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Chapter 2: Iterative Combinatorial Auctions

David C. Parkes

1 Introduction

Combinatorial auctions allow bidders to express complex valuations on bundles of

items, and have been proposed in settings as diverse as the allocation of floor

space in a new condominium building to individual units (Wired 2000) and the

allocation of take-off and landing slots at airports (Smith, Forward). Many

applications are described in Part V of this book.

The promise of combinatorial auctions (CAs) is that they canallow bidders to

better express their private information about preferences for different outcomes

and thus enhance competition and market efficiency. Much effort has been spent

on developing algorithms for the hard problem of winner determination once bids

have been received (Sandholm, Chapter 14). Yet, preferenceelicitation has

emerged as perhaps the key bottleneck in the real-world deployment of

combinatorial auctions. Advanced clearing algorithms areworthless if one cannot

simplify the bidding problem facing bidders.

Preference elicitation is a problem both because of the communication cost of

sending bids to the auction and also because of the cost on bidders to determine

their valuations for different bundles. The problem of communication complexity

can be addressed through the design of careful bidding languages, that provide

expressive but concise bids (Nisan Chapter 9). Non-computational approaches

can also be useful, such as defining the good and bundle space in the right way in

the first place (Pekeč and Rothkopf Chapter 16).

However, even well-designed sealed-bid auctions cannot address the problem of

hard valuation problems because they preclude the use of feedback and price
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discovery to focus bidder attention. There are an exponential number of bundles

to value in CAs. Moreover, the problem of valuing even a single bundle can be

difficult in many applications of CA technology. For instance, in the airport

landing slot scenario (see Ball, Donohue and Hoffman Chapter 20) we should

imagine that airlines are solving local scheduling, marketing, and

revenue-management problems to determine their values fordifferent

combinations of slots.

Iterative combinatorial auctions are designed to address the problem of costly

preference elicitation that arises due to hard valuation problems. An iterative CA

allows bidders to submit multiple bids during an auction andprovides information

feedback to support adaptive and focused elicitation. For example, an ascending

price auction maintains ask prices and allows bidders to revise bids as prices are

discovered. Significantly, it is often possible to determine an efficient allocation

without bidders reporting, or even determining, exact values for all bundles. In

contrast, any efficient sealed-bid auction requires bidders to report and determine

their value for all feasible bundles of goods.

This ability to mitigate the preference elicitation problem is a central concern in

iterative CA design. But there are also a number of less tangible yet still important

benefits:

• Iterative CAs can help todistributethe computation in an auction across

bidders through the interactive involvement of bidders in guiding the

dynamics of the auction. Some formal models show the equivalence

between iterative CAs and decentralized optimization algorithms (Parkes

and Ungar 2000a, de Vries, Schummer, and Vohra 2003). Iterative CAs can

address concerns aboutprivacybecause bidders only need to reveal partial

and indirect information about their valuations.1

• Transparencyis another practical concern in CAs. In the high-stakes world

of wireless spectrum auctions, the Federal CommunicationsCommission
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(FCC) has been especially keen to ensure that bidders can verify and

validate the outcome of an auction. Although mathematically elegant, the

VCG outcome can be difficult to explain to bidders, and validation requires

the disclosure and verification of many bids, both losing andwinning. Thus,

even as readily describableimplementationsof sealed-bid auctions, iterative

CAs can offer some appeal (Ausubel and Milgrom 2002).

• The dynamic exchange of value information between bidders,that is

enabled within iterative CAs, is known to enhance revenue and efficiency in

single item auctions with correlated values (Milgrom and Weber 1982).

Although little is known about the design of iterative CAs for correlated

value problems, one should expect iterative CAs to retain this benefit over

their sealed-bid counterparts. Certainly, correlated value settings exist:

consider the wireless spectrum auctions in which valuations are in part

driven by underlying population demographics and shared technological

realities.

Yet, even with all these potential advantages iterative CAsoffer new opportunities

to bidders for manipulation. The biggest challenge in iterative CA design is to

support incremental and focused bidding without allowing new strategic behavior

to compromise the economic goals of efficiency or optimality. For instance, one

useful design paradigm seeks to implement auctions in whichstraightforward

bidding (truthful demand revelation in response to prices)is anex post

equilibrium. This equilibrium is invariant to the private information of bidders, so

that straightforward bidding is a best response whatever the valuations of other

bidders.

Steps can also be taken to minimize opportunities for signaling through careful

control of the information that can be shared between bidders during an auction.

Finally, the benefits of iterative auctions disappear when bidders choose to

strategically delay bidding activity until the last roundsof an auction.Activity
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rules (Milgrom 2000) can be used to address this stalling and promote meaningful

bidding during the early rounds of an auction.

The existing literature on iterative CAs largely focuses onthe design of efficient

auctions. Indeed, there are no knownoptimal(i.e. revenue-maximizing)

general-purpose CAs, iterative or otherwise. As such, the canonical VCG

mechanism (see Chapter 1) has guided the design of many iterative auctions.2

We focus mainly onprice-basedapproaches, in which the auctioneer provides ask

prices to coordinate the bidding process. We also consider alternative paradigms,

includingdecentralized protocols, proxiedauctions in which a bidding agent

elicits preference information and automatically bids using a predetermined

procedure, anddirect-elicitationapproaches.

In outline, Section 2 defines competitive equilibrium (CE) prices for CAs, which

may be non-linear and non-anonymous in general. Connections between CE

prices, the core of the coalitional game, and the VCG outcomeare explained.

Section 3 describes the design space of iterative CAs. Section 4 discusses

price-based auctions, providing a survey of existing price-based CAs in the

literature and a detailed case study of an efficient ascending price auction. Section

5 considers some alternatives to price-based design. Section 6 closes with a brief

discussion of some of the open problems in the design of iterative combinatorial

auctions, and draws some connections with the rest of this book.

2 Preliminaries

Let G = {1, . . . ,m} denote the set of items, and assume a private values model

with vi(S) ≥ 0 to denote the value of bidderi ∈ I = {1, . . . , n} for bundle

S ⊆ G. Note that setI does not include the seller. We assume free-disposal, with

vi(T ) ≥ vi(S) for all T ⊇ S, and normalization, withvi(∅) = 0. LetV denote the

set of bidder valuations. Bidders are assumed to have quasi-linear utility (we also

usepayoffinterchangeably with utility), with utilityui(S, p) = vi(S) − p for

bundleS at pricep ≥ 0. This assumes the absence of any budget constraints.
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Further assume that the seller has no intrinsic value for theitems.

The efficient combinatorial allocation problem (CAP) solves:

max
S=(S1,...,Sn)

∑

i∈I

vi(Si) [CAP(I)]

s.t. Si ∩ Sj = ∅, ∀i, j

Let S∗ denote the efficient allocation. Also, we write CAP(I \ i) to denote the

combinatorial allocation problem without bidderi.

2.1 Competitive Equilibrium Prices

We can consider a hierarchical structure for ask prices in CAs:

Linear. Pricespj ≥ 0, for j ∈ G, define additive prices on bundles, with

p(S) =
∑

j∈S pj.

Non-linear. Prices,p(S) ≥ 0, for S ⊆ G, allow p(S) 6= p(S1) + p(S2), for some

S = S1 ∪ S2 andS1 ∩ S2 = ∅.

Non-linear and Non-anonymous.Pricespi(S) ≥ 0, allow discriminatory

pricing, withpi(S) 6= pi′(S) for bidderi 6= i′, in addition to non-linear

prices.

In the following definitions we adoptpi(S) for notational convenience. We intend

to allow (but not require) with this notation non-linear andnon-anonymous prices.

For instance, linear pricespj can be considered to induce pricespi(S) =
∑

j∈S pj

for bundleS and bidderi.

Competitive equilibrium prices extend the concept of Walrasian equilibrium

prices to a CA. Letπi(S, p) = vi(S) − pi(S) denote bidderi’s payoff from

bundleS at pricesp andΠs(S, p) =
∑

i∈I pi(Si) denote the seller’s revenue from

allocationS at pricesp.
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Definition 1 (Competitive Equilibrium). Prices,p, and allocation

S∗ = (S∗
1 , . . . , S∗

n) are in competitive equilibrium (CE) if:

πi(S
∗
i , p) = max

S⊆G
[vi(S) − pi(S), 0] ∀i (1)

Πs(S
∗, p) = max

S∈Γ

∑

i∈I

pi(Si) (2)

whereΓ denotes the set of all feasible allocations.

A competitive equilibrium(p, S∗) is such that allocationS∗ maximizes the payoff

of every bidder and the seller given prices. AllocationS∗ is said to besupported

by pricesp in CE.

Theorem 1. AllocationS∗ is supported in competitive equilibrium if and only if

S∗ is an efficient allocation.

This welfare theorem follows from a simple linear-programming (LP) duality

argument for suitably extended LP formulations of the CAP (Bikhchandani and

Ostroy 2002, also Chapter 8). Moreover, CE prices always exist for the CAP. For

instance, pricespi = vi trivially satisfy the CE conditions. The main new element

in CAs is that these CE prices must sometimes be non-linear and non-anonymous.

Bikhchandani and Ostroy also show an equivalence between the core of the

coalitional game and the set of CE prices. All core outcomes can be priced, and

all CE prices correspond to core payoffs.

Many iterative CAs are designed to converge to CE prices, andas such it is

important to characterize classes of valuations for which linear, and non-linear but

anonymous, CE prices exist. We will also see that it isnecessarythat an efficient

CA must determine enough information about bidder valuations to define a set of

CE prices, andnecessarythat a Vickrey auction determines enough information to

define a set ofuniversalCE prices.

For the existence of linear CE prices, it is sufficient (and almost necessary)3 that

valuations satisfy agoods are substitutesproperty (Kelso and Crawford 1982, Gul
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and Stacchetti 1999). This substitutes condition is definedindirectly, with respect

to ademand set:

Di(p) = {S : πi(S, p) ≥ max
T⊆G

πi(T, p), πi(S, p) ≥ 0, S ⊆ G}, (3)

which includes all bundles that maximize a bidder’s payoff at the prices.

Definition 2 (Goods are Substitutes).Valuationvi satisfiesgoods are substitutes

if for all linear pricesp, p′ such thatp′ ≥ p (component-wise), and allS ∈ Di(p),

there existsT ∈ Di(p
′) such that{j ∈ S : pj = p′j} ⊆ T .

The goods are substitutes (or simplysubstitutes) condition requires that a bidder

will continue to demand items that do not change in price as the price on other

items increases. Substitutes valuations includeunit-demandvaluations with

vi(S) = maxj∈S{vij} for all S and valuevij on itemj in isolation, but preclude

the possibility of items with complementary values (Lehmann, Lehmann, and

Nisan 2001).

Conditions for the existence of non-linear but anonymous CEprices are less

well-understood, but sufficient conditions presented in Parkes (2001) (Theorem

4.7) includesupermodularvaluations,single-mindedbidders that value a

particular bundle, and bidders withsafevaluations such that each pair of bundles

with positive value to a bidder share at least one item. Consider, for example, a

bidder in the FCC spectrum auction that definitely needs lower Manhattan, along

with as many of the geographically neighboring licenses as possible.

2.2 Minimal Competitive Equilibrium Prices

In fact, many iterative CAs are designed to converge tominimalCE prices. This

can be useful for two reasons. First, minimal CE prices on bundles in the efficient

allocation correspond to VCG payments for a restricted class of valuations. In this

case, we say that the CE pricessupportthe VCG payments. Termination with CE

prices that support VCG payments brings straightforward bidding into anex post

equilibrium. Second, Ausubel and Milgrom (2000, also Chapter 3) show that
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implementing minimal CE prices (corresponding to buyer-optimal core outcomes)

avoids the problems that can occur with the VCG auction when VCG payments

are not supported with minimal CE prices.

Definition 3 (Minimal CE Prices). Minimal CE prices minimize the seller’s

total revenueΠs(S
∗, p) on the efficient allocationS∗ across all CE prices.

A bidder’s payment in the VCG mechanism is always less than orequal to the

payment by that bidder atanyCE price (Bikhchandani and Ostroy 2002). Thus,

minimal CE prices always provide an upper-bound on VCG payments. Moreover,

a bidder’s VCG payment is equal to the CE price on her efficientbundle in some

CE (Parkes and Ungar 2000b).

A characterization in terms of the coalitional value function explains when the

VCG can be supported simultaneously to all bidders in the minimal CE.

Let w(L) for L ⊆ I denote thecoalitional valuefor a subsetL of bidders, equal

to the value of the efficient allocation for CAP(L). Thebuyers are substitutes

(BAS) condition requires,

w(I) − w(I \ K) ≥
∑

i∈K

[w(I) − w(I \ i)] , ∀K ⊂ I (BAS)

Theorem 2. (Bikhchandani and Ostroy 2002) A buyers are substitutes (BAS)

coalitional value function is necessary and sufficient to support the VCG

payments in competitive equilibrium.

In particular, the VCG payments are implemented in the minimal CE (or

buyer-optimal core) when BAS holds, and buyer-optimal corepayoffs are unique

exactly when BAS holds.

A number of ascending price CAs can only terminate with minimal CE prices

given a slightly stronger condition, that of abuyer-submodular(BSM) coalitional

value function:

w(L) − w(L \ K) ≥
∑

i∈K

[w(L) − w(L \ i)] , ∀K ⊂ L,∀L ⊆ I (BSM)
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Bikhchandani and Ostroy (Chapter 8) refer to BSM asbuyers are strong

substitutes. Clearly, a BSM coalitional value function also satisfies BAS. But

there are cases for which values satisfy BAS but not BSM (see Ausubel and

Milgrom 2002, Section 7, for example). Interestingly, substitutes valuations

implies BSM and is almost necessary. Roughly, if at least onebidder does not

satisfy substitutes then one can construct substitutes valuations for other bidders

such that the coalitional value function fails BSM. See Ausubel and Milgrom

(Chapter 1) for further discussion. Thus, the same conditions for the existence of

a linear price equilibrium are sufficient and almost necessary for the existence of

someprice equilibrium (although perhaps non-linear and non-anonymous) that

supports the Vickrey outcome.4

2.3 Universal Competitive Equilibrium Prices

Experiments have suggested that BAS can often fail in realistic settings for CAs.5

In these cases the VCG payments are not supported in any priceequilibrium. We

can still design price-based CAs by characterizing a stronger condition on CE

prices that implies enough information to determine VCG payments from these

prices. For this, we restrict attention to theuniversalCE prices (Parkes and Ungar

2002, Mishra and Parkes 2004).

Definition 4 (Universal CE Prices).Pricesp are universal Competitive

Equilibrium (UCE) prices if:

a) Pricesp are CE prices.

b) Pricesp−i are CE prices for CAP(I \ i), meaning they support some

efficient allocation in CAP(I \ i), for all biddersi.

wherep−i = (p1, . . . , pi−1, pi+1, . . . , pn).

In words, prices are UCE when an efficient allocation for the restricted allocation

problem without bidderi is supported with pricesp−i, for each bidderi removed
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in turn. Thus, UCE prices are CE prices in the main economy andin every

marginal economy. Note that UCE prices need not require thatthe same

allocation is supported in every marginal economy. The prices must supportsome

efficient allocation in each marginal economy.6

UCE prices always exist, for examplepi = vi, for all biddersi, are UCE prices.

Moreover, a universal price equilibrium provides sufficient information about

bidder valuations to compute the VCG outcome.

Theorem 3. (Parkes and Ungar 2002) Given a UCE with pricespuce and an

efficient allocationS∗, the VCG payment to bidderi is computed as:

pvcg,i = puce,i(S
∗
i ) − [Π∗

I(puce) − Π∗
I\i(puce)] (4)

whereΠ∗
L(p) = maxS∈Γ

∑
i∈L pi(Si) for biddersL ⊆ I.

In the special case when prices are equal to valuations then this adjustment is

equivalent to the standard definition of VCG payments.

2.4 Informational Requirements

Both CE and UCE prices have a central role in the preference elicitation problem.

First, any auction that implements an efficient allocation must determine a set of

CE prices. Second, any auction that implements the Vickrey outcome must

determine a set of UCE prices. Segal (Chapter 11) provides anextended

discussion.

Since the VCG auction is basically unique amongst the class of efficient auctions

that take a zero payment from losing bidders (Ausubel and Milgrom, Chapter 1),

these equivalences confirm the central role of prices in developing iterative CAs.

Theorem 4. (Parkes 2002, Nisan and Segal 2003) A combinatorial auction

realizes the efficient allocation if and only if the auction also realizes a set of CE

prices and an allocation supported in the price equilibrium.
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This result requires a technical condition ofprivacy-preservation, which

precludes bidders from making their valuations contingenton the valuations of

other bidders (e.g. “my value forA is at least bidder 2’s value forA”).7

Theorem 5. (Parkes and Ungar 2002, Lahaie and Parkes 2004b) A

combinatorial auction realizes the VCG outcome if and only if the auction also

realizes a set of UCE prices and an allocation supported in the price equilibrium

of the main economy.

That UCE prices provide sufficient information was first proved in Parkes and

Ungar (2002). The necessary direction is due to Lahaie and Parkes (2004b). It is

important to realize that the CE and UCE prices referenced inthese results may

only be realized implicitly and are not necessarily explicitly constructed in the

auctions.

Considering minimal CE prices in particular, Mishra and Parkes (2004) note that

minimal CE prices are universal iff BAS holds. In general, UCE prices are greater

than the minimal CE prices because they must consider competition in the

marginal economies in addition to the main economy.

The informational equivalence between the efficient outcome and the problem of

discovering CE prices leads to a (largely negative) characterization of the

worst-case communication complexity and preference-elicitation requirements of

anyefficient CA, iterative or otherwise (Segal, Chapter 11). Onthe other hand,

iterative CAs are designed to have good elicitation properties on typical instances,

while sealed-bid auctions must suffer the worst case every time. Moreover, this

price equivalence suggests the central role of prices in thedesign of iterative CAs.

Any protocol to determine the VCG outcome must (implicitly)determine UCE

prices, so why not construct protocols to converge directlyto UCE prices? We

return to this theme in Section 4.
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2.5 Examples

The following examples illustrate the concept of CE and UCE prices and also

serve to illustrate the principle that it is often unnecessary to receive complete

information about bidder valuations to determine the Vickrey outcome. For each

example, we define a space of valuations (that contain the true valuations) that

provides sufficient information to determine the Vickrey outcome. The

information is minimal— we call this aminimal information set—in the sense

that no relaxed constraints on valuations are sufficient to pin down the Vickrey

outcome.

Example 2.1

Consider a single-item auction with three bidders and values (10, 8, 6). The

efficient allocation assigns the item to bidder 1, and the Vickrey payment is $8.

Prices10 ≥ p ≥ 8 are all in CE, andp = $8 is the unique anonymous UCE price.

Notice that the UCE price must be at least $8 to satisfy CE condition (1) for

bidder 2 in CAP({1, 2, 3}) but no greater than $8 to satisfy the same condition for

bidder 2 in CAP({2, 3}). The CE prices define a minimal information set,V̂1,

defined as the subset of valuations that satisfy constraints

{v1 ≥ p, v2 ≤ p, v3 ≤ p, 10 ≥ p ≥ 8}. UCE prices imply additional information

{v2 = 8, v3 ≤ 8}, which together witĥV1 is a minimal information set for the

VCG outcome. Notice that an ascending price (i.e. English) auction can elicit this

information if bidders 1 and 2 bid up the price to just above 8,at which point the

auction terminates. Bidder 3 can remain silent.

Example 2.2

Consider a combinatorial allocation problem with items{A,B} and 5 bidders

(see Figure 2.1). The efficient allocation allocatesA to bidder 1 andB to bidder 2

for a total value of 70. The VCG payments arepvcg,1 = 30 − (70 − 65) = 25 and

pvcg,2 = 40 − (70 − 55) = 25. Figure 2.1 (b) illustrates an information set on

12



bidder valuations, that is sufficient to compute the VCG outcome and minimal in

the sense that no constraints can be relaxed. The following prices are UCE for any

valuation in this set:p(A) = 25, p(B) = 25, p(AB) = 25 to bidders{1, 2, 4, 5}

and pricesp3(A) = 20, p3(B) = 20, p3(AB) = 40 to bidder 3. In fact, these

prices are also minimal CE prices and the discount computed in Eq. 4 is zero for

bidders 1 and 2, and BAS is satisfied (because of the presence of bidders 4 and 5).

Without these bidders, the BAS condition fails and the VCG payments become

pvcg,1 = 0 andpvcg,2 = 20, which can be computed from UCE prices

p1 = (20, 0, 20), p2 = (0, 40, 40) andp3 = (0, 20, 40). Additional information is

needed from bidder 2 in this variation.

3 The Design Space for Iterative Combinatorial Auctions

The design space for iterative CAs is larger than for one-shot auctions. Important

considerations include the design of information feedbackto bidders and rules to

guide the submission of bids. Cramton (Chapter 4) provides an in-depth

discussion of many of these issues in the design of simultaneous ascending price

auctions.

Let thestateof an auction include all the information that is sufficient to define

the future dynamics of the auction. For example, the state ofan auction can define

the ask prices, the provisional allocation, and also the bidimprovement rules as

they apply to particular bidders. Briefly, we can consider the role of the following

design features:

Timing issues. Iterative auctions may becontinuous, allowing bids to be

submitted at any time with continual updates to the current provisional

allocation and prices. Alternatively, iterative auctionsmay bediscrete, or

round-based, with the state updated periodically and with bidders provided

with an opportunity to revise bids between rounds.

Continuous auctions can promote faster propagation of feedback

information to bidders and help to quickly focus elicitation. However,
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continuouscombinatorialauctions can be infeasible because the

winner-determination problem must be resolved whenever a new bid is

submitted. Continuous auctions also lead to high monitoring and

participation costs for bidders. In comparison, discrete auctions allow an

auctioneer to publish aschedulefor rounds in the auction and bidders can

plan when to allocate time to refine their values and bids.

Information feedback. Information feedback about the state of an auction can

include information about the bids submitted and also aggregate

information, such as price feedback and the current provisional allocation,

to guide bidding. Information hiding is also possible, for example with

roundingto limit the potential for signaling between bidders and with

limited and discriminatory reporting of bid information.

Information feedback policies make a tradeoff between serving the goal of

providing effective bid guidance and minimizing the opportunity for

collusion and other forms of manipulation through signaling and

coordination.

Bidding Rules. Ask prices are a common form ofbid improvementrule, placing

a lower-bound on the allowable bid price on a bundle. Bid improvement

rules can also require a minimalpercentage improvementover the current

highest bid on a bundle, or over the total revenue in the next round given

current bids.Activity rules(Milgrom 2000) introduce further restrictions,

such as requiring that a bidder bids for a decreasing market share as prices

increase during an auction. Ausubel, Cramton and Milgrom (Chapter 5)

provide an extended discussion of bid-improvement and activity rules.

Activity rules were introduced in the early FCC wireless spectrum auctions

and proved important.8 Decisions about appropriate rules are often guided

by a tradeoff between providingexpressivenessso that bidders can follow

straightforward bidding strategies, while promoting early information
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exchange between bidders and limiting the opportunity for bidders to wait

and snipe at the end of an auction. Computational considerations also

matter, for example linear prices can simplify the problem facing bidders in

an auction (Kwasnica, Ledyard, Porter, and DeMartini 2004)but can be

expensive to compute (Hoffman 2001).

Termination Conditions. Auctions may close at afixed deadline, perhaps with

an opportunity for a final sealed-bid round of bidding (sometimes called a

proxy round). Alternatively, auctions can have arolling closurewith the

auction kept open while one or more losing bidders continue to submit

competitive bids.

Fixed deadlines are useful in settings in which bidders are impatient and

unwilling to wait a long time for an auction to terminate. However, fixed

deadlines tend to require stronger activity rules to prevent the auction

reducing to a sealed-bid auction with bids delayed until thefinal round. In

comparison, rolling closure rules have been shown to promote early and

sincere bidding.9

Bidding Languages. A bid can be a complex object and expressed in terms of

logical connectives (Nisan, Chapter 9). One popular bidding language is

exclusive-or(XOR), in which bid(p1, S1) xor (p2, S2) xor . . . xor (pl, Sl)

has semantics “I will buyat most oneof these bundles” at the stated bid

price. Another popular language isadditive-or(OR) bidding languages, in

which bid(p1, S1) or (p2, S2) or . . . or (pl, Sl) has semantics “I will buy

one or moreof these bundles” at the stated bid price. Bidding languagescan

also place constraints on the bid prices, for example by requiring click-box

bidding in which bidders must submit bids from a menu.10

The expressiveness of a bidding language in an iterative CA must be

considered together with the opportunity to refine bids during an auction.

For instance, a language that is additive-or onitemsis not expressive in a

15



one-shot CA but becomes expressive in an ascending auction when bidders

can decommit from bids.11 Bidding languages are often designed to support

straightforward bidding with bidders able to state the bundle that maximizes

their surplus in response to prices in each round.

Proxy agents. Proxy agents provide a still richer interface for iterativeCAs

(Parkes and Ungar 2000b, Ausubel and Milgrom 2002). Bidderscan

provide direct value information to anautomated bidding agentthat bids on

their behalf within an auction. The bidder-to-proxy language should allow a

bidder to expresspartial andincompleteinformation, to be refined during

the auction, in order to realize the elicitation and price discovery benefits of

an iterative auction.

Proxy agents can query a bidder actively when they have insufficient

information to submit bids. Proxy agents can also facilitate faster

convergence with rapid automated proxy rounds interleavedwith bidder

rounds. Mandatory proxy agents can be useful in restrictingthe strategy

space available to bidders.

One concern in the design of proxy auctions is to determine when to allow

proxy information to be revised and to determine the degree of consistency

to enforce across revisions. An additional concern is that of trust and

transparencysince the bidding activity is transferred to automated agents.

4 Price-Based Iterative Combinatorial Auctions

Many iterative CAs are price based and provide ask prices to guide bidding. In

this section we survey some of these auction designs. We limit our attention to

auctions designed for valuations that are rich enough to include the substitutes

valuations. As such, we exclude the assignment model in which bidders have

unit-demand for items. See Bikhchandani and Ostroy (Chapter 8) for a taxonomy

that includes this case.
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All the auctions that we discuss share the same high level structure:

In each round the auctioneer announces ask prices and a provisional allocation

and requests new bids from bidders. The bids are used to formulate a new

winner-determination problem and update the provisional allocation, and also to

adjust ask prices and test for termination.

Table 2.1 provides a summary of the characteristics of some well-known auctions,

stating properties forstraightforward(non-strategic) bidding. For the cases in

which an auction terminates with the VCG outcome this assumption is justified in

anex postequilibrium but otherwise one should expect incentives fordemand

reduction. The auctions are described in terms of the structure of the price space,

the bidding language, and the method used to update prices.
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Name Valuations Price structure Bidding Price Update Outcome
language method

KC substitutes non-anon items OR-items greedy CE
SAA substitutes items OR-items greedy CE
GS substitutes items XOR minimal min CE12

Aus substitutes items single greedya VCG
iBundle; Ascending-proxyb BSM non-anon bundles XOR greedy VCG

. . . general . . . . . . . . . min CE
dVSV BSM non-anon bundles XOR minimal VCG

Clock-proxy BSM items (+ proxy)c XOR greedy VCG
. . . general . . . . . . . . . min CE

RAD general items OR LP-based —
AkBA general anon bundles XOR LP-based —
iBEA general non-anon bundles XOR greedyd VCG
MP general non-anon bundles XOR minimald VCG

Table 2.1:Price-Based Combinatorial Auctions. Formal properties are stated for
straightforward bidding, and with the most general class ofvaluations for which
the property holds. Notation ‘—’ in theOutcomecolumn indicates that no formal
properties have been established.

Notes:
a Aus tracesn + 1 trajectories.
b Ascending-proxy dynamics are identical toiBundle(3), although ascending-proxy

emphasizes a sealed-bid proxy auction form.
c Clock-proxy is a hybrid design, with a linear-price clock auction

followed by a sealed-bid ascending-proxy auction.
d Ascending price while the auction is open, followed by a downwards adjustment

after termination.
Abbreviations:

KC (Kelso and Crawford 1982) SAA (Milgrom 2000)
GS (Gul and Stacchetti 2000) Aus (Ausubel 2002)
iBundle (Parkes and Ungar 2000a) Ascending-proxy (Ausubel and Milgrom 2002)
dVSV (de Vries, Schummer, and Vohra 2003) Clock-proxy (Ausubel and Milgrom, Chapter 5)
RAD (Kwasnica et al. 2003) AkBA (Wurman and Wellman 2000)
iBEA (Parkes and Ungar 2002) MP (Mishra and Parkes 2004)

We see a wide variety of prices, from simple prices on items (linear prices) to

non-anonymous prices on bundles (non-anonymous and non-linear). In addition,

the auctions vary in the bids that a bidder can submit in each round:OR-items, an

additive-or bid for multiple items;XOR, an exclusive-or bid for multiple bundles;

single, a bid on a single bundle in each round;OR, an additive-or bid for multiple
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bundles. TheXORlanguage has emerged as the definitive choice in recent

designs.

Theprice-updatemethods, which characterize the rules by which prices are

computed in each round, are broken down as follows:

Greedy update: The price is increased on some arbitrary set (perhaps all) ofthe

over-demanded items or bundles.

Minimal update: The price is increased on a minimal set ofoverdemanded

items, or based on the bids from a set ofminimally undersupplied bidders.

LP-based: A linear program, formulated to find prices that are good

approximations to CE prices given current bids, is used to adjust prices.

For linear prices, Demange, Gale and Sotomayor (1986) in theassignment model

and later Gul and Stacchetti (2000) for substitutes define a minimal update in

terms of increasing the prices on a minimal overdemanded setof items.13

Minimal price updates are adopted to drive prices towards minimal CE prices. de

Vries, Schummer and Vohra (2003) generalize this to define updates in terms of

minimally undersupplied bidders14 and define a minimal update for general CAs.

All bidders in a minimally undersupplied set face higher prices on the bundles for

which they submitted a bid.

RAD and AkBA adopt LP-based price updates and adjust prices to find good

approximations to CE prices given current bids and the current provisional

allocation. RAD seeks linear and anonymous prices while AkBA seeks non-linear

but anonymous price approximations. Formal convergence properties have not

been proved for RAD or AkBA, although RAD reduces to a simultaneous

ascending price auction for substitutes valuations.

The auctions that are able to implement the VCG outcome (for instance, Aus for

substitutes and dVSV for BSM coalitional values) are interesting because they

bring straightforward bidding into an equilibrium. Straightforward bidding is a
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best response, whatever the valuations of other bidders, aslong as the other

bidders also follow a straightforward (perhaps untruthful) bidding strategy. This

ex postequilibrium concept is useful because it places no requirements on the

knowledge that bidders have of the valuations of other bidders.

Winning bidders pay their final bid price in all auctions except Aus,iBEA and MP.

Aus allows for(n + 1) restarts and uses information elicited along each trajectory

to determine the final payments.iBEA and MP terminate with UCE prices, at

which point final payments are determined through downwardsadjustments.

Auction clock-proxy(Ausubel, Cramton and Milgrom Chapter 5) is a hybrid

auction. The first stage maintains item prices and runs an ascending-clock CA

(see also Porter, Rassenti, and Smith (2003)). This stage isused for price

discovery and can be considered to construct approximate linear CE prices. The

second stage is sealed-bid, with bids from the first stage combined with additional

bids that must be consistent with bids from the clock phase.

4.1 Insufficiency of Simple Prices

It is interesting to consider what form of prices are necessary to implement

efficient ascending CAs. Gul and Stacchetti (2000) first addressed this question,

in the setting of substitutes valuations. The authors provide a formal definition of

an ascending CA, but limit attention to linear and anonymousprices. They show

that there exists no ascending VCG auction with linear and anonymous prices for

substitutes valuations. The auction due to Ausubel (2002) lies outside of this

negative characterization because it usesn + 1 price trajectories.

Recently, Mishra and Parkes (2004) used the UCE-based pricecharacterization to

demonstrate that efficient ascending CAs require both non-anonymous and

non-linear prices, even for this case of substitutes valuations. The authors exhibit

instances for which only non-anonymous and non-linear UCE prices exist. As for

sufficiency, auctions dVSV andiBundle are examples of ascending VCG auctions

for substitutes valuations that maintain these rich prices.
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However, de Vries, Schummer, and Vohra (2003) extend the definition of

ascending CAs in Gul and Stacchetti (2000) to allow for non-anonymous and

non-linear prices and obtain a negative result. When at least one bidder has a

non-substitutes valuation an ascending CA cannot implement the VCG outcome

even when the other bidders are restricted to substitutes and even with

non-anonymous and non-linear prices. AuctionsiBEA and MP lie outside of this

negative characterization because they allow a final downwards adjustment to

determine final prices.

Thus, with substitutes values but simple prices we must accept auctions with

multiple trajectories or non-monotonic adjustments. Moreover, although rich

prices extend the reach of ascending CAs to substitutes values we still need to

accept multiple trajectories or non-monotonic adjustments to handle richer

preferences than substitutes.

4.2 Primal-Dual Auction Design

Many traditional combinatorial optimization problems canbe solved with

primal-dual algorithms. A primal-dual approach uses linear-programming (LP)

duality to formulate an optimization problem as a satisfaction problem. Strong LP

duality states that a pair of feasible primal and dual solutions are optimal if and

only if they satisfycomplementary slackness(CS) conditions. We provide a brief

review of LP theory at the end of this chapter, and refer the reader to

Papadimitriou and Steiglitz (1998) for a textbook treatment.

In fact, primal-dual theory also provides a useful conceptual framework for the

design of iterative price-based CAs. Prices are interpreted as a feasible dual

solution and the provisional allocation is interpreted as afeasible primal solution.

Bids provide sufficient information to formulate and solverestrictedprimal and

dual problems, thewinner-determinationandprice-updateproblems respectively

(see Figure 2.2). For further discussion of this idea, see Parkes (2001), de Vries,

Schummer and Vohra (2003) and Bikhchandani and Ostroy (Chapter 8).
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Straightforward bidding is first assumed, and later justified by termination with

VCG payments. The winner-determination problem uses information implicit in

bids to compute a feasible solution that minimizes the violation of the CS

conditions, and price updates adjust the dual solution towards an optimal dual

solution.15 CS conditions have an exact equivalence with conditions (1)and (2)

required for CE prices, and are satisfied on termination of anauction.

Constructively, primal-dual auction design requires the following steps:

1. Formulate an LP for the CAP that is integral, such that its optimal solution

is a feasible allocation. The dual problem should allow convergence to UCE

prices, or to minimal CE prices that support VCG payments in the case of

BAS valuations.

2. Provide bidders with a bidding language that is expressive for

straightforward bidding, and formulate a winner-determination problem to

compute a feasible primal solution that minimizes the violation of CS

conditions as represented in bids.

3. Terminate when the provisional allocation and ask pricessatisfy CS

conditions (and thus represent a CE), and also satisfy any additional

conditions that are necessary to compute the VCG payments attermination

(e.g. UCE conditions or minimal CE prices). Otherwise, adjust prices to

make progress towards an optimal dual solution that satisfies these

conditions.

The characterization of VCG payments in terms of minimal CE and UCE prices

suggests two methods to adjust towards the VCG outcome. The methods are

illustrated in Figure 2.3, which considers the price on bundles,S1 andS2,

allocated to bidders 1 and 2 in the efficient outcome.

In case (a), the coalitional value function satisfies BSM andthe VCG payments

are supported at the minimal CE prices. Ascending CAs (such as dVSV) can
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converge monotonically to these prices and the VCG outcome.In case (b), the

coalitional value function satisfies neither BSM not BAS. Although each bidder’s

VCG payment is supported in some minimal CE there is no singleCE that

supports the VCG payment to both bidders simultaneously. Asillustrated,

ascending CAs such asiBEA and MP can still converge monotonically to UCE

prices from which the VCG outcome can be determined in a final adjustment.

The next section presents a case study of primal-dual methods to the design and

analysis of theiBundle auction.16 In Section 4.4 we return to the auctions in Table

2.1, and discuss each in a little more detail.

4.3 Case Study:iBundle

We will focus on variationiBundle(2), in which prices are non-linear but

anonymous. This variation is efficient with straightforward bidding and an

additional requirement that bidder strategies satisfy a “safety” property. Later, we

also briefly describeiBundle(3), which employs non-linear and non-anonymous

prices and is efficient without the safety condition.

The interested reader is referred to Parkes and Ungar (2000a) and Parkes (2001)

for additional details, including a description ofiBundle(d), which blends

iBundle(2) andiBundle(3) and allows for dynamic price discrimination decisions

to be made during the auction. In what follows, we will useiBundle to refer to

variationiBundle(2) unless otherwise stated.

iBundle(2): Anonymous Prices

iBundle maintains ask prices on bundles and a provisional allocation and proceeds

in rounds, indexedt ≥ 1. In each round a bidder can submit XOR bids on

bundles. In general the bid price on a bundle must be at least the ask price.

Bidders must resubmit bids on any bundle that they are winning in the current

provisional allocation but can bid at the same price on such abundle even if the

ask price has since increased. A bidder can also bid atǫ less than the ask price
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when making a “last-and-final” bid, at which point she can no longer improve her

price. Equivalently, one can simply retain all bids from previous rounds. A bid at,

or above, the current ask price is said to becompetitive, and a bidder is

competitive if she submits at least one competitive bid.

The winner-determination problem in each round is to compute a provisional

allocation to maximize the seller’s revenue given bids, with at most one bundle

selected from the XOR bid of each bidder. LetBi denote the bids from bidderi,

andpbid,i(S) denote the bid price on bundleS ∈ Bi. Winner determination can be

formulated as the following mathematical program:

max
xi(S)

∑

i∈I

∑

S∈Bi

xi(S)pbid,i(S)

s.t.
∑

S∈Bi

xi(S) ≤ 1, ∀i (5)

∑

i∈I

∑

S∈Bi:j∈S

xi(S) ≤ 1, ∀j (6)

xi(S) ∈ {0, 1}, ∀i,∀S ∈ Bi

Constraint (5) restricts the seller to selecting at most onebid from each bidder.

Constraint (6) ensures the allocation is feasible. Ties arebroken first to favor the

allocation from the previous round and then to maximize the number of winning

bidders.

iBundle terminates when each competitive bidder receives a bundle in the

provisional allocation. Otherwise, prices are increased,by ǫ above the bid price

on all bundles that receive a bid from some losing bidder in the current round and

the new allocation and prices are provided as feedback to bidders. Prices on other

bundles are implicitly adjusted to satisfy free disposal, although only bundles that

receive losing bids need to be explicitly quoted. On termination the provisional

allocation becomes the final allocation, and bidders pay their final bid prices.

iBundle maintains feasible primal and dual solutions to an extended LP

formulation of CAP and terminates with a CE outcome that satisfies CS
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conditions. The proof technique is inspired by Bertsekas’ (1987) analysis of the

AUCTION algorithm for the special case of unit-demand valuations.

Given ask prices,pi(S), to bidderi we defineǫ straightforward bidding in terms

of anǫ-demand set,ǫ-DS, which is:

ǫDi(pi) = {S : vi(S) − pi(S) + ǫ ≥ max
S′

(vi(S
′) − pi(S

′), 0),∀S ⊆ G}

(ǫ-DS)

In words, bidders state in their bid all bundles that come within ǫ of maximizing

their surplus given prices in each round. This reduces to straightforward bidding

for a small enoughǫ.

Definition 5 (Safety).The competitive bundles in theǫ-demand set of each losing

bidder in each round are non-disjoint, i.e. each pair of bundles shares at least one

item.

For example, losing bids{(ABC, $100), (CDE, $50)} from a single bidder

satisfy safety, while losing bids{(ABC, $100), (DE, $50)} from a single bidder

fail the safety condition.

Theorem 6. (Parkes and Ungar 2000a)iBundle(2) terminates with an allocation

that is within3min(n,m)ǫ of the efficient solution forǫ-straightforward bidding

strategies and with bid safety.

The first step of the proof is to introduce an extended LP formulation (LP2) for

CAP due to Bikhchandani and Ostroy (2002, see also Chapter 8). LP2 is integral

when the safety condition holds for straightforward bidding. The dual formulation

(DLP2) has variables that correspond to anonymous and non-linearprices.

Let K denote the set of feasible partitions. For example,(A,B,C) and(AB,C)

are feasible partitions for itemsABC. Variabley(k) = 1 will indicate that the

allocation must be restricted to bundles in partitionk ∈ K. For example, if

partition(AB,C) is selected then the only valid allocations are those in which
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AB goes to some bidder andC to another bidder. We have:

max
xi(S),y(k)

∑

S⊆G

∑

i∈I

xi(S)vi(S) [LP2]

s.t.
∑

S⊆G

xi(S) ≤ 1, ∀i

∑

i∈I

xi(S) ≤
∑

k∈K:S∈k

y(k), ∀S

∑

k∈K

y(k) ≤ 1

xi(S), y(k) ≥ 0, ∀i, S, k

min
πi,p(S),Πs

∑

i∈I

πi + Πs [DLP2]

s.t. πi + p(S) ≥ vi(S), ∀i, S

Πs −
∑

S∈k

p(S) ≥ 0, ∀k

πi, p(S),Πs ≥ 0, ∀i, S

Dual variablep(S) can be interpreted as theask priceon bundleS. Then, optimal

π∗
i = maxS{vi(S) − p(S), 0} defines the maximal payoff to bidderi across all

bundles given prices, and optimalΠ∗
s = maxk∈K

∑
S∈k p(S) defines the maximal

revenue to the seller across all partitions given prices. This is also the maximal

revenue across all allocations because prices are anonymous.

The dual problem sets prices to minimize the sum of the maximal payoff to each

bidder and the maximal revenue to the seller. Optimal dual prices will correspond

to CE prices whenever the primal LP is integral.

Interpret the provisional allocation and ask prices in a round of iBundle(2) as

defining a feasible primal and a feasible dual solution (denoted x̂, ŷ, π̂i, p̂, and

Π̂s). We can now establish termination with CS conditions for straightforward

bidding strategies.

The first primal CS condition is:

x̂i(S) >0 ⇒ π̂i + p̂(S) = vi(S), ∀i, S (CS-1)
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This states that any bundle allocated to bidderi must maximize her payoff across

all bundles at the prices. Condition (CS-1) is approximately satisfied in every

round because the provisional allocation is selected with respect to bids, which

are in turn drawn fromǫ demand sets. Formally, a relaxed form of condition

(CS-1) holds, witĥxi(S) > 0 ⇒ π̂i + p̂(S) ≤ vi(S) + 2ǫ, for all i andS.

The second primal CS condition is:

ŷ(k) > 0 ⇒ Π̂s −
∑

S∈k

p̂(S) = 0, ∀k (CS-2)

This states that the provisional allocation must maximize the seller’s payoff (i.e.

revenue) given the prices, acrossall feasible allocations and irrespective of bids

received from bidders.

BundleS has astrictly positive price if it is greater than the price on every bundle

contained inS. Then, (CS-2) follows from properties (P1) and (P2), which are

maintained in each round of the auction:

(P1) All bundles with strict positive prices receive a bid from some bidder in

every round.

(P2) One or more of the revenue-maximizing allocations in every round can be

constructed from bids from different bidders.

Formally, (P1) follows because one can show that a losing bidder will continue to

bid for S in the next round, even at the higher price. Property (P2) follows from

the safety property, which prevents a single bidder from causing the price to

increase on a pair of disjoint bundles. This is why we need thesafety condition.

Combining (P1) and (P2), and together withǫ-DS, we get a relaxed formulation of

(CS-2), withŷ(k) > 0 ⇒ Π̂s −
∑

S∈k p̂(S) ≤ min(m,n)ǫ, for all partitions

k ∈ K.

Dual CS condition (CS-3), states:

π̂i > 0 ⇒
∑

S⊆G

x̂i(S) = 1, ∀i (CS-3)
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In words, every bidder with positive payoff for some bundle at the current prices

must receive a bundle in the provisional allocation. (CS-3)is satisfied for all

bidders that receive bundles in a particular round, but not for the losing bidders

that are still competitive. However, (CS-3) holds for everybidder on termination

because at this pointǫ−DS = ∅ for all losing bidders.

(CS-3) and (CS-1) are equivalent to CE condition (1) and (CS-2) together with an

additional requirement that a provisional allocation is always selected is

equivalent to CE condition (2).

Finally, we obtain an upper-bound on the worst-case efficiency error ofiBundle,

in terms of the minimal bid incrementǫ. First, sum the approximate (CS-1)

condition over all bidders in the final allocation, and substitute π̂i = 0 for bidders

not in the allocation by (CS-3). This gives:

∑

i∈I

π̂i ≤
∑

i∈I

vi(Ŝi) −
∑

i∈I

p̂(Ŝi) + 2min(m,n)ǫ (7)

⇒ Π̂s +
∑

i∈I

π̂i ≤
∑

i∈I

vi(Ŝi) + 3min(m,n)ǫ (8)

where Eq. (7) follows because an allocation can include no more bundles than

there are items or bidders, and Eq. (8) is by substitution of theǫ-approximate

(CS-2) condition.

The LHS of Eq. (8) is the value of the final dual solution, and the first-term on the

RHS is the value of the final primal solution. Now,Π̂s +
∑

i π̂i ≥ w(I), (the

value of the optimal primal) by LP weak duality, and therefore

w(I) ≤ Π̂s +
∑

i π̂i ≤
∑

i vi(Ŝi) + 3min(m,n)ǫ. ⊓⊔

A complete proof must also show termination. The basic idea is to assume the

auction never terminates and prove that a bidder must eventually submit a bid at a

price above her valuation, assuming finite values and a finitenumber of items,

from which we get a contradiction with straightforward bidding.
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iBundle(3): Non-anonymous Prices

iBundle(3) is the variation ofiBundle in which each bidder faces non-anonymous

prices in every round. The dynamics ofiBundle(3) with straightforward bidding

are identical to that of Ausubel and Milgrom’s (2002) ascending-proxy auction,

although ascending-proxy is not described in price terms.iBundle(3) is efficient

for straightforward bidding with general values. Moreover, the auction will

terminate with VCG outcomes for BSM coalitional value functions.

Let pt
ask,i(S) denote the ask prices to bidderi in roundt. Initially, p1

ask,i(S) = 0

for all bundlesS and all bidders. Bids are received, and the winner determination

problem solved, as iniBundle(2). Then, for each bidder not in the provisional

allocation, the priceto that bidderis increased by the minimal bid increment,

ǫ > 0, above her bid price on all bundles submitted in that round, and adjusted for

free-disposal.

It is now quite immediate to establish thatiBundle(3) terminates in CE with

straightforward bidding. The prices faced by a bidder in round t are parameterized

by πt
i ≥ 0, which can be interpreted as the maximal payoff to the bidderin that

round. The ask price on bundleS in roundt is defined as:

pt
ask,i(S) = max(0, vi(S) − πt

i) (9)

Initially, π1
i = maxS{vi(S)}, for all i, and the price is zero on all bundles. The

payoff πt
i decreases monotonically during the auction and prices monotonically

increase. Theǫ-DS for bidderi in roundt includes every bundle for which

vi(S) ≥ πt
i , and increases monotonically across rounds. Eventually, whenπt

i is

less thanǫ the prices on each bundle are withinǫ of her value and she will bid for

every bundle with positive value in herǫ-DS.17

Condition (CS-1) holds trivially in each round and (CS-3) holds at termination,

just as iniBundle(2). In addition, (CS-2) holds in each round because of the

special structure of prices: every bundle with a strict positive price receives a bid

in a bidder’sǫ-DS. This does not require the safety condition.
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Theorem 7. (Parkes and Ungar 2000a)iBundle(3) terminates with an allocation

that is within3min(n,m)ǫ of the efficient allocation forǫ-straightforward

bidding strategies and with bid safety.

Theorem 8. (Ausubel and Milgrom 2002)iBundle(3) terminates withminimal

CE prices and the VCG outcome for BSM valuations and straightforward bidding.

Proof. Consider an arbitrary bidderj, and letπj denote her payoff in the minimal

CE prices. Refer to the bidders in the provisional allocation in roundt as the

winning coalition. We prove that the payoff,πt
j to bidderj in any roundt satisfies

πt
j ≥ πj. First, bidderj must be in the winning coalition in any round in which

πt
j < πj. To see this, consider a coalitionL ⊂ I, with j /∈ L, and observe that the

revenue to the seller from coalitionL in roundt is exactlyw(L) −
∑

i∈L πt
i from

Eq. (9). Then,

w(L) −
∑

i∈L

πt
i < w(L) −

∑

i∈L

πt
i + (πj − πt

j)

= w(L) −
∑

i∈L∪{j}

πt
i + w(I) − w(I \ j) (10)

≤ w(L) −
∑

i∈L∪{j}

πt
i + w(L ∪ {j}) − w(L) (11)

= w(L ∪ {j}) −
∑

i∈L∪{j}

πt
i

where Eq. (10) follows from the equivalence between maximalpayoff and VCG

payoff for BSM valuations and Eq. (11) follows from the BSM condition. Thus,

the payoff to bidderj cannot fall more thanǫ belowπj (since the bidder always

wins, and its prices are unchanged), and prices converge to the minimal CE prices

asǫ → 0. ⊓⊔

An ex postequilibrium is invariant to the values of bidders, i.e. straightforward

bidding is an equilibrium evenex postonce every bidder knows the values of

other bidders.
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Theorem 9. Straightforward bidding is an ex post equilibrium ofiBundle(3), and

the auction is efficient, for BSM valuations.

This result requires that the revealed preferences by a bidder areconsistentwith

some valuation during the auction.18 Given this, we can fix the reportsv−i of

other bidders. If bidderi follows a straightforward strategy the auction

implements the VCG outcome because valuations satisfy BSM.Moreover, if

bidderi reports some other valuation̂vi 6= vi the auction implements the efficient

allocation for(v̂i, v−i) and CE prices that are at least the bidder’s Vickrey

payment in that outcome. Thus, bidderi’s best-response is straightforward

bidding because her payoff in the truthful Vickrey outcome dominates her payoff

in any other Vickrey outcome, and therefore also in this alternate CE outcome.

4.4 Ascending Price Combinatorial Auctions

Perhaps the defining feature of theiBundle family of auctions is that they allow

non-linear, and sometimes non-anonymous ask prices. Only the dVSV,iBEA and

MP auctions have a similarly rich class of prices. The other auctions in Table 2.1

maintain simpler prices, typically anonymous and often linear.

In describing the auctions we group together auctions KC, SAA, GS and Aus

because they are all designed to handle the special case of substitutes valuations.

Then we briefly discuss dVSV, which is designed for a BSM coalitional value

function, and is presented in detail in Bikhchandani and Ostroy (Chapter 8). The

ascending-proxy auction is a sealed-bid implementation ofiBundle(3) with

interesting theoretical properties, and will be discussedalong with other proxied

auctions in Section 5.2 and presented in more detail in Ausubel and Milgrom

(Chapter 3). Finally, we describe the clock-proxy,iBEA and MP auctions, which

are designed for general valuations.
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Special-Case: Goods are Substitutes

Recall that linear CE prices exist for substitutes valuations, but that non-linear and

non-anonymous prices are still required to support VCG payments, even for

substitutes.

Auction KC was first described in the setting of amatching problem, with

multiple firms and multiple workers. The matching problem can be reinterpreted

as an allocation problem with each firm corresponding to a bidder and each

worker to an item. Bidders can submit bids for multiple itemsin each round.

Winner determination allocates all items that receive bidsand prices are increased

on over-demanded items. The auction converges to a competitive equilibrium

outcome and an efficient allocation for straightforward bidding. Kelso and

Crawford (1982) do not investigate strategic behavior or the relationship between

the outcome and the VCG payoffs.

Auction SAA is closely related to KC in that bidders can submit bids for multiple

items and the bid on an item must be repeated if it is winning. However, SAA

maintains anonymous prices and is distinguished in its careful use of activity and

bid-improvement rules. The auction design forms the basis of the series of FCC

wireless spectrum auctions.

Auction GS adopts the same basic methodology as KC, except that prices are

anonymous and increased on a set ofminimaloverdemanded items. This provides

termination with minimal CE prices when bidders are straightforward. Just as in

KC and SAA, these prices do not support the VCG outcome for substitutes

valuations and straightforward bidding is not an equilibrium.

Auction Aus is unique amongst the auctions for substitutes valuations in its ability

to terminate with the Vickrey outcome. Ausubel (2002) achieves this despite

using only anonymous item prices by runningn + 1 separate auctions, each with

its own price trajectory. Information across each auction is used to adjust final

payments to VCG payments. Let(A−1, . . . ,A−n,A), denote the sequence of

auctions in Aus, with bidderi excluded from participation in auctionA−i. All
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bidders are invited to participate in the final auction. The allocation is determined

in auctionA, but the payment by bidderi is determined from the price and

bidding dynamics in auctionsA−i andA. The dynamics inA−i are used to adjust

downwards the final payment for bidderi.

Bidder Submodular

Auction dVSV is similar toiBundle, with bids for XOR sets of bundles and prices

that are non-linear and non-anonymous and increased based on bids from losing

bidders. However, the price update rule is different. dVSV increases prices on the

set of minimally-undersupplied bidders. This set can include bidders that are in

the current provisional allocation, as well as losing bidders, and is different from

the set of losing bidders on which prices are adjusted iniBundle. Although there

has been no computational study, de Vries, Schummer, and Vohra (2003) argue by

analogy to algorithms in the optimization literature that dVSV will converge more

quickly thaniBundle.19 In iBundle’s favor is that the price-update step is simple

to explain to bidders and easy to compute.

General-Purpose CAs

RAD and AkBA are general-purpose ascending CAs, designed without

restrictions on agent valuations. Although an equilibriumanalysis is not available

for either auction their performance has been evaluated experimentally, through

human-based laboratory studies and through computationalsimulation. Both

auctions formulate an LP to adjust prices. AkBA provides non-linear prices and

supports an XOR bidding language while RAD provides linear prices and

supports an OR bidding language.

A competitive equilibrium perspective provides a unifyingview of the auctions.

Recall that CE prices in CAP must be both non-linear and non-anonymous in

general. One can interpret AkBA as an iterative procedure to determine

anonymous and non-linear prices that approximate CE prices, and RAD as an
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iterative procedure to determine anonymous and linear prices that approximate

CE prices.

The bidding rules and winner-determination step in AkBA are much as in

iBundle. Each bidder submits an XOR bid, from which the winner-determination

problem is formulated. AkBA differs from iBundle in the price-update step,

which is parameterized with0 ≤ k ≤ 1.

Let St = (St
1, . . . , S

t
n) denote the provisional allocation in roundt, pt

ask(S)

denote the ask price onS, ∆t(S′′, S′) = pt(S′′) − pt(S′) denote the price

difference between bundleS′′ and bundleS′, W t denote the current winners, and

DS i(p
t
ask) denote the bids submitted by bidderi in response to ask prices. AkBA

computes prices for periodt + 1 that will maintain CS condition (CS-1) for all

bidders, given the demand-set information in their most recent bid.

In particular, pricespt+1
ask (S) are computed to satisfy:

a)pt+1
ask (S) ≥ pt(S), for all bundlesS ∈ St that receive bids from some losing

bidder,i /∈ W t.

b) ∆t+1(S′′, S′) ≥ ∆t(S′′, S′) for any pair of bundlesS′′, S′, such thatS′ is

allocated to a winning bidderi ∈ W t, and that bidder also bids onS′′.

These prices are not unique in general, and AkBA breaks the tie by selecting a

convex combination of prices, withpt+1
ask (S) = (1 − k)pt+1(S) + kpt+1(S),

wherept+1(S) andpt+1(S) are theminimalandmaximalprices that satisfy

conditions a) and b), for some parameter0 ≤ k ≤ 1.

Finally, new bids must improve the price by a minimal bid incrementǫ > 0 on at

least one bundle. Thek = 1 variation, with price adjustmentspt+1 is thought to

have better incentive properties (Wurman and Wellman 1999), and empirical

analysis has demonstrated high efficiency with straightforward bidders (Wurman

and Wellman 2000).

RAD provides an additive-or (OR) bidding language, and winner determination is

formulated to allow multiple bids to be accepted from any onebidder (Kwasnica,

Ledyard, Porter, and DeMartini 2004). Straightforward bidding is well defined for
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the OR language when valuations have additive-or semantics(e.g. when the

bidder’s value for a disjoint combination of packages is thesum of the individual

package values).20 However, this OR language is not always expressive for

straightforward bidding. For example, a bidder with valuation

(AB, $20), (CD, $20), (ABCD, $20) facing prices(AB, $10) and(CD, $10)

can not represent her best-response demand set (eitherAB or CD but not both)

with an OR language.

RAD maintains linear and anonymous prices and formulates the price update as a

series of LPs. The methodology is close in spirit to methods due to Rassenti,

Smith and Bulfin (1982), where approximate prices are computed in a one-shot

CA.21 Let St = (St
1, . . . , S

t
n) denote the provisional allocation computed in round

t. RAD computes new linear prices that exactly match the bid price for all

winning bids, with
∑

j∈St

i

pt+1
ask (j) = pt

bid,i(S
t
i ), andminimize the maximal regret

across losing bids, with regretdefined as the difference

max{0, pt
bid,i(S) −

∑
j∈S pt+1

ask (j)}. Ties are broken first to lexicographically

lower the regret on as many losing bids as possible, and then on prices for items in

winning bids to maximize the minimal price on each such bundle. This procedure

ensures a unique solution and is designed to provide bidderswith informative

signals.

Experimental results in a laboratory with human bidders demonstrate that RAD

achieves higher efficiency than non-combinatorial auctions (Banks, Ledyard, and

Porter 1989). In addition, RAD is demonstrated to terminatewith fewer rounds

than the SAA design, which typically has fewer rounds than simple ascending-bid

CAs (Cybernomics 2000).

AuctionsiBEA (Parkes and Ungar 2002) and MP (Mishra and Parkes 2004) are

general purpose ascending Vickrey auctions.iBEA extendsiBundle(3) to adjust

past the first set of CE prices and achieve UCE prices with straightforward

bidding. This provides enough information to adjust downwards to VCG

payments upon termination, bringing straightforward bidding into anex post
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equilibrium for general values. Similarly, MP extends the minimal price update

rule in dVSV, to ensure that the auction terminates with UCE prices. The same

tradeoff occurs betweeniBEA and MP as occurs betweeniBundle and dVSV.

Although one should expect MP to converge more quickly thaniBEA, each price

update iniBEA is simple to compute and easier to explain to bidders.

5 Non Price-Based Approaches

We survey three examples of non price-based approaches to iterative CA design.

These auctions do not require that bidders submit bids in response to ask prices.

Instead, they include richer query models and are structured fundamentally

different than ascending-price auctions. The auctions fall into one of the

following categories:

Decentralized Approaches.The winner determination problem is moved to the

bidders, who are responsible for submitting bids and also computing

allocations of items with high revenue given existing bids.TheAdaptive

User Selection Mechanism(AUSM) (Banks, Ledyard, and Porter 1989), a

continuous auction in which winner determination is distributed to bidders,

provides a canonical example.

Proxy Auctions. Proxy agents, which automatically submit bids through a

predetermined bidding procedure, provide an interface between bidders and

an auction. Bidders provide incremental value informationto proxy agents,

which may query bidders actively.

Direct-Elicitation Approaches. (Conen and Sandholm 2001) Explicit queries

are formulated by the auctioneer (perhaps in a decentralized way), and a

bidder’s strategy determines how to respond to these queries. Multi-party

elicitation approaches are used to ensure that informationreported by one

bidder can be used to refine the queries asked of another bidder.
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There is perhaps some ambiguity between the proxy auctions approach and the

direct-elicitation approach. We choose to reserve the termproxy auctionto

settings in which the proxy agents are restricted to following a straightforward

bidding strategy in an auction protocol. Direct-elicitation methods may also

distribute elicitation to individual proxy agents. However, the proxies in

direct-elicitation interact with a richer centralized protocol (more akin to a

computational procedure), that can itself be designed withknowledge that it will

be interacting with automated proxy agents.

5.1 Decentralized Approaches: The AUSM Design

AUSM is a continuous auction that maintains a list of provisional winning bids

and astandby queue. This standby queue contains bids that have been submitted

but are not provisionally winning, and is designed to allow bidders to coordinate

their bids. A bidder can always submit a bid to the queue and can also suggest a

new combination of bids from the queue that provide more revenue than the

current allocation. This proposed allocation becomes the new provisional

allocation. The bidding language within the queue is implicitly additive-orand

bidders are unable to place logical constraints between multiple bids in the queue.

AUSM terminates after a period of quiescence.

AUSM distributes the winner-determination computation across the bidders. The

auctioneer is only required to verify that a new provisionalallocation is better

than the current allocation and that it is formed from bids inthe standby queue.

Related ideas are found in the work of Brewer (1999) and the PAUSE auction

(Land, Powell and Steinberg, Chapter 6).

On one hand, this decentralization can remove a computational bottleneck from

iterative CAs. On the other hand, this decentralization canbias the outcome in

favor of technologically sophisticated bidders better able to solve larger

optimization problems. See Pekeč and Rothkopf (Chapter 16) and Parkes and

Shneidman (2004) for an additional discussion of the incentive aspects of
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decentralized approaches to solving the winner-determination problem.

Another potential concern with AUSM is that bidders must be able to process the

disaggregated feedback provided in the auction, in the formof submitted bids.

Nevertheless, AUSM has been demonstrated to provide betterallocative efficiency

than a non-combinatorial auction in experiments with humanbidders (Banks,

Ledyard, and Porter 1989).

5.2 Proxied Auctions

Proxied auctions include automated proxy agents which interface between bidders

and the auctioneer and submit bids following a predetermined procedure. In an

ascending CA the proxies typically follow straightforwardbidding strategies. If a

proxy agent is following afirst-beststrategy (i.e. the bidding strategy that an

agent would follow with full information about a bidder’s value), then it must

elicit enough information to compute a best-response to prices in each round.

At one extreme, each proxy agent can require direct and complete revelation at the

start of the auction (Ausubel and Milgrom 2002, also Chapter3). Of course, this

reduces the auction to a sealed-bid auction. However, when combined with a

bidder-to-proxy interface that allows bidders to provide incremental value

information, proxied auctions suggest a paradigm shift in iterative CAs from

indirect revelation (e.g. via best-response bids to prices) to incremental butdirect

revelation (Parkes 2001, section 7.5).

Proxy agents can maintain partial information about valuations. For instance, this

information could be in the form ofexact values for a subset of bundles, or

approximate values for each bundle. Proxy agents can decide when to query and

when to bid, based on a model of costly elicitation.

The bidder-to-proxy interface need not be constrained to logical languages such as

XOR or OR, and can be adapted to suit the local problem of a bidder. For

example, a bidder in a logistics problem can define the constraints and costs for

her local business problem. The ability to support this kindof expressiveness can
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prove decisive in practice.22

In addition to enriching the bidding language, proxy auctions can also offer the

following advantages:

a) Proxy auctions can restrict the dynamic strategies available to bidders, for

example by enforcing straightforward bidding based on reported valuations and

by requiring consistent information-revelation to proxies (see Section 7.5, Parkes

2001, and Ausubel and Milgrom 2002).

b) Proxy auctions offer opportunities foracceleratedimplementations of auctions,

because there can be multiple fast “proxy rounds” of biddinginterleaved with a

few “human rounds” to refine proxy’s value information, see Hoffman, Menon,

van der Heever, and Wilson (Chapter 17) and Wurman, Zhong andCai (2004).23

In imposing strong activity rules, for instance to require that a bidder provides a

consistent response to queries during an auction, one must allow for bidder

mistakes and also for bidders that might be adjusting their beliefs about value as

they receive feedback (e.g. in acorrelated valuesetting). Ausubel, Cramton and

Milgrom (Chapter 5) advocate using a relaxed consistency rule to provide

incentives for early demand revelation while allowing for these other effects.

5.3 Direct-Elicitation Approaches

A direct-elicitation approach formulate queries about bidder valuations, to which

bidders are expected to respond (although not necessarily truthfully). Queries are

typically interleaved across bidders so that the queries asked of one bidder can be

selected given responses by other bidders. In this way, complete elicitation can be

avoided through focused elicitation on interesting parts of the allocation space.

Sandholm and Boutilier (Chapter 10) provide an extended discussion of

direct-elicitation methods for the design of iterative CAs.

The query process in direct elicitation can be fully integrated within a

winner-determination algorithm to determine whether enough information is

available to implement an efficient allocation (Conen and Sandholm 2001, e.g.).
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The query process may also be defined through an algorithmic technique that does

not have a very natural analogue with traditional auction designs, such as

computational learning theory(Zinkevich, Blum, and Sandholm 2003, Lahaie and

Parkes 2004a).

Example queries can include: “is bundleS1 preferred to bundleS2?”; “is your

value on bundleS1 at least$100?”; and “what is your value on bundleS1?.” The

goal is to ask the minimal number of queries required to determine the efficient

allocation and perhaps also to determine the VCG payments. Computing the VCG

payments brings truthful response by bidders into anex postequilibrium.

We know that any elicitation process must also determine CE prices if the goal is

to determine an efficient allocation, and UCE prices if the VCG outcome is

important (see Section 2). Thus, one reasonable approach isexplicitly price

based, with elicitation structured as a search for CE prices. One can also consider

anallocation-basedapproach, with elicitation structured as a search for the

efficient allocation.

Price based.Query bidders until the value information is sufficient to verify a set

of UCE prices and a supporting allocation for the main economy. For

instance, one can simulate learning algorithms to elicit bidder valuations

until they are known with enough accuracy to determine UCE prices

(Lahaie and Parkes 2004a, Lahaie and Parkes 2004b).

Allocation-based. Query bidders until the value information provides a

certificate for the efficient allocation and the Vickrey payments. Use partial

information to augment a search in allocation space, executing new queries

to refine information that will resolve current uncertaintyabout the efficient

allocation (Conen and Sandholm 2001, Hudson and Sandholm 2004).

As yet there are no published studies to compare the elicitation effectiveness and

computational scalability of price-based approaches and allocation-based

approaches. Price-based approaches may be fundamentally more scalable, with
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queries determined by solving optimization problems that are restricted by current

bidder responses, for instance via winner-determination problems defined on

bundles returned by best-response queries. In comparison,allocation-based

approaches must strive to avoid maintaining an allocation graph that scales

exponentially with the number of items.24

Price-based approaches are also naturally decentralized:in a proxied architecture,

each proxy agent can elicit preference information independently until it has

enough information to determine its best-response to current prices. This

best-response information can verify that an allocation isefficient even though

each proxy knows nothing about the values of other bidders.

Recently, methods from computational learning theory (CLT) have been adapted

to direct elicitation. CLT providesmembershipqueries (“what is your value on

bundleS?”) andequivalencequeries (“is your valuation function̂v? If not,

identify a bundleS for which v̂(S) is incorrect.”) In one approach, each proxy is

responsible for learning theexactvalue function of a single bidder in isolation

(Zinkevich, Blum, and Sandholm 2003, Blum, Jackson, Sandholm, and Zinkevich

2004). In another approach, Lahaie and Parkes (2004a) integrate CLT into

price-based approaches and usedemand queriesto simulate equivalence queries.

A demand query presents pricesp and a bundleS and asks whetherS is in the

demand set of the bidder at the prices. This coordinates elicitation across proxy

agents and provides an elicitation method that can terminate early as soon as CE

prices are discovered and without learning values exactly.

6 Summary

Iterative CAs are of critical importance in addressing the problem of preference

elicitation, which many view as the biggest issue to surmount in the real-world

deployment of CAs. The sophisticated combinatorial optimization and pricing

algorithms of CAs are impotent without rich bid informationfrom bidders.

Iterative CAs focus elicitation, often through price discovery, and can find
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efficient allocations without bidders reporting, or even computing, their exact

value information. We emphasized price-based approaches,and in particular a

primal-dual design paradigm. Canonical non-price based approaches, including

proxied- and direct-elicitation approaches, were also discussed.

For a related discussion of the primal-dual approach to auction design see Chapter

8, and see also Chapters 3, 5 and 6 for discussions of specific iterative CAs.

Chapters 9, 10 and 11 relate to the discussion of bidding languages, elicitation,

and communication complexity. Chapter 17 discusses methods to accelerate the

computation of the outcome of a proxied ascending price CA.

Looking ahead, we see a number of outstanding problems in thedesign of

iterative CAs:

· Introduce thecostof preference elicitation more explicitly into the auction

design problem. Current methods are mainlyfirst best, and seek to find an

efficient allocation with as little information as possible. But what happens when

this minimal information remains too costly for bidders to provide? This is the

problem of designingsecond-bestauctions, that make the right tradeoff between

the cost of information and the value of additional information in terms of

improving the market allocation. Some initial progress hasbeen made in the

analysis of auction design with costly information (Compteand Jehiel

2000, Larson and Sandholm 2001, Fong 2003, Parkes 2004), andwith bounded

communication (Blumrosen and Nisan 2002, Blumrosen, Nisan, and Segal 2003),

but much more work needs to be done.

· Design iterative CAs for which straightforward bidding is an ex postequilibrium,

but which do not suffer from the well-known vulnerabilitiesof the VCG auction

that are outlined by Ausubel and Milgrom (Chapter 1). These auctions will

necessarily not be allocatively efficient, but may be more desirable due to new

robustness against manipulation by coalitions and improved revenue properties.

· Current auctions for general valuations for which theoretical results are available

use XOR bidding languages which are not concise enough to be usable for many
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real-world applications. We need iterative CAs that support richer bidding

languages, for instance allowing side constraints, volumediscounts, and other

high-level bidding logic to be stated and then refined duringthe auction.
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Notes

1One argument commonly made for why very few VCG mechanisms are seen
in practice is that bidders are reluctant to reveal their complete and true valua-
tions in a situation of long-term strategic interaction (Rothkopf, Teisberg, and Kahn
1990).

2The observed vulnerabilities of the VCG auction can be viewed as problems
intrinsic to the task of implementingefficientallocations in anex postequilibrium
in iterative CAs, given the uniqueness of the VCG auction among efficient auctions
(see Chapter 1).

3Goods are substitutes is the largest set containing unit-demand valuations (with
vi(S) = maxj∈S{vij} for all S, wherevij is the value for itemj in isolation) for
which the existence of linear CE prices can be established (Gul and Stacchetti
1999).

4Gul & Stacchetti (1999) show that there is often no linear price equilibrium
that supports the VCG payments with substitutes valuations. On the other hand,
linear prices can support the VCG outcome for unit-demand valuations (Leonard
1983).

5Computational analysis on a broad test suite of problem instances demon-
strated failure of buyers are substitutes in around 43% of instances (Parkes 2001,
Chapter 7, pp.216).

6In fact, the prices will supportall efficient allocations in each marginal econ-
omy because prices that support any one efficient allocationsupport all.

7Parkes (2002) usesagent-independenceto refer to privacy-preservation. Parkes
also requires an additional technical requirement (outcome-independence), that is
without loss of generality for “best-response bidding languages,” which are ex-
pressive enough to simulate at least the following bids:bundleS1 is worth at least
$100; andbundleS1 is worth at least$50 more than bundleS2; andbundleS1 has
value$200.

8The form of activity rule used in the FCC spectrum auctions isdue to Paul
Milgrom and Robert Wilson. The rule requires quantities bidin the auction are
(weak) monotonically decreasing. Similar rules have sincebecome standard in
ascending CAs.

9Roth and Ockenfels (2001) have studied the use of deadlines versus rolled
closures, on eBay and Amazon Internet auctions respectively. Bidders on Amazon
bid earlier than on eBay, and many bidders on eBay wait until the last seconds of
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an auction to bid.

10Click-box bidding was adopted by the FCC in the light of evidence that bidders
used the trailing digits for signaling in early wireless spectrum auctions.

11Of course, arbitrary decommiting may be undesirable because it allows insin-
cere bidding and cheap talk.

12BAS holds and there is a set of minimal CE prices that will support the VCG
outcome. However, Gul and Stacchetti’s (2000) auction maintains item prices and a
stronger condition, such as unit-demand valuations, is required for VCG payments
to be supported with linear CE prices.

13A set of items,S′ ⊆ G, areoverdemandedwhen it is not possible to satisfy the
demand sets of bidders that demand only items inS′.

14A setL ⊆ I of bidders are undersupplied if not all bidders can be satisfied in
the provisional allocation.

15One can also imagine that each round of the auction closes theduality gap
between the feasible primal and dual solutions. At termination the duality gap is
zero, complementary slackness holds, and we have an efficient allocation and CE
prices.

16Recently, de Vries, Schummer and Vohra (2003) observe a formal distinc-
tion between thesubgradientapproach adopted iniBundle and theprimal-dual
approach adopted in dVSV and MP. One can view subgradient methods as a spe-
cialization of primal-dual, and thus we prefer to continue to adopt theprimal-dual
terminology throughout this section.

17Specifically, the bidder need only bid for bundlesS for which there are no
bundlesS′ ⊂ S with vi(S

′) = vi(S), i.e. taking advantage of sparse valuations.

18A simple way to achieve consistency is to use a proxy agent interface. The
proxy can follow a straightforward bidding strategy based on value information
reported by a bidder. A bidder can provide additional information as needed but
must be consistent during the course of the auction.

19In particular, de Vries, Schummer, and Vohra (2003) note that iBundle is more
correctly a subgradient algorithm while dVSV is a primal-dual algorithm. Primal-
dual algorithms are inherently faster than subgradient algorithms in the optimiza-
tion literature (Fisher 1981).

20This property is satisfied by the “spatial fitting” environment used by Kwas-
nica, Ledyard, Porter and DeMartini (2004) in experiments and introduced in Banks,
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Ledyard and Porter (1989).

21Graves et al. (1993) have also described LP-based methods toprovide price
feedback in a multi-stage combinatorial auction procedureadopted at the Univer-
sity of Chicago Graduate Business School in the 1990’s.

22For instance, Kalagnanam, Bichler, Davenport and Hohner (Chapter 23) and
Caplice and Sheffi (Chapter 21) discuss the role of item prices coupled with vol-
ume discounts and complex bid-taker constraints in industrial procurement and
logistics.

23Indeed, the speed of iterative combinatorial auctions has often been cited in
FCC discussions as one potential drawback in comparison with linear price auc-
tions.

24Current allocation-based algorithms cannot scale beyond ahandful of bid-
ders and tens of items (Hudson and Sandholm 2004). In comparison, ascending-
price auctions readily scale to problems that push the limitof current winner-
determination technology (Parkes and Ungar 2000a). We are not aware of any
computational studies of price-based direct elicitation methods such as those of
Lahaie and Parkes (2004a).

7 Appendix: LP Theory

Consider the linear program:

max cT x [P]

s.t. Ax ≤ b

x ≥ 0

whereA is am × n integer matrix,x ∈ Rn is an-vector, andc andb aren− and

m-vectors of integers. Vectors are column-vectors, and notation cT indicates the

transposeof vectorc, similarly for matrices. The primal problem [P] is to

compute a feasible solution forx that maximizes the value of the objective

function.
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The dual program is constructed as:

min bT y [D]

s.t. AT y ≥ c

y ≥ 0

wherey ∈ Rm is am-vector. The dual problem is to compute a feasible solution

for y that minimizes the value of the objective function.

Let VLP(x) = cT x, the value of feasible primal solutionx, andVDLP(y) = bT y,

the value of feasible dual solutiony.

Complementary-slackness conditions express logical relationships between the

values of primal and dual solutions that are necessary and sufficient for optimality.

Definition 6 (Complementary-Slackness).Complementary-slackness

conditions constrain pairs of primal and dual solutions.PrimalCS conditions

statexT (AT y −c) = 0, or in logical form:

xj > 0 ⇒ Ajy = cj (P-CS)

whereAj denotes thejth column ofA (written as a row vector to avoid the use of

transpose).DualCS conditions stateyT (Ax − b) = 0, or in logical form:

yj > 0 ⇒ Aix = bi (D-CS)

whereAi denotes theith row ofA.

Theorem 10 (strong-duality).A pair of feasible primal,x, and dual solutions,y,

are primal and dual optimal if and only if they satisfy the

complementary-slackness conditions.

Proof. Primal CS holds iffxT (AT y − c) = 0, and Dual CS holds iff

yT (Ax − b) = 0. Equating, and observing thatxT AT y = yT Ax, we have P-CS

and D-CS iffxT c = yT b, or cT x = bT y. The LHS is the value of the primal,

VLP(x), and the RHS is the value of the dual,VDLP(y). By the strong duality
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theorem,VLP(x) = VDLP(y) is a necessary and sufficient condition for the

solutions to be optimal. ⊓⊔
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A B AB

Bidder 1 30∗ 0 30
Bidder 2 0 40∗ 40
Bidder 3 0 20 40
Bidder 4 25 0 25
Bidder 5 0 25 25

(a)

minimal information set
v1(A) ≥ v1(B), v1(A) ≥ v1(AB), v1(A) ≥ 25
v2(B) ≥ v2(A), v2(B) ≥ v2(AB), v2(B) ≥ 25

v3(A) ≤ 0, v3(B) ≤ 20, v3(AB) ≤ 40
v4(AB) ≤ 25
v5(AB) ≤ 25

(b)

Figure 2.1: Example 2.2:(a) Bidder valuations, with the efficient allocation
indicated by ∗. (b) Minimal information on bidder valuations to compute the
VCG outcome.
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Figure 2.2:A Primal-Dual Interpretation of an Ascending CA.
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Figure 2.3:Adjusting towards the VCG outcome in price-based iterativeCAs.
CE prices lie within the shaded regions.
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