of an agent’s choice of strategy on her
individual utility. But, this opens up many interesting questions. In particular,
there has been an explosion of research into algorithms to compute Nash equilib-
rium (and special-classes of equilibrium such as correlated equilibrium) in game-
theoretic settings (e.g. [32, 55, 29]), and also to identify tractable special-cases
of the equilibrium-computation problem (e.g. [36]). Many of the algorithms have
a best-response/learning flavor (e.g. [16, 14, 15, 39, 31]). A very natural ques-
tion arises: can we design mechanisms that induce games that have computable
equilibrium, or equilibrium that are readily computed by simple learning agents?

In addition to identifying classes of mechanisms that induce game-theoretic
situations with good computational properties, we can also consider whether there
is a role for automated mechanism design in which the rules of mechanisms are
automatically adjusted online to provide robustness against unmodeled properties
of a real system, such as those due to the limited-rationality of participants.
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