
 

A Study of Nash Equilibrium in Contribution Games for Peer-to-
Peer Networks

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Corbo, Jacomo, Antoni Calvó-Armengol, and David C. Parkes.
2006. A study of Nash equilibrium in contribution games for peer-
to-peer networks. Operating Systems Review 40(3): 61-66.

Published Version doi:10.1145/1151374.1151388

Accessed February 18, 2015 1:12:42 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3996853

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/3996853&title=A+Study+of+Nash+Equilibrium+in+Contribution+Games+for+Peer-to-Peer+Networks
http://dx.doi.org/10.1145/1151374.1151388
http://nrs.harvard.edu/urn-3:HUL.InstRepos:3996853
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


A Study of Nash Equilibrium in Contribution Games for
Peer-to-Peer Networks

Jacomo Corbo†, Antoni Calvó-Armengol‡, David Parkes†
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Abstract
We consider a stylized model of content contribution in a peer-to-peer
network. The model is appealing because it allows for linear-quadratic
payoff functions and for very general interaction patterns among agents.
Furthermore, when the model has a unique Nash equilibrium (NE) we
find that it is defined by a network centrality measure (Bonacich 1987),
with L1 and L2 norms of the Bonacich index vector providing aggre-
gate contribution and social welfare. Furthermore, we find that NE are
always (even when they are non-unique) computable by solving a lin-
ear complementarity problem. We study the network designer’s prob-
lem of engineering the most efficient equilibrium outcome, proving that
maximizing aggregate contribution can be reconciled with maximizing
aggregate welfare. We also provide a partial characterization of optimal
NE graphs and suggest different approaches for how a network designer
can promote more efficient graph structures.

1 Introduction
Peer effects, or the dependence of individual outcomes on group
behaviour, is a characterizing feature of peer-to-peer systems
(Antoniadis et al. 2005). File-sharing systems, for example,
rely on participants to provision the network with bandwidth. A
player experiences a marginal increase in utility from a better
download rate as a result of another player’s providing upload
bandwidth. In such settings, the degree to which one player can
benefit from another player depends on the relative location of
the players in a network. A person can benefit more from an-
other’s high upload rate if the latter is closely connected. This
may be either because of the congestion and resulting latency
along multi-hop connections or because persons have only a par-
tial view of the network (as in Kazaa).

Following Ballester et al. (2005), we adopt a simple model
for a contribution game in this paper. The model allows for pos-
itive bilateral influences, meaning two players can positively af-
fect each other’s payoffs.

A player is modeled with a linear-quadratic utility function,
that allows for utility-dependence on the contribution by other
players. The utility structure provides for an individualized com-
ponent, refelecting decreasing marginal-returns for a player’s
own contribution, in addition to a term that reflects local interac-
tion that varies across pairs of players, meaning pairs of players

can affect each other differently.
The population wide pattern of these local complementari-

ties is well-captured by a network. In the case of a peer-to-peer
file sharing system, this network closely resembles the underly-
ing network of connectivity between peers and the local com-
plementarities reflect the payoff interdependencies rooted in this
network structure of player links. In such a setting, equilibrium
strategies naturally reflect players’ network embeddedness.

The model is appealing because a unique Nash equilibrium
(NE) of the contribution game can be readily computed as a
metric of network centrality. This facilitates a rich empirical
analysis of the contribution game. First proposed by Bonacich
(1987) nearly two decades ago, the Bonacich network centrality
measure counts the number of all paths emanating from a given
node weighted by a decay factor that decreases with the length
of these paths.1 As demonstrated by Ballester et al. (2005) this
turns out to be intimately related to equilibrium behavior in our
setting, since the paths capture all possible feedbacks from oth-
ers’ play. The decay factor represents the extent to which others’
actions enter into a player’s own action’s payoff. We also find
that NE are always (even when they are non-unique) computable
by solving a linear complementarity problem. We exploit both
relationships to compute NE and to characterize optimal NE in
our game.

As a designer, one goal might be to maximize the aggregate
contribution by players to a system, while another goal might be
to maximize the total social welfare of players.

We consider a network design setting, in which the plan-
ner’s ability to control a system is limited by constraints that
can be placed on the characteristics of allowable networks. Ide-
ally, these characteristics will be local so that they can be im-
plemented and verified through simple decentralized protocols.
There is no ability to implement side payments in our work. We
stress the difference between such network design and the im-
plementation of a centralized mechanism: the designer’s inter-
vention is indirect and not predicated on direct interaction with
participants. As such, network topology design is a more re-
alistic way of encouraging desirable equilibrium play in many

1It was originally interpreted as an index of influence or power of the actors
of a social network. Katz (1953) is a seminal reference.
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peer-to-peer settings.
Fixing the number of nodes and the number of edges in a net-

work, we use a simulated annealing search to find contribution-
and social welfare-maxmizing networks where a network design
is evaluated in the equilibrium of the contribution game that is
induced. We solve for the induced equilibrium by solving the as-
sociated linear complementarity problem. Our first result is that
the optimal networks for both objective functions very closely
coincide, and that they are exactly equivalent for large external-
ities and correspond to networks with maximal largest eigenval-
ues, otherwise known as maximal index graphs. These graphs
exhibit a hub-like structure. Yet the threshold on the level of
local externalities under which these graphs produce a unique,
interior equilibrium is low, i.e. lower than for more regular
graphs. That said, as local complementarities grow equilibria be-
come non-unique and partially-corner, in that some agents con-
tribute nothing at equilibrium. Under such conditions, we find
that graphs with large index are again optimal for both network
design problems.

We investigate how well a network designer can improve the
equilibrium by manipulating a graph’s edges. We show that the
optimal graphs yield equilibrium outcomes that scale as well as
O(

√
e) with respect to completely random graphs, and decreases

as graphs become larger and denser.
Finally, we briefly discuss how the network structure can be

steered to optimality either by the exclusion of some number of
players (or player types) or by partitioning the graph into multi-
ple components.

1.1 Related Work
Our contribution game is based on work that investigates how in-
dividuals provision public goods in the face of the externalities
from other individuals’ play. Our model is based on a model by
Ballester et al. (2005) but where players only face positive bi-
lateral complementarities and marginally decreasing returns in
their own contribution. This stylized model captures many natu-
ral settings; specifically, it is a good model of bandwidth provi-
sioning in peer-to-peer file sharing systems.

Endogenous network formation models feature prominently
in economic modeling. One of the main points of concern is the
tension between stability and efficiency in network games. See
Jackson (2005) for a survey of the area. We provide a partial
characterization of equilibria in our game and relate a network’s
efficiency to its geometric properties.

This paper situates itself in a growing body of literature inter-
ested in endogenous network design. Anshelevich et al. (2004)
study the ratio of the best Nash equilibrium with the central-
ized optimum (price of stability) in a setting where independent
agents wish to connect certain nodes in a graph under a fair cost
allocation mechanism. Corbo et al. (2005) study how the ratio
of the worst equilibrium with the centralized optimum (price of
anarchy) changes when agents who want to form a graph can
establish links bilaterally versus unilaterally. Recently Kempe et
al. (2003) investigate how the topology of a social network af-
fects the propagation of ideas and formulate the problem of how
best to maximize the spread of influence for a given network.
Taking the view that social networks are endogenously optimiz-
ing some feature, Liben-Nowell and Kleinberg (2003) concern

themselves with how to predict which links will form as the net-
work evolves. We study a setting where agents freely interact
and study how the pattern of interactions affects the optimality
of observed outcomes. We provide a partial characterization of
optimizing graphs, show the equivalence of the unique equilibria
of our game and a social network centrality measure, show how
all equilibria can be solved by solving an associated linear com-
plemntarity problem, and finally discuss the viability of different
mechanisms to achieve better equilibria.

2 The Model
2.1 The game
Players are connected by a network g with adjacency matrix
G = [gij ]. This is a zero diagonal and non-negative square ma-
trix, with gij ∈ {0, 1} for all i �= j. We let gij = gji, for all i, j.
The matrix G is a symmetric (0,1)-matrix and the network g is
undirected and unweighted, that can be represented by a graph
without loops nor multiple links.

Each player i = 1, ..., n selects a contribution xi ≥ 0, and
gets a payoff ui(x1, . . . , xn). We focus on bilinear utility func-
tions of the form:

ui(x,g) = xi − 1

2
x2

i + a
n∑

j=1

gijxixj , (1)

where x = (x1, . . . , xn).
Note that this utility is marginal-decreasing in an agent’s own

contribution, with ∂2ui

∂x2

i
= −1.

The external effect of another agent on the utility of agent i

is captured by the cross-derivatives ∂2ui

∂xixj
= agij , for i �= j. We

set a > 0 so that the effect on agent i of agent j’s contribution
is marginal-increasing if and only if i and j are connected in g.
The network g reflects the pattern of existing payoff (relative)
complementarities across all pairs of players.

Where convenient, we use Σ to refer to the n-player game
with payoffs given by Equation 1 and strategy space, the positive
real line.

2.2 The Linear Complementarity Problem
We analyze the set of pure strategy Nash equilibria of the game
introduced above. We note that an equilibrium exists if and only
if the following holds:

∂ui

∂xi
(x∗) = 0, ∀i ∈ Nsuch that x∗

i > 0 (2)

∂ui

∂xi
(x∗) < 0, ∀i ∈ Nsuch that x∗

i = 0

In matrix notation, the above Nash equilibrium necessary and
sufficient conditions in Equations 2 become :

x∗ >= 0, (3)

−α + Σx∗ >= 0,

−xt∗(−α + Σx∗) = 0.
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The problem of finding a vector x∗ such that the above con-
ditions hold is known as the linear complementarity problem
LCP (−α,−Σ) in the literature. We can therefore state the fol-
lowing:

Theorem 1 The set of pure strategy Nash equilibria of the con-
tribution game with parameters α and Σ are given by the set of
solutions to LCP (−α,−Σ).

The linear complementarity problem is a well-studied prob-
lem and we borrow from this literature to address existence of
the Nash equilibrium in our game, as well as in our empirical
studies to characterize optimally-designed networks.

2.3 The Bonacich network centrality measure
Before turning to the equilibrium analysis, we define a network
centrality measure due to Philip Bonacich (1987) that proves
useful for this analysis.

Let G(v, e) denote the set of undirected and unweighted con-
nected graphs without loops with v vertices and e edges. Con-
nectedness requires that e ≥ v − 1, which we assume from now
on.

Let g ∈ G(v, e) and let G denote its adjacency matrix. This
is a v−square, symmetric, and zero diagonal (0, 1)−matrix. We
set gij = 1 if i and j are directly connected in g, and gij = 0,
otherwise. Denote by µ1(g) its largest eigenvalue, also called
the index of g. Note that this index is well-defined and µ1(g) >
0.

Lemma 1 The matrix B(g, a) = [I−aG]
−1 is well-defined and

non-negative if and only if aµ1(G) < 1. Then, B(g, a) =∑+∞

k=0 akGk, and its coefficients bij(g, a) count the number of
paths in g starting at i and ending at j, where paths of length k
are weighted by ak.

Proof: From Theorem III∗, page 601 in Debreu and Herstein
(1953).

Definition 1 Suppose that aµ1(G) < 1. The vector of Bonacich
centralities of parameter a in g is b(g, a) = B(g, a) · 1.

The Bonacich (1987) centrality of node i is bi(g, a) =∑
j bij(g, a), and counts the total number of weighted paths in

g starting from i.

Theorem 2 For aµ1(G) < 1, the game Σ has a unique Nash
equilibrium x∗(Σ), which is interior and given by

x∗(Σ) = b(g, a) (4)

Proof: From Theorem I in Ballester et al. (2005).

Corollary 1 The utility of player i at equilibrium is ui(x
∗,g) =

1
2x∗

i
2 = 1

2bi(g, a)2.

Proof:

ui(x
∗,g) = x∗

i − 1

2
x∗2

i + a

n∑

j=1

gijx
∗

i x
∗

j

= x∗

i (1 + a

n∑

j=1

gijx
∗

j ) −
1

2
x∗2

i

for all i. By the first order conditions ∂ui(x
∗,g)/∂xi = 0 that

yield the Nash equilibrium2 we have:

x∗

i = 1 + a
n∑

j=1

gijx
∗

j , for all i.

Replacing above gives:

ui(x
∗,g) = x∗2

i − 1

2
x∗2

i =
1

2
x∗2

i =
1

2
bi(g, a)2.

Then the total equilibrium welfare u(x∗,g) · 1 is
1
2 ‖b(g, a)‖2

= 1
2b(g, a) · b(g, a).

2.4 Comparative Statics
The previous results relate individual equilibrium outcomes to
the Bonacich centrality in the network g of local complemen-
tarities. The next result establishes a positive relationship be-
tween the aggregate equilibrium outcome and the pattern of lo-
cal complementarities. First we remark that the cross effects for
the payoff function given in Equation 1 is captured by the ma-
trix Σ = −I + aG.3 For any two matrices Σ and Σ′, we write
Σ′ > Σ if σ′

ij > σij , for all i,j, with at least one strict inequality.

Theorem 3 Let Σ and Σ′ symmetric such that Σ′ > Σ. If
aµ1(G

′) < 1 and aµ1(G) < 1 then x∗(Σ′) > x∗(Σ).

Proof: Σ′ = Σ + aD, with dij ≥ 0 with at least
one strict inequality. Theorem 1 holds so −Σx∗(Σ) =
Σ′x∗(Σ′) = 1, and x∗(Σ),x∗(Σ′) > 0. Now observe
that −x∗t(Σ′)Σx∗(Σ) = x∗t(Σ′)1 = x∗(Σ′). By symme-
try of Σ′, we have: −x∗t(Σ′)Σx∗(Σ) = −x∗t(Σ′)Σ′x∗(Σ) +
ax∗t(Σ′)Dx∗(Σ) = x(Σ) + ax∗t(Σ′)Dx∗(Σ).

Each individual outcome increases with a and with G. Indeed,
we are either increasing the weight to each path, or increasing
the number of such paths. Hence, both individual equilibrium
outcomes, aggregate equilibrium outcome and welfare increase
with a and with G.

3 Network Design
A number of edges e and vertices v are given. The problem
of optimal network design consists on arranging the v vertices
with the e edges in such a way that some objective function is
maximized. We identify two different network design problems.
With later analysis in mind, we formally state these problems
when the equilibrium is interior and unique.

Problem 1 Solve maxg{b(g, a) · 1 : g ∈ G(v, e)}.

Here, the social planner wants to maximize aggregate activity
(read contribution) at equilibrium.

Problem 2 Solve maxg{‖b(g, a)‖ : g ∈ G(v, e)}

Here, the social planner wants to maximize aggregate equi-
librium welfare.

2Recall that this equilibrium is interior, so that these hold with equality.
3The decomposition that shows this is provided in Ballester et al. (2005).
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That problems 1 and 2, which correspond to maximizing the
L1 and L2 norms of the Bonacich index vector, are equivalent to
maximizing aggregate welfare and aggregate contribution stems
from the convenient relationship between utility and contribu-
tion quantities and the Bonacich indices in our game, when the
equilibrium is unique. The relation between Bonacich centrality
and the unique NE of our game lends a geometric interpretation
to problem 1: namely, the social welfare-maximizing graph is
the graph with maximal weighted paths. For both problems, the
relation suggests a way to characterize optimal equilibria using
spectral graph theory, even when equilibria are not unique.

We stress the difference between the two problems. In the
peer-to-peer file-sharing example, the system planner may want
to ensure that download bandwidth is maximized, even at the
expense of social utility. Or the planner may be more concerned
with the aggregate utility of the system to users, even at the ex-
pense of poorer performance.

Theorem 2 establishes that a necessary and sufficient condi-
tion for there to be a single equilibrium in the game Σ is that
aµ1(G) < 1.This is also a necessary and sufficient condition
for players’ contributions to be strictly positive, i.e. for the equi-
librium to be interior. We first show that the two network design
problems can be reconciled in our game when the equilibrium
is interior and unique. Specifically, we show that as network
externalities grow, the two problems become asymptotically the
same.

Lemma 2 Let g ∈ G(v, e), and µ1(G) its index. As λ ↑ 1
µ1G

,
Problems 1 and 2 are equivalent and reduce to:

max{µ1(g) : g ∈ G(v, e)}. (5)

.

Proof: For a given network g, b(g, λ) is only well-defined when
λ < 1/µ1(G). Therefore, the strict upper bound for λ in G(v, e)
is 1/µ1(g

∗), where g∗ is the solution. Then,

lim
λ↑1/µ1(g∗)

b(g∗, λ) · 1 = lim
λ↑1/µ1(g∗)

‖b(g∗, λ)‖ = +∞,

whereas

lim
λ↑1/µ1(g∗)

b(g, λ)·1, lim
λ↑1/µ1(g∗)

‖b(g, λ)‖ ∈0(1), when g �= g∗.

This drives the equivalence of Problems 1 and 2.

In words, when a is high enough, the networks that maximize
aggregate outcome and welfare coincide, and are given by the
graph with maximal index.

We use results on graphs with largest maximal eigenvalues to
solve the network design problem in this case.

Let s1,v−1 (v ≥ 3) be the star with vertices 1, ..., v and vertex
1 as hub. For 1≤ k ≤ v− 3, let hv,k be the graph obtained from
s1,v−1 by joining vertex 2 to vertices 3, ..., k + 3.

Proposition 1 Suppose that a is high enough. Then,

(i) if e = v − 1, the unique solution to (3) is s1,v−1;

(ii) if e = v + k, k ∈ {0, 1}, the unique solution to (3) is hv,k;

(iii) if e = v + 2, hv,k is a solution to (3), but it is not unique;

(iv) if e = v + k, k ≥ 2, there exists v(k) such that, for all
v ≥ v(k), the unique solution to (3) is hv,k.

Proof: See Theorem 3.3.2, page 68 in Cvetković et al. (1997).

These asymptotic results reveal a great deal about how the
optimal networks (for both objective functions) change with the
level of externalities. As explained earlier, it is the particular
payoff complementarities that fix a and induce the network link-
ing players. Consider now the situation reversed: the payoff
complementarity between two players i and j is set by two fac-
tors: the parameter a and the cumulative distance along all paths
in number of node hops between i and j in some graph g. By this
view, we can now understand that the relative network external-
ities are driving the system to have multiple equilibria and that
these increase either by increasing a or by increasing the largest
eigenvalue in g. Moreover, the above results suggest that both
objective functions increase without bound as a ↑ 1/µ1(G). We
still treat a as an exogenous parameter that arises from the pay-
off decomposition seen earlier. So for all a, the optimal network
g∗ is the graph on v and e with largest eigenvalue.

So far, we have discussed the network design problem when
NE are unique and interior. Beyond the eigenvalue bound of
Theorem 2, NE are no longer unique or interior, i.e. a sub-
set of agents in the game contribute 0 at equilbrium. We call
these equilbria partially-corner. Yet the introduction of partially-
corner equilibria does not change the network designer’s prob-
lem much. Indeed, Figure 2 shows that contribution-maximizing
graphs beyond the maximum eigenvalue bound are topologically
very similar,their maximum eigenvalue not decreasing much as
edges are rearranged at optimum. The rationale is the fol-
lowing: As the payoff complementarity a grows, the welfare-
maximizing graph(s) are first the maxiumum eigenvalue graphs
while interiority holds, then those graphs with highest eigen-
value such that interiority still holds, and then, as partially-
corner equilibria are all that remain (given a and for all g(v, e)),
these are still graphs with high eigenvalue (but now with some
agents not contributing). As a still grows, a growing number of
agents do not contribute.

In our computational experiments, the optimization process
is performed using adaptive simulated annealing as described by
Allen (1995) and Tsallis et al. (1994). Starting from a given ini-
tial network configuration, random rewiring of individual links
is performed, the objective function is evaluated–the equilibrium
being solved by solving the associated LCP–and the change is
accepted with a certain probability that depends on a tempera-
ture coefficient that allows the system to escape local minima in
the search space and vanishes to zero as the search results be-
come more certain.

Figure 1 illustrates that L1-maximizing graphs share the
same largest eigenvalue as L2-maximizing graphs. With v and e
fixed, the largest eigenvalue of a graph is a measure of its regu-
larity. A higher eigenvalue corresponds to an irregular hub-like
structure, whereas a lower eigenvalue (still for the same number
of vertics and edges) refers to a more regular network. So Fig-
ure 1 shows that L1 and L2-maximizing graphs share the same
topology. In fact, while we have highlighted here the fact of the
coincidence between the two network design problems when in-
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Figure 1: The graph illustrates that the maximum eigenvalue of L1 and
L2-maximizing graphs (corresponding to optimal equilibrium graphs)
are roughly the same. The particular plot shows the trend for a varied
number of edges and a values, on 10 nodes. The number of nodes is
held fixed for reasons of computational expediency.

teriority holds for the sake of illustrating the reason for the result,
we find that this is true even for partially-corner equilibria.

Figure 2 shows how the maximum eigenvalue of the welfare-
maximizing graph4 on 10 vertices with differing number of
edges changes as a function of a. In particular, we find that
even as we move from interior to increasingly partially-corner
equilibria as complementarities grow, there is little transition in
the topology of optimal equilibrium graphs from hub-like types.
For low values of a, all graphs yield a unique equilibrium and
so the optimal equilibrium graphs are those with the largest pos-
sible first eigenvalue, as suggested by asymptotic results above.
As a increases beyond the value of the highest first eigenvalue,
the optimal graphs become the graphs that remain with highest
eigenvalue, some links now being rearranged in view of some
agents no longer contributing.

4 Designing the Equilibrium
Armed with an understanding of the network pattern of exter-
nalities that lead to the most efficient equilibrium outcomes, the
system planner can now prescribe changes to the given graph
that maximize its largest eigenvalue.

One possible mechanism might be to induce a rearrangement
of the network edges, keeping the number of nodes fixed. We
explore the limits of this approach.

Theorem 4 Starting from a sparse random graph g(v, p),
where p is the probability of an edge between any two players
i and j, i �= j, the largest eigenvalue can be increased as much
as O(

√
e).

Proof: We omit the full proof for reasons of space. Briefly,
consider a connected simple graph g and let µ1 be its largest
eigenvalue. Let di, i ∈ V , denote the degree of a vertex i and let
∆ = maxi∈V di. (If g is regular then di = ∆ for each i ∈ V ,
then µ1 = ∆.) If g is not regular, the there is no graph such that

4Again, the same relation holds for contribution-maximizing graphs.
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Figure 2: The plot shows how the largest eigenvalue of aggregate
welfare-optimal equilibrium graphs always remains a maximum subject
to the constraint that a graph yields a single equilibrium, and changes
only so slightly as equilibria become partially-corner. The different
(horizontal) lines correspond to different edge numbers in the graph,
always keeping the number of vertices set at 10, while the vertical lines
indicate the threshold of a beyond which interiority of the maximal in-
dex graph (among all graphs for fixed v and e) does not hold.

∆ − 1
2n(n∆−1)∆2 ≤ µ1 < ∆. See Stevanovic (2004) for the

proof of this upper bound. In either case, however, µ1 = O(e).
Fixing the number of vertices, it is clear that the greatest dif-

ference in first eigenvalue lies in a graph with fewer edges. Con-
sider a sparse random graph, where g(v, p) and e = pv(v−1)

2 . It
can be shown that the maximum eigenvalue of this graph µ

′

1 is
almost surely the following: µ

′

1 = (1 + O(1))
√

∆, where the
O(1) term tends to zero as

√
∆ gets large.

Putting the two results together, we have the maximum in-
crease in first eigenvalue by any manipulation of edges starting
from a random graph, µ1

µ
′

1

, to be bounded by O(
√

e).

Corollary 2 Starting from a random graph, fixing v and e, the
gains in aggregate welfare or aggregate contribution from ma-
nipulating the graph to achieve an optimal equilibrium (with re-
spect to either objective) is O(

√
e).

The interpretation of Theorem 4 is that the network designer’s
task of manipulating the graph will induce a change in first
eigenvalue of size at most O(

√
e) and that this difference re-

duces as the network becomes more dense, i.e. edges are added.
As to the gains from such manipulation (Corollary 2), con-

sider the example of a small enough so that the optimal graph
is the one with largest eigenvalue. At a first order in a, the
Bonacich index of i is bi = 1 + adi, and so aggregate equi-
librium is v+2ae. The square of i’s Bonacich index is 1+2adi,
and social welfare is v + 4ae. The largest eigenvalue increase is
of the order of

√
e. The optimal graph is such that the inverse

of the largest eigenvalue equals a. Therefore, both the aggre-
gate equilibrium and the social welfare increase for the optimal
graph are roughly of the order of

√
e. In other words, the gains

from random to optimally designed network are marginally de-
creasing as O(

√
e). Symmetrically, welfare losses in random
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versus optimal networks are sizeable, and the smaller the larger
the network.

That the greatest gains from manipulating the network co-
incide with smaller networks (where such an approach may be
easier to implement), preliminarily suggests the viability of the
network designer’s task. On the other hand, it also shows that
a network designer is very limited in his capacity to affect the
outcome on a large graph in this way, i.e. keeping e and v fixed.

5 Future Work
We are currently pursuing the idea of network design in our
game in a number of ways:

• Network Design: Following the approach taken by
Ballester et al. (2005) where key players are excluded in
order to optimally affect the designer’s objective function,
our rules would largely operate by the exclusion of players
and edges from the initial given graph of externalities, The
implementability of this approach is readily seen in peer-
to-peer file sharing systems where the application system
has some control over membership and on connectivity be-
tween players (embedded on the underlying IP-level graph
of connectivities). Moreover, in simulation, the gains from
such an approach in maximizing aggregate welfare or con-
tribution look to be much greater than the rearrangement of
edges approach discussed earlier.

• Distributed Network Design: We are also investigating
the use of simple rules on players’ connectivities to alter
the pattern of network externalities. Keeping the num-
ber of players and links fixed, this would effectively pro-
vide a mechanism to both increase and decrease a net-
work’s largest eigenvalue. In a peer-to-peer application en-
vironment, the pattern of externalities can fluctuate greatly.
In such a setting and because the communication require-
ments of conveying global state information would be pro-
hibitive, these rules would have to be local in nature.

• A Complete Characterization of Optimal Equilibria: We
provide a partial characterization of optimal equilibrium
graphs. We are currently working on using the Nash-LCP
equivalence to extend this characterization.

• The Price of Stability: Anshelevich et al. (2004) coin the
term price of stability to mean the competitive ratio be-
tween the (objective function) values of the best NE and the
socially optimal (objective function-maximizing) solution.
We would like to study this in our game, and particularly
how the socially optimal networks differ from the optimal
equilibrium networks.
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