

Specifying and Monitoring Market Mechanisms Using Rights and
Obligations

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Michael, Loizos, David C. Parkes, and Avi Pfeffer. 2005.
Specifying and monitoring market mechanisms using rights and
obligations. In Agent-Mediated Electronic Commerce VI, ed. P.
Faratin, J. A Rodríguez-Aguilar, 188-201. Berlin: Springer.
Previously published in Lecture Notes in Computer Science 3435:
188-201.

Published Version doi:10.1007/11575726_14

Accessed February 18, 2015 1:17:07 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4000305

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28933281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/4000305&title=Specifying+and+Monitoring+Market+Mechanisms+Using+Rights+and+Obligations
http://dx.doi.org/10.1007/11575726_14
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4000305
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Specifying and Monitoring Market Mechanisms

using Rights and Obligations

Loizos Michael, David C. Parkes, and Avi Pfeffer

Division of Engineering and Applied Sciences
Harvard University, Cambridge, MA 02138, U.S.A.

{loizos, parkes, avi}@eecs.harvard.edu

Abstract. We provide a formal scripting language to capture the se-
mantics of market mechanisms. The language is based on a set of well-
defined principles, and is designed to capture an agent’s rights, as derived
from property, and an agent’s obligations, as derived from restrictions
placed on its actions, either voluntarily or as a consequence of other ac-
tions. Rights and obligations are viewed as first-class goods, from which
we define fundamental axioms about well-functioning market-oriented
worlds. Coupled with the scripting language is a run-time system that
is able to monitor and enforce rights and obligations. Our treatment ex-
tends to represent a variety of market mechanisms, ranging from simple
two-agent single-good exchanges to complicated combinatorial auctions.

1 Introduction

Many authors have written about a future of agent-mediated electronic com-
merce, in which agents engage in commerce on behalf of individuals and busi-
nesses. We take this idea seriously, and provide a formal scripting language for
describing economic markets that is: (i) natural and easy to understand, for hu-
mans to be able to participate, (ii) formal and unambiguous, for artificial agents
to be able to participate, and (iii) amenable to automatic monitoring.
The need for a formal method to describe markets in a computer-compliant

yet human-friendly way naturally arises in a variety of contexts. Most prevalent is
that of online transactions between agents, including both humans and artificial
bidding agents. An equally important context is the need for a platform for
testing new agent designs, simulating new mechanism designs, and evaluating
their properties. Our framework provides such a platform. We implement a set
of well-defined design principles and enable the specification of platforms for
describing and monitoring market mechanisms.
The scripting language we propose captures the essential semantics, namely

rights and obligations, of market mechanisms. Rights enable agents to obtain
utility by taking actions on goods that they own, while obligations allow them
to engage in safe transactions and to make credible commitments to the rules of
market mechanisms. We adopt rights and obligations as first class goods, from
which fundamental market axioms can be derived. These axioms are enforced

within a monitoring environment that we couple with our formal scripting lan-
guage. Given a description of a market mechanism, the monitoring environment
implements the market in a prescribed way, thus giving precise semantics to the
scripting language.
Agents can interact with the monitoring environment and affect, through

their actions, the state of the virtual market. During such an interaction, agents
themselves can initiate new market mechanisms by specifying obligations on
their behavior and granting rights to participants (e.g., the right to place bids).
We take a black-box approach to the specification of agents and impose no

restrictions to their design and internal workings. As a result of this approach,
the monitoring environment is freed from complex activities such as planning
for agents and winner-determination in auctions. The monitoring environment
can instead verify whether certain goals are established by having agents state
obligations and then provide sufficient information to enable their easy verifi-
cation. For instance, an auctioneer can provide market-clearing prices to allow
the monitoring environment to check that the outcome satisfies a competitive
equilibrium, without the need for the system to compute that equilibrium itself.
Thus our approach provides a middle road between a completely formal but hard
to program system, and a completely open-ended but informal system.
The framework is introduced through a discussion of its main characteristics

and capabilities. At the end of the paper we demonstrate its flexibility through
a number of examples, including an English auction, a second-price auction, and
a combinatorial auction.

1.1 Related Work

Our approach is consistent with economic theory on property rights and orga-
nization theory. Quoting Tirole [13], “a decision right or authority granted to a
party is the right for the party to pick a decision in an allowed set of decisions.
A property right on an asset, i.e. its ownership, is a bundle of decision rights.”
It is standard to model a firm as a collection of assets and consider the ability
of a firm to retain a specific subset of its bundle of rights while selling all other
residual rights [5]. The role of obligations and commitment is recognized to be
important for efficient contracts [5], and for auction and mechanism design [6].
Prior work in multi-agent systems has considered the role of rights and obli-

gations for the specification and semantics of open systems [1, 3, 4, 12, 15], with
approaches differing in whether the monitoring environment actively enforces
sanctions (as in our work) [1, 4], or only passively maintains the global state
and informs agents of their obligations [3]. Approaches also differ as to whether
obligations are state-based (as in our work) [3], or specified in terms of actions
that an agent must perform in a particular state [1]. Some work [3, 12] observes
that agents might contract other agents to satisfy the formers’ obligations, but
none of this work adopts rights and obligations as first class goods that agents
can explicitly trade and exchange. Similarly, we are unaware of any work that
explicitly sets out to model the rights that derive from goods in economic worlds
or the semantics of ownership and possession.

Our notions of conditional, limited, and disjunctive rights are shared with
previous work on formal specification languages for financial contracts [7], al-
though that work focuses on the formal description and analysis of new forms
of financial contracts and not on providing frameworks for open agent societies.
The π-calculus has also been used for the specification of a complex model of
a Spanish fish market [10], although again the goal in that work was to assist
with the development of complex institutions rather than provide semantics for
participants or monitor and enforce properties of dynamic state.
The formal theory of deontic logic [8, 9], the logic of rights and obligations, is

concerned with performing valid inference in high-level deontic logics, seeking to
establish the validity of statements such as “is every obligatory action permit-
ted?” A duality between rights and obligations provides a cornerstone of deontic
logic, with an obligation defined as an action that must be performed when no
other action can be taken, due to lack of rights. Our work differs in this aspect,
by defining rights on actions, but obligations in terms of properties on states. We
adopt soft obligations with sanctions rather than hard obligations, an approach
termed “contrary-to-duty” in the deontic logic literature [9]. In particular, our
agents can make mistakes and take actions that lead them to dead-ends in which
their obligations cannot be met.

2 Framework Overview

In this work we propose a framework comprised of a scripting language and
a monitoring environment, with the former providing the necessary syntax for
describing economic markets, and the latter providing the language semantics.
This is analogous to the case of programming languages, where a programmer
uses the language to write a program, with the semantics defined through the
program’s execution in a prescribed manner. The programmer in our framework
is the domain designer, and the program is the domain description, a collection
of laws governing the particular economic market being modeled.
As ordinary programs can import libraries that provide specific functionality,

so is the case with domain descriptions. The domain designer can import libraries
describing economic market laws that are commonplace in a variety of settings.
We have written such libraries, such as: a library on “exchanges of goods” with
laws on how goods can be traded, given, or sold between agents; a library on
“handling rights and obligations” with laws on how rights can be given up,
issued, or revoked, and how obligations can be taken on, imposed, or cleared.
A domain description is fed into the monitoring environment. The monitoring

environment then runs a virtual market world governed by the laws specified in
the domain description. The laws define the initial state of affairs of the market,
the objects that populate it, and the relevant properties of these objects, whose
values determine the state of the market over time. The laws also dictate how
agents might join or leave the market, and the available actions through which
the agents might affect and observe the market’s status. The agents are not
simulated as part of the virtual world, but they are instead acting independently
and only communicate with the monitoring environment.

It is clear that every implementation of a given market may lead to a differ-
ent sequence of states describing the evolution of the virtual world. Each such
sequence is called a scenario and corresponds to a specific instantiation of an
economic market. The actual scenario that occurs is ultimately defined by the
actions taken by the participating agents.

2.1 Design Principles

Our framework implements a set of well-defined design principles, which we
discuss below:

Black-Box Principle: Agents are entities that exist outside our framework,
implemented in some fashion that is (possibly) independent of the proposed
scripting language. They can reason based on their own beliefs and freely
choose to take actions or not, within the market world they participate in.

Free-Will Principle: We cannot force agents to take specific actions, and in
particular, to take actions that satisfy their obligations. Instead, we impose
punitive sanctions to agents that fail to meet their obligations.

Restriction Principle: The monitoring environment is able to restrict the ex-
ecution of actions for which appropriate rights are not held by the agents.

Soundness Principle: When an action is actually executed (i.e., when the ap-
propriate right was held and the invoked action was physically executable in
the current state of the virtual world), its effects are produced in accordance
with the laws of the economic market being modeled.

The first two principles exemplify the generality of the framework we propose.
Agents are treated as black boxes, without imposing any requirements on their
internal workings other than their ability to interact with the provided interface.
We cannot force agents to act in a prescribed way. This justifies the approach of
using punitive sanctions, an approach that we follow in this work.
Our Restriction Principle is justified because the agents can only request

that actions be taken. The final decision lies with the monitoring environment,
which screens the action execution requests based on agent rights. This principle
is further supported, when viewed in conjunction with the Free-Will Principle:
An agent’s options can be limited by the monitoring environment, but the agent
still retains the choice of which (if any) option to exercise. This is the situation
faced by any agent trying to devise a plan to achieve some goal. The actions
available to the agent are restricted (albeit not by lack of rights, but rather by
lack of physical ability). The agent itself is responsible for choosing appropriate
actions that will fulfill its goal.
Finally, the Soundness Principle provides an appropriate soundness condition

for our framework. It states that the monitoring environment will always respect
the laws of the market, as defined by the domain designer.

2.2 eBay Example

In this section we demonstrate the parallels between eBay and our framework,
illustrating how our stated principles are justified by existing virtual markets.

eBay participants freely choose to join or leave eBay’s virtual world. Partic-
ipants interact with the market by invoking actions (e.g., define upper bounds
on bids) through the provided interface, and depending on whether certain con-
ditions are met (e.g., if the bid was actually a valid numerical value) the actions
are executed and produce their effects (e.g., the input value becomes the agent’s
new upper bound for the proxy bidding). The agents then observe the new state
of affairs, and continue to invoke their next action (if any).

Notice how the Black-Box Principle applies here, with the agents being inde-
pendent of the engine (i.e., eBay’s servers) running the virtual world, and that
the only requirement they need to meet is that they can interact with eBay’s
market through the provided interface (e.g., web page links and forms). The
Free-Will Principle applies in particular, with eBay not forcing a participant to
honor a transaction, but punishing violators by means of negative feedback.1

The Restriction Principle relates to how eBay participants can auction items,
or bid on items, only when they have appropriate rights. Thus, a participant does
not have the right to place a bid lower than the current highest bid; invoking
such an action will result in the action being rejected and not executed.

Lastly, the Soundness Principle applies, for instance, in that a paying agent
is guaranteed that if the paying action is executed, then the payment will be
made, no matter what other events (e.g., the concurrent execution of some other
payment, or the fact that some auction closed one hour ago) take place.

3 Rights and Obligations

Agents pursuing goals, either by choice, or as an imposed requirement, often
have restrictions on their available options of how to meet these goals. These
options and goals correspond precisely to the notions of rights and obligations,
which play a prevalent role in our framework. We view rights and obligations
as tradable goods that can be given, taken, exchanged, sold, or auctioned. As
such, rights and obligations are treated as any first-class object with a set of
predetermined properties whose values are part of the market’s state.

We contend that viewing rights and obligations as goods is necessary for
defining natural economic market protocols, and we illustrate the strength of
such a treatment via a number of example domain descriptions later on. To
give a taste of why this idea is in fact very powerful, consider the situation of
an audio compact disk being sold in an eBay auction, with the winner being
awarded the item as per eBay’s rules. What is implicit in this transaction is
that the winner is also awarded the rights and obligations accompanying the
item, and in particular, the right to listen to the audio compact disk, and the
obligation not to infringe the copyright of the producers of the music. That is, in

1 From http://pages.ebay.com/help/confidence/programs-investigations.html:
“eBay cannot force a seller to honor their transactions. You should leave appropriate
feedback for the reluctant seller...”. The action of providing negative feedback is taken
by participants, but it is ultimately provided by eBay as a sort of a punitive sanction.

reality the auctioneer was not simply selling an audio compact disk, but rather a
bundle of goods that includes the item itself and certain rights and obligations.
We view rights as the options of an agent participating in a market mech-

anism, coming from property or possession of items, or otherwise given to the
agent. Rights determine the actions that an agent can take as a means of ful-
filling its own private goals, by qualifying the executability of actions. In their
full generality rights are conditional, with their provisions being applicable only
under certain conditions.

Definition 1 (Rights). We let right(#action,#condition) denote the right to
execute action #action whenever condition #condition is true.

As an example, an agent renting a car from 10:00am to 6:00pm might be
given a right of the form right(drive car, 10:00am ≤ Time ≤ 6:00pm). If the
condition is not met (and given that the agent does not have any other rights on
driving the car), then the agent cannot drive the car, virtue of the Restriction
Principle. The syntax of conditional rights is sufficiently expressive to account for
perpetual and expiring rights, and for more involved rights, such as the perpetual
right to buy bonds, but only once every year and within a limited time span.
On the other side we have obligations, which we view as constraints on an

agent’s behavior, or goals an agent should fulfill as a participant in some mar-
ket mechanism. An agent freely chooses when and how to satisfy its obligations
by appropriately exercising its rights, in the spirit of the Free-Will Principle.
Rather than enforcing (via planning) that agents meet their obligations we let
the monitoring environment detect violations and appropriately impose puni-
tive sanctions, as defined by the domain designer or the participating agents.
Sanctions might include the revocation of an agent’s rights, the loss of money
or possessions, the enforcement of additional obligations, or the banning of an
agent from participating in the market mechanism altogether.

Definition 2 (Obligations). We let obligation(#satisfy, #violate, #punish-
ment) denote the obligation of ensuring that condition #satisfy is satisfied no
later than condition #violate, under penalty of executing action #punishment.

The obligation is flagged as satisfied or violated according to which condition
is met first, and in the case of a violation the appropriate punitive sanction is
imposed through the execution of action #punishment. This general form allows
us to represent obligations of the following forms

obligation(false, balance(alice)<1000, close account(alice))

obligation(balance(alice)>1000, Time>12/31/2004, deduct account(alice, 100))

Assuming that Alice holds such obligations, then in the first case she must
ensure that her bank balance does not drop below 1000 dollars at any time,
under penalty of her bank account being closed, while in the second case she
must ensure that her bank balance goes above 1000 dollars (but not necessarily
stays there) at some time before the end of the year, under penalty of 100 dollars
being deducted from her account.

4 Objects, States, Actions

The dynamic model of our monitoring environment is fairly standard. The world
goes through a sequence of states, with each state specifying values for the
properties of certain objects that populate the state. Each object is associated
with a class (like in object oriented programming), of which the object is an
instance, and which defines the set of properties of the object. Every object has
a unique name used by agents to reference that object. A set of basic classes are
defined by our framework, but the domain designer can extend this set.
The use of objects provides a uniform treatment for both physical goods,

like apples, and abstract goods, like rights and obligations. Money is supported
through the use of account objects, with an object property corresponding to the
account balance. Transferring money through payments is equivalent to changing
this balance in an appropriate way. The notions of ownership and possession are
also readily supported as properties of objects. Transferring an item from some
agent to another reduces to simply changing the values of these properties.
The properties and existence of these objects are only affected by means

of actions taken by the agents, through their interaction with the monitoring
environment. In their primitive form, actions have preconditions and effects.
When the monitoring environment attempts to execute an action, following its
invocation by an agent, it first checks whether the agent holds an appropriate
right, and whether the preconditions of the action are satisfied, and subsequently
updates the state according to the action’s effects. The set of effects is as follows.

Definition 3 (Effects).We let create(#object,#class), destroy(#object), and
set(#object,#property,#value) denote respectively the action effects that create
object #object as an instance of class #class, destroy object #object, and set
the property #property of object #object to the value #value.

Our framework also supports more expressive conditional and quantified ef-
fects, special instances of which are the non-deterministic, or probabilistic effects.
In their transactional form, actions are ordered sequences of actions (which

may be primitive or transactions themselves). As in databases, when executing a
transaction, either all or none of the actions are successful. The execution model
is to execute each of the actions in turn, updating the world state after each
action. If any primitive action fails to meet its preconditions, or the agent fails
to have an appropriate right at the time of each primitive action’s execution,
the entire execution is rolled back to its original state. Conceivably the first
action can grant or revoke an agent’s right to execute a subsequent action in the
transaction, allowing for a really expressive set of transactions to be modeled.
The notion of transactions is very powerful and useful, with a number of

applications, like that of implementing safe exchanges of goods. The transaction

sell(apple,1,alice) ≡ transaction([give(apple,alice),take money(1,alice)])

for instance, specifies a fail-safe way for Bob to sell his apple to Alice for one dol-
lar, without either party being vulnerable to the other’s reneging. Transactions

can also be used in a number of other contexts, including that of implement-
ing disjunctive or expiring rights, where the agent with the disjunctive/expiring
right essentially has the right of executing a transaction comprised of the action
indented to be executed, and followed by the agent giving up the right.
A certain set of basic primitive actions and transactions are implemented

by our framework, including actions for transferring ownership or possession of
goods, transferring money, issuing or giving up rights, taking on obligations,
etc. In addition to the built-in actions, the domain designer may define actions
specific to the domain being modeled, like, for instance, the fill gas(#car) action
whose effect is that of setting the gas level property of the #car object to full.
We capture exogenous events that are outside the agents’ control by allowing

the monitoring entity to execute certain actions and attributing their execution
to an all-powerful “god” agent. Thus, for instance, the initial state of the system
is populated by means of the god agent executing the initialize action once the
domain description is loaded. Although the god agent can execute only a certain
fixed set of actions, on a well-defined set of occasions, these actions are in general
transactions, with their constituent actions being defined as part of the domain
description. This allows the domain designer to essentially specify the effects of
god’s interventions, in situations like the arrival or departure of an agent, or the
violation of some obligation, in which case the god agent executes the punitive
action associated with the violated obligation.
An important special action implemented by our framework is that of query-

ing, which serves as a way to implement private information. We treat the values
of object properties as been hidden from an agent, unless the agent has an ap-
propriate right to query an object property for its value.

Definition 4 (Query). We let query(#object,#property) denote the action of
querying the value of property #property of object #object. When the action is
executed, the agent that invoked the action learns the queried value.

For example, the property representing the collected bids in a sealed-bid
auction is only viewable by the auctioneer, thus preserving secrecy.

5 Ownership and Possession

Property rights are a basic building block of markets and our framework takes a
stand on what the rules governing these rights should look like. To start with, we
make an important distinction between ownership and possession. Ownership of
an object implies a bundle of rights, including the right to use the object and the
right to sell it. It also includes the right to sell various rights to the object. For
possession, we use the word holding, which we take to mean rightful possession.
When one holds something, one has the ability to use it through possession, and
one also has the right to use it. However, one does not have the right to sell it or
to sell any rights to it. This is a common status in the real world. For example,
when someone rents a car, he has possession of it and the right to use it (for
a limited time), but he does not have the right to sell it. We make precise the
notions of ownership and possession through the following axiomatic definitions.

Definition 5 (Ownership Axiom). We take ownership of a good to be syn-
onymous with owning the right of setting the properties of the good to any values
physically possible. We call this the Fundamental Axiom of Ownership.

Our framework implements the Fundamental Axiom of Ownership by issuing
ownership of a right of the form

right(#action, accessible(#action, #agent))

to every agent#agent joining a virtual market, where accessible(#action, #agent)
holds exactly when action #action only affects properties of goods owned by
agent #agent. By exercising this right, the owner of an apple can sell or give
possession of the apple, since the effects of these actions are only affecting the
owned by and held by properties of the apple. Notice that in the latter case, the
owner can actually take the apple back, since he still owns the right of setting
the possessor of the apple. In particular, this implies that an agent owning a
right, but not holding it, can still rightfully execute an action, since the agent
can always reclaim possession of the right, execute the action, and then return
the right to its previous possessor, all within a single transaction.

Definition 6 (Possession Axiom). We take possession of a good to imply
possession of the right to use the good in a set of prescribed ways associated with
the good’s class. We call this the Fundamental Axiom of Possession.

As before, our framework implements the Fundamental Axiom of Possession
by issuing possession of a right of the following form to all participating agents

right(#action, (object(#object), value(#object,
[(held by, #agent), (uses, #uses)]), member(#action, #uses)))

where object(#object) holds exactly when object#object exists, and value(#object,
[(#property, #value),...]) holds exactly when the property #property of object
#object has value #value, for every property-value pair in the list.
Notice that the rights associated with the Fundamental Axioms of Ownership

and Possession are respectively owned and simply held by agents. Hence, in the
former case the Fundamental Axiom of Ownership applies recursively on the
associated right itself with the right being the owned object. So, an agent owning
a car, not only owns the right to drive it, but the agent also owns the right to
sell the right to drive the car, to some other agent. Selling the right to use an
object without selling the object itself is extremely common. For example, you
might sell someone the right to walk across your land without selling the land.
Rights in real life are often not given, but rather issued. When you give

someone the right to walk on your land you still retain that right for yourself,
exactly because you do not give that person your instance of the right, but rather
you issue a new copy of the right. This is achieved through the use of an issuing
action defined by our framework, and appeals to the following axiom.

Definition 7 (Rights Axiom). We take ownership of a right to imply owner-
ship of the right to issue ownership or possession of the former right (with non-
weaker conditions) to others. We call this the Fundamental Axiom of Rights.

Other fundamental axioms are also defined in our framework, such as axioms
relating to performing transactions (e.g., giving someone the right to exchange
goods with you). All axioms are implemented by issuing suitable rights to agents.

6 Implementation Issues

Both the monitoring environment and the specification language are currently
implemented in Prolog, whose goal-oriented computation is a natural fit with
the computational tasks of our framework (e.g., checking if conditions are met).
Agents joining the monitoring environment are assigned a private channel,

through which all subsequent communication is taking place, thus associating
each exchanged message with a unique agent. Communication is taking place
asynchronously, while the monitoring environment employs a continuous treat-
ment of time, with actions occurring instantaneously.
In a typical execution, an agent is sent a Prolog list containing all the object

properties of the current state that are visible to the agent. Given the received
message, the agent reasons and chooses to invoke some action by replying with
the predicate invoke(#action). The monitoring environment records the invoca-
tion event and attempts to execute the action. Success or failure of actions is
recorded and the state of the virtual world is updated and stored in a database
that can be later used to review the evolution of a scenario. Periodically, the
monitoring environment checks whether any obligation has been satisfied or vi-
olated, recording the event and enforcing the appropriate punitive sanction.
Regarding the scalability of our framework, we note that we are not concerned

with the problem of planning, but rather with that of execution monitoring; the
latter remains decidable and tractable as long as the conditions of actions, rights,
and obligations are not inherently undecidable or intractable to begin with. Pre-
liminary experimental results using agents and markets we have implemented,
suggest that such issues should not arise in natural market descriptions.

7 Example Representations

In this section we represent a number of different auction markets within our
framework. The representations do not describe the agents participating in an
auction; the agents can be implemented in some arbitrary language, and their
implementation is done outside our framework. Neither do the representations
define the process by which auctions determine winners; the exact process used
is chosen and executed by the participating agents. For instance, the winner-
determination in a combinatorial auction can be performed using combinatorial
optimization, and the agent acting as the auctioneer is responsible for running
the appropriate combinatorial optimization algorithm. Rather, the representa-
tions define the rules of the auctions and capture the important properties of
winner-determination (such as the fact that the highest bids win).
We use boldface to indicate the main language operators and underlining

to indicate action names. We have also substituted certain parentheses with

curly brackets to enhance readability. Other than these cosmetic enhancements
the domains are presented below in the Prolog implementation of the scripting
language of our framework. The full domain descriptions can be found online
at http://www.eecs.harvard.edu/

˜
loizos/norms.html. The object clock is

an instance of the event class, and serves as a way to hold the time at which
the current state of the world was instantiated. The various predicates used are
provided by our framework and were already described in previous sections. The
actions sell(#good,#price,#receiver) and jail(#agent) are imported from the
appropriate libraries, with the latter retracting all the rights of an agent, when
executed. The action issue p(right(#action,#condition),#agent) is the built-in
action of issuing possession of rights to agents. We assume, and do not explicitly
represent below, the fact that agents have the right to open auctions on items
they own. Also, unless otherwise stated, we assume that bidders have the right
to query all the properties of an auction and all the properties of the items being
auctioned. Such query rights are given to the bidders at the auction opening.

7.1 Open-Cry English Auction

In a typical open-cry English auction scenario an agent owning an item in-
vokes the action of opening an auction. This establishes the auction parameters,
through the create auction action not shown here. The auctioneer also gives all
bidders the right to place bids, conditioned on the new price being higher than
the current price. Finally, the auctioneer commits to closing the auction and
selling the item to the highest bidder soon after that.

action(Agent, open auction(Auction, Item, OpeningPrice)) :- transaction([

create auction(Auction, Item, OpeningPrice),

take on(obligation({ value(Auction, status, closed) } , { value(clock, happened at, Time),
value(Auction, last bid time, LastBidTime), atleast(Time, LastBidTime+100) }
, { jail(Agent) })),

take on(obligation({ value(Auction, [(status, closed), (highest bid, HighestBid),
(highest bidder, HighestBidder)]), object(Event), value(Event, [(instance of, event),
(description, invoked(Agent, sell(Item, HighestBid, HighestBidder), successfully))]) }
, { value(Auction, [(status, closed), (highest bidder, HighestBidder), (closing time,
ClosingTime)]), value(clock, happened at, Time), atleast(Time, ClosingTime+100),
HighestBidder \= Agent } , { jail(Agent) })),

issue p(right({ place bid(Auction, Bid) } , { value(Auction, [(highest bid, HighestBid),
(status, open)]), atleast(Bid, HighestBid+1) }), Bidder)]).

Bidders proceed to place bids by raising the current highest bid. This grants the
auctioneer the right to sell them the item at that price.

action(Agent, place bid(Auction, Bid)) :- transaction([raise bid(Auction, Bid),

issue p(right({ sell(Item, Bid, Agent) } , { value(Auction, [(status, closed), (highest bid,
Bid), (highest bidder, Agent)]), value(clock, happened at, Time),
atleast(ClosingTime+100, Time) }), Auctioneer) where value(Auction, [(auctioneer,
Auctioneer), (item, Item)])]).

action(Agent, raise bid(Auction, Bid)) :- preconditions([object(Auction),
value(Auction, highest bid, CurrentBid), atleast(Bid, CurrentBid+1)]), effects([
set(Auction, highest bid, Bid), set(Auction, highest bidder, Agent), set(Auction,
last bid time, Time) where value(clock, happened at, Time)]).

At the end, the auctioneer closes the auction and continues to invoke the sell
action, as obligated by the rules of the auction.

7.2 Sealed-Bid Second-Price Auction

In a typical sealed-bid second-price auction scenario an agent opens an auction
in the same manner as in the open-cry English auction. The main difference is
that when the auctioneer grants to the bidders the right to query the properties
of the auction, the granted right is conditional on the queried property not being
the set of bids property, preserving in this way the secrecy of the collected bids.

action(Agent, open auction(Auction, Item, OpeningPrice)) :- transaction([

create auction(Auction, Item, OpeningPrice),

take on(obligation({ value(Auction, [(status, closed), (set of bids, SetOfBids), (winner,
HighestBidder), (payment, SecondHighestBid)]), get second price(SetOfBids,
SecondHighestBid), get first bidder(SetOfBids, HighestBidder) } , { value(clock,
happened at, Time), value(Auction, last bid time, LastBidTime), atleast(Time,
LastBidTime+100) } , { jail(Agent) })),

take on(obligation({ value(Auction, [(status, closed), (winner, HighestBidder), (payment,
SecondHighestBid)]), object(Event), value(Event, [(instance of, event), (description,
invoked(Agent, sell(Item, SecondHighestBid, HighestBidder), successfully))]) }
, { value(Auction, [(status, closed), (winner, HighestBidder),]), value(clock, happened at,
Time), atleast(Time, ClosingTime+100), HighestBidder \= Agent } , { jail(Agent) })),

issue p(right({ query(Auction, QueriedProperty) } , { value(Auction, status, open),
QueriedProperty \= set of bids }), Bidder),

issue p(right({ place bid(Auction, Bid) } , { value(Auction, status, open) }), Bidder)]).

action(Agent, create auction(Auction, Item, OpeningPrice)) :- preconditions([\+
object(Auction)]), effects([create(Auction, sealed auction), set(Auction, owned by,
Agent), set(Auction, held by, Agent), set(Auction, auctioneer, Agent), set(Auction, status,
open), set(Auction, item, Item), set(Auction, set of bids, [(Agent,OpeningPrice)]),
set(Auction, winner, undefined), set(Auction, payment, undefined), set(Auction,
last bid time, Time) where value(clock, happened at, Time), set(Auction, closing time,
undefined)]).

Bidders proceed to submit sealed bids, by updating the set of bids property, but
without ever seeing its actual contents. Each bidder can only place one bid.

action(Agent, place bid(Auction, Bid)) :- transaction([submit bid(Auction, Bid),

issue p(right({ sell(Item, Bid, Agent) } , { value(Auction, [(status, closed), (payment,
Bid), (winner, Agent)]), value(clock, happened at, Time), atleast(ClosingTime+100, Time)
}), Auctioneer) where value(Auction, [(auctioneer, Auctioneer), (item, Item)])]).

action(Agent, submit bid(Auction, Bid)) :- preconditions([object(Auction),
value(Auction, set of bids, SetOfBids), \+ member((Agent,AnyBid), SetOfBids)]),
effects([set(Auction, set of bids, [(Agent,Bid)|SetOfBids]) where value(Auction,
set of bids, SetOfBids), set(Auction, last bid time, Time) where value(clock,
happened at, Time)]).

Finally, the auctioneer closes the auction by declaring a winner and a payment
and continues to invoke the appropriate sell action.

7.3 Combinatorial Auction

The case of a combinatorial auction resembles the sealed-bid auction, and thus
we only briefly discuss the main points of difference. In a Vickrey-Clarke-Groves
(VCG) auction (see Jackson [6]), as the one represented below, the auctioneer
opens the auction for a set of items, invoking (amongst other things) the following
action for committing to an efficient outcome and VCG payments:

take on(obligation({ value(Auction, [(status, closed), (set of bids, SetOfBids), (allocation,
Allocation), (prices, Prices), (payments, Payments), (marginal allocations,
AllocationPerMarginalMarket), (marginal prices, PricesPerMarginalMarket)]),
AllAllocations = [Allocation|AllocationPerMarginalMarket], AllPrices =
[Prices|PricesPerMarginalMarket], checkOutcomeEfficiency(SetOfBids, AllAllocations,
AllPrices), checkVCGPayments(SetOfBids, AllAllocations, Payments) } , { value(clock,
happened at, Time), value(Auction, last bid time, LastBidTime), atleast(Time,
LastBidTime+100) } , { jail(Agent) })),

Bids are then placed, each specifying a bundle of items. Each bidder can sub-
mit multiple bids (issuing the corresponding rights). Given the semantics of an
“additive-or” bidding language, any number of bids can then be accepted. On
closing the auction, the auctioneer determines the revenue-maximizing allocation
and the VCG payments. The auctioneer also provides the revenue-maximizing
allocations in each marginal economy (with each bidder removed in turn), and
competitive equilibrium (CE) prices in the main and marginal economies [2]. The
CE prices allow the monitoring environment to verify that the allocations are
optimal by checking best-response conditions for the seller and for each bidder.
These checks are taken care of by a call to the checkOutcomeEfficiency predi-
cate. Once the main and marginal allocations are checked, the VCG payments
are checked with a call to the checkVCGPayments predicate. Both predicates
are implemented in Prolog and are part of the actual domain description.

8 Conclusions

We argue that rights and obligations, important in human economies and often
enforced through legal remedies, will be important in agent-mediated economies.
We have defined a formal language that allows the specification of market mech-
anisms and a monitoring environment that allows for the automatic checking of
rights and the enforcement of sanctions based on failed obligations. Simulations,

frequently in the form of competitions such as the Trading Agent Competition
[11, 14], have often been used to explore market space and drive research into
agent-based reasoning within electronic markets. We hope that the formal ap-
proach taken here, in which the semantics of markets are exposed to agents,
will also prove useful in the development of principled methods in agent-based
reasoning within electronic markets. We feel that the design principles imple-
mented by our framework capture the main underlying assumptions of many
virtual market designs and implementations (like eBay), and thus provide an
infrastructure for the specifications of future virtual markets, and simulation
platforms for testing agent designs.

Acknowledgments

Useful comments and suggestions were received during seminar presentations of
earlier versions of this work in DEAS and AMEC VI. This work is supported in
part by NSF grants IIS-0238147 and IIS-0091815.

References

1. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational soci-
eties. In Proc. of Conf. on AAMAS, 2002.

2. S. Bikhchandani and J. Ostroy. The Package Assignment Model. Journal of Eco-
nomic Theory, 107(2), December 2002.

3. Aspassia Daskalopulu and T. S. E. Maibaum. Towards electronic contract perfor-
mance. In DEXA Workshop, 2001.

4. C. Dellarocas, M. Klein, and J. A. Rodriguez-Aguilar. An exception-handling
architecture for open electronic marketplaces of contractnet software agents. In
Proc. ACM Conf. on Electronic Commerce (EC’00), 2000.

5. Oliver Hart. Firms, Contracts, and Financial Structure. Oxford Univ. Press, 1995.
6. Matthew O. Jackson. Mechanism theory. In The Encyclopedia of Life Support

Systems. EOLSS Publishers, 2000.
7. S. L. Peyton Jones and J-M. Eber. How to write a financial contract. In J. Gibbons
and O. de Moor, editors, The Fun of Programming. Palgrave Macmillan, 2003.

8. L. Thorne McCarty. Permissions and obligations. In Proc. IJCAI, 1983.
9. J. J. Meyer and R. J. Wieringa, editors. Deontic Logic in Computer Science. John
Wiley & Sons, 1993.

10. Julian Padget and Russell Bradford. A π-calculus model of a Spanish fish market.
In Proc. of First Int. Workshop on Agent Mediated Electronic Trading, May 1998.

11. N. M. Sadeh, R. Arunachalam, J. Eriksson, N. Finne, and S. Janson. TAC’03: A
supply chain trading competition. AI Magazine, 24(1), Spring 2003.

12. Yao-Hua Tan and Walter Thoen. A logical model of directed obligations and
permissions to support electronic contracting. IJEC, 3(2), 1999.

13. Jean Tirole. Incomplete contracts: Where do we stand? Econometrica, 67(4), 1999.
14. M. P. Wellman, P. R. Wurman, K. O’Malley, R. Bangera, S. Lin, D. Reeves, and

W. E. Walsh. Designing the market game for a trading agent competition. IEEE
Internet Computing, 2001.

15. M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Journal of AAMAS, 3(3), 2000.

