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1 Introduction

Electronic markets facilitate new methods for procurement through expressive bid-
ding and automated winner-determination. Electronic markets have been used to
sell wireless spectrum [6], to procure school meals by the Chilean government
[8], for course-registration at Chicago GSB [13], and for the procurement of lo-
gistics services [22]. Both economic and computational considerations are central
to the design of useful electronic markets. Economic desiderata for markets can
include allocative-efficiency and revenue-optimality [19]. Computational desider-
ata for markets can include tractable bidding strategies [26], minimal preference
elicitation [27], and tractable winner determination [29].

Supporting simple truth-revealing bidding strategies in a dominant-strategy equi-
librium has received attention in the literature [33,26]. This property is called strat-
egyproofness. A strategyproof auction is useful because it simplifies the bidding
problem: the optimal bidding strategy is known to bidders and does not require
that a bidder models the preferences or strategies of other participants. What often
emerges is an interesting tradeoff between providing tractable winner-determination
algorithms and supporting strategyproofness. Well known economic mechanisms
that provide strategyproofness can require that the marke-tmaker solves intractable
winner-determination problems, and truth-revelation can quickly unravel when ap-
proximations are introduced [25]. Our results are positive: we present auction mod-
els that are tractable and for which truthful bidding is almost the dominant strategy
for a bidder.

We consider a multi-unit allocation problem, that models both the problem of a
seller with multiple identical units of a good and the problem of a buyer that seeks
to procure multiple identical units of a good. The problem is motivated by recent
trends in electronic commerce; for instance, corporations are increasingly using
auctions for their strategic sourcing of commodity goods [15]. We provide a com-
pact and expressive bidding language that allows marginal-decreasing piecewise
constant price-schedules together with quantity-based side constraints. Our main
contribution is to present a fully polynomial-time approximation scheme, that is
both approximately efficient and approximately strategyproof.

In the procurement setting we consider a buyer with value ( )+* for , units
of a good, and - suppliers each with a marginal-decreasing piecewise-constant
cost function. The bidding language also allows each supplier to express an up-
per bound (or capacity constraint) on the number of units she can supply. This
allows a supplier to express an infinite ask price for supplying large numbers of
units that are beyond her capacity and is an important consideration in practical
settings. As a concrete example, the procurement auction models the procurement
of circuit boards in flexible sized lots from multiple suppliers each of which can
state a capacity constraint.
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In the forward auction setting we consider a seller with , units of a good, and
- buyers each with a marginal-decreasing piecewise-constant valuation function.
Here, the language also allows a buyer to express a lower bound (or minimum
lot size) on the number of units that she will buy. This allows a buyer to submit
a bid price of zero for initial units, and is an important consideration in practical
settings. As a concrete example, our forward auction models a setting in which a
PC manufacturer would like to sell excess inventory in flexible-size lots and each
buyer has a minimal number of units that she must procure.

We consider the computational complexity of implementing the Vickrey-Clarke-
Groves (VCG) [32,5,14] mechanism for this multi-unit allocation problem. The
VCG mechanism is strategyproof for suppliers in the procurement auction and
strategyproof for buyers in the forward auction, and supports allocative-efficiency
such that purchasing (selling) decisions are made to maximize the total economic
surplus in the economy. There is an asymmetry between the procurement and the
forward auction directions because we model the buyer in the procurement setting
with a finite value for the goods, while the seller in the forward auction is assumed
to have no intrinsic value for the goods on sale. This asymmetry limits the appli-
cation of our procurement auction to those in which the total payments collected
by suppliers are less than the buyer’s value. No such restriction is required in the
forward auction direction.

The winner-determination problem in the multiunit allocation problem is (weakly)
intractable, and has the classic 0/1 knapsack problem as a special case. The quantity-
based side constraints preclude the adoption of a simple greedy allocation scheme.
The winner-determination problem is a novel and interesting generalization of the
classic knapsack problem. We provide a fully polynomial-time approximation scheme,
computing a .0/214365 -approximation in worst-case time 798;:<.=- �6>@? 5 , where each
bid has a fixed number of piecewise constant pieces.

We demonstrate that the approximate VCG mechanism, in which this .0/A1B365 -
scheme is used for winner-determination and to compute payments is .DC&FE C 5 -strategyproof.
This means that a bidder can gain at most . C&FE C 5G( from a non-truthful bid, where
( is the total surplus from the efficient allocation. As such, this is an example of
a computationally-tractable ? -dominance result. � In practice, we can have good
confidence that bidders without good information about the bidding strategies of
other participants will have little to gain from attempts at manipulation. Formally,
we can justify truthful bidding in equilibrium by modeling bidders as indifferent to
payments that are within .HC&FE C 5
( of each other.

� However, this may not be an example of what Feigenbaum & Shenker [10] refer to as a
tolerably-manipulable mechanism because we have not tried to bound the effect of such a
manipulation on the efficiency of the outcome. VCG mechanism do have a natural “self-
correcting” property, though, because a useful manipulation to an agent is a reported value
that improves the total value of the allocation based on the reports of other agents and the
agent’s own value.
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The main innovation in this paper is to provide a fast method to integrate the ap-
proximation algorithm for winner-determination into the calculation of VCG pay-
ments. A straightforward scheme would require an asymptotic time :I.=-J7K5 to com-
pute payments to all - bidders. Our scheme determines approximate VCG pay-
ments in worst-case time :I.=LM7HN�O$PQ.FL - >@? 5G5 , where L is a constant that quantifies
a reasonable “no-monopoly” assumption. Specifically, in the reverse auction, sup-
pose that R<.�ST5 is the minimal cost for procuring , units with all suppliers S , and
R<.�SVUXWY5 is the minimal cost without supplier W . Then, the constant L is defined as
an upper bound for the ratio R<.�SZU[WY5 > R<.�ST5 , over all suppliers W . This upper-bound
tends to 1 as the number of suppliers increases.

Section 2 formally defines the forward and reverse auctions, and defines the VCG
mechanisms. We also prove our claims about ? -strategyproofness. Section 3 pro-
vides the generalized knapsack formulation for the multi-unit allocation problems
and introduces the fully polynomial time approximation scheme. Section 4 defines
the approximation scheme for the payments in the VCG mechanism. Section 5
concludes.

1.1 Related Work

There has been considerable interest in recent years in characterizing polynomial-
time or approximable special cases of the general combinatorial allocation prob-
lem, in which there are multiple different items. The combinatorial allocation prob-
lem (CAP) is both NP-complete [29] and inapproximable ([30]). Although some
polynomial-time cases have been identified for the CAP (e.g. [7]), introducing an
expressive exclusive-or bidding language quickly breaks these special cases. In this
work we identify a non-trivial but approximable allocation problem with an ex-
pressive exclusive-or bidding language—the bid taker in our setting is allowed to
accept at most one point on the bid curve.

The idea of using approximations within the allocation rules of mechanisms, while
retaining either full-strategyproofness or ? -dominance has received some previous
attention. For instance, Lehmann et al. [23] propose a greedy and strategyproof
approximation to a single-minded combinatorial auction problem. Nisan & Ro-
nen [25] discussed approximate VCG-based mechanisms, but either appealed to
particular maximal-in-range approximations to retain full strategyproofness, or to
resource-bounded agents with information or computational limitations on the abil-
ity to compute strategies.

Feigenbaum & Shenker [10] have defined the concept of strategically faithful ap-
proximations, and proposed the study of approximations as an important direction
for algorithmic mechanism design. Schummer [31] and Parkes et al. [28] have pre-
viously considered ? -dominance, in the context of economic impossibility results,
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for example in combinatorial exchanges. Archer et al. [1] adopt similar notions of
approximate-strategyproofness in their work on single-minded combinatorial auc-
tions.

A recent characterization due to Lavi et al. [21] suggests that it is in fact neces-
sary to relax full strategyproofness and consider approximate-strategyproofness in
our multi-unit problem: their analysis suggests that no worst-case polynomial time
algorithm can be strategyproof and have good approximation properties for the
multi-unit allocation problem.

Eso et al. [9] have studied a similar procurement problem, but for a different
volume discount model. This earlier work formulates the problem as a general
mixed integer linear program, and gives some empirical results on simulated data.
Kalagnanam et al. [18] address double auctions, where multiple buyers and sellers
submit demand and supply curves for a divisible good, and investigate competitive-
equilibrium outcomes for myopically-rational agents.

Ausubel [2] has proposed an ascending-price multi-unit auction for buyers with
marginal-decreasing values and no lower-bounds on lot size, with an interpretation
as a primal-dual algorithm [3]. Iwasaki et al. [17] generalize Ausubel’s methods to
allow general valuations in this multi-unit auction problem, and thus their auction
applies to the models in the current paper. However, the primary focus in Iwasaki et
al. is on providing robustness to false-name bids [34] in which bidders participate
under multiple identities. Their auction runs in pseudo-polynomial time, but does
not provide any worst-case approximation guarantees.

2 Approximately-Strategyproof VCG Auctions

In this section, we first describe the marginal-decreasing piecewise bidding lan-
guage that is used in our forward and reverse (procurement) auctions. Continuing,
we introduce the VCG mechanism for the problem and the ? -dominance results
for approximations to VCG outcomes. We also discuss the economic properties of
VCG mechanisms in these forward and reverse auction multi-unit settings.

2.1 Marginal-Decreasing Piecewise Bids

We provide a piecewise-constant and marginal-decreasing bidding language. This
bidding language is expressive for a natural class of valuation and cost functions:
fixed unit prices over intervals of quantities. See Figure 1 for an example. We re-
lax the marginal-decreasing requirement to allow a bidder in the forward auction
to state a minimal purchase amount, to reflect a zero value for quantities smaller
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than that amount. Similarly, a supplier in the reverse auction can state a capacity
constraint to reflect an (effectively) infinite cost to supply quantities in excess of a
particular amount.

Reverse Auction Bid

7

5 10 20 25
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8

Quantity

Pr
ic

e

7

5 10 20 25

10

8

Quantity

Pr
ic

e

Forward Auction Bid

Fig. 1. Marginal-decreasing, piecewise constant bids. In the forward auction bid, the bidder
offers $10 per unit for quantity in the range \^]`_a�6b@	 , $8 per unit in the range \c�6b$_ed�b@	 , and $7
in the range \^d�b$_ed�]gf . Her valuation is zero for quantities outside the range \c�6b$_ed�]gf . In the
reverse auction bid, the cost of the supplier is h outside the range \c�6b$_ed�]gf .

In detail, in a forward auction, a bid from buyer W can be written as a list of
(quantity-range, unit-price) tuples, .
.=i &j�kml &j 5 k .ni 'j�kml 'j 5 k�o�o�o�k .niqp rts

&j kml p rts
&j 5G5 , with an

upper bound i p#rj on the quantity. The interpretation is that the bidder’s valuation
in the (semi-open) quantity range u^iwv j k ixv

E!&j 5 is l v j for each unit. Additionally, it is
assumed that the valuation is 0 for quantities less than i &j as well as for quantities
more than i pj . This is implemented by adding two dummy bid tuples, with zero
prices in the range uy* k i &j 5 and .niqp rj kaz 5 . We interpret the bid list as defining a price
function, l|{~}^��� j .=�`5�8�� l v j , if i v j2� �A��i v

E!&j , where �A8�/ ka�xk�o�o�o�k~� j|� / . In order to
resolve the boundary condition, we assume that the bid price for the upper bound
quantity iqp rj is l|{~}^��� j .=iQp#rj 5�8�iQp rj l p rns

&j .

A supplier’s bid is similarly defined in the reverse auction. The interpretation is
that the bidder’s cost in the (semi-open) quantity range u^iQv j k i�v

E!&j 5 is l v j for each
unit. Additionally, it is assumed that the cost is z for quantities less than i &j as
well as for quantities more than i pj . Equivalently, the unit prices in the ranges
uy* k i &j 5 and .=i pj�kaz 5 are infinity. We interpret the bid list as defining a price function,lQ�����a� j .n�$5�8�� l v j , if i v j2� ���4i v

E!&j .

We assume quasilinear utility functions, with i j .=� kml 5A8�� j .=�`5 � l , for a buyer W
with valuation � j .n�$5 for � units at price l , and i j .n� kFl 5�8 l �4�6j .n�$5 for a supplier
W with cost �aj .=�`5 at price l . This is a standard assumption in the auction literature,
and equivalent to assuming risk-neutral agents [19]. We will use the term payoff
interchangeably for utility.
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2.2 VCG-Based Multi-Unit Auctions

We construct the tractable and approximately-strategyproof multi-unit auctions around
a standard VCG mechanism. In the forward auction, we model a seller with , units
and no intrinsic value for the items. Given a set of bids from S agents, let (�.�S[5 de-
note the maximal value given bids, and subject to the condition that at most one
point on the bid curve can be selected from each agent and no more than , units
of the item can be sold. Let ���K8�.n�J�& k�o�o�o�k �J��[5 denote the solution to this winner-
determination problem, where � �j is the number of units sold to agent W . Let (I.�S�U�WY5
denote the maximal value to the seller without bids from agent W . The VCG mech-
anism for this problem has the following steps:

(1) Collect piecewise-constant bid curves and capacity constraints from all the
buyers.

(2) Implement the outcome, ��� , that solves the winner-determination problem.
(3) Collect payment l|�0 n¡�� j 8 l|{~}^��� j .n�J�j 5 � uy(I.�S[5 � (I.�SZU�WY50¢ from each buyer, and

pass the payments to the seller.

In this forward auction, the VCG mechanism is strategyproof for buyers, which
means that truthful bidding is a dominant strategy and utility maximizing whatever
the bids of other buyers. In addition, the VCG mechanism is allocatively-efficient,
and the total payments maximize the revenue to the seller in expectation across
all efficient auctions, even allowing for Bayesian-Nash implementations [20]. Each
buyer pays less than its value, and receives payoff (<.�S[5 � (I.�SZU�WY5 in equilibrium.
This is precisely the marginal-value that buyer W contributes to the economy.

In the reverse (or procurement) auction we model a buyer with value ( )£* to
purchase at least , units and no value otherwise and - suppliers. Each supplier
has a marginal-decreasing cost function, subject to a capacity constraint. To sim-
plify the mechanism design problem we assume a straightforward buyer that will
truthfully announce this value to the mechanism. ¤ The VCG mechanism remains
strategyproof for suppliers without this assumption, but the efficiency of the out-
come can be compromised.

The winner-determination problem is to determine the allocation, � � , that minimizes
the cost to the buyer, and forfeit trade if this minimal cost is greater than value, ( .
Let R�.�S[5 denote the minimal cost given bids from all suppliers, and let R�.�S�U�WY5
denote the minimal cost without bids from supplier W . When there are no gains from
trade the outcome of the VCG mechanism is no trade and no payments. Assume
otherwise, with ( ¥ R�.�S[5 . The VCG mechanism implements the outcome ���
that minimizes cost based on bids from all suppliers, and then provides paymentlw�0 n¡�� j 8 lQ������� j .n�J�j 5�1¦uy( � R�.�S[5 ��§�¨@© .F* k ( � R�.�S�UªW�5G5Y¢ to each supplier. The

¤ Without this assumption, the Myerson-Satterthwaite [24] impossibility result would al-
ready imply that we should not expect an efficient trading mechanism in this setting.
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total payment is collected from the buyer. The payoff to each supplier is equal to
the marginal value contributed to the system, and precisely R�.�S«U¬W�5 � R<.�ST5 when
(;¥�R<.�S­U¬W�5 for all suppliers.

The total payments to suppliers in the reverse VCG auction can be greater than the
buyer’s value for the goods. This is not a problem with the VCG auction per se but
rather a problem with the efficient multi-unit allocation problem in this reverse di-
rection. The single-item, one buyer and one seller, bargaining problem is a special
case of this problem, and a setting in which the well known Myerson-Satterthwaite
[24] impossibility result holds. It is not possible to construct an efficient mechanism
for the bargaining problem, that satisfies participation (i.e. with the buyer paying
less than her value), without sometimes running at a deficit. In fact, the VCG mech-
anism maximizes the expected revenue to the buyer across all efficient auctions [20]
and there can be no efficient auction in which the buyer always pays less than her
value when the VCG mechanism fails to satisfy this property.

Formally, the total payment collected by suppliers in the VCG mechanism in equi-
librium is less than the buyer’s value for the items if and only if the following
condition holds:

( � R�.�S[5T¥¯® j uy( � R<.�S[5 �V§<¨@©J° * k ( � R<.�S­U2WY5a±�¢ (1)

This states that the total payoff to the suppliers is no greater than the total payoff
from the efficient allocation. In particular, we need that there are no “pivotal” sup-
pliers for which there is no efficient trade without the supplier (i.e. ( � R<.�ST5�)�*
but ( � R�.�SVUKWF²�5���* . A pivotal supplier’s payment provides her with all the re-
ported surplus, which is the outcome that she could achieve in some equilibrium of
the underyling bargaining problem. In the absence of pivotal suppliers, condition
(1) simplifies to:

( � R<.�ST5³¥ ® j .=R<.�S­U¬W�5 � R<.�S[5G5 (2)

This condition states that marginal value contributed by each supplier to the econ-
omy, summed across all suppliers, must be less than the marginal value provided
by the suppliers when they act as a single coalition. ´ In this case the buyer’s pay-
ment will be no greater than her value for the outcome and the efficient trade can
be implemented.

Consider an example with 3 agents ° / ka��k6µ ± , and (�8¶/�·`* and R�.e/ �¸µ 5¹8º·`* . Con-
dition (2) holds when R<.0/ � 5Z8 R�. �`µ 5D8 »`* and R�.e/ µ 5Z8 /�*$* , but not when
R<.0/ � 5
8 R<. �`µ 5
8 ¼$* and R<.0/ µ 5½8 /�*$* . In the first case, the agent payoffs

´ This condition is implied by agents are substitutes [4], which is necessary and sufficient
to support VCG payments in the core in a combinatorial allocation problem.
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¾ 8�. ¾q¿ k ¾ & k ¾ ' k ¾ � 5 , where 0 denotes the buyer, are .e/�* ka� * k ·`* ka� *$5 . In the second
case, the payoffs are ¾ 8À. � /�* k6µ * k ·`* k6µ *Á5 and the buyer’s payment is $10 greater
than her value. Pragmatically, the buyer needs an opt-out to cancel the auction in
this second case and avoid purchasing the items at a loss. However, this would
affect strategyproofness on the sell-side. For instance, if the auction was never to
be repeated than seller 3 would prefer to understate her cost for supplying goods in
combination with seller 1 so that R<.0/ µ 5¹8º¼`* . The effect would be to adjust payoffs
to ¾ 8;.0/�* k6µ * k6µ * k~µ *Á5 (with supplier 2 receiving a smaller payment).

Thus the consequence of this asymmetry between the reverse and forward auctions
is that the reverse (procurement) auction is only applicable in settings in which
supplier costs and the buyer’s value is such that condition (2) is sure to hold.

2.3 ? -Strategyproofness

We now consider the strategic consequences of introducing an approximation schemes
into the VCG mechanism. It is well known that any approximation that does not
remain optimal on some fixed range of outcomes must lead to a failure of full strat-
egyproofness [25]. However, we derive a simple ? -strategyproofness result, that
bounds the maximal gain in payoff that an agent can expect to achieve through a
unilateral deviation from following a simple truth-revealing strategy. We describe
the result for the forward auction problem, but it is quite a general observation.

Let Â(<.�S[5 and Â(<.�S<U W�5 denote the value of the allocation computed with an approx-
imation scheme, and assume that the approximation satisfies:

.e/Ã1Ä365�Â(I.�S[52¥¯(<.�S[5
for some 3�)º* . We provide such an approximation scheme for our setting later in
the paper. Let Â� denote the allocation implemented by the approximation scheme,
and consider the VCG mechanism with this approximation. The payoff to agent W ,
for announcing valuation Â� j , is:

� j . Â� j 5�1�®
v�ÅÆ j

Â� v . Â� v 5 � Â(<.�S­U¬W�5 (3)

The final term is independent of the agent’s announced value, and can be ignored
in an incentive analysis. However, agent W can try to improve its payoff through the
effect of its announced value on the allocation Â� implemented by the mechanism.
In particular, agent W wants the mechanism to select Â� to maximize the sum of
its true value, � j . Â� j 5 , and the reported value of the other agents, Ç v�ÅÆ j Â� v . Â� v 5 . If
the mechanism’s allocation algorithm is optimal, then all the agent needs to do is
truthfully state its value and the mechanism will do the rest. However, faced with
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an approximate allocation algorithm and the reports of other agents, the agent can
try to improve its payoff by announcing a value that corrects for the approximation.

Let (<.n� j k Â� s j 5 denote the total value of the efficient allocation given the reported
values Â� s j of agents �ÉÈ8�W , and given the true value of agent W . We say a mechanism
is 3 -strategyproof if an agent can gain at most 3 through some non-truthful strategy.

Theorem 1 A VCG-based mechanism with a .0/�1 ? 5 -allocation scheme is
.HÊ&FE Ê 5
(<.n� j k Â� s j 5 -strategyproof for agent W given bids Â� s j from other agents.

PROOF. Recall from Eq. (3) that the agent’s payoff, given outcome Â� , is � j . Â� j 5�1Ç v�ÅÆ j Â� v . Â� v 5 � Â(�.�SºUËW�5 . Thus the maximal benefit to agent W from reporting a
non-truthful Â� j È8 � j occurs when the initial approximation is as bad as possi-
ble given the approximation bounds. This occurs when the value from solution

Â� is (I.n� j k Â� s j 5 > .0/�1 ? 5 . In this case, agent W can hope to report Â� j that will cause
the winner-determination algorithm to select outcome � ² that maximizes � j .n� ²j 5Ì1
Ç v�ÅÆ j Â� v .Í� ²v 5 and achieves total value (I.=� j k Â� s j 5 . The agent’s gain in utility in this
case, in comparison with truthful bidding, is

(I.=� j k Â� s j 5 �
(<.=� j k Â� s j 5/Ã1 ? 8 ?

/Ã1 ? (<.n� j k Â� s j 5Î

Formally, we interpret approximate strategyproofness as a statement that truth-
revelation is a dominant strategy equilibrium for an agent that is indifferent between
payments that are within .F3 > /J1H3~5G(qÏ �mÐ where (QÏ �mÐ is the maximal value from trade
across all possible economies.

Note that although we do not need to bound the accuracy of the estimated optimal
value without agent W to demonstrate approximate strategyproofness, this bound is
required to provide a good approximation to the revenue properties of the VCG
mechanism.

3 The Generalized Knapsack Problem

In this section, we design a fully polynomial approximation scheme for the general-
ized knapsack, which models the winner-determination in the multi-unit allocation
problem. We describe our results for the reverse auction variation, but the formula-
tion is completely symmetric for the forward-auction.

In describing our approximation scheme, we begin with a simple property (the An-
chor property) of an optimal knapsack solution. We use this property to reduce
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our problem to a simpler but restricted problem. We present a 2-approxmation for
the restricted problem and then use this basic approximation to develop a fully
polynomial-time approximation scehme for this restricted problem (FPTAS). Lat-
ter we use the FPTAS for the restricted problem to develop an FPTAS for the gen-
eralized knapsack problem.

One of the major appeals of our piecewise bidding language is its compact repre-
sentation of the bidder’s valuation functions. We strive to preserve this, and present
an approximation scheme that will depend only on the number of bidders, and not
the maximum quantity, , , demanded by the buyer, which can be very large in
realistic procurement settings.

The FPTAS implements an .e/K1 ? 5 approximation to the optimal solution �Ñ� , in
worst-case time 7Ò8�:<.=- � >@? 5 , where - is the number of bidders, and where we
assume that the piecewise bid for each bidder has :I.0/Ó5 pieces. The dependence on
the number of pieces is also polynomial: if each bid has a maximum of � pieces,
then the running time can be derived by substituting - � for each occurrence of - .

3.1 Preliminaries

Before we begin, let us recall the classic 0/1 knapsack problem: we are given a set
of - items, where the item W has value � j and size Ô j , and a knapsack of capacity
, ; all sizes are integers. The goal is to determine a subset of items of maximum
value with total size at most , . Since we want to focus on a reverse auction, the
equivalent knapsack problem will be to choose a set of items with minimum value
(i.e. cost) whose size exceeds , . The generalized knapsack problem of interest to
us can be defined as follows:

Generalized Knapsack:
Instance: A target , , and a set of - lists, where the W th list has the form

Õ j 8 Ö~.ni &j kml &j 5 k�o�o�ogk .=i p rÍs
&j kml p rÍs

&j 5 k .=i p rj .=W�5 kaz 5
× k
where i�v j are increasing with � and l v j are decreasing with � , and ixv j kFl v j k , are
positive integers.

Problem: Determine a set of integers �wv j such that
(1) (One per list) At most one � v j is non-zero for any W ,
(2) (Membership) � v j È8º* implies � v j2Ø u^i v j k i v

E!&j 5 ,
(3) (Target) Ç j Ç v ��v j ¥Ù, , and
(4) (Objective) Ç j Ç v l v j ��v j is minimized.

This generalized knapsack formulation is a clear generalization of the classic 0/1
knapsack. In the latter, each list consists of a single point .mÔ j k � j 5 .
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The connection between the generalized knapsack and our auction problem is trans-
parent. Each list encodes a bid, representing multiple mutually exclusive quantity
intervals, and one can choose any quantity in an interval, but at most one interval
can be selected. Choosing interval uÚiwv j k i�v

E!&j 5 has cost l v j per unit. The goal is to
procure at least , units of the good at minimum possible cost. The generalized
knapsack problem has some flavor of the continuous knapsack problem. However,
there are two major differences that make our problem significantly more difficult:
(1) intervals have boundaries, and so to choose interval u^iQv j k i�v

E!&j 5 requires that at
least i v j and at most i v

E!&j units must be taken; (2) unlike the classic knapsack, we
cannot sort the items (bids) by value > size, since different intervals in one list have
different unit costs.

In fact, because of the “one per list” constraint, the generalized problem is closer
in spirit to the multiple choice knapsack problem [11], where the underling set of
items is partitioned into disjoint subsets Û & k Û ' k�o�o�o�k Û Ü , and one can choose at most
one item from each subset. PTAS do exist for the multiple choice knapsack problem
[12], and indeed, one can convert our problem into a huge instance of this problem,
by creating one group for each list; put a (quantity, price) point tuple .Í� kml 5 for each
possible quantity for a bidder into his group (subset). However, this conversion
explodes the problem size, making it infeasible for all but the most trivial instances.

3.2 Anchor Property

We begin with a definition. Given an instance of the generalized knapsack, we
call each tuple Ý v j 8 .=i v j kml v j 5 an anchor. Recall that these tuples represent the
breakpoints in the piecewise constant curve bids. We say that the size of an anchor
Ý v j is i v j , the minimum number of units available at this anchor’s price l v j . The cost
of the anchor ÝFv j is defined to be the minimum total price associated with this tuple,
namely, Þ6ß�à�ág.nÝ v j 5H8 l v j i v j if �<� � j , and Þ6ß�à�ág.ÍÝ0p rj 5D8 l p rÍs

&j iQp rj .

In a feasible solution ° � & k � ' k�o�o�o�k �Qâ�± of the generalized knapsack, we say that
an element � j È8ã* is an anchor if � j 8äi�v j , for some anchor iwv j . Otherwise, we
say that � j is midrange. We observe that an optimal knapsack solution can always
be constructed so that at most one solution element is midrange. If there are two
midrange elements � and �q² , for bids from two different agents, with � � �J² , then
we can increment � ² and decrement � , until one of them becomes an anchor. See
Figure 2 for an example.

Lemma 1 [Anchor Property] There exists an optimal solution of the generalized
knapsack problem with at most one midrange element. All other elements are an-
chors.
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Fig. 2. (i) An optimal solution with more than one bid not anchored (2,3); (ii) an optimal
solution with only one bid (3) not anchored.

3.3 Algorithm Roadmap

First we consider a restricted generalized knapsack problem, where we assume that
the midrange element corresponding to the optimal solution is known. By anchor
property, we know that any other element, � j , is going to be one of the anchor point
in the list W of the generalized knapsack problem. Therefore, the restricted problem
is very similar to the multiple choice knapsack problem. We use the approxima-
tion scheme for multiple choice knapsack problem to develop an approximation
scheme for the restricted problem. The approximation scheme for the restricted
problem, in turn, is used to develop an approximation scheme for the generalized
knapsack problem. This is done by iterating over all the choices for midrange ele-
ment, solving the corresponding restricted problem and choosing the solution with
the minimum cost as the final solution. Following pseudo-code presents the high
level idea. In the pseudo code, the tuple .tå k ��5 represents a midrange element, where
�wæ lies in u^i v æ k i v

E!&
æ 5 .

ç for å = 1 to n doç for � in list å of generalized knapsack doç Solve the problem assuming .Íå k ��5 as midrange element. Let èA.Íå k ��5 be the
solution.ç Return §Ëé�êqë æ � vGì ° è�.Íå k ��5a± .

3.4 2-approximation

Let us assume that the midrange element corresponding to the optimal solution is
known. Suppose that, in the optimal solution, �qæ is midrange element and agent
å lies in its � th range, uÚixvæ k i�v

E!&
æ 5 . Now we can reduce the generalized knapsack

problem to a simpler problem where �Qæ has to lie between u^i v æ k i v
E!&
æ 5 and any other

� j has to be either zero or one of the anchor points in list W . The objective of the new
problem is same as the original problem, that is, to obtain , units at the minimum
cost. It is worth noting that an optimal solution for this restricted problem is also
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going to be an optimal solution for the generalized knapsack problem.

The new problem contains - groups. There are - � / groups of potential anchors,
where W th group contains all the anchors of the list W in the generalized knapsack.
The group for agent å contains two elements. The first element, Ý &æ , is the anchor
point .=i v æ kFl v æ 5 . The second element, Ý 'æ , represents the interval uy* k i v

E!&
æ � i v æ 5 , and

the associated unit-price l v æ . Since �|æ lies between i v æ and i v
E!&
æ , any solution should

choose Ý &æ to ensure that �|æ is at least ixvæ . The second element, Ý 'æ , represents the
excess number of units that can be taken from agent å in addition to i v æ , which has
already been committed. In any other group, we can choose at most one anchor.

The following pseudo-code describes our algorithm for this restricted generalized
knapsack problem. Û is the union of all the tuples in - groups, including tuple Ý 'æ
for agent å . The size of this special tuple is defined as i|v

E!&
æ � i�væ , and the cost is

defined as l v íg.nixv
E!&
æ � ixvæ 5 . î is the number of units that remain to be acquired. ï is

the set of tuples accepted in the current tentative solution. Since any solution should
contain Ý &æ , we add it to ï and initialize î to be , � iwvæ . ðòñ6à�á is the best solution
found so far. Variable ï�óxW l is only used in the proof of correctness.

Algorithm Greedy

(1) Sort all tuples of Û in the ascending order of unit price; in case of ties, sort in
ascending order of unit quantities.

(2) Set ôËõ`ö~÷�.nWY5�8º* , for all lists W 8¶/ ka�xk�o�o�o�k - .
Initialize îº8º, � i v æ , ïV8 ° Ý &æ ± , ðòñ6à�á�8�ï�ó�W l 8ºø .

(3) Scan the tuples in Û in the sorted order. Suppose the next tuple is Ý Üj , i.e. the
ó th anchor from agent W .
If ôËõ`ö~÷�.nWY5�8¶/ , ignore this tuple;
otherwise do the following steps:ç if à�ùûú@ñÁ.nÝ Üj 5T)üî and W 8ýå

return §Ëé�êü° Þ6ß�à�ág.mï�5�1Äî l v æ k Þ6ß�à�ág.�ðòñ6à�á
5a± ;ç if à�ùûú@ñÁ.nÝ Üj 5T)üî and Þ6ß�à�ág.nÝ Üj 5 � Þ6ß�à�ág.Fï�5
return §Ëé�êü° Þ6ß�à�ág.mï�5�1þÞ6ß�à�á�.ÍÝ Üj 5 k Þ6ß�à�ág.�ðòñ6à�á
5a± ;ç if à�ùûú@ñÁ.nÝ Üj 5T)üî and Þ6ß�à�ág.nÝ Üj 5T)�Þ6ß�à�á�.Fï�5
add Ý Üj to ï�ó�W l ; Set ðòñ6à�á to ïDÿ ° Ý Üj ± if cost
improves;ç if à�ùûú@ñÁ.nÝ Üj 5 � î then
add Ý Üj to ï ; ôËõ`ö~÷�.=W�5�89/ ; subtract à�ùûú@ñ�.ÍÝ Üj 5 from î .

The approximation algorithm is very similar to the approximation algorithm for
knapsack [16]. Since we wish to minimize the total cost, we consider the tuples in
order of increasing per unit cost. If the size of tuple Ý Üj is smaller than î , then we
add it to ï , update î , and delete from Û all the tuples that belong to the same group
as Ý Üj . If Ô�W�����.ÍÝ Üj 5 is greater than î , then ï along with Ý Üj forms a feasible solution.
However, this solution can be far from optimal if the size of Ý Üj is much larger than
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î . If total cost of ï and Ý Üj is smaller than the current best solution, we update ðòñ6à�á .
One exception to this rule is the tuple Ý 'æ . Since this tuple can be taken fractionally,
we update ðòñ6à�á if the sum of ï ’s cost and fractional cost of Ý 'æ is an improvement.

The algorithm terminates in either of the first two cases, or when all tuples are
scanned. In particular, it terminates whenever we find a Ý Üj such that à�ùûú@ñ$.nÝ Üj 5 is
greater than î but Þ6ß�à�á�.nÝ Üj 5 is less than Þ6ß�à�á�.mï�5 , or when we reach the tuple Ý 'æ and
it gives a feasible solution.

Lemma 2 Suppose è � is an optimal solution of the generalized knapsack with
element . � k ��5 being midrange. Then, the solution è , returned by Greedy is a 2-
approximation to è�� .

PROOF. Let è be the value returned by Greedy. Consider the set ï�óxW l at the
termination of Greedy. There are two cases to consider: either some tuple Ý Ø ï�ó�W l
is also in èò� , or no tuple in ï�óxW l is in è�� . In the first case, let ï�� be the tentative
solution ï at the time Ý was added to ï�óxW l . Because Ý Ø ï�óxW l then à�ùûú@ñ�.ÍÝ
5�)¦î ,
and ï�� together with Ý forms a feasible solution, and we have:

Þ6ß�à�á�.=èò5 � Þ6ß�à�á�. Õ �ÓÔ�Ý
5 � �	� Ô�Ýg.mï��=5�1 �	� Ô�Ýg.nÝ
5 o
Again, because Ý Ø ï�óxW l then Þ6ß�à�ág.nÝ
5T)�Þ6ß�à�á�.Fï
�=5 , and we have Þ6ß�à�á�.nè�5[� � Þ6ß�à�á�.ÍÝ
5 .
On the other hand, since Ý is included in è�� , we have èò�ò¥ÀÞ6ß�à�á�.nÝ
5 . These two in-
equalities imply the desired bound:

Þ6ß�à�ág.=è � 5 � Þ6ß�à�ág.nè�5­� � Þ6ß�à�á�.nè � 5 o

In the second case, imagine a modified instance of the problem, which excludes
all the tuples of the set ï�óxW l . Since none of these tuples were included in èª� , the
optimal solution for the modified problem should be same as one for the origi-
nal. Suppose our approximation algorithm returns the value è�² for this modified
instance.

Let ÝY² be the last tuple considered by the approximation algorithm before termina-
tion of the modified instance, and let ï
��� be the corresponding tentative solution set
in that step. Running the greedy algorithm for the modified instance can be thought
as running it for the original problem except instead of adding a tuple to ï�óxW l , we
ignore it. Therefore, even for the original problem, Ý ² is going to be the last tuple
considered and ï�� � is going to be corresponing tentative solution. Since the ï�óxW l of
the modified problem remains empty, the ðòñ6à�á for the modified instance remains
NULL. Therefore, Þ6ß�à�ág.nèK²�5 is the sum of the cost of ï�� � and ÝY² . On the other hand,
Þ6ß�à�ág.=è�5 is the minimum of the same sum and ðòñ6à�á for the original problem. There-
fore,
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Þ6ß�à�á�.nè�5 � Þ6ß�à�ág.=è ² 5
Also, for the modified instance, as we consider tuples in order of increasing per
unit price, and none of the tuples are going to be placed in the set ï�óxW l , we must
have Þ6ß�à�á�.mï�� � 5Ò� Þ6ß�à�ág.=èK�a5 because ï�� � is the optimal way to obtain à�ùûú@ñÁ.mï�� � 5 in
the modified problem.

We also have Þ6ß�à�á�.ÍÝ
5 � �	� Ô�Ýg.mï�� � 5 . Therefore,

Þ6ß�à�á�.nè�5 � Þ6ß�à�á�.=è ² 5 � Þ6ß�à�ág.mï�� � 5�1 Þ6ß�à�ág.ÍÝ ² 5
� � Þ6ß�à�ág.nè � 5

This completes the proof of Lemma 2.
Î

So far, we have considered the restricted problem where we assume that the midrange
element corresponding to the optimal solution is known. We convert the 2 approx-
imation algorithm for the restricted problem to one for generalized knapsack prob-
lem by using the idea presented in the section 3.3. We run the algorithm Greedy
once for each tuple .Íå k ��5 as a candidate for midrange element and choose the solu-
tion with the minimum cost as our final solution.

There are :<.=-�5 tuples and we execute the algorithm Greedy for each of them. It is
easy to see that, after an initial sorting of the tuples, the algorithm takes :<.=-Ñ5 time.
Also the sorting needs to be done only once and hence the total cost of the algorithm
is :I.=- ' 5 . Thus, we have our first polynomial time approximation algorithm.

Theorem 2 A 2-approximation of the generalized knapsack problem can be found
in time :<.=- ' 5 , where - is number of item lists (each of constant length).

The dependence on the number of pieces is also polynomial: if each bid has a
maximum of � pieces, then the running time is :I.G.n- � 5 ' 5 .

3.5 An Approximation Scheme

We now use the 2-approximation algorithm presented in the preceding section to
develop a fully polynomial approximation (FPTAS) for the generalized knapsack
problem. The high level idea is fairly standard, but the details require technical care.
Similar to the 2-approximation algorithm, we first consider the restricted problem
where the midrange element is known.

Let the midrange element be �Qæ , which falls in the range u^iwvæ k i�v
E!&
æ 5 . Our FPTAS

runs in two phases. In the first phase, we solve a multiple choice knapsack prob-

16



lem, mKnapsack, where we construct a dynamic programming table to compute the
minimum cost at which at least , � ixv

E!&
æ units can be obtained using the remaining

- � / lists in the generalized knapsack. In the second phase, we go through the last
row of the dynamic programming table, searching for the entry, which along with
the midrange element minimizes the cost of obtaining at least M units.

Suppose 
�uÚW k�� ¢ denotes the maximum number of units that can be obtained at
cost at most � using only the first W lists (ignoring the å th list) in the generalized
knapsack. Then, the following recurrence relation describes how to construct the
dynamic programming table:


<uÚ* k�� ¢Ó8­*

<u^W k�� ¢Ó8 §<¨Ó© ���� ��� 
�uÚW � / k�� ¢

§<¨Ó©
v���� ë j � � ì ° 
�uÚW � / k�� � Þ6ß�à�ág.nÝ v j 50¢�1Äi v j ±

� ������
where �[.nW k�� 5¹8 ° ���A/ � � � � j k Þ6ß�à�á�.nÝ v j 5 � � ± , is the set of anchors for agent W .
As convention, agent W will index the row, and cost � will index the column.

This dynamic programming algorithm is only pseudo-polynomial, since the num-
ber of column in the dynamic programming table depends upon the total cost. How-
ever, we can convert it into a FPTAS by scaling the cost dimension.

Let è denote the 2-approximation to the generalized knapsack problem, with to-
tal cost, Þ6ß�à�á�.nè�5 . Let ? denote the desired approximation factor. We compute the
scaled cost of a tuple ÝFv j , denoted à�Þ6ß�à�ág.nÝFv j 5 , as

à�Þ6ß�à�ág.nÝ v j 5¦8  -�Þ6ß�à�ág.ÍÝ=v j 5
? Þ6ß�à�á�.nè�5"! (4)

This scaling improves the running time of the algorithm because the number of
columns in the modified table is at most  â C ! , and independent of the total cost.
However, the computed solution might not be an optimal solution for the original
problem. We show that the error introduced is within a factor of ? of the optimal
solution.

As a prelude to our approximation guarantee, we first show that if two different
solutions to the mKnapsack problem have equal scaled cost, then their original
(unscaled) costs cannot differ by more than ? Þ6ß�à�ág.nè�5 .
Lemma 3 Let � and # be two distinct feasible solutions of mKnapsack. If � and# have equal scaled costs, then their unscaled costs cannot differ by more than
? Þ6ß�à�á�.nè�5 .
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PROOF. Let $	% and $	& , respectively, denote the indicator functions associated with
the anchor vectors � and # —there is 1 in position $'%�u^W k ó�¢ if the � Üj )ý* . Since � and# has equal scaled cost,

® j ÅÆ æ
® Ü à�Þ6ß�à�ág.nÝ Üj 5($	%�u^W k ó�¢A8 ® j ÅÆ æ

® Ü à�Þ6ß�à�á�.ÍÝ Üj 5($	&`uÚW k ó�¢ (5)

However, by (4), the scaled costs satisfy the following inequalities:

.Yà�Þ6ß�à�ág.nÝ Üj 5 � /Ó5 ? Þ6ß�à�á�.nè�5
- � Þ6ß�à�ág.nÝ Üj 5 � à�Þ6ß�à�ág.ÍÝ Üj 5 ? Þ6ß�à�ág.=èò5

- (6)

Substituting the upper-bound on scaled cost from (6) for Þ6ß�à�á�.Í�!5 , the lower-bound
on scaled cost from (6) for Þ6ß�à�ág.)#w5 , and using equality (5) to simplify, we have:

Þ6ß�à�á�.Í�!5 � Þ6ß�à�á�.*#|5 � ? Þ6ß�à�ág.nè�5
- ® j ÅÆ æ

® Ü $+&`uÚW k ó�¢ � ? Þ6ß�à�á�.=è�5 k

The last inequality uses the fact that at most - components of an indicator vector
are non-zero; that is, any feasible solution contains at most - tuples.

Î

Finally, given the dynamic programming table for mKnapsack, we consider all the
entries in the last row of this table, 
<u^- � / k�� ¢ . These entries correspond to optimal
solutions with all agents except å , for different levels of cost. In particular, we con-
sider the entries that provide at least , � i v

E!&
æ units. Together with a contribution

from agent å , we choose the entry in this set that minimizes the total cost, defined
as follows:

Þ6ß�à�ág.)
<u^- � / k�� ¢Í5 1 §�¨@©4° i v æ k , � 
�uÚ- � / k,� ¢=± l v æ k
where Þ6ß�à�á�.F5 is the original, unscaled cost associated with entry 
�u^- � / k�� ¢ .
The following lemma shows that we achieve a .e/Ã1 ? 5 -approximation.

Lemma 4 Suppose èò� is an optimal solution of the generalized knapsack prob-
lem, and suppose that element . � k �x5 is midrange in the optimal solution. Then, the
solution ( from running our FPTAS satisfies

Þ6ß�à�ág.m(�5 � .e/Ã1 � ? 5�Þ6ß�à�á�.=è � 5

PROOF. Let � s æ denote the vector of the elements in solution è�� without element
å . Then, by definition, Þ6ß�à�á�.=è��~548 Þ6ß�à�ág.n� s æe5Ì1 l v æ � v æ . Let � 8Òà�Þ6ß�à�ág.Í� s æe5 be the
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scaled cost associated with the vector � s æ . Now consider the dynamic programming
table constructed for mKnapack, and consider its entry 
�uÚ- � / k�� ¢ . Let è denote the
2-approximation to the generalized knapsack problem, and ( denote the solution
from our FPTAS.

Suppose # s æ is the solution associated with this entry in our dynamic program;
the components of the vector # s æ are the quantities from different lists. Since both
� s æ and # s æ have equal scaled costs, by Lemma 3, their unscaled costs are within? Þ6ß�à�á�.nè�5 of each other; that is,

Þ6ß�à�á�.*# s æ05 � Þ6ß�à�á�.Í� s æ
5 � ? Þ6ß�à�ág.=èò5 o
Now, define # væ 8 §�¨@©J° i v æ k , � Ç j ÅÆ æ Ç v # vj ± ; this is the contribution needed
from å to make .*# s æ k #¸væ 5 a feasible solution. Among all the equal cost solutions,
our dynamic programming tables chooses the one with maximum units. Therefore,

® j ÅÆ æ
®
v
# vj ¥ ® j ÅÆ æ

®
v
� v j

Therefore, it must be the case that #$væ � ��væ . Because .)#`væ k # s æ
5 is also a feasible
solution, if our algorithm returns a solution with cost Þ6ß�à�ág.F(�5 , then we must have

Þ6ß�à�á�.F(�5 � Þ6ß�à�ág.*# s æ05<1 l v æ #¸væ� Þ6ß�à�ág.Í� s æ
5D1 ? �+� Ô�Ýg.=èò5É1 l v æ ��væ� .0/�1 � ? 5�Þ6ß�à�á�.nè � 5 k

where we use the fact that Þ6ß�à�á�.=è�5 � � Þ6ß�à�ág.=è � 5 . Î

The presented scheme assumes that the midrange element is known. Using the
ideas presented in section 3.3, we convert the approximation scheme for restricted
problem to one for the generalized knapsack problem. The approximation scheme
for generalized knapsack problem solves :<.=-Ñ5 restricted problems, corresponding
to :I.n-�5 choices of midrange element, and chooses one with the minimum cost as
the final solution.

For a given midrange, the most expensive step in the algorithm is the construc-
tion of dynamic programming table, which can be done in :I.=- ' >Ó? 5 time assuming
constant intervals per list. Thus, we have the following result.

Theorem 3 We can compute an .e/[1 ? 5 approximation to the solution of a gener-
alized knapsack problem in worst-case time :I.=- �~>@? 5 .
The dependence on the number of pieces is also polynomial: if each bid has a
maximum of � pieces, then the running time can be derived by substituting � - for
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each occurrence of - .

4 Computing VCG Payments

A naive approach to computing the VCG payments requires solving the alloca-
tion problem - times, removing each agent in turn. We extend our approximation
scheme for the generalized knapsack, and determine all - payments in total time
:I.=LM7HN�O$PQ.FL - >@? 5G5 , where / � R�.�S%U�WY5 > R�.�S[5 � L , for a constant upper bound, L ,
and 7 is the complexity of solving the allocation problem once. This L -bound can
be justified as a “no monopoly” condition, because it bounds the marginal value
that a single buyer brings to the auction. Similarly, in the reverse variation we can
compute the VCG payments to each supplier in time :I.=LM7HN�O$PQ.FL - >@? 5G5 , where L
bounds the ratio R�.�S%U¬W�5 > R�.�S[5 for all W .
Our overall strategy will be to build two dynamic programming tables, one forward
and one backward, for each midrange element . � k ��5 , and use these tables to solve
all subproblems without each agent. The forward table is built by considering the
agents in the order of their indices, where as the backward table is built by con-
sidering them in the reverse order. The optimal solution corresponding to R�.�S­U¬WY5
can be broken into two parts: one corresponding to the first ( W � / ) agents and the
other corresponding to the last ( - � W ) agents. As the ( W � / )th row of the forward
table corresponds to the suppliers with the first ( W � / ) indices, an approximation to
the first part will be contained in ( W � / )th row of the forward table. Similarly, the
.=- � W�5 th row of the backward table will contain an approximation for the second
part. We first present a simple but inefficient way of computing the approximate
value of R�.�S
UKWY5 , which serves to illustrate the main idea of our algorithm. Then
we present an improved scheme, which uses the fact that the elements in the rows
are sorted, to compute the approximate value more efficiently.

In the following, we concentrate on computing an allocation in which � v æ is midrange,
and some agent W�È8�å removed. This will be a component in computing an approx-
imation to R<.�S
U�WY5 , the value of the solution to the generalized knapsack without
bids from agent W . We begin with the simple scheme.

4.1 A Simple Approximation Scheme

Let mKnapsack .Íå k ��5 be the multiple choice knapsack problem, when .tå k �x5 is con-
sidered as the midrange element. We implement the scaled dynamic programming
algorithm for mKnapsack .Íå k ��5 with two alternate orderings over the other suppli-
ers, ó4È8Bå , one with suppliers ordered / ka��k�o�o�o�k - , and one with suppliers ordered
- k - � / k�o�o�o�k / . We call the first table the forward table, and denote it - æ , and the
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second table the backward table, and denote it
Õ æ . The subscript å reminds us that

the agent å is midrange. .
In building these tables, we use the same scaling factor as before; namely, the cost
of a tuple Ý v j is scaled as follows:

à�Þ6ß�à�á�.ÍÝ Üj 5¦8  -�Þ6ß�à�á�.nÝ Üj 5? Þ6ß�à�ág.=èò5 !
where Þ6ß�à�ág.=è�5 is the upper bound on R�.�S[5 , given by our 2-approximation scheme.
In this case, because R<.�S�UòWY5 can be L times R�.�S[5 , the scaled value of R<.�S�U�WY5
can be at most -ÑL >@? . Therefore, the cost dimension of our dynamic program’s table
will be -�L >@? .

1 2 3 m 1 2 m3

i

1

n−1

n−1

n−2

1

g h

Table Table

m−1 m−1

2

n−i

F B

F (i−1) B (n−i)

l l

ll

Fig. 3. Computing VCG payments. /¶� â'0
C

Now, suppose we want to compute a .e/x1Ë365 -approximation to the generalized knap-
sack problem restricted to element .Íå k ��5 midrange, and further restricted to remove
bids from some supplier W�È8ýå . Call this problem gKnapsack s j .tå k �x5 .
Recall that the W th row of our dynamic progamming table stores the best solution
possible using only the first W agents excluding agent å , all of them either cleared at
zero, or on anchors. These first W agents are a different subset of agents in the for-
ward and the backward tables. By carefully combining one row of -#æ with one row
of
Õ æ we can compute an approximation to gKnapsack s j .tå k ��5 . We consider the row

of -Ñæ that corresponds to solutions constructed from agents ° / ka�xk�o�o�ogk W � /`± , skip-
ping agent å . We consider the row of

Õ æ that corresponds to solutions constructed
from agents ° WÌ1¦/ k W�1 �xk�o�o�ogk - ± , again skipping agent å . The rows are labeled- í .=W � /Ó5 and

Õ í .n- � WY5 respectively. 1 The scaled costs for acquiring these units. We could label the tables with both 2 and 3 , to indicate the 3 th tuple is forced to be
midrange, but omit 3 to avoid clutter.1 To be precise, the index of the rows are �5476DdÓ	 and ���8694m	 for :Ñæ and ;�æ when 2=<>4 ,
and �54�6%��	 and ���?6@4�6%��	 , respectively, when 2BAC4 .
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are the column indices for these entries. To solve gKnapsack s j .tå k ��5 we choose one
entry from row - æg.=W � /Ó5 and one from row

Õ æ�.=- � WY5 such that their total quantity
exceeds , � ixv

E!&
æ and their combined cost is minimum over all such combinations.

Formally, let D Ø -�æ�.=W � /�5 , and E Ø Õ æ�.=- � /Ó5 denote entries in each row, with
à�ùûú@ñ�.FDw5 , à�ùûú@ñ�.GEq5 , denoting the number of units and Þ6ß�à�á�.*Dw5 and Þ6ß�à�á�.HEq5 denoting
the unscaled cost associated with the entry. We compute the following, subject to
the condition that D and E satisfy à�ùûú@ñÁ.*Dw5�1ýà�ùûú@ñ$.HEq5T)�, � i v

E!&
æ :

§�é�êI �'J�K ë j s & ì � L �'MNK ë â s j ì
O
Þ6ß�à�á�.FDw5$1
Þ6ß�à�á�.GEq5$1 l v æQP §�¨@©q° i�væ k , � à�ùûú@ñÁ.*Dw5 � à�ùûú@ñ$.GEJ56±SR (7)

Lemma 5 Suppose è s j is an optimal solution of the generalized knapsack problem
without bids from agent W , and suppose that element .Íå k ��5 is the midrange element
in the optimal solution. Then, the expression in Eq. 7, for the restricted problem
gKnapsack s j .Íå k ��5 , computes a .e/Ã1 ? 5 -approximation to è s j .

PROOF. From earlier, we define Þ6ß�à�ág.nè s j 528¶R�.�S UXW�5 . We can split the optimal
solution, è s j , into three disjoint parts: �|æ corresponds to the midrange supplier, � j
corresponds to first W � / suppliers (skipping agent

�
if
� �4W ), and � s j corresponds

to last - � W suppliers (skipping agent
�

if
� )üW ). We have:

Þ6ß�à�á�.=è s j 5¹8 Þ6ß�à�ág.n� j 5�1þÞ6ß�à�ág.n� s j 5�1 l v æ � v æ

Let � j 8ãà�Þ6ß�à�ág.n� j 5 and � s j 8ãà�Þ6ß�à�á�.n� s j 5 . Let # j and # s j be the solution vectors
corresponding to scaled cost � j and � s j in -�æ�.=W � /Ó5 and

Õ æ�.=- � WY5 , respectively.
From Lemma 3 we conclude that,

Þ6ß�à�ág.)# j 5�1 Þ6ß�à�ág.*# s j 5 � Þ6ß�à�ág.Í� j 5 � Þ6ß�à�á�.n� s j 5 � ? Þ6ß�à�ág.=èò5
where Þ6ß�à�á�.nè�5 is the upper-bound on R�.�S[5 computed with the 2-approximation.

Among all equal scaled cost solutions, our dynamic program chooses the one with
maximum units. Therefore we also have,

.Yà�ùûú@ñÁ.)# j 5T¥ºà�ùûú@ñ�.Í� j 5G5 ¨`êST .�à�ùûú@ñ�.*# s j 5[¥þà�ùûú@ñ$.n� s j 5G5
where we use shorthand à�ùûú@ñÁ.n�!5 to denote total number of units in all tuples in � .

Now, define # væ 8 �@U � .=i v æ k , � à�ùûú@ñÁ.)# j 5 � à�ùûú@ñ�.*# s j 5
5 . From the preceding in-
equalities, we have #`væ � ��væ . Since .)#`væ k # j k # s j 5 is also a feasible solution to the
generalized knapsack problem without agent W , the value returned by Eq. 7 is at
most
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�	� Ô�Ýg.)# j 5�1 Þ6ß�à�ág.*# s j 5�1 l v æ # væ � R�.�S%U2WY5 1 ? Þ6ß�à�ág.nè�5� R�.�S%U2WY5 1 � Þ6ß�à�ág.=è � 5 ?� R�.�S%U2WY5 1 � R<.�S%U2WY5 ?
This completes the proof.

Î

A naive implementation of this scheme will be inefficient because it might check
.=-�L >@? 5 ' pairs of elements, for any particular choice of .Íå k ��5 and choice of dropped
agent W . In the next section, we present an efficient way to compute Eq. 7, and
eventually to compute the VCG payments.

4.2 Improved Approximation Scheme

Our improved approximation scheme for the winner-determination problem with-
out agent W uses the fact that elements in -Mæg.nW � /Ó5 and

Õ æg.=- � W�5 are sorted; specif-
ically, both unscaled Þ6ß�à�á and quantity (i.e. à�ùûú@ñ ) increases from left to right.

As before, let D and E denote generic entries in -Mæ�.=W � /Ó5 and
Õ æ�.=- � W�5 respectively.

To compute Eq. 7, we consider all the tuple pairs, and first divide the tuples that
satisfy condition à�ùûú@ñ$.*Dw5q1Äà�ùûú@ñ�.GEJ5[)ý, � iwv

E!&
æ into two disjoint sets. For each set

we compute the best solution, and then take the best between the two sets.

[case I: à�ùûú@ñ�.FDw5Ñ1ýà�ùûú@ñÁ.HEq5T¥¯, � ixv í ]
The problem reduces to

§�é�êI ��J K ë j s & ì �	L �VM K ë â s j ìXW �+� Ô�Ýg.*Dw5Ñ1 �	� Ô�Ýg.HEq5�1 l v í
i v æVY (8)

We define a pair .FD k Eq5 to be feasible if à�ùûú@ñ$.*Dw561Aà�ùûú@ñÁ.HEq5T¥¯, � iwvæ . Now to compute
Eq. 8, we do a forward and backward walk on -Mæ�.nW � /Ó5 and

Õ æg.=- � W�5 respectively.
We start from the smallest index of -Mæ�.=W � /Ó5 and move right, and from the highest
index of

Õ æg.n- � WY5 and move left. Let .FD k Eq5 be the current pair. If .FD k Eq5 is feasible,
we decrement

Õ
’s pointer (that is, move backward) otherwise we increment - ’s

pointer. The feasible pairs found during the walk are used to compute Eq. 8. The
complexity of this step is linear in size of - æg.=W � /�5 , which is :I.=-�L >@? 5 .
[case II: , � ixv

E!&
æ � à�ùûú@ñÁ.*Dw5�14à�ùûú@ñÁ.GEq5 � , � i�væ ]

The problem reduces to

§Ëé�êI �'J�K ë j s & ì �+L �'MNK ë â s j ì
O �	� Ô�Ýg.*Dw5�1 �+� Ô�Ýg.GEJ5�1 l v í .F, � à�ùûú@ñ�.FD|5 � à�ùûú@ñÁ.HEq5G5'R
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To compute the above equation, we transform the above problem to another prob-
lem using modified cost, which is defined as:

ô<Þ6ß�à�á�.FDw5|84Þ6ß�à�á�.*Dw5 � l v í P à�ùûú@ñÁ.*Dw5
ô<Þ6ß�à�ág.HEq5Q84Þ6ß�à�á�.HEq5 � l v í P à�ùûú@ñ�.GEq5

The new problem is to compute

§Ëé�êI �'J�K ë j s & ì ��L �'MNK ë â s j ì�W ô<Þ6ß�à�á�.FDw5�1¯ô<Þ6ß�à�ág.HEq5�1 l v æ , Y (9)

The modified cost simplifies the problem, but unfortunately the elements in -#æg.nW �
/Ó5 and

Õ æg.n- � WY5 are no longer sorted with respect to � �	� Ô�Ý . However, the elements
are still sorted in quantity and we use this property to compute Eq. 9. Call a pair
.*D k Eq5 feasible if , � i v

E!&
æ � à�ùûú@ñ�.FDw5Ì1�à�ùûú@ñ$.HEq5 � , � i v æ . Define the feasible

set of D as the elements E Ø Õ æg.=- � WY5 that are feasible given D . As the elements
are sorted by quantity, the feasible set of D is a contiguous subset of

Õ æg.n- � W�5 and
shifts left as D increases.

10 20 30 40 50 60

15 20 25 30 35 40

5 6321 4

1 2 3 4 5 6

Begin End

B (n−i)

l

l

F (i−1)

Fig. 4. The feasible set of Zª�>[ , defined on ;Tæ����\6]4�	 , is ^gd`__[`_a`�b when cd6@e v E!&æ ��]�b
and cf6]e v æ �hg�b . ikj*lVm5n and opnrq represent the start and end pointers to the feasible set.

Therefore, we can compute Eq. 9 by doing a forward and backward walk on -#æg.=W �
/Ó5 and

Õ æg.n- � WY5 respectively. We walk on
Õ æ�.=- � W�5 , starting from the highest index,

using two pointers, ðòñHs`ùFt and uvtxw , to indicate the start and end of the current
feasible set. We maintain the feasible set as a min heap, where the key is modified
cost. To update the feasible set, when we increment - ’s pointer(move forward),
we walk left on

Õ
, first using uvtxw to remove elements from feasible set which

are no longer feasible and then using ðòñHs`ùFt to add new feasible elements. For a
given D , the only element which we need to consider in D ’s feasible set is the one
with minimum modified cost which can be computed in constant time with the min
heap. So, the main complexity of the computation lies in heap updates. Since, any
element is added or deleted at most once, there are :<. â�0C 5 heap updates and the
time complexity of this step is :I. â�0C N�O$P â'0C 5 .
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4.3 Collecting the Pieces

Putting this altogether, the algorithm for to implement the VCG mechanism in our
procurement setting works as follows. First, using the 2 approximation algorithm,
we compute an upper bound on R�.�S[5 . We use this bound to scale down the tuple
costs. Using the scaled costs, we build the forward and backward tables correspond-
ing to each tuple .Íå k ��5 . The forward tables are used to compute R�.�S[5 . To compute
R<.�SVUKWY5 , we iterate over all the possible midrange tuples and use the correspond-
ing forward and backward tables to compute the locally optimal solution using the
above scheme. Among all the locally optimal solutions we choose one with the
minimum total cost.

The most expensive step in the algorithm is computation of R�.�SýU�WY5 . The time
complexity of this step is :<. âVy)0C N�O$P â'0C 5 as we have to iterate over all :<.=-Ñ5 choices
of .Íå k ��5 , for all å È8¯W , and each time use the above scheme to compute Eq. 7. In the
worst case, we might need to compute R<.�S½UòW�5 for all - suppliers, in which case
the final complexity of the algorithm will be :I. â�z�0C N�O$P â�0C 5 .
Theorem 4 We can compute an 3 > .e/Ñ1Z365 -strategyproof approximation to the VCG
mechanism in the forward and reverse multi-unit auctions in worst-case time :<. â z 0C N�O$P â'0C 5 .
It is interesting to recall that 7À8Ò:I. â zC 5 is the time complexity of the FPTAS to
the generalized knapsack problem with all agents. Our combined scheme computes
an approximation to the complete VCG mechanism, including payments to :I.n-�5
agents, in time complexity :I.Í7DN�O$Pq.n- >@? 5G5 , taking the no-monopoly parameter, L ,
as a constant.

Thus, our algorithm performs much better than the naive scheme, which computes
the VCG payment for each agent by solving a new instance of generalized knap-
sack problem. The speed up comes from the way we solve gKnapsack s j .Íå k ��5 . The
time complexity of computing gKnapsack s j .tå k �x5 by creating a new dynamic pro-
gramming table will be :I. â yC 5 but by using the forward and backward tables, the
complexity is reduced to :I. â C N�O$P

â
C 5 . We can further improve the time complexity

of our algorithm by computing Eq. 7 more efficiently. Currently, the algorithm uses
heap, which has logarithmic update time. In worst case, we can have two heap up-
date operations for each element, which makes the time complexity super linear. If
we can compute Eq. 7 in linear time then the complexity of computing the VCG
payment will be same as the complexity of solving a single generalized knapsack
problem.

25



5 Conclusions

We have presented a fully polynomial-time approximation scheme for the single-
good multi-unit auction problem, using a marginal-decreasing piecewise-constant
bidding language with quantity-based side constraints. Our scheme is both approxi-
mately efficient and approximately strategyproof within any specified factor ? )ý* .
As such it is an example of computationally tractable ? -dominance result, as well as
an example of a non-trivial but approximable allocation problem. It is particularly
interesting that we are able to compute the payments to - agents in a VCG-based
mechanism in worst-case time :I.Í7HN�O$P�-�5 , where 7 is the time complexity to com-
pute the solution to a single allocation problem.
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