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Chapter 2: Iterative Combinatorial Auctions

David C. Parkes

1 Introduction

Combinatorial auctions allow bidders to express compléxatans on bundles of
items, and have been proposed in settings as diverse asdtatiain of floor
space in a new condominium building to individual units (#dr2000) and the
allocation of take-off and landing slots at airports (Smibrward). Many
applications are described in Part V of this book.

The promise of combinatorial auctions (CAs) is that they alfow bidders to
better express their private information about prefersricedifferent outcomes
and thus enhance competition and market efficiency. Mudatdfhis been spent
on developing algorithms for the hard problem of winner dateation once bids
have been received (Sandholm, Chapter 14). Yet, prefesduti@ation has
emerged as perhaps the key bottleneck in the real-worldye@nt of
combinatorial auctions. Advanced clearing algorithmsveoethless if one cannot
simplify the bidding problem facing bidders.

Preference elicitation is a problem both because of the aemization cost of
sending bids to the auction and also because of the cost darkitb determine
their valuations for different bundles. The problem of conmigation complexity
can be addressed through the design of careful bidding #eyeg,) that provide
expressive but concise bids (Nisan Chapter 9). Non-cortipaotd approaches
can also be useful, such as defining the good and bundle sptweiight way in
the first place (Peket and Rothkopf Chapter 16).

However, even well-designed sealed-bid auctions canribead the problem of

hard valuation problems because they preclude the usedifdek and price



discovery to focus bidder attention. There are an expoalemiimber of bundles
to value in CAs. Moreover, the problem of valuing even a srgindle can be
difficult in many applications of CA technology. For instani the airport
landing slot scenario (see Ball, Donohue and Hoffman Cha&ttewe should
imagine that airlines are solving local scheduling, mariggtand
revenue-management problems to determine their valuekfferent
combinations of slots.

Iterative combinatorial auctions are designed to addiesgitoblem of costly
preference elicitation that arises due to hard valuatioblpms. An iterative CA
allows bidders to submit multiple bids during an auction pravides information
feedback to support adaptive and focused elicitation. kamgle, an ascending
price auction maintains ask prices and allows bidders tisedsids as prices are
discovered. Significantly, it is often possible to detereném efficient allocation
without bidders reporting, or even determining, exact ealfor all bundles. In
contrast, any efficient sealed-bid auction requires b&ltiereport and determine
their value for all feasible bundles of goods.

This ability to mitigate the preference elicitation prablés a central concern in
iterative CA design. But there are also a number of less dmgiet still important

benefits:

¢ lterative CAs can help tdistributethe computation in an auction across
bidders through the interactive involvement of biddersuidgg the
dynamics of the auction. Some formal models show the edrical
between iterative CAs and decentralized optimizationrilgms (Parkes
and Ungar 2000a, de Vries, Schummer, and Vohra 2003). iiter@As can
address concerns abquivacy because bidders only need to reveal partial

and indirect information about their valuatiohs.

e Transparencys another practical concern in CAs. In the high-stakes avorl

of wireless spectrum auctions, the Federal Communicattmmmission



(FCC) has been especially keen to ensure that bidders ciiy ared

validate the outcome of an auction. Although mathematicgigant, the
VCG outcome can be difficult to explain to bidders, and vdiaarequires
the disclosure and verification of many bids, both losingairthing. Thus,
even as readily describablmplementationsf sealed-bid auctions, iterative

CAs can offer some appeal (Ausubel and Milgrom 2002).

e The dynamic exchange of value information between biddlas,is
enabled within iterative CAs, is known to enhance revenukediiciency in
single item auctions with correlated values (Milgrom ando@fe1982).
Although little is known about the design of iterative CAs éorrelated
value problems, one should expect iterative CAs to retamttnefit over
their sealed-bid counterparts. Certainly, correlatedevakettings exist:
consider the wireless spectrum auctions in which valuatame in part
driven by underlying population demographics and sharethigogical

realities.

Yet, even with all these potential advantages iterative Gfey new opportunities
to bidders for manipulation. The biggest challenge in tteeaCA design is to
support incremental and focused bidding without allowiegrstrategic behavior
to compromise the economic goals of efficiency or optimakyr instance, one
useful design paradigm seeks to implement auctions in wétretightforward
bidding (truthful demand revelation in response to pricesinex post
equilibrium. This equilibrium is invariant to the privateformation of bidders, so
that straightforward bidding is a best response whatewevdtuations of other
bidders.

Steps can also be taken to minimize opportunities for siggahrough careful
control of the information that can be shared between b&dering an auction.
Finally, the benefits of iterative auctions disappear whdddrs choose to

strategically delay bidding activity until the last rounofsan auction Activity



rules (Milgrom 2000) can be used to address this stalling and ptemmzaningful
bidding during the early rounds of an auction.

The existing literature on iterative CAs largely focusegslmmdesign of efficient
auctions. Indeed, there are no knoaptimal(i.e. revenue-maximizing)
general-purpose CAs, iterative or otherwise. As such, &megical VCG
mechanism (see Chapter 1) has guided the design of maniviéegactions’

We focus mainly orprice-basedapproaches, in which the auctioneer provides ask
prices to coordinate the bidding process. We also consltignative paradigms,
including decentralized protocojgroxiedauctions in which a bidding agent
elicits preference information and automatically bidsxgsa predetermined
procedure, andirect-elicitationapproaches.

In outline, Section 2 defines competitive equilibrium (CEyes for CAs, which
may be non-linear and non-anonymous in general. Connadtietween CE
prices, the core of the coalitional game, and the VCG outcaraexplained.
Section 3 describes the design space of iterative CAs.@ettiiscusses
price-based auctions, providing a survey of existing pbased CAs in the
literature and a detailed case study of an efficient ascgmatine auction. Section
5 considers some alternatives to price-based design.o8dttiloses with a brief
discussion of some of the open problems in the design otiitereombinatorial

auctions, and draws some connections with the rest of thuk.bo

2 Preliminaries

LetG = {1,...,m} denote the set of items, and assume a private values model
with v;(.S) > 0 to denote the value of biddeérc Z = {1,...,n} for bundle

S C G. Note that sef does not include the seller. We assume free-disposal, with
v;(T) > v;(S) for all T > S, and normalization, withy; (#) = 0. LetV denote the
set of bidder valuations. Bidders are assumed to have tjnaai- utility (we also
usepayoffinterchangeably with utility), with utilityu; (S, p) = v;(S) — p for

bundleS at pricep > 0. This assumes the absence of any budget constraints.



Further assume that the seller has no intrinsic value foitdines.
The efficient combinatorial allocation problem (CAP) salve
max v;(.S; CAP(T
S=(S1,...,5n) ; () [ ()]

s.t. S;N Sj =0, Vi,j

Let S* denote the efficient allocation. Also, we write CAP\ 7) to denote the

combinatorial allocation problem without bidder

2.1 Competitive Equilibrium Prices

We can consider a hierarchical structure for ask prices ig:CA

Linear. Pricesp; > 0, for j € G, define additive prices on bundles, with
p(S) = jes Dj-

Non-linear. Pricesp(S) > 0, for S C G, allowp(S) # p(S1) + p(S2), for some
S =5,US8yandS; NSy =0.

Non-linear and Non-anonymous. Pricesp;(.S) > 0, allow discriminatory
pricing, withp;(.S) # py(S) for bidderi # ¢/, in addition to non-linear

prices.

In the following definitions we adopt; (S) for notational convenience. We intend
to allow (but not require) with this notation non-linear amsh-anonymous prices.
For instance, linear prices; can be considered to induce prigess) = >, s p;
for bundleS and bidder.

Competitive equilibrium prices extend the concept of Wahla equilibrium

prices to a CA. Letr; (S, p) = v;(S) — pi(S) denote biddef’s payoff from
bundlesS at pricesp andII; (S, p) = 3,7 pi(S;) denote the seller’'s revenue from

allocation S at pricesp.



Definition 1 (Competitive Equilibrium). Prices,p, and allocation

S* = (S7,...,Sy) are in competitive equilibrium (CE) if:

(S, p) = max > pi(Si) )
€L

wherel’ denotes the set of all feasible allocations.

A competitive equilibrium(p, S*) is such that allocatio’$™ maximizes the payoff
of every bidder and the seller given prices. Allocatiohis said to besupported

by pricesp in CE.

Theorem 1. Allocation S* is supported in competitive equilibrium if and only if

S* is an efficient allocation.

This welfare theorem follows from a simple linear-prograimgn(LP) duality
argument for suitably extended LP formulations of the CAKIiBhandani and
Ostroy 2002, also Chapter 8). Moreover, CE prices alwayst &xi the CAP. For
instance, pricep; = v; trivially satisfy the CE conditions. The main new element
in CAs is that these CE prices must sometimes be non-linehnam-anonymous.
Bikhchandani and Ostroy also show an equivalence betweecotte of the
coalitional game and the set of CE prices. All core outconagsbe priced, and

all CE prices correspond to core payoffs.

Many iterative CAs are designed to converge to CE pricesaaralich it is
important to characterize classes of valuations for whireddr, and non-linear but
anonymous, CE prices exist. We will also see thatitdsessaryhat an efficient
CA must determine enough information about bidder valuatim define a set of
CE prices, anahecessaryhat a Vickrey auction determines enough information to
define a set ofiniversalCE prices.

For the existence of linear CE prices, it is sufficient (andast necessarythat

valuations satisfy goods are substitutgzroperty (Kelso and Crawford 1982, Gul



and Stacchetti 1999). This substitutes condition is defingiectly, with respect

to ademand set

which includes all bundles that maximize a bidder’s paybtha prices.

Definition 2 (Goods are Substitutes)Valuationv; satisfiesgoods are substitutes
if for all linear pricesp, p’ such thaty’ > p (component-wise), and afl € D;(p),

there exists” € D;(p') such that{j € S : p; = p}} CT.

The goods are substitutes (or simglybstitutes condition requires that a bidder
will continue to demand items that do not change in price aptice on other
items increases. Substitutes valuations incluie-demandvaluations with

v;(S) = max;eg{v;;} for all S and valuev;; on itemj in isolation, but preclude
the possibility of items with complementary values (Lehmadrehmann, and
Nisan 2001).

Conditions for the existence of non-linear but anonymousp@&es are less
well-understood, but sufficient conditions presented irk€&(2001) (Theorem
4.7) includesupermodulawvaluations single-mindedidders that value a
particular bundle, and bidders wiiafevaluations such that each pair of bundles
with positive value to a bidder share at least one item. Gansfor example, a
bidder in the FCC spectrum auction that definitely needs iddanhattan, along

with as many of the geographically neighboring licensesoasiple.

2.2 Minimal Competitive Equilibrium Prices

In fact, many iterative CAs are designed to convergmiaimal CE prices. This
can be useful for two reasons. First, minimal CE prices ordlamin the efficient
allocation correspond to VCG payments for a restrictedsatdvaluations. In this
case, we say that the CE pricagoportthe VCG payments. Termination with CE
prices that support VCG payments brings straightforwaddlibig into anex post
equilibrium. Second, Ausubel and Milgrom (2000, also Chaf) show that

7



implementing minimal CE prices (corresponding to buyetiropl core outcomes)
avoids the problems that can occur with the VCG auction wh€g\payments

are not supported with minimal CE prices.

Definition 3 (Minimal CE Prices). Minimal CE prices minimize the seller’'s

total revenudl, (S, p) on the efficient allocatios™ across all CE prices.

A bidder’s payment in the VCG mechanism is always less thaguoal to the
payment by that bidder any CE price (Bikhchandani and Ostroy 2002). Thus,
minimal CE prices always provide an upper-bound on VCG paymeévoreover,
a bidder's VCG payment is equal to the CE price on her effidiendle in some
CE (Parkes and Ungar 2000b).
A characterization in terms of the coalitional value fuontexplains when the
VCG can be supported simultaneously to all bidders in themahCE.
Letw(L) for L C 7 denote thecoalitional valuefor a subset. of bidders, equal
to the value of the efficient allocation for CAR). Thebuyers are substitutes
(BAS) condition requires,

w(T) = w@\K) =Y [w@)-wT\i)], VKCI (BAS)

ieK

Theorem 2. (Bikhchandani and Ostroy 2002) A buyers are substitutesSjBA
coalitional value function is necessary and sufficient fopsrt the VCG

payments in competitive equilibrium.

In particular, the VCG payments are implemented in the mahi@E (or
buyer-optimal core) when BAS holds, and buyer-optimal gagoffs are unique
exactly when BAS holds.

A number of ascending price CAs can only terminate with mali@E prices
given a slightly stronger condition, that obayer-submodula(BSM) coalitional
value function:

w(L) —w(L\K) > Y [w(L)—w(L\i)], VKCLVLCI (BSM)
€K



Bikhchandani and Ostroy (Chapter 8) refer to BSMbagers are strong
substitutesClearly, a BSM coalitional value function also satisfies®M8ut
there are cases for which values satisfy BAS but not BSM (sesuBel and
Milgrom 2002, Section 7, for example). Interestingly, ditbtes valuations
implies BSM and is almost necessary. Roughly, if at leasthideer does not
satisfy substitutes then one can construct substitutesitvahs for other bidders
such that the coalitional value function fails BSM. See Awdiand Milgrom
(Chapter 1) for further discussion. Thus, the same conditfor the existence of
alinear price equilibrium are sufficient and almost necessary ferekistence of
someprice equilibrium (although perhaps non-linear and noorgmous) that

supports the Vickrey outconfe.

2.3 Universal Competitive Equilibrium Prices

Experiments have suggested that BAS can often fail in teassttings for CAS.

In these cases the VCG payments are not supported in anyggudgébrium. We
can still design price-based CAs by characterizing a seongndition on CE
prices that implies enough information to determine VCGrpawts from these
prices. For this, we restrict attention to theiversalCE prices (Parkes and Ungar
2002, Mishra and Parkes 2004).

Definition 4 (Universal CE Prices).Pricesp are universal Competitive

Equilibrium (UCE) prices if:
a) Pricesp are CE prices.

b) Pricesp_; are CE prices for CAFZ \ i), meaning they support some
efficient allocation in CAPZ \ 1), for all bidders:.

Wherep—i = (pla vy Pi—15Di41y - - - 7pn)

In words, prices are UCE when an efficient allocation for gmtricted allocation

problem without biddef is supported with prices_;, for each biddef removed



in turn. Thus, UCE prices are CE prices in the main economyiraedery
marginal economy. Note that UCE prices need not requirettieasame
allocation is supported in every marginal economy. Thegsrimust suppogome
efficient allocation in each marginal econofny.

UCE prices always exist, for example = v;, for all biddersi, are UCE prices.
Moreover, a universal price equilibrium provides suffi¢igriormation about

bidder valuations to compute the VCG outcome.

Theorem 3. (Parkes and Ungar 2002) Given a UCE with priges. and an

efficient allocationS*, the VCG payment to biddelis computed as:

Pvegii = Puce,i(S;) — (117 (Puce) — Hé\i(puce)] 4)
wherell; (p) = maxger Y, pi(S;) for biddersL C 7.

In the special case when prices are equal to valuations kieadjustment is

equivalent to the standard definition of VCG payments.

2.4 Informational Requirements

Both CE and UCE prices have a central role in the preferencitagion problem.
First, any auction that implements an efficient allocatiamshdetermine a set of
CE prices. Second, any auction that implements the Vickmtgome must
determine a set of UCE prices. Segal (Chapter 11) providextmded
discussion.

Since the VCG auction is basically unique amongst the clbsfioient auctions
that take a zero payment from losing bidders (Ausubel andngiih, Chapter 1),

these equivalences confirm the central role of prices inldpirg iterative CAs.

Theorem 4. (Parkes 2002, Nisan and Segal 2003) A combinatorial auction
realizes the efficient allocation if and only if the auctidearealizes a set of CE

prices and an allocation supported in the price equilibrium

10



This result requires a technical conditionprfvacy-preservationwhich
precludes bidders from making their valuations contingemthe valuations of

other bidders (e.g. “my value fot is at least bidder 2's value fot”).”

Theorem 5. (Parkes and Ungar 2002, Lahaie and Parkes 2004b) A
combinatorial auction realizes the VCG outcome if and ofhtizé auction also
realizes a set of UCE prices and an allocation supported éngtice equilibrium

of the main economy.

That UCE prices provide sufficient information was first ggdvn Parkes and
Ungar (2002). The necessary direction is due to Lahaie arige®&2004b). It is
important to realize that the CE and UCE prices referencelese results may
only be realized implicitly and are not necessarily exglijatonstructed in the
auctions.

Considering minimal CE prices in particular, Mishra andidear(2004) note that
minimal CE prices are universal iff BAS holds. In general, EJ@rices are greater
than the minimal CE prices because they must consider cdiopéeh the
marginal economies in addition to the main economy.

The informational equivalence between the efficient outeamd the problem of
discovering CE prices leads to a (largely negative) char&ettion of the
worst-case communication complexity and preferencetation requirements of
any efficient CA, iterative or otherwise (Segal, Chapter 11).tlmother hand,
iterative CAs are designed to have good elicitation pragedn typical instances,
while sealed-bid auctions must suffer the worst case eumg. tMoreover, this
price equivalence suggests the central role of prices ideés&n of iterative CAs.
Any protocol to determine the VCG outcome must (implicittigtermine UCE
prices, so why not construct protocols to converge dirdcty CE prices? We

return to this theme in Section 4.

11



2.5 Examples

The following examples illustrate the concept of CE and UGEgs and also
serve to illustrate the principle that it is often unnecegss$a receive complete
information about bidder valuations to determine the \égkoutcome. For each
example, we define a space of valuations (that contain tleevluations) that
provides sufficient information to determine the Vickreyanme. The
information is minimal— we call this eninimal information set—in the sense
that no relaxed constraints on valuations are sufficienirt@pwn the Vickrey

outcome.

Example 2.1

Consider a single-item auction with three bidders and (@, 8, 6). The
efficient allocation assigns the item to bidder 1, and théég payment is $8.
Prices10 > p > 8 are all in CE, ang = $8 is the unique anonymous UCE price.
Notice that the UCE price must be at least $8 to satisfy CEitiond1) for

bidder 2 in CAR{1, 2, 3}) but no greater than $8 to satisfy the same condition for
bidder 2 in CAR{2, 3}). The CE prices define a minimal information g,
defined as the subset of valuations that satisfy constraints

{v1 > p,v2 < p,v3 < p,10 > p > 8}. UCE prices imply additional information
{ve = 8,v3 < 8}, which together with>1 is a minimal information set for the
VCG outcome. Notice that an ascending price (i.e. Englisigjian can elicit this
information if bidders 1 and 2 bid up the price to just abovat&yhich point the

auction terminates. Bidder 3 can remain silent.

Example 2.2

Consider a combinatorial allocation problem with itefus B} and 5 bidders
(see Figure 2.1). The efficient allocation allocatet bidder 1 andB to bidder 2
for a total value of 70. The VCG payments akg, 1 = 30 — (70 — 65) = 25 and

Pveg,2 = 40 — (70 — 55) = 25. Figure 2.1 (b) illustrates an information set on

12



bidder valuations, that is sufficient to compute the VCG onite and minimal in
the sense that no constraints can be relaxed. The followinggpare UCE for any
valuation in this setp(A) = 25, p(B) = 25, p(AB) = 25 to bidders{1,2,4,5}
and priceps(A) = 20, p3(B) = 20, p3(AB) = 40 to bidder 3. In fact, these
prices are also minimal CE prices and the discount computédi 4 is zero for
bidders 1 and 2, and BAS is satisfied (because of the presébgdders 4 and 5).
Without these bidders, the BAS condition fails and the VC@mpents become
Pveg,1 = 0 @ndpyee 2 = 20, which can be computed from UCE prices

p1 = (20,0,20),p2 = (0,40, 40) andps = (0, 20, 40). Additional information is

needed from bidder 2 in this variation.

3 The Design Space for Iterative Combinatorial Auctions

The design space for iterative CAs is larger than for oné-ghctions. Important
considerations include the design of information feedldadiidders and rules to
guide the submission of bids. Cramton (Chapter 4) provides-alepth
discussion of many of these issues in the design of simutanascending price
auctions.

Let thestateof an auction include all the information that is sufficiemtefine

the future dynamics of the auction. For example, the stagmafuction can define
the ask prices, the provisional allocation, and also thérbafovement rules as
they apply to particular bidders. Briefly, we can considerrible of the following

design features:

Timing issues. Iterative auctions may beontinuous allowing bids to be
submitted at any time with continual updates to the curreoxipional
allocation and prices. Alternatively, iterative auctionay bediscrete or
round-based, with the state updated periodically and wittdrs provided

with an opportunity to revise bids between rounds.

Continuous auctions can promote faster propagation obfased

information to bidders and help to quickly focus elicitatidHowever,

13



continuouscombinatorialauctions can be infeasible because the
winner-determination problem must be resolved whenevemabid is
submitted. Continuous auctions also lead to high monigpaind
participation costs for bidders. In comparison, discreigtians allow an
auctioneer to publish scheduldor rounds in the auction and bidders can

plan when to allocate time to refine their values and bids.

Information feedback. Information feedback about the state of an auction can
include information about the bids submitted and also agee
information, such as price feedback and the current pravidiallocation,
to guide bidding. Information hiding is also possible, faample with
roundingto limit the potential for signaling between bidders andhwit

limited and discriminatory reporting of bid information.

Information feedback policies make a tradeoff betweenisgrthe goal of
providing effective bid guidance and minimizing the oppoity for
collusion and other forms of manipulation through sigrakmd

coordination.

Bidding Rules. Ask prices are a common form bfd improvementule, placing
a lower-bound on the allowable bid price on a bundle. Bid imepment
rules can also require a minimaércentage improvemeater the current
highest bid on a bundle, or over the total revenue in the rexia given
current bids Activity rules(Milgrom 2000) introduce further restrictions,
such as requiring that a bidder bids for a decreasing mahnkeesas prices
increase during an auction. Ausubel, Cramton and Milgrohmefer 5)

provide an extended discussion of bid-improvement andigctiles.

Activity rules were introduced in the early FCC wirelessctpem auctions
and proved importarit.Decisions about appropriate rules are often guided
by a tradeoff between providingxpressivenesso that bidders can follow

straightforward bidding strategies, while promoting gamformation

14



exchange between bidders and limiting the opportunity fddérs to wait
and snipe at the end of an auction. Computational considesaalso
matter, for example linear prices can simplify the problemirig bidders in
an auction (Kwasnica, Ledyard, Porter, and DeMartini 2@@i#)can be

expensive to compute (Hoffman 2001).

Termination Conditions. Auctions may close at fixed deadlingperhaps with
an opportunity for a final sealed-bid round of bidding (sames called a
proxy round). Alternatively, auctions can haveoding closurewith the
auction kept open while one or more losing bidders contioumibmit

competitive bids.

Fixed deadlines are useful in settings in which biddersrapatient and
unwilling to wait a long time for an auction to terminate. Hewer, fixed
deadlines tend to require stronger activity rules to pretiemauction
reducing to a sealed-bid auction with bids delayed untifita round. In
comparison, rolling closure rules have been shown to prereatly and

sincere bidding.

Bidding Languages. A bid can be a complex object and expressed in terms of
logical connectives (Nisan, Chapter 9). One popular bigltfmguage is
exclusive-o(XOR), in which bid(p;, S1) xor (pa, S2) xor ... xor (p;, S)
has semantics “I will buyat most onef these bundles” at the stated bid
price. Another popular languageasdditive-or(OR) bidding languages, in
which bid (pi, S1) or (p2, S2) or ... or (p;, S;) has semantics “I will buy
one or moreof these bundles” at the stated bid price. Bidding languages
also place constraints on the bid prices, for example byiriegLclick-box

biddingin which bidders must submit bids from a mefu.

The expressiveness of a bidding language in an iterative Qgt tre
considered together with the opportunity to refine bidsrduen auction.

For instance, a language that is additive-oiitemsis not expressive in a

15



one-shot CA but becomes expressive in an ascending auckien bidders
can decommit from bid! Bidding languages are often designed to support
straightforward bidding with bidders able to state the barnldat maximizes

their surplus in response to prices in each round.

Proxy agents. Proxy agents provide a still richer interface for iterativas
(Parkes and Ungar 2000b, Ausubel and Milgrom 2002). Biddans
provide direct value information to aautomated bidding agemiat bids on
their behalf within an auction. The bidder-to-proxy langeahould allow a
bidder to exprespartial andincompleteénformation, to be refined during
the auction, in order to realize the elicitation and pricgcdivery benefits of

an iterative auction.

Proxy agents can query a bidder actively when they havefingurft
information to submit bids. Proxy agents can also facdifaister
convergence with rapid automated proxy rounds interleavitiubidder
rounds. Mandatory proxy agents can be useful in restridtiegstrategy

space available to bidders.

One concern in the design of proxy auctions is to determinenvtt allow
proxy information to be revised and to determine the degfeemsistency
to enforce across revisions. An additional concern is thatust and

transparencysince the bidding activity is transferred to automated &gen

4 Price-Based lterative Combinatorial Auctions

Many iterative CAs are price based and provide ask pricesittegoidding. In
this section we survey some of these auction designs. Wedimiattention to
auctions designed for valuations that are rich enough tadecthe substitutes
valuations. As such, we exclude the assignment model inhwlhidders have
unit-demand for items. See Bikhchandani and Ostroy (Ch&t®r a taxonomy

that includes this case.

16



All the auctions that we discuss share the same high levedtste:

In each round the auctioneer announces ask prices and agiomdl allocation
and requests new bids from bidders. The bids are used to fatena new
winner-determination problem and update the provisioriElcation, and also to

adjust ask prices and test for termination.

Table 2.1 provides a summary of the characteristics of sogikelawown auctions,
stating properties fostraightforward(non-strategic) bidding. For the cases in
which an auction terminates with the VCG outcome this as$iamis justified in
anex postequilibrium but otherwise one should expect incentivesifemand
reduction. The auctions are described in terms of the streictf the price space,

the bidding language, and the method used to update prices.
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Name Valuations Price structure  Bidding Price Update Quteo
language = method
KC substitutes non-anonitems OR-items  greedy CE
SAA substitutes items OR-items  greedy CE
GS substitutes items XOR minimal ~ min &E
Aus substitutes items single greédy VCG
iBundle; Ascending-prody BSM  non-anon bundles XOR greedy VCG
. general e e . min CE
dvsv BSM  non-anonbundles XOR minimal VCG
Clock-proxy BSM items (+ proxy) XOR greedy VCG
e general e e . min CE
RAD general items OR LP-based —
AkBA general anon bundles XOR LP-based —
iBEA general non-anonbundles XOR greédy VCG
MP general non-anonbundles XOR minirhal VCG

Table 2.1:Price-Based Combinatorial Auctions Formal properties are stated for
straightforward bidding, and with the most general classaitfiations for which
the property holds. Notation ‘—’ in th®utcomecolumn indicates that no formal
properties have been established.

Notes:
a Austraces: + 1 trajectories.

b  Ascending-proxy dynamics are identicali®undle(3), although ascending-proxy
emphasizes a sealed-bid proxy auction form.

¢ Clock-proxy is a hybrid design, with a linear-price cloclkctan
followed by a sealed-bid ascending-proxy auction.

d Ascending price while the auction is open, followed by a daards adjustment
after termination.

Abbreviations:
KC (Kelso and Crawford 1982)

GS (Gul and Stacchetti 2000)

iBundle (Parkes and Ungar 2000a)

dVSV (de Vries, Schummer, and Vohra 2003)
RAD (Kwasnica et al. 2003)

iBEA (Parkes and Ungar 2002)

SAA (Milgrom 2000)
Aus (Ausubel 2002)
Ascending-proxy (AusuimMilgrom 2002)
Clock-proxy (Aaedand Milgrom, Chapter 5)
RBA (Wurman and Wellman 2000)
MP (Mishra and Parkes 2004)

We see a wide variety of prices, from simple prices on iteimgdr prices) to
non-anonymous prices on bundles (non-anonymous and near)i In addition,
the auctions vary in the bids that a bidder can submit in eaghd: OR-itemsan
additive-or bid for multiple itemsXOR an exclusive-or bid for multiple bundles;

single a bid on a single bundle in each rou@R, an additive-or bid for multiple
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bundles. TheXORlanguage has emerged as the definitive choice in recent
designs.
Theprice-updatemethods, which characterize the rules by which prices are

computed in each round, are broken down as follows:

Greedy update: The price is increased on some arbitrary set (perhaps ateof

over-demanded items or bundles.

Minimal update: The price is increased on a minimal sebbverdemanded

items or based on the bids from a setrofnimally undersupplied bidders

LP-based: A linear program, formulated to find prices that are good

approximations to CE prices given current bids, is used jasagrices.

For linear prices, Demange, Gale and Sotomayor (1986) iaghiggnment model
and later Gul and Stacchetti (2000) for substitutes defingamal update in
terms of increasing the prices on a minimal overdemandedf $ems?3

Minimal price updates are adopted to drive prices towardsmdl CE prices. de
Vries, Schummer and Vohra (2003) generalize this to definktas in terms of
minimally undersupplied biddeYsand define a minimal update for general CAs.
All bidders in a minimally undersupplied set face highecps on the bundles for
which they submitted a bid.

RAD and AkBA adopt LP-based price updates and adjust prices to find good
approximations to CE prices given current bids and the otupeovisional
allocation. RAD seeks linear and anonymous prices whitBA seeks non-linear
but anonymous price approximations. Formal convergenggepties have not
been proved for RAD or ABA, although RAD reduces to a simultaneous
ascending price auction for substitutes valuations.

The auctions that are able to implement the VCG outcome ffsiance, Aus for
substitutes and dVSV for BSM coalitional values) are irgéngy because they

bring straightforward bidding into an equilibrium. Stratéprward bidding is a
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best response, whatever the valuations of other biddelsngss the other
bidders also follow a straightforward (perhaps untruthfitlding strategy. This
ex postequilibrium concept is useful because it places no requergson the
knowledge that bidders have of the valuations of other biglde

Winning bidders pay their final bid price in all auctions egcAus,iBEA and MP.
Aus allows for(n + 1) restarts and uses information elicited along each trajgcto
to determine the final payment8EA and MP terminate with UCE prices, at
which point final payments are determined through downwadijigstments.
Auction clock-proxy(Ausubel, Cramton and Milgrom Chapter 5) is a hybrid
auction. The first stage maintains item prices and runs amndstg-clock CA
(see also Porter, Rassenti, and Smith (2003)). This staggeedsfor price
discovery and can be considered to construct approxinregariCE prices. The
second stage is sealed-bid, with bids from the first stageéowd with additional

bids that must be consistent with bids from the clock phase.

4.1 Insufficiency of Simple Prices

It is interesting to consider what form of prices are neagstaimplement
efficient ascending CAs. Gul and Stacchetti (2000) first esklrd this question,
in the setting of substitutes valuations. The authors pieai formal definition of
an ascending CA, but limit attention to linear and anonynpices. They show
that there exists no ascending VCG auction with linear amshgmous prices for
substitutes valuations. The auction due to Ausubel (2068)dutside of this
negative characterization because it uses1 price trajectories.

Recently, Mishra and Parkes (2004) used the UCE-basedgiraracterization to
demonstrate that efficient ascending CAs require both mamanous and
non-linear prices, even for this case of substitutes vianat The authors exhibit
instances for which only non-anonymous and non-linear Uigep exist. As for
sufficiency, auctions dVSV arni@undle are examples of ascending VCG auctions

for substitutes valuations that maintain these rich prices
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However, de Vries, Schummer, and Vohra (2003) extend thaitiefi of
ascending CAs in Gul and Stacchetti (2000) to allow for noarggmous and
non-linear prices and obtain a negative result. When at tgasbidder has a
non-substitutes valuation an ascending CA cannot impl¢therlYCG outcome
even when the other bidders are restricted to substituégan with
non-anonymous and non-linear prices. AuctidBEA and MP lie outside of this
negative characterization because they allow a final dowaswadjustment to
determine final prices.

Thus, with substitutes values but simple prices we mustcgctions with
multiple trajectories or non-monotonic adjustments. Mweg, although rich
prices extend the reach of ascending CAs to substitutesvabe still need to
accept multiple trajectories or non-monotonic adjustrmémthandle richer

preferences than substitutes.

4.2 Primal-Dual Auction Design

Many traditional combinatorial optimization problems dansolved with
primal-dual algorithms. A primal-dual approach uses Iliqgagramming (LP)
duality to formulate an optimization problem as a satistacproblem. Strong LP
duality states that a pair of feasible primal and dual sohgiare optimal if and
only if they satisfycomplementary slackne§8S) conditions. We provide a brief
review of LP theory at the end of this chapter, and refer taeeeto
Papadimitriou and Steiglitz (1998) for a textbook treatimen

In fact, primal-dual theory also provides a useful concapttamework for the
design of iterative price-based CAs. Prices are intergratea feasible dual
solution and the provisional allocation is interpreted ésagible primal solution.
Bids provide sufficient information to formulate and sotestrictedprimal and
dual problems, thavinner-determinatiorandprice-updateproblems respectively
(see Figure 2.2). For further discussion of this idea, sekeB42001), de Vries,
Schummer and Vohra (2003) and Bikhchandani and Ostroy (€h8jp
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Straightforward bidding is first assumed, and later justibg termination with
VCG payments. The winner-determination problem uses mm&bion implicit in
bids to compute a feasible solution that minimizes the tiataof the CS
conditions, and price updates adjust the dual solution ridsvan optimal dual
solution!® CS conditions have an exact equivalence with conditionsufdl)(2)
required for CE prices, and are satisfied on termination fuaion.

Constructively, primal-dual auction design requires tioWwing steps:

1. Formulate an LP for the CAP that is integral, such thatptseal solution
is a feasible allocation. The dual problem should allow epgence to UCE
prices, or to minimal CE prices that support VCG paymenthiéndase of

BAS valuations.

2. Provide bidders with a bidding language that is expresfiv
straightforward bidding, and formulate a winner-detemtion problem to
compute a feasible primal solution that minimizes the violaof CS

conditions as represented in bids.

3. Terminate when the provisional allocation and ask priadisfy CS
conditions (and thus represent a CE), and also satisfy affitiauhl
conditions that are necessary to compute the VCG paymetemaination
(e.g. UCE conditions or minimal CE prices). Otherwise, atlprices to
make progress towards an optimal dual solution that satigfese

conditions.

The characterization of VCG payments in terms of minimal G& BCE prices
suggests two methods to adjust towards the VCG outcome. Etteoafs are
illustrated in Figure 2.3, which considers the price on besd; andSs,
allocated to bidders 1 and 2 in the efficient outcome.

In case (a), the coalitional value function satisfies BSM liedvVCG payments

are supported at the minimal CE prices. Ascending CAs (saalV&V) can

22



converge monotonically to these prices and the VCG outcémease (b), the
coalitional value function satisfies neither BSM not BASth®lugh each bidder’s
VCG payment is supported in some minimal CE there is no siGgle¢hat

supports the VCG payment to both bidders simultaneouslylldsirated,
ascending CAs such @BEA and MP can still converge monotonically to UCE
prices from which the VCG outcome can be determined in a fidjaisament.

The next section presents a case study of primal-dual metlodtie design and
analysis of théBundle auctiort® In Section 4.4 we return to the auctions in Table

2.1, and discuss each in a little more detail.

4.3 Case StudyiBundle

We will focus on variatioriBundle(2), in which prices are non-linear but
anonymous. This variation is efficient with straightfordidnidding and an
additional requirement that bidder strategies satisfyafety” property. Later, we
also briefly describéBundle(3), which employs non-linear and non-anonymous
prices and is efficient without the safety condition.

The interested reader is referred to Parkes and Ungar (@@@aParkes (2001)
for additional details, including a descriptioni®undle(d), which blends
iBundle(2) andBundle(3) and allows for dynamic price discrimination cémns

to be made during the auction. In what follows, we will iBeindle to refer to

variationiBundle(2) unless otherwise stated.

iBundle(2): Anonymous Prices

iBundle maintains ask prices on bundles and a provisionatation and proceeds
in rounds, indexed > 1. In each round a bidder can submit XOR bids on
bundles. In general the bid price on a bundle must be at leastsk price.
Bidders must resubmit bids on any bundle that they are wininirthe current
provisional allocation but can bid at the same price on sumlmale even if the

ask price has since increased. A bidder can also bidests than the ask price
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when making a “last-and-final” bid, at which point she canogler improve her
price. Equivalently, one can simply retain all bids frompo&is rounds. A bid at,
or above, the current ask price is said tochenpetitive and a bidder is
competitive if she submits at least one competitive bid.

The winner-determination problem in each round is to compuprovisional
allocation to maximize the seller’s revenue given bidshwait most one bundle
selected from the XOR bid of each bidder. I&tdenote the bids from biddéy
andpyiq ;(S) denote the bid price on bundke e B;. Winner determination can be
formulated as the following mathematical program:

maxz Z 2 (S)Pbid,i (S)

zi(S)

i€Z SEB;
st Y w(S) <1, Vi (5)
SeB;
Y w8 <1, vy (6)
i€T SEB;:jES

l’Z(S) S {0, 1}, Vi, VS € B;

Constraint (5) restricts the seller to selecting at mostliddrom each bidder.
Constraint (6) ensures the allocation is feasible. Tiebesken first to favor the
allocation from the previous round and then to maximize ti@lper of winning
bidders.

iBundle terminates when each competitive bidder receivemdl® in the
provisional allocation. Otherwise, prices are increadgd, above the bid price
onall bundles that receive a bid from some losing bidder in theectinound and
the new allocation and prices are provided as feedback telsd Prices on other
bundles are implicitly adjusted to satisfy free disposkhaugh only bundles that
receive losing bids need to be explicitly quoted. On teritigmethe provisional
allocation becomes the final allocation, and bidders paiy timal bid prices.
iBundle maintains feasible primal and dual solutions to dareled LP

formulation of CAP and terminates with a CE outcome thasfiag CS

24



conditions. The proof technique is inspired by Bertsek&98{7) analysis of the
AuUCTION algorithm for the special case of unit-demand valuations.
Given ask pricesp;(.S), to bidderi we definee straightforward bidding in terms

of ane-demand set-DS, which is:

eD;(p;) = {5 : vi(S) —pi(S) +€> msg}x(vi(gl) — pi(8),0),¥S C G}
(e-DS)

In words, bidders state in their bid all bundles that coméivi¢ of maximizing
their surplus given prices in each round. This reduces &igttforward bidding

for a small enougla.

Definition 5 (Safety). The competitive bundles in thedemand set of each losing
bidder in each round are non-disjoint, i.e. each pair of bl@sdshares at least one

item.

For example, losing bid§(ABC, $100), (CDE, $50)} from a single bidder
satisfy safety, while losing bid§ ABC, $100), (DE, $50)} from a single bidder

fail the safety condition.

Theorem 6. (Parkes and Ungar 2000aBundle(2) terminates with an allocation
that is within3 min(n, m)e of the efficient solution fos-straightforward bidding

strategies and with bid safety.

The first step of the proof is to introduce an extended LP fdatian (LP,) for
CAP due to Bikhchandani and Ostroy (2002, see also Chapt&iP8)is integral
when the safety condition holds for straightforward bidgdiithe dual formulation
(DLP5) has variables that correspond to anonymous and non-lprizss.

Let K denote the set of feasible partitions. For examfle,B, C) and(AB, C)
are feasible partitions for item&éBC'. Variabley(k) = 1 will indicate that the
allocation must be restricted to bundles in partitiog K. For example, if

partition (AB, C) is selected then the only valid allocations are those in whic

25



AB goes to some bidder arddto another bidder. We have:

max Z Z x{S)vyS) [LP2]

(k) St

s.t. Z xS) < 1, Vi

5C6G

da(S)< > yk), VS

1€ keK:Sek

Y ylk) <1

keK

min m; + 11 [DLPs5]
Wivp(s)vns ZEZI ‘ 3 2

st. m+p(S) > vf9), Vi, S

M, — Y p(S)>0, Vk
Sek

ﬂ—iap(S)7H8 an VZaS

Dual variablep(.S) can be interpreted as tlask priceon bundleS. Then, optimal
mf = maxg{v;(S) — p(S),0} defines the maximal payoff to biddéacross all
bundles given prices, and optimid} = maxycx Y g, p(S) defines the maximal
revenue to the seller across all partitions given pricess iBralso the maximal
revenue across all allocations because prices are anosymou

The dual problem sets prices to minimize the sum of the maxpagoff to each
bidder and the maximal revenue to the seller. Optimal dueépwill correspond
to CE prices whenever the primal LP is integral.

Interpret the provisional allocation and ask prices in ancbafiBundle(2) as
defining a feasible primal and a feasible dual solution (tkxhe, 3, 7;, p, and
I1,). We can now establish termination with CS conditions foaightforward
bidding strategies.

The first primal CS condition is:

#(S) >0 = 7; + p(S) = v{S),  Vi,S (CS-1)
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This states that any bundle allocated to bidderust maximize her payoff across
all bundles at the prices. Condition (CS-1) is approxinyagaitisfied in every
round because the provisional allocation is selected \ebeact to bids, which
are in turn drawn from demand sets. Formally, a relaxed form of condition
(CS-1) holds, witht;(S) > 0 = 7; + p(S) < vi(S) + 2¢, for all i andS.
The second primal CS condition is:

§k) >0=>T, - > p(S)=0,  Vk (CS-2)

Sek

This states that the provisional allocation must maximimedeller’s payoff (i.e.
revenue) given the prices, acradkfeasible allocations and irrespective of bids
received from bidders.
Bundle S has astrictly positive price if it is greater than the price on every bundle
contained inS. Then, (CS-2) follows from properties (P1) and (P2), which a

maintained in each round of the auction:

(P1) All bundles with strict positive prices receive a bidrfr some bidder in

every round.

(P2) One or more of the revenue-maximizing allocations &rgvound can be

constructed from bids from different bidders.

Formally, (P1) follows because one can show that a losinddsidill continue to
bid for S in the next round, even at the higher price. Property (PXvia from

the safety property, which prevents a single bidder fronsicapthe price to
increase on a pair of disjoint bundles. This is why we need ety condition.
Combining (P1) and (P2), and together witDS, we get a relaxed formulation of
(CS-2), withj(k) > 0 = TI; — 3 gy H(S) < min(m,n)e, for all partitions

ke K.

Dual CS condition (CS-3), states:

i >0= ) #{S)=1, Vi (CS-3)
SCG
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In words, every bidder with positive payoff for some bundi¢he current prices
must receive a bundle in the provisional allocation. (C$ 3gtisfied for all
bidders that receive bundles in a particular round, but oiotife losing bidders
that are still competitive. However, (CS-3) holds for eveigder on termination
because at this poiat-DS = () for all losing bidders.

(CS-3) and (CS-1) are equivalent to CE condition (1) and 2&E®gether with an
additional requirement that a provisional allocation isa}s selected is
equivalent to CE condition (2).

Finally, we obtain an upper-bound on the worst-case effigiemror ofiBundle,
in terms of the minimal bid increment First, sum the approximate (CS-1)
condition over all bidders in the final allocation, and suhst 7; = 0 for bidders

not in the allocation by (CS-3). This gives:

Zﬁ'i < Zvi(gi) - Zﬁ(ﬁi) + 2min(m,n)e (7

i€T i€T ieT
= ﬂs+Zﬁi < Zv,( ;) 4+ 3min(m, n)e (8)
i€T =

where Eq. (7) follows because an allocation can include neerbondles than
there are items or bidders, and Eq. (8) is by substitutiom®étapproximate
(CS-2) condition.

The LHS of Eq. (8) is the value of the final dual solution, anel finst-term on the
RHS is the value of the final primal solution. Noli, + 3, #; > w(Z), (the
value of the optimal primal) by LP weak duality, and therefor

w(T) < Ty + 3,7 < 32 0i(S;) + 3min(m, n)e. 0

A complete proof must also show termination. The basic idaéa assume the
auction never terminates and prove that a bidder must esdngubmit a bid at a
price above her valuation, assuming finite values and a finiteber of items,

from which we get a contradiction with straightforward hirigl
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iBundle(3): Non-anonymous Prices

iBundle(3) is the variation aBundle in which each bidder faces non-anonymous
prices in every round. The dynamicsi&undle(3) with straightforward bidding
are identical to that of Ausubel and Milgrom’s (2002) asdageproxy auction,
although ascending-proxy is not described in price teiBgndle(3) is efficient
for straightforward bidding with general values. Moregwhe auction will
terminate with VCG outcomes for BSM coalitional value fuons.

Let !, ;(S) denote the ask prices to bidden roundt. Initially, pj, ;(S) =0

for all bundlesS and all bidders. Bids are received, and the winner detelioma
problem solved, as ilBundle(2). Then, for each bidder not in the provisional
allocation, the pricéo that bidderis increased by the minimal bid increment,

€ > 0, above her bid price on all bundles submitted in that round,adjusted for
free-disposal.

It is now quite immediate to establish th&undle(3) terminates in CE with
straightforward bidding. The prices faced by a bidder im@tiare parameterized
by #! > 0, which can be interpreted as the maximal payoff to the bidérat

round. The ask price on bundfin roundt is defined as:
pgsk,i(s) = max((), UZ(S) - ﬂ-f) (9)

Initially, 71 = maxg{v;(S)}, for all i, and the price is zero on all bundles. The
payoff 7! decreases monotonically during the auction and prices tooiually
increase. The-DS for bidder: in roundt includes every bundle for which

v;(S) > =}, and increases monotonically across rounds. Eventuaignw! is
less thare the prices on each bundle are withiof her value and she will bid for
every bundle with positive value in hetDS 1’

Condition (CS-1) holds trivially in each round and (CS-3)dsoat termination,
just as iniBundle(2). In addition, (CS-2) holds in each round becatishe
special structure of prices: every bundle with a strict fpasiprice receives a bid

in a bidder'se-DS. This does not require the safety condition.
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Theorem 7. (Parkes and Ungar 2000aBundle(3) terminates with an allocation
that is within3 min(n, m)e of the efficient allocation fo¢-straightforward

bidding strategies and with bid safety.

Theorem 8. (Ausubel and Milgrom 2002Bundle(3) terminates witminimal
CE prices and the VCG outcome for BSM valuations and stragliard bidding.

Proof. Consider an arbitrary biddgr and letw; denote her payoff in the minimal
CE prices. Refer to the bidders in the provisional allocatioroundt as the
winning coalition We prove that the payoﬁ-;§. to bidder;j in any round: satisfies
775. > 7;. First, bidderj must be in the winning coalition in any round in which
7 < 7;. To see this, consider a coalitidnC Z, with j ¢ L, and observe that the
revenue to the seller from coalitiahin roundt is exactlyw(L) — >, ., = from
Eq. (9). Then,

—Zﬂf < w(L) —Z?Tf—i-(fj -

€L €L
o w+w@) —w(\ ) (10)
1€LU{j}
<w()— Y mHw@u{j})-—wl) (11
1€LU{j}
wLu{jh) - Y

ieLU{j}

where Eq. (10) follows from the equivalence between maxipagbff and VCG
payoff for BSM valuations and Eq. (11) follows from the BShhelition. Thus,
the payoff to bidder cannot fall more tham belowT; (since the bidder always
wins, and its prices are unchanged), and prices converdee tminimal CE prices

ase — 0. |

An ex postequilibrium is invariant to the values of bidders, i.e. gfigforward
bidding is an equilibrium eveax postonce every bidder knows the values of

other bidders.
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Theorem 9. Straightforward bidding is an ex post equilibriumi&undle(3), and

the auction is efficient, for BSM valuations.

This result requires that the revealed preferences by a&bat@consistentvith
some valuation during the auctidf Given this, we can fix the reporis_; of

other bidders. If biddef follows a straightforward strategy the auction
implements the VCG outcome because valuations satisfy B@Edfeover, if
bidder: reports some other valuatian # v; the auction implements the efficient
allocation for(9;, v_;) and CE prices that are at least the bidder’s Vickrey
payment in that outcome. Thus, bidd&rbest-response is straightforward
bidding because her payoff in the truthful Vickrey outconoenéhates her payoff

in any other Vickrey outcome, and therefore also in thisraitee CE outcome.

4.4 Ascending Price Combinatorial Auctions

Perhaps the defining feature of tigundle family of auctions is that they allow
non-linear, and sometimes non-anonymous ask prices. Galg\¥SV,iBEA and
MP auctions have a similarly rich class of prices. The othetians in Table 2.1
maintain simpler prices, typically anonymous and ofterdin

In describing the auctions we group together auctions KG) S2S and Aus
because they are all designed to handle the special casbstitgtes valuations.
Then we briefly discuss dVSV, which is designed for a BSM ¢imaial value
function, and is presented in detail in Bikhchandani ana@diChapter 8). The
ascending-proxy auction is a sealed-bid implementatiaBondle(3) with
interesting theoretical properties, and will be discusaedg with other proxied
auctions in Section 5.2 and presented in more detail in Aelsaid Milgrom
(Chapter 3). Finally, we describe the clock-prodEA and MP auctions, which

are designed for general valuations.
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Special-Case: Goods are Substitutes

Recall that linear CE prices exist for substitutes valuejdout that non-linear and
non-anonymous prices are still required to support VCG pats) even for
substitutes.

Auction KC was first described in the setting ofr@atching problemwith

multiple firms and multiple workers. The matching problem ba reinterpreted
as an allocation problem with each firm corresponding to désiédnd each
worker to an item. Bidders can submit bids for multiple itdmsach round.
Winner determination allocates all items that receive hid3 prices are increased
on over-demanded items. The auction converges to a competduilibrium
outcome and an efficient allocation for straightforwarddiig). Kelso and
Crawford (1982) do not investigate strategic behavior errtiationship between
the outcome and the VCG payoffs.

Auction SAA is closely related to KC in that bidders can sutdoils for multiple
items and the bid on an item must be repeated if it is winningwéeler, SAA
maintains anonymous prices and is distinguished in itSglanee of activity and
bid-improvement rules. The auction design forms the badiseoseries of FCC
wireless spectrum auctions.

Auction GS adopts the same basic methodology as KC, excappitites are
anonymous and increased on a sandifimaloverdemanded items. This provides
termination with minimal CE prices when bidders are strdigivard. Just as in
KC and SAA, these prices do not support the VCG outcome fostgubes
valuations and straightforward bidding is not an equilibri

Auction Aus is unique amongst the auctions for substitugdsations in its ability
to terminate with the Vickrey outcome. Ausubel (2002) agbsethis despite
using only anonymous item prices by running- 1 separate auctions, each with
its own price trajectory. Information across each auctsonsied to adjust final
payments to VCG payments. Letl_4,...,A_,,, A), denote the sequence of

auctions in Aus, with biddetr excluded from participation in auctioad_;. All
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bidders are invited to participate in the final auction. Thecation is determined
in auction.A, but the payment by bidderis determined from the price and
bidding dynamics in auctiond _; and.4. The dynamics ind_; are used to adjust

downwards the final payment for bidder

Bidder Submodular

Auction dVSV is similar toiBundle, with bids for XOR sets of bundles and prices
that are non-linear and non-anonymous and increased badadsofrom losing
bidders. However, the price update rule is different. dVB8&e@ases prices on the
set of minimally-undersupplied bidders. This set can idelbidders that are in

the current provisional allocation, as well as losing biddand is different from
the set of losing bidders on which prices are adjusta@undle. Although there
has been no computational study, de Vries, Schummer, ané{2803) argue by
analogy to algorithms in the optimization literature th&iSY/ will converge more
quickly thaniBundle!® In iBundle’s favor is that the price-update step is simple

to explain to bidders and easy to compute.

General-Purpose CAs

RAD and AkBA are general-purpose ascending CAs, designed without
restrictions on agent valuations. Although an equilibriamalysis is not available
for either auction their performance has been evaluatedriampntally, through
human-based laboratory studies and through computatsimalation. Both
auctions formulate an LP to adjust priceskBA provides non-linear prices and
supports an XOR bidding language while RAD provides lingargs and
supports an OR bidding language.

A competitive equilibrium perspective provides a unifyiwigw of the auctions.
Recall that CE prices in CAP must be both non-linear and mamamous in
general. One can interprettBA as an iterative procedure to determine

anonymous and non-linear prices that approximate CE pracesRAD as an
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iterative procedure to determine anonymous and lineaegtitat approximate
CE prices.

The bidding rules and winner-determination step itBA are much as in
iBundle. Each bidder submits an XOR bid, from which the wirthetermination
problem is formulated. ABA differs fromiBundle in the price-update step,
which is parameterized with < k& < 1.

Let S = (S%,...,S%) denote the provisional allocation in round!, (S)
denote the ask price ofy A!(S”,S") = p!(S") — p'(S’) denote the price
difference between bundl¢’’ and bundleS’, Wt denote the current winners, and
DS;(pt,) denote the bids submitted by bidden response to ask prices kBA
computes prices for periad+ 1 that will maintain CS condition (CS-1) for all
bidders, given the demand-set information in their mostmebid.

In particular, pricego;jkl(S) are computed to satisfy:

a) piH(S) > p'(S), for all bundlesS € St that receive bids from some losing
bidder,i ¢ W*.

b) AtFL(S" ") > At(S”,S") for any pair of bundless”, S’, such thatS” is
allocated to a winning biddeérc W*, and that bidder also bids d#'.

These prices are not unique in general, adBA breaks the tie by selecting a
convex combination of prices, with{!,! (S) = (1 — k)p'*1(S) + kp1(S),
wherep!*1(5) andp'™!(S) are theminimalandmaximalprices that satisfy
conditions a) and b), for some paramdiex k < 1.

Finally, new bids must improve the price by a minimal bid exaente > 0 on at
least one bundle. Thie= 1 variation, with price adjustmeng*! is thought to
have better incentive properties (Wurman and Wellman 1,988) empirical
analysis has demonstrated high efficiency with straightéod bidders (Wurman
and Wellman 2000).

RAD provides an additive-or (OR) bidding language, and wirgetermination is
formulated to allow multiple bids to be accepted from any biakeler (Kwasnica,

Ledyard, Porter, and DeMatrtini 2004). Straightforwarddindj is well defined for
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the OR language when valuations have additive-or semgetigswhen the
bidder’s value for a disjoint combination of packages isgtm of the individual
package valuesf However, this OR language is not always expressive for
straightforward bidding. For example, a bidder with vailomat

(AB,$20), (CD, $20), (ABCD, $20) facing pricef AB, $10) and(C'D, $10)

can not represent her best-response demand set (dither C' D but not both)
with an OR language.

RAD maintains linear and anonymous prices and formulateptite update as a
series of LPs. The methodology is close in spirit to methadstd Rassenti,
Smith and Bulfin (1982), where approximate prices are coptpint a one-shot
CAZlLetsSt = (Si,...,S!) denote the provisional allocation computed in round
t. RAD computes new linear prices that exactly match the hickdor all

winning bids, with}_ ;o Pt (7) = phia,s(S1), andminimize the maximal regret
across losing bidswith regretdefined as the difference

max{O,p%id’i(S) — Zjespg:kl (7)}. Ties are broken first to lexicographically
lower the regret on as many losing bids as possible, and th@nices for items in
winning bids to maximize the minimal price on each such benihis procedure
ensures a unique solution and is designed to provide bidddrsnformative
signals.

Experimental results in a laboratory with human bidders agstrate that RAD
achieves higher efficiency than non-combinatorial austi@anks, Ledyard, and
Porter 1989). In addition, RAD is demonstrated to termireth fewer rounds
than the SAA design, which typically has fewer rounds thampé ascending-bid
CAs (Cybernomics 2000).

AuctionsiBEA (Parkes and Ungar 2002) and MP (Mishra and Parkes 2084) ar
general purpose ascending Vickrey auctidBEA extendsBundle(3) to adjust
past the first set of CE prices and achieve UCE prices witligbiifarward

bidding. This provides enough information to adjust dowrdsao VCG

payments upon termination, bringing straightforward biddnto anex post
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equilibrium for general values. Similarly, MP extends thimimal price update
rule in dVSYV, to ensure that the auction terminates with UGQEgs. The same
tradeoff occurs betweaBEA and MP as occurs betweédundle and dVSV.
Although one should expect MP to converge more quickly A, each price

update inBEA is simple to compute and easier to explain to bidders.

5 Non Price-Based Approaches

We survey three examples of non price-based approachesdtve CA design.
These auctions do not require that bidders submit bids pores to ask prices.
Instead, they include richer query models and are struttiuredamentally
different than ascending-price auctions. The auctionsrid one of the

following categories:

Decentralized Approaches.The winner determination problem is moved to the
bidders, who are responsible for submitting bids and alsepeding
allocations of items with high revenue given existing biflke Adaptive
User Selection Mechanis(AUSM) (Banks, Ledyard, and Porter 1989), a
continuous auction in which winner determination is disited to bidders,

provides a canonical example.

Proxy Auctions. Proxy agents, which automatically submit bids through a
predetermined bidding procedure, provide an interfacevde bidders and
an auction. Bidders provide incremental value informatmproxy agents,

which may query bidders actively.

Direct-Elicitation Approaches. (Conen and Sandholm 2001) Explicit queries
are formulated by the auctioneer (perhaps in a decentdalizg), and a
bidder’s strategy determines how to respond to these cquevielti-party
elicitation approaches are used to ensure that informagiported by one

bidder can be used to refine the queries asked of anotherrbidde
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There is perhaps some ambiguity between the proxy auctgm®ach and the
direct-elicitation approach. We choose to reserve the fgaxy auctionto
settings in which the proxy agents are restricted to folimpa straightforward
bidding strategy in an auction protocol. Direct-elicitgtimethods may also
distribute elicitation to individual proxy agents. Howewvhe proxies in
direct-elicitation interact with a richer centralized fwool (more akin to a
computational procedure), that can itself be designed kvitwledge that it will

be interacting with automated proxy agents.

5.1 Decentralized Approaches: The AUSM Design

AUSM is a continuous auction that maintains a list of prasisil winning bids
and astandby queueThis standby queue contains bids that have been submitted
but are not provisionally winning, and is designed to alladders to coordinate
their bids. A bidder can always submit a bid to the queue andatsd suggest a
new combination of bids from the queue that provide moremegehan the
current allocation. This proposed allocation becomes éweprovisional
allocation. The bidding language within the queue is imgjicadditive-orand
bidders are unable to place logical constraints betweetiptaubids in the queue.
AUSM terminates after a period of quiescence.

AUSM distributes the winner-determination computatioroas the bidders. The
auctioneer is only required to verify that a new provisioal#cation is better
than the current allocation and that it is formed from bidthim standby queue.
Related ideas are found in the work of Brewer (1999) and tHéSHauction
(Land, Powell and Steinberg, Chapter 6).

On one hand, this decentralization can remove a compugtianitleneck from
iterative CAs. On the other hand, this decentralizationtias the outcome in
favor of technologically sophisticated bidders betteeablsolve larger
optimization problems. See PekeC and Rothkopf (Chaptead® Parkes and

Shneidman (2004) for an additional discussion of the irceraspects of
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decentralized approaches to solving the winner-detetrom@roblem.

Another potential concern with AUSM is that bidders must bke d@o process the
disaggregated feedback provided in the auction, in the fafreubmitted bids.
Nevertheless, AUSM has been demonstrated to provide laditteative efficiency
than a non-combinatorial auction in experiments with huilnidders (Banks,
Ledyard, and Porter 1989).

5.2 Proxied Auctions

Proxied auctions include automated proxy agents whichfade between bidders
and the auctioneer and submit bids following a predeterchprecedure. In an
ascending CA the proxies typically follow straightforwaridlding strategies. If a
proxy agent is following dirst-beststrategy (i.e. the bidding strategy that an
agent would follow with full information about a bidder'slue), then it must

elicit enough information to compute a best-response teprin each round.

At one extreme, each proxy agent can require direct and aimptvelation at the
start of the auction (Ausubel and Milgrom 2002, also ChajeOf course, this
reduces the auction to a sealed-bid auction. However, wherbivied with a
bidder-to-proxy interface that allows bidders to provideremental value
information, proxied auctions suggest a paradigm shiftarative CAs from
indirectrevelation (e.g. via best-response bids to prices) to mergal butdirect
revelation (Parkes 2001, section 7.5).

Proxy agents can maintain partial information about vabuat For instance, this
information could be in the form aéxact values for a subset of bundles
approximate values for each bundleroxy agents can decide when to query and
when to bid, based on a model of costly elicitation.

The bidder-to-proxy interface need not be constrainedgiwéd languages such as
XOR or OR, and can be adapted to suit the local problem of aehidebr

example, a bidder in a logistics problem can define the cainssrand costs for

her local business problem. The ability to support this lahdxpressiveness can
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prove decisive in practicé.

In addition to enriching the bidding language, proxy autican also offer the
following advantages:

a) Proxy auctions can restrict the dynamic strategiesatailto bidders, for
example by enforcing straightforward bidding based on meplovaluations and
by requiring consistent information-revelation to prexisee Section 7.5, Parkes
2001, and Ausubel and Milgrom 2002).

b) Proxy auctions offer opportunities facceleratedmplementations of auctions,
because there can be multiple fast “proxy rounds” of biddimerleaved with a
few “human rounds” to refine proxy’s value information, seafirhan, Menon,
van der Heever, and Wilson (Chapter 17) and Wurman, ZhongCan(2004)23

In imposing strong activity rules, for instance to requiratta bidder provides a
consistent response to queries during an auction, one hhmstfar bidder
mistakes and also for bidders that might be adjusting thadiets about value as
they receive feedback (e.g. ircarrelated valuesetting). Ausubel, Cramton and
Milgrom (Chapter 5) advocate using a relaxed consistenieytauprovide

incentives for early demand revelation while allowing foese other effects.

5.3 Direct-Elicitation Approaches

A direct-elicitation approach formulate queries abouteidvaluations, to which
bidders are expected to respond (although not necessatihfully). Queries are
typically interleaved across bidders so that the querikedasf one bidder can be
selected given responses by other bidders. In this way, letenglicitation can be
avoided through focused elicitation on interesting pafthe allocation space.
Sandholm and Boutilier (Chapter 10) provide an extendecldision of
direct-elicitation methods for the design of iterative CAs

The query process in direct elicitation can be fully intégdawithin a
winner-determination algorithm to determine whether gfoinformation is

available to implement an efficient allocation (Conen anddbalm 2001, e.g.).
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The query process may also be defined through an algoritletimique that does
not have a very natural analogue with traditional auctiosigtes, such as
computational learning theor{Zinkevich, Blum, and Sandholm 2003, Lahaie and
Parkes 2004a).

Example queries can includeis‘bundlesS; preferred to bundlesy?”; “is your
value on bundle5; at least$1007?'; and “what is your value on bundl&,?.” The
goal is to ask the minimal number of queries required to dater the efficient
allocation and perhaps also to determine the VCG paymentspdting the VCG
payments brings truthful response by bidders int@apostequilibrium.

We know that any elicitation process must also determine @Epif the goal is
to determine an efficient allocation, and UCE prices if theG/@itcome is
important (see Section 2). Thus, one reasonable approasiplisitly price

based with elicitation structured as a search for CE prices. Carealso consider
anallocation-basedhpproach, with elicitation structured as a search for the

efficient allocation.

Price based. Query bidders until the value information is sufficient taifyea set
of UCE prices and a supporting allocation for the main econdror
instance, one can simulate learning algorithms to elicitler valuations
until they are known with enough accuracy to determine UG&epr
(Lahaie and Parkes 2004a, Lahaie and Parkes 2004b).

Allocation-based. Query bidders until the value information provides a
certificate for the efficient allocation and the Vickrey pants. Use partial
information to augment a search in allocation space, ekegoew queries
to refine information that will resolve current uncertaiatyout the efficient
allocation (Conen and Sandholm 2001, Hudson and Sandhdd) 20

As yet there are no published studies to compare the eiaitaffectiveness and
computational scalability of price-based approaches dadation-based

approaches. Price-based approaches may be fundamenta#ysoalable, with
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gueries determined by solving optimization problems thatrastricted by current
bidder responses, for instance via winner-determinatroblpms defined on
bundles returned by best-response queries. In compagfooation-based
approaches must strive to avoid maintaining an allocatraplythat scales
exponentially with the number of itend$.

Price-based approaches are also naturally decentralizadbroxied architecture,
each proxy agent can elicit preference information inddpatly until it has
enough information to determine its best-response to supgces. This
best-response information can verify that an allocaticeffisient even though
each proxy knows nothing about the values of other bidders.

Recently, methods from computational learning theory (idve been adapted
to direct elicitation. CLT providemmembershigjueries (“what is your value on
bundleS?”) andequivalencegueries (“is your valuation functiof? If not,
identify a bundleS for which ©(S) is incorrect.”) In one approach, each proxy is
responsible for learning thexactvalue function of a single bidder in isolation
(Zinkevich, Blum, and Sandholm 2003, Blum, Jackson, Salmihand Zinkevich
2004). In another approach, Lahaie and Parkes (2004ayat¢eGLT into
price-based approaches and deenand querietd simulate equivalence queries.
A demand query presents prigesnd a bundles and asks whethée§ is in the
demand set of the bidder at the prices. This coordinateiagion across proxy
agents and provides an elicitation method that can termigaty as soon as CE

prices are discovered and without learning values exactly.

6 Summary

Iterative CAs are of critical importance in addressing thebfem of preference
elicitation, which many view as the biggest issue to surmauthe real-world
deployment of CAs. The sophisticated combinatorial optation and pricing
algorithms of CAs are impotent without rich bid informatifsom bidders.

Iterative CAs focus elicitation, often through price digery, and can find

41



efficient allocations without bidders reporting, or evemguiting, their exact
value information. We emphasized price-based approaehnesn particular a
primal-dual design paradigm. Canonical non-price basedoaghes, including
proxied- and direct-elicitation approaches, were alsoudised.

For a related discussion of the primal-dual approach ta@udesign see Chapter
8, and see also Chapters 3, 5 and 6 for discussions of spéeritive CAs.
Chapters 9, 10 and 11 relate to the discussion of biddingukpes, elicitation,
and communication complexity. Chapter 17 discusses msttwaccelerate the
computation of the outcome of a proxied ascending price CA.

Looking ahead, we see a number of outstanding problems idesign of

iterative CAs:

- Introduce thecostof preference elicitation more explicitly into the auction
design problem. Current methods are maiinst best and seek to find an
efficient allocation with as little information as possibBut what happens when
this minimal information remains too costly for bidders toyide? This is the
problem of designingecond-bestuctions, that make the right tradeoff between
the cost of information and the value of additional inforimatin terms of
improving the market allocation. Some initial progress ibasn made in the
analysis of auction design with costly information (Comaie Jehiel

2000, Larson and Sandholm 2001, Fong 2003, Parkes 2004)yitmdounded
communication (Blumrosen and Nisan 2002, Blumrosen, Niaad Segal 2003),
but much more work needs to be done.

- Design iterative CAs for which straightforward bidding isex postequilibrium,
but which do not suffer from the well-known vulnerabilitiesthe VCG auction
that are outlined by Ausubel and Milgrom (Chapter 1). Thasgians will
necessarily not be allocatively efficient, but may be mowgrdble due to new
robustness against manipulation by coalitions and impgtogeenue properties.

- Current auctions for general valuations for which thegedtiesults are available

use XOR bidding languages which are not concise enough tsdgeaifor many
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real-world applications. We need iterative CAs that suppoher bidding
languages, for instance allowing side constraints, voldiseounts, and other

high-level bidding logic to be stated and then refined dutirgauction.
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Notes

1One argument commonly made for why very few VCG mechanismseen
in practice is that bidders are reluctant to reveal their glete and true valua-
tions in a situation of long-term strategic interaction {R@pf, Teisberg, and Kahn
1990).

2The observed vulnerabilities of the VCG auction can be vikag problems
intrinsic to the task of implementingfficientallocations in arex postequilibrium
in iterative CAs, given the uniqueness of the VCG auction rgrefficient auctions
(see Chapter 1).

3Goods are substitutes is the largest set containing uniade valuations (with
v;(S) = maxjeg{vi;} for all S, wherev;; is the value for iteny in isolation) for
which the existence of linear CE prices can be established #8d Stacchetti
1999).

4Gul & Stacchetti (1999) show that there is often no lineacemquilibrium
that supports the VCG payments with substitutes valuati@s the other hand,
linear prices can support the VCG outcome for unit-demartdatians (Leonard
1983).

SComputational analysis on a broad test suite of problemamusts demon-
strated failure of buyers are substitutes in around 43% sibinces (Parkes 2001,
Chapter 7, pp.216).

8In fact, the prices will supporll efficient allocations in each marginal econ-
omy because prices that support any one efficient allocatipport all.

"Parkes (2002) usegjent-independende refer to privacy-preservation. Parkes
also requires an additional technical requiremenit¢ome-independengedhat is
without loss of generality for “best-response bidding laages,” which are ex-
pressive enough to simulate at least the following bimmdleS; is worth at least
$100, andbundleS; is worth at least$50 more than bundi&y; andbundleS; has
value $200.

8The form of activity rule used in the FCC spectrum auctiondus to Paul
Milgrom and Robert Wilson. The rule requires quantities inidhe auction are
(weak) monotonically decreasing. Similar rules have sineeome standard in
ascending CAs.

9Roth and Ockenfels (2001) have studied the use of deadlieesis rolled
closures, on eBay and Amazon Internet auctions respectiBalders on Amazon
bid earlier than on eBay, and many bidders on eBay wait umdillast seconds of
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an auction to bid.

10Click-box bidding was adopted by the FCC in the light of evide that bidders
used the trailing digits for signaling in early wireless &jpem auctions.

110Of course, arbitrary decommiting may be undesirable becaslows insin-
cere bidding and cheap talk.

12BAS holds and there is a set of minimal CE prices that will supfhe VCG
outcome. However, Gul and Stacchetti’s (2000) auction taais item prices and a
stronger condition, such as unit-demand valuations, isired for VCG payments
to be supported with linear CE prices.

13A set of items,S’ C G, areoverdemandedhen it is not possible to satisfy the
demand sets of bidders that demand only itemS'in

1A set L C T of bidders are undersupplied if not all bidders can be satisfi
the provisional allocation.

®0ne can also imagine that each round of the auction closeduthlity gap
between the feasible primal and dual solutions. At ternonathe duality gap is
zero, complementary slackness holds, and we have an effalenation and CE
prices.

1®Recently, de Vries, Schummer and Vohra (2003) observe aalodistinc-
tion between thesubgradientapproach adopted irBundle and thegorimal-dual
approach adopted in dVSV and MP. One can view subgradieriadetas a spe-
cialization of primal-dual, and thus we prefer to continae@atopt theprimal-dual
terminology throughout this section.

YSpecifically, the bidder need only bid for bundlsfor which there are no
bundlesS’ C S with v;(S’) = v;(S), i.e. taking advantage of sparse valuations.

18A simple way to achieve consistency is to use a proxy agestfatde. The
proxy can follow a straightforward bidding strategy basedvalue information
reported by a bidder. A bidder can provide additional infation as needed but
must be consistent during the course of the auction.

BIn particular, de Vries, Schummer, and Vohra (2003) noteiftiandle is more
correctly a subgradient algorithm while dVSV is a primaktalgorithm. Primal-
dual algorithms are inherently faster than subgradierdrafgns in the optimiza-
tion literature (Fisher 1981).

20This property is satisfied by the “spatial fitting” environmieised by Kwas-
nica, Ledyard, Porter and DeMartini (2004) in experimentiatroduced in Banks,
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Ledyard and Porter (1989).

2lGraves et al. (1993) have also described LP-based methquiswinle price
feedback in a multi-stage combinatorial auction procedutepted at the Univer-
sity of Chicago Graduate Business School in the 1990’s.

22For instance, Kalagnanam, Bichler, Davenport and Hohnkag@r 23) and
Caplice and Sheffi (Chapter 21) discuss the role of item grazupled with vol-
ume discounts and complex bid-taker constraints in ingugtrocurement and
logistics.

23Indeed, the speed of iterative combinatorial auctions ffie deen cited in
FCC discussions as one potential drawback in comparisdm limgéar price auc-
tions.

24Current allocation-based algorithms cannot scale beyohdnalful of bid-
ders and tens of items (Hudson and Sandholm 2004). In cosgparascending-
price auctions readily scale to problems that push the lohicurrent winner-
determination technology (Parkes and Ungar 2000a). We eatr@ware of any
computational studies of price-based direct elicitatiosthnds such as those of
Lahaie and Parkes (2004a).

7 Appendix: LP Theory

Consider the linear program:

max ¢!z [P]

st. Az <b

x>0

whereA is am x ninteger matrix,: € R™ is an-vector, and: andb aren— and
m-vectors of integers. Vectors are column-vectors, andtioota’ indicates the
transposeof vectore, similarly for matrices. The primal problem [P] is to
compute a feasible solution farthat maximizes the value of the objective

function.
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The dual program is constructed as:

min bTy [D]
st. ATy>e¢

y=>0

wherey € R™ is am-vector. The dual problem is to compute a feasible solution
for y that minimizes the value of the objective function.

Let Vip(z) = ¢!z, the value of feasible primal solutian andVprp(y) = b'y,

the value of feasible dual solutian

Complementary-slackness conditions express logicaioakhips between the

values of primal and dual solutions that are necessary dfidisat for optimality.

Definition 6 (Complementary-Slackness)Complementary-slackness
conditions constrain pairs of primal and dual solutiof&imal CS conditions

statez” (ATy —c) = 0, or in logical form:
z; > 0= Ay = c; (P-CS)

where A7 denotes theth column of4 (written as a row vector to avoid the use of

transpose)Dual CS conditions statg’ (Az — b) = 0, or in logical form:
Yj >0= Azx = bi (D-CS)
whereA; denotes théth row of A.

Theorem 10 (strong-duality). A pair of feasible primalz, and dual solutionsy,
are primal and dual optimal if and only if they satisfy the

complementary-slackness conditions.

Proof. Primal CS holds iftc” (ATy — ¢) = 0, and Dual CS holds iff

y'(Az — b) = 0. Equating, and observing that A"y = y” Az, we have P-CS
and D-CS iffx”c = 4™, or ¢’z = bTy. The LHS is the value of the primal,
Vip(z), and the RHS is the value of the dubhp(y). By the strong duality
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theorem,Vip(z) = VpLp(y) is a necessary and sufficient condition for the

solutions to be optimal. O
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A B AB minimal information set

Bidder 1 | 30* 0 30 U1 (A) > Ul(B),’Ul(A) > ’Ul(AB),’Ul(A) > 25
Bidder 2 0 40 40 UQ(B) > UQ(A),’UQ(B) > UQ(AB),’UQ(B) > 25

Bidder3| 0 20 40 v3(A) < 0,v3(B) < 20,v3(AB) < 40
Bidder4 | 25 0 25 vi(AB) < 25
Bidder5| 0 25 25 vs(AB) < 25

(@) (b)

Figure 2.1: Example 2.2:(a) Bidder valuations, with the efficient allocation

indicated by *. (b) Minimal information on bidder valuations to compute the
VCG outcome.
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Figure 2.2:A Primal-Dual Interpretation of an Ascending CA.
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(a) BSM holds. (b) BAS fails.

Figure 2.3:Adjusting towards the VCG outcome in price-based iterativeCAs.
CE prices lie within the shaded regions.
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