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Improving Quantitative Studies of International Conflict: A Conjecture 
NATHANIEL BECK University of California, San Diego 
GARY KING Harvard University 
LANGCHE ZENG Haward University and the George Washington University 

W e address a well-known but inffequently discussed problem in the quantitative study of 
international conpict: Despite immense data collections, prestigious journals, and sophisticated 
analyses, empirical findings in the literature on international conflict are often unsatisfying. Many 

statistical results change ffom article to article and specijication to specijication. Accurate forecasts are 
nonexistent. In this article we offer a conjecture about one source of this problem: The causes of conflict, 
theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of 
dyads, but they are large, stable, and replicable wherever the ex ante probability of conflict is large. This 
simple idea has an unexpectedly rich array of observable implications, all consistent with the literature. We 
directly test our conjecture by formulating a statistical model that includes its critical features. Our approach, 
a version of a "neural network" model, uncovers some interesting structural features of international conflict 
and, as one evaluative measure, forecasts substantially better than any previous effort. Moreover, this 
im~rovement comes at little cost, and it is easv to evaluate whether the model is a statistical improvement 
over the simpler models commonly used. 

D espite immense data collections, prestigious 
journals, and sophisticated analyses, empirical 
findings in the quantitative literature on inter- 

national conflict are frequently unsatisfying. Statistical 
results appear to change from article to article and 
specification to specification. Any relationships usually 
are statistically weak, with wide confidence intervals, 
and they vary considerably with small changes in 
specification, index construction, and choice of data 
frame.l 

Instead of uncovering new, durable, systematic pat- 
terns, as is the case in most other quantitative subfields 
of political science (and public health, of which this 
field is also a part [King and Murray 2000]), students of 
international conflict are left wrestling with their data 
to eke out something they can label a finding. As a 
consequence, those with deep qualitative knowledge of 
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It is not our intention to provide a literature review. Examples of 
the fragility of findings and sensitivity of exact specification may be 
found in Thompson and Tucker's (1997) exchange with Farber and 
Gowa (1997) and Mansfield and Snyder (1997) on the role of  
democracy in preventing conflict, or in Oneal and Russett (1997), 
Barbieri (1996), and Beck, Katz, and Tucker (1998) on the role of  
trade in preventing conflict. W e  stress that our examples involve 
current best practice, so the problems we mention are not the result 
of  data errors or simple methodological mistakes. 

the subject are rarely persuaded by conclusions from 
quantitative works (see Bueno de Mesquita 1981; 
Geller and Singer 1998; Levy 1989; Rosenau 1976; 
Vasquez 1993). The field has a number of important 
successes to its credit, such as the democratic peace, 
and many important and very promising research pro- 
grams, but the discontinuity between the beliefs of 
most experts and many quantitative results remains. 

A symptom of the fragility of the various models is 
their poor forecasting performance. To our knowledge, 
no legitimate statistical model (using annual data) has 
ever forecast an international conflict with greater than 
0.50 probability, and certainly none has done so while 
also being correct. Political scientists have long es- 
chewed forecasting in favor of an emphasis on causal 
explanation, and it is clear that any proposed new 
method must allow for causal interpretation as well as 
improved forecasting. But causal theories are consid- 
erably harder to verify than forecasts, and forecasts 
have the advantage of being observable implications of 
the same theories as the causal hypotheses. This means 
that accurate forecasts can be used at least in part to 
verify claims about causal structure. In particular, a 
claim to have found a causal explanation that is a 
structural feature of the world but changes unpredict- 
ably over time (and so is of no help in forecasting) is of 
dubious validity and marginal value. 

Although political scientists are less likely to evalu- 
ate models by their forecasting properties than are, say, 
economists, forecasting properties underlie all evalua- 
tions of the performance of statistical models. For 
example, all likelihood or goodness-of-fit assessment 
procedures merely ask whether one specification has 
superior in-sample "forecasting" properties. Yet, all 
statistical analysts must be concerned about whether 
they are taking advantage of some idiosyncratic fea- 
tures of the data to improve fit at the expense of 
detecting structure and hence out-of-sample perfor- 
mance. To guard against this problem, which is more of 
a worry with powerful statistical models, out-of-sample 
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forecast accuracy is generally considered the gold 
standard for model assessment. Even if we have no 
interest in prediction per se, the poor forecasting 
performance of standard models indicates that we can 
improve on them to provide better knowledge of 
real-world causal relationships. Forecasting is thus of 
critical, albeit indirect, interest as a key test of whether 
we have really found causal structure.= 

The scholarly attacks on this problem have come 
from every angle. The most venerable tradition has 
been to improve the data and measures of interna- 
tional conflict and its correlates (Jones, Bremer, and 
Singer 1996). Others have modified existing statistical 
models to accommodate some of the special features of 
conflict data (Beck and Tucker 1998; King 1989; King 
and Zeng 1999). Yet others have attempted to derive 
statistical models from formally stated rational choice 
theories based on the motivations of states, political 
leaders, or other domestic actors (Signorino 1999; 
Smith 1998). We believe progress will ultimately re- 
quire advances on all three fronts as well as a conver- 
gence in theoretical and statistical models and data. 

Our approach is based on the belief that a portion of 
the problem lies in a somewhat overlooked but key 
substantive issue that is reflected in the mismatch 
between available data and the set of statistical meth- 
ods commonly applied. International conflict is a rare 
event, and the processes that drive it where it is more 
common are likely to be very different from those 
elsewhere. As a result, many qualitative researchers 
expect the relationships to be highly nonlinear, mas- 
sively interactive, and heavily context dependent or 
contingent. Because these characteristics would be 
missed with standard statistical approaches, particu- 
larly the typical linear-normal models imported from 
studies of American politics, we adopt a form of the 
highly flexible "neural network model." This type of 
model is well suited to data with complex, nonlinear, 
and contingent relationships. It is not a panacea or 
always appropriate, but it provides an immensely useful 
tool that has not been sufficiently exploited in this field 
to date. 

As an analogy, consider the use of survey data to 
assess the consequences of lifestyle on the onset of a 
relatively rare disease. A supposedly healthful lifestyle 
may be helpful in warding off the disease for everyone, 
but a simple logit of disease on lifestyle (and other 
explanatory variables) would, at best, show a weak 
relationship, since most survey respondents are un- 
likely to get the disease in any event. Thus, the logit 
analysis of disease, like a logit of conflict, will average 
many small effects with a few large ones. If we could 

Of course, accurate forecasts of international conflict would be of 
tremendous practical value, as a large portion of the foreign policy 
bureaucracy in many countries is devoted to this task. A quantitative 
"expert system" to help guide policymakers could be of considerable 
use. Forecasts of political conflict also would be of interest to 
political-business risk analysts, public health researchers, and many 
others. In informal discussions, several former U.S. policymakers 
indicated that, aside from occasional commissioned studies, no such 
quantitative expert system is presently in use. To our surprise, they 
also indicated that even annual forecasts would be of considerable 
use in policymaking. 

predict that behavioral changes would have a major 
effect on avoiding disease for those who are at greater 
risk for it, this would be a great accomplishment. 
Similarly, if we could show that autocracy dramatically 
increases the likelihood of conflict for dyads at risk of 
conflict, this also would be important. In short, we 
conjecture that many quantitative international conflict 
studies lack robustness because they look only for the 
effects of variables averaged over all dyads, whereas in 
reality the effects vary enormously over dyads and are 
only substantively large for those already at relatively 
high risk of conflict. 

We find that our models are able to predict interna- 
tional conflict to a degree. Whereas all previous models 
are unable to predict the occurrence of any conflict, 
our out-of-sample forecasts pick up about 17% of these 
disputes. There is still a long way to go to produce 
highly accurate forecasts of all these rare and unusual 
events, if that is ever even possible, but our analyses 
confirm that there is structure in these data. As for 
causal interpretation of the underlying structure, our 
more appropriate techniques find hints of robust and 
replicable patterns. 

In the next section, we propose a simple conjecture 
that seeks to remedy some of the problems found in the 
quantitative analysis of conflict. We believe the idea 
may explain some of the anomalies and nonfindings in 
the literature and why our model is able to forecast 
reasonably well. It also highlights the features that an 
appropriate method would need to uncover stable 
patterns in this field. We then discuss appropriate 
methods, apply them to real data, and offer conclu- 
sions. The Appendix contains some technical details on 
Bayesian neural network models. 

THE PROBLEM WITH CONFLICT STUDIES 

A Conjecture 
Our conjecture about conflict studies is quite simple, 
and aspects of it are implied in much of the literature. 
The idea is that the effects of most explanatory vari- 
ables are undetectably small for the vast majority of 
dyads, but they are large, stable, and replicable when 
the ex ante probability of conflict is large. For example, 
Swaziland and St. Lucia have essentially no chance of 
going to war today. Should either become slightly less 
democratic, conceivably the probability of war would 
increase a bit, but the increase would be so small that 
it would be undetectable and unimportant. In contrast, 
if Iran and Iraq were to become slightly more demo- 
cratic, then the probability that they would go to war 
might drop dramatically. If our conjecture is right, then 
the effects of the causes of conflict differ by dyad, with 
trivially small effects for the vast majority and larger 
effects for a few. That is, it is the effects of the 
explanatory variables, not merely the levels of the 
variables, that vary. 

To be clear, this conjecture addresses the large 
literature on country-year dyads. Different processes 
and theories might apply to data based on daily events 
series or other more finely grained data collections. We 
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do believe that our simple conjecture may help explain 
diverse features of the quantitative literature on the 
causes of international conflict. At the least, it appears 
to be consistent with several observable implications. 

First, most scholars use statistical procedures that 
assume the effects of their explanatory variables are 
nearly the same for all dyads. (Some use interaction 
effects that allow more variation over the dyads, but the 
degree of variation represented is still quite limited.) 
The estimates these analyses produce are roughly the 
average of essentially zero effects for the vast majority 
of observations and larger effects for a tiny fraction of 
the cases. Unless the effect is enormous in the small set 
of dyads with a high ex ante probability of war, 
estimates from most analyses will appear very small or 
resemble random noise. Indeed, small to nonexistent 
and highly variable effects are dominant in the litera- 
ture. 

Second, when effects are huge in the dyads with high 
ex ante probability of war, the average over all the 
dyads is large enough to be detected reliably with most 
methods. (Nonetheless, the estimated effect would be 
too large for most dyads and far too small for a few.) 
Some uncontroversial variables in this at-risk subset of 
dyads include contiguity and time since the last war; 
indeed, these are among the few variables that often 
give reasonably robust results across specifications. 

Third, if only a few observations have large effects, 
then small changes in the set of dyads included in a 
statistical analysis will sometimes have disproportion- 
ate effects on the results. This also appears true and 
may account for some of the apparent instability of 
results in the literature from article to article. 

Fourth, a similar observable implication results from 
the strong priors most scholars derive from their 
considerable qualitative knowledge about the field. 
What can we expect to find when strong priors are 
combined with statistical methods that assume causal 
effects are the same for all dyads and when data have a 
low signal-to-noise ratio? We expect researchers to 
push their data analyses extremely hard in search of 
effects they believe are there but are difficult to find. 
Unfortunately, this would make the results differ from 
investigator to investigator, just as they seem to, since 
answers will depend very sensitively on otherwise mi- 
nor coding decisions. 

Fifth, some scholars make coding decisions that 
seem consistent with our conjecture when they discard 
all dyads but those deemed "politically relevant" or "at 
risk," in other words, those with a high ex ante proba- 
bility of war.3 If our hypothesis is correct, then these 
coding decisions are problematic methodologically. 
Such problems are often recognized by the authors, 
who have little choice but to put some restrictions on 
an otherwise endless data collection. The difficulty is 
that coding rules amount to dropping many cases 
without war and a few with war, which in some 
instances may generate two types of selection bias. (1) 
Intentional selection may bias the effect upward if the 

See Bremer 1992 for this argument in its modern statistical guise 
and Richardson 1960 for some early intuition. 

relevant population to which one is inferring is all 
dyads and otherwise may correctly increase the effect. 
(2) Except when the definition of "politically relevant" 
is clearly based on one of the explanatory variables 
(e.g., Maoz 1996), these rules also select on the depen- 
dent variable, which biases estimates of the probability 
of conflict. Whatever the goal of the inference, studies 
that address the problem by selecting cases in this way 
may give answers that are too small or too noisy, which 
appears to be the case throughout the literature. The 
results from these selection rules will be somewhat 
stronger than when using the entire data set but not as 
large as qualitative experts expect. Indeed, this seems 
to fit the literature. 

Finally, if our conjecture is right, then the applica- 
tion of an appropriate statistical technique will confirm 
the existence of sizable and robust effects in the high ex 
ante probability of war dyads and tiny effects else- 
where. For many variables at least, the direction, 
magnitude, and nature of the large effects should not 
be wildly inconsistent with our qualitative knowledge of 
international relations, unless there is a clear reason. If 
this method indeed finds real features of the in- 
ternational system, rather than some idiosyncratic sam- 
ple characteristics that result from our specification 
choices or coding rules, then out-of-sample forecasts 
ought to predict similar patterns in the next data set. 

The first five of these observable implications of our 
conjecture are consistent with observations from the 
literature. Testing the sixth will occupy most of the rest 
of this article. 

According to our idea, international conflict data 
differ from other rare events data sets in two ways. The 
effect of any single explanatory variable changes mark- 
edly as a function of changes in the other explanatory 
variables (that is, there are strong and complicated 
interactions), and the dependent variables are, in prin- 
ciple, powerful enough to predict whether conflict 
occurs if the appropriate model is used. Some other 
rare events data, such as in epidemiological studies of 
disease, may fit this description, but only if all these 
characteristics apply.4 

STATISTICAL MODELS OF INTERNATIONAL 
CONFLICT 
Relative to other types of data and processes studied in 
political science, international conflict data have some 
unusual characteristics. They are based on thousands 
of dyads (combinations of countries taken pairwise) or 
directed dyads (the actions of A toward B and of B 
toward A are separate observations in the same data 
set). Whether the universe of dyads should include only 
originators of conflict, all nations, or some group in 
between is by no means clear. Most outcome variables 

The leading alternative explanation for the problems in this field is 
that the data are so bad that it is impossible to discover patterns. 
Data problems clearly exist (e.g., Vasquez 1993), and may be more 
severe than in other fields, but they are not unique to international 
relations. 
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are dichotomous. The data often concern rare events, 
with hundreds of times more 0's (peace) than 1's 
(conflict). Often the explanatory variables are neither 
dichotomous nor quite continuous, with distributions 
that are asymmetric or with multiple mass points (such 
as at the end or midpoint). The indices often are 
necessarily complicated combinations of diverse mea- 
sures. In addition, assuming our conjecture is correct, 
very small parts of very large data sets contain most of 
the interesting information. 

The statistical method we introduce here is a version 
of a neural network model, first introduced to political 
scientists by Schrodt (1995) and Zeng (1999, 2000).5 
There is an immense literature supporting this tech- 
nique in engineering, computer science, statistics, psy- 
chology, linguistics, neuroscience, medicine, finance, 
and other fields. Neural network analysts have adopted 
an extensive and essentially unique terminology. The 
language is useful because it helps emphasize the 
rough analogies between these statistical models and 
some theoretical models of the way human brains may 
work. Using this language to describe concepts known 
to political scientists by other names can be counter- 
productive. Therefore, we introduce these models as 
straightfonvard generalizations of logistic models, 
which are the most commonly used statistical models of 
international conflict. 

In the following subsections, we make the transition 
from logit to our neural network models. We examine 
various issues related to estimation, interpretation, and 
inference with our model, and we introduce the main 
ideas of Bayesian methods for neural networks 
adopted here. We also discuss several potential objec- 
tions to neural networks. 

From Logit to Neural Networks 
Our dependent variable, Yi, takes on a value of 1 if 
dyad i (i = 1, . . . , N) is engaged in an international 
conflict, 0 if it is at peace. If conflict and peace are 
coded as mutually exclusive and exhaustive (which we 
make true by definition), then a Bernoulli distribution 
fully describes this variable. The only parameter of a 
Bernoulli distribution is ni, the probability of an 
international conflict. Let a vector of a constant term 
and k explanatory variables be denoted Xi = (1, XIi, 
XZi, 0 . .  7 Xki). 

The next step is to specify the relationship between 
ni and Xi. The simplest possibility is a linear function, 
which results in what is known as the linear probability 
model: 

5 General references on neural networks include Rumelhart et al. 
(1986), Muller and Reinhardt (1990), and Hertz, Krogh, and Palmer 
(1991). Detailed discussion of neural networks as statistical models 
can be found in, for example, Bishop (1995), Cheng and Titterington 
(1994), Kuan and White (1994), Ripley (1996), and White (1992). A 
recent application in political science is Eisinga, Franses, and Van 
Dijk (1998), who estimate a constrained neural network model 
similar to a generalized additive model. While this application is 
completely different from our conjecture, it does show the great 
flexibility of neural nets and their applicability to many complicated 
data problems. 

where XJ.3 is merely a matrix expression for the linear 
relationship between ni  and Xi, 

and the (k + 1) x 1 vector p includes a constant term 
and k weights (or coefficients) on each of the k 
explanatory variables. The problem with the linear 
probability model is that it can generate impossible 
values of ni (greater than 1 or less than 0), so even 
values within the correct range near the boundaries are 
questionable. Moreover, the full posterior distribution 
for n i  generated by the linear probability model never 
makes sense in any application because at least some 
density always falls outside the unit interval. These 
problems were known long ago, and the linear model 
was almost entirely supplanted by logit models when 
these became computationally feasible. 

The logit model is similar to the linear probability 
model except for the functional form: 

The logit model maps the linear functional form 
XiP, which can take on any value, into the [0,1] interval 
required for n i  by applying the logit function. The vast 
majority of analyses in conflict studies use some form 
of this method. For our purposes, it is important to 
recognize that the second line of equation 2 specifies 
the underlying probability of conflict, ni, as a logit 
function of a linear function of Xi, 

The logit is thus a generalization of the linear proba- 
bility model, created by adding an extra level of 
hierarchy. Our neural network model will generalize 
the logit by adding an additional level of hierarchy. 

The logistic model in equation 2 improves on simple 
linear probability models by avoiding impossible prob- 
ability values and assuming a more plausible relation- 
ship between the explanatory variables and the proba- 
bility of an outcome. The effect of each explanatory 
variable varies across observations, however, and de- 
pends on the values of other explanatory variables only 
slightly more than does the linear model. These effects 
also depend only trivially on the ex ante probability of 
conflict (see Nagler 1991). One way to look at changes 
in the effects of explanatory variables is to examine the 
derivative of the probability n i  with respect to one of 
the explanatory variables, say, XIi. For linear models 
this derivative is p,, which is obviously constant. For 
logit models, the derivative is n i ( l  - ni)p1, which is 
better. But since mi is within a small range above zero 
for all but a few observations (and, given the logit 
model's inflexibility, virtually all observations in prac- 
tice), this is a highly restrictive and nearly constant 
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specification. To avoid this weakness, two different 
types of generalizations might be considered, either of 
which would be an improvement, but neither of which 
is sufficient. 

First, we might specify a random effects model. 
Instead of leaving P fixed at one set of values, as in 
equation 2, we could let it vary randomly over the 
observations in some form, such as pi = P* + q. 
Although some assumption about randomness may be 
better than logit's more restrictive assumption of con- 
stant effects, our conjecture is not that the coefficients 
vary randomly across dyads; rather, they vary system- 
atically with the ex ante probability of conflict as a 
function of complicated conjunctions of all the explan- 
atory variables. 

Second, standard interaction effects can be applied. 
For example, we might let the effect Pd of democracy 
Xdi be a function of whether the states in the dyad are 
contiguous Xci, by specifying, say, Pdi = yo + yJci. 
Substituting this expression back into the second line of 
equation 2 produces an interaction effect that is easy to 
estimate: Merely include XdiXci as an additional vari- 
able in Xi and use any standard logit package. This 
strategy will work in some cases, but it requires a good 
deal of prior knowledge of the types of interactions to 
specify. If one does not have sufficiently detailed 
knowledge, then the number of interactions one would 
include generally would not be precisely estimable with 
available data. In fact, too many interaction terms can 
result in severe problems of numerical instability due 
to colinearity. In conflict data, massive interaction 
effects are suspected, most of which are concentrated 
in tiny areas of the parameter space. Standard interac- 
tion-based logit models are too restrictive, require too 
many interactive terms, and do not address the ex- 
pected degree of nonlinearity. 

Our preference for an approach to this problem is 
the massively interactive and highly nonlinear neural 
network model, in particular, the single hidden layer 
feed-forward perceptron. This biological language 
sounds complicated, but it can be expressed as a 
statistical model that is a straightforward generaliza- 
tion of the logit model. 

Logit models use an "S-shaped" curve to approxi- 
mate the relationship between the probability, ni, and 
the explanatory variables, Xi. Imagine how much better 
the approximation could be if more than one such 
curve were used simultaneously, each with a different 
curvature and orientation; roughly speaking, that is 
what neural network models allow. In order to approx- 
imate the relationship between ni  andx i  with a set of 
M logit curves, we use a neural network model with the 
same distribution as but a different functional form 
from the logit and linear probability models: 

This neural network model is a type of discrete choice 
model that differs from the logit only in the shape of 

the curve. It is easiest to compare this relationship with 
the standard logit in the special case when M = 1, 
since the second and third lines of equation 3 are then 
just a logit function of a linear function of a logit 
function of a linear function: 

The larger the value chosen for M (known in the 
literature as the number of "hidden neurons," but of 
course nothing is hidden), the more logit curves are 
used at the third level of generalization and, as a result, 
the larger variety of shapes the entire expression can 
approximate. 

To be more specific, P in the logit model in equation 
2 is a (k + 1) X 1 vector of effect parameters 
(corresponding to a constant term and the weights on 
the k explanatory variables). After the p's are multi- 
plied by their respective Xi's and summed up, logit 
(XiP) is then one number, which we also label IT,. In 
contrast, the p(,), . . . , P(M) parameters in the second 
and third lines of equation 3 are each (k + 1) X 1 
vectors, so that each expresses a different weighting of 
the k explanatory variables. Then the logit function is 
applied to each of the different weighting schemes 
XiP(l), . . . , XiP(M to yield a set of M numbers: 
logit(XiPi1)), . . . , logit(xiP(,,). A weighted sum of 
these M numbers is taken (with the y's as adjustable 
weights in this linear expression), and the logit is taken 
one final time to make sure that the entire expression 
yields a number for n i  that is between 0 and 1. The 
result is, as we shall see below, a remarkably flexible 
functional form. 

Neural networks meet the needs of conflict research 
because they allow the effect of each explanatory 
variable to differ markedly over the dyads, as required 
by our conjecture about international conflict. As in the 
case of linear probability and logit models, this can be 
made clear by examining the partial derivatives of n i  
with respect to the independent variables. After some 
straightforward calculus, this yields 

where h indexes explanatory variable h in Xi and 
element h in pj. From this expression, it is clear that 
our neural network model allows much more range in 
the marginal effects of independent variables across 
dyads than do the linear probability or logit models: 
The effect varies not only with n i  across dyads but also 
withxi and all the logit curves. Although each element 
in the summation is limited in size, the combination of 
all the terms can produce wide differences. 

More generally, what makes neural network models 
attractive as statistical models is that they provide a 
class of functional forms that can approximate any 
hypothetical relationship between ni  and Xi, given a 
large enough choice for the number of logit functions 
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M (Hornik 1990; White 1992, 12-28).'j Although the 
functional form in equation 3 has a fair number of 
adjustable parameters (M(k + 2) + I), in comparison 
to other flexible functions that also have general ap- 
proximation capabilities, such as those based on poly- 
nomial spline or trigonometric functions (e.g., Gallant 
1981), neural networks normally require far fewer 
parameters to model the same level of complexity 
(Barron 1993). They are often described as occupying a 
middle range between standard parametric models, 
with a small number of parameters, and nonparametric 
models, with almost infinite flexibility (Ripley 1996). 
Neural networks allow for a wide variability of mar- 
ginal effects, and their flexibility and general approxi- 
mation capabilities far outperform standard logit- 
based interaction models. 

Is there a middle ground between the simple logit 
model and the more complicated neural network ap- 
proach? One possibility is generalized additive models 
(GAMs), which are more flexible than logit because 
they permit nonmonotonicities in the probability of a 
conflict, but they do not allow relationships as rich as 
neural networks because most interactions are disal- 
lowed (Beck and Jackrnan 1998). Our extensive exper- 
iments with these and other approaches caused us to 
conclude that only neural network models capture the 
full nature of the substantive relationships in these 
data. Of course, one could go even farther, toward 
more flexible relationships, such as through the use of 
nonparametric methods. Perhaps future researchers 
will find some of these techniques appropriate, but to 
date we have not found that the additional flexibility is 
warranted. Finally, we do not believe that neural 
network models should in all cases replace logit models 
in quantitative studies of international conflict, but our 
results seem to indicate they have a place in the toolkit 
of international relations researchers. Further work is 
needed to build theories based on the structure uncov- 
ered, and other research may indeed discover more 
parsimonious methods. 

Issues in Neural Network Modeling 

The use of neural networks involves the same issues of 
model selection, estimation, interpretation, and infer- 
ence as for any other statistical model. Some of these 
issues are more common in models with flexible func- 
tional forms, like ours, and so demand special atten- 
tion. For example, in equation 3, how do we choose the 
size of M? How do we compare results from the 
different models? For a given model, how are the 
parameter values determined? How are they inter- 

The large variety of neural network models includes many that are 
even more general than equation 3, as they allow additional levels of 
hierarchy, stacking functions within functions, and feed-backward 
effects (as in the so-called recurrent neural networks [Holland 19981, 
which are appropriate for modeling time series data). In addition, 
one can choose functions other than logit or even mix several 
different functions in the same analysis. Neural network models also 
can be used with stochastic components other than Bernoulli to 
model different types of dependent variables. 

preted? How does statistical inference proceed, and 
how do we handle uncertainty? 

Recent developments in Bayesian methods for neu- 
ral networks allow disciplined treatment of each of 
these questions. We adopt the Bayesian framework 
with normal approximation (MacKay 1992a, 1992b, 
1992c, 1994), which is discussed in the Appendix. Here 
we highlight some of its basic ideas in connection with 
the questions raised above. 

The central feature of the Bayesian approach is to 
treat everything as probabilistic. Hence, instead of 
estimating the "true" values of some fixed parameters, 
we look for their posterior distributions given the data. 
Model building and inference is then a process of 
updating our beliefs about the world using the infor- 
mation we receive from empirical data. In the normal 
approximation framework for neural networks, we 
assume normal prior distributions for the parameters P 
and y that are centered on zero; that is, we believe it 
more likely that the parameters take smaller values 
than larger ones. This prior merely reflects the com- 
mon belief that a certain degree of "smoothness" in the 
underlying data-generating function is likely (smaller 
parameter values result in smoother functions, since 
the logit transformation is flattened as the parameter 
values decrease). We then apply Bayes's theorem to 
evaluate the posterior distribution of the parameters 
used to evaluate the predictive distribution of the 
dependent variable (by integrating out the parame- 
ters). For complex functions like neural networks, 
there are no analytical solutions for the integration, 
and Monte Carlo methods of sampling the distribution 
are computationally very burdensome. Hence, we fol- 
low MacKay (1994) and approximate various interme- 
diate distributions with normals, since they are analyt- 
ically easy to treat and simple to sample (see the 
Appendix). This enables us to arrive at the posterior 
probability of n,, given our data. 

How to Select M and Avoid Overfitting. In conventional 
(non-Bayesian) neural networks, selection of M, the 
number of logit curves, is an important issue, as too 
large M can cause "overfitting." Overfitting is a danger 
with any statistical model, but especially so for very 
flexible forms. A model that is too flexible picks up 
idiosyncrasies unique to a particular data set rather 
than the structural features of the world that pertain to 
out-of-sample data. The danger is always real, and 
many attempts have been made to develop procedures 
that protect against it. Of course, "underfitting" (or 
missing relationships of interest) is a danger as well, so 
there is good reason to think that M > 1. 

In the Bayesian framework, the presence of smooth 
priors for the parameters significantly alleviates the 
problem of overfitting. Instead of searching for the set 
of parameter values that maximize the model perfor- 
mance on the training data, we look instead for solu- 
tions that at the same time punish model complexity. 
More important (in principle at least), in the Bayesian 
paradigm no single model is the correct one. Rather, 
because each alternative is correct with some probabil- 
ity, different models can be compared by examining the 
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measures of evidence for them.7 In practice, however, 
there is a fairly straightforward test of whether one is 
finding structure or overfitting ephemera. The proce- 
dure is to set aside a portion of the data as a "test set," 
fit the model to the remaining data (the "training set"), 
and see whether the forecasts hold up.8 Because there 
is always the tendency to iterate back and forth be- 
tween fitting models to the training set and verifying 
the model in the test set, we set aside two test sets, the 
second of which we did not consult until all exploratory 
work was completed. This second test set was used only 
to compare the performance of the chosen neural 
network specification and the corresponding logit spec- 
ification. 

Interpretation. The neural network literature is con- 
cerned almost exclusively with pattern recognition and 
forecasting, and the issue of interpreting the effect of 
the explanatory variables on ni has not received much 
attention. In political science research, however, inter- 
pretation of causal effects is equally critical. The prob- 
lem is that the functional form is so flexible, and the 
estimated relationships between ni and Xi can be so 
complicated, that the parameters (P(,), . . . , P(,) and 
yo, . . . , yM) are almost impossible to interpret di- 
rectly. We have created a graphical device that enables 
us to produce highly interpretable results. For example, 
we can plot the expected value of (and confidence 
intervals for) the probability of conflict by one or two 
explanatory variables, while holding the remainder 
constant at chosen values. Of course, since neural 
networks allow estimation of different effects for dif- 
ferent observations, the values held constant are criti- 
cal features of interpretation. The identical methods 
can be used with regression models but are not needed 
because the effect parameters are constant, and so the 
whole functional relationship can be easily summarized 
with a single number. We elaborate on these methods 
of interpretation later. 

Of course, in practice, interpretation is a problem for 
any statistical model beyond the very simple linear 
additive setup. That is why we introduce several graph- 
ical procedures for interpreting the results of neural 
networks. 

Possible Objections to Neural Networks 

Neural networks come with considerable baggage; 
some criticism is deserved, some not. Before going into 

There are theoretical results that can help with overfitting. For 
example, Neal (1996) proves that a Bayesian neural network can use 
an infinite number of logit curves without causing improper behavior 
in the output function, provided that the prior variances are properly 
scaled. He suggests one should choose the most complicated model 
that is computationally feasible (the largest possible M) and scale the 
variance of the priors so that it is related to model complexity. This 
way, one has a model capable of extracting as much information as 
possible, but the data are taxed to the same degree. Unfortunately, 
this requires use of extremely time-consuming computational algo- 
rithms, as discussed in the Appendix. 

Validation with training and test sets can be improved in theory 
with such techniques as cross-validation, which breaks the data set 
into all possible splits. In practice, most users keep a single test set 
aside. 

a detailed analysis using neural nets in the study of 
conflict, it would be helpful to put to rest a few issues 
that may come to mind when the term "neural net- 
works" is used. 

First, neural networks are sometimes treated as a 
black box for classifying very complex data patterns in 
the absence of theory (e.g., handwriting recognition). 
In contrast, we hypothesize that for international con- 
flict data there are massive nonlinear interactive ef- 
fects, and only the confluence of many causal factors 
leads to a nontrivial increase in the probability of war. 
This allows us to interpret the output of the model in a 
way that is useful for the international relations 
scholar, not simply as a black box that does a good job 
of classifying which observations are more or less likely 
to be conflictual. 

Second, why neural networks? Would simpler and 
more well-known interactive methods work better? 
The answer is no. Linear or logit models can include 
multiplicative interactions, but these have not worked 
well in practice. Even bivariate multiplicative interac- 
tions have not performed well because of multicolin- 
earity. Our evidence indicates that interactions in 
international conflict are considerably complicated. 
We need a method that can deal with massively 
nonadditive interactions, not one that can be grudg- 
ingly "tricked" into allowing for a few simple interac- 
tions. 

Third, early research in neural networks stressed 
nonstatistical pattern recognition, but we rely on more 
recent work that puts neural networks on a firm 
statistical foundation. We use more complex variants 
of well-known statistical models, and they come with all 
the standard apparatus for validating and comparing 
models and avoiding unnecessarily complex specifica- 
tions. If our conjecture is false, and simple logit 
performs as well as complex neural net models, then 
the in-sample and especially the out-of-sample fore- 
casts will clearly indicate this. The statistical basis of 
our work means we need not fear that neural nets are 
just very good at picking up in-sample idiosyncrasies in 
the data.9 

Fourth, we guard against overfitting by relying ex- 
tensively on out-of-sample forecasts to validate our 
models. If neural nets do not detect "real" properties 
of conflict data, merely idiosyncratic patterns, then 
they will yield good in-sample but poor out-of-sample 
forecasts. Many of the problems associated with early 
nonstatistical neural network models can be avoided by 
using only models with a firm statistical basis and then 
evaluating the performance of all models with out-of- 
sample forecasts. 

In brief, neural nets have a venerable history with 

9 The simple logit is not formally nested within the neural nets we 
use, but in the data analysis presented below, the forecasting 
performance of the neural network is so overwhelmingly superior 
that any criteria for discriminating between nonnested alternatives 
would clearly choose it over the logit. This does not imply the choice 
of neural network specification, or any other statistical specification, 
is a purely mechanical task. Art is involved in any model choice, and 
no less so in the choice of a particular neural net specification. But 
the out-of-sample forecast test guards against being "too artful." 
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numerous success stories. Many criticisms apply to the 
early nonstatistical variants. Modern neural nets are as 
firm a part of statistics as are its simpler variants, 
starting with the logit. As long. as we use techniques 
that allow empirical work to discern whether the 
additional complexity is both necessary and useful, 
there should be no reason to fear and much to gain 
from the newer, more sophisticated, methods. 

FORECASTING AND EXPLAINING 
POSTWAR CONFLICT 
In this section we discuss the data and model, forecast- 
ing performance, and causal structure in the model 
results. 

Data and Model 
In order to test our conjecture, we use the standard 
dyad-year design, with the same data and variables 
employed repeatedly in the scholarly literature. This 
eliminates the possibility that the improved perfor- 
mance of our model is due to better data. For similar 
reasons, we limit ourselves to politically relevant dyads 
(PRDs), that is, pairs of essentially contiguous states or 
with at least one major power, on the grounds that 
non-PRDs are unlikely to engage in militarized con- 
flict. We thus focus on the harder test of finding 
variable effects among this more selected homoge- 
neous set of dyads. 

Specifically, we use data compiled by Richard 
Tucker (1997) from a variety of sources.lO The set 
contains 23,529 dyad-years between 1947 and 1989. 
The dependent variable is coded one for dyad-years 
with a new "militarized interstate dispute" (MID), zero 
otherwise (Gochman and Maoz 1984; Jones, Bremer, 
and Singer 1996), with years of MID after onset 
dropped. MIDs are rare, occurring in only 976 (4.1%) 
of dyad-years. 

The explanatory variables include dummies for 
whether the dyad contains geographically contiguous 
countries (Contiguous) and is allied in defense pacts, 
neutrality pacts, or ententes (Ally). The similarity of 
state preferences between two partners (Similarity) is 
measured, as usual, by the resemblance in their alliance 
portfolios. The similarity data we use here are from 
Tucker (1999) and are based on a measure developed 
by Signorino and Ritter (1999); the measure runs from 
-1 to 1, where 1 indicates maximal alliance portfolio 
similarity. The imbalance of power within the dyad 
(Asymmetry) is measured by the Ray and Singer (1973) 
index of relative capabilities of the dyadic partners. It is 
continuous, ranging from 0 to 1; 1 indicates that all 
military capability is held by one partner, whereas 0 
indicates an exact division between the two. 

The key variable in many conflict studies is the 
degree of democratization of the dyad. We use a 
slightly updated measure from the Polity I11 (Jaggers 
and Gurr 1996) data set. As is common, we measure 

lo The measures are more fully described in the Appendix. The data 
set is archived on the APSR web site. 

each partner's democracy by the difference between its 
"democracy~' and "autocracy" scores. This differenced 
measure ranges from -10 (extreme autocracy) to +I0 
(maximal democracy). Conflict scholars have debated 
about the proper way to construct a single dyadic 
democracy index from the two measured democracy 
scores, but it is easy enough to enter both (Dem a and 
Dem b) into the analysis.ll 

Finally, we use the number of years since the last 
conflict (Peace Years) as a measure of temporal depen- 
dence (Beck, Katz, and Tucker 1998). This variable 
controls for the possibility that conflict is more likely to 
erupt after previous disputes than after a long period of 
peace. As Beck, Katz, and Tucker show, the addition of 
this variable turns an ordinary logit analysis into a 
grouped proportional hazard model.12 

We divided the data into an in-sample training set, 
1947-85, which we use to fit the model, and a test/ 
validation set, 1986-89, which was used only once to 
evaluate the forecasts. We fit the neural network model 
in equation 3 to the training set. Without looking at the 
test set, we experimented with setting M to various 
values. We did this by putting aside different portions 
of the 1947-85 data and trying different values of M (in 
the spirit of cross-validation). Only after we completed 
this testing did we look at the 1986-89 data.13 We also 
fit a standard logit model to the training set for 
comparison. 

We found that an M set around 25 provided about 
the right level of flexibility and predictability for our 
data (see the Appendix). This seemingly large value is 
counterbalanced by our priors, which favor small val- 
ues for all parameters. This means the model in total is 
a very flexible functional form that heavily favors 
smooth curves with few bends. Deviations from this 
smoothness only occur when the data provide clear 
evidence to the contrary. That is, unlike logit models 
and other low-dimensional parametric forms, when the 
data speak loudly enough, the fit responds. 

l1 For each observation, we randomly assign A to one dyadic partner 
and B to the other, which is consistent with the hypothesized 
symmetric effect (and confirmed by our empirical analyses). The 
traditional approach of creating a single index similarly treats the two 
countries as symmetric and exchangeable. For simplicity of presen- 
tation, we chose not to do this for asymmetry as well, although it 
would be a reasonable approach to explore. 
l2 For most complicated maximum likelihood models, such as for 
duration or count data, neural nets can be used to replace the simple 
specification that the underlying mean is a linear function of the data 
with one that the mean is a massively interactive function of the data. 
As of now, no off-the-shelf software can do this, but programming 
these more complicated models is straightfonvard if nontrivial. We 
focus here only on the binary outcome case. 
l3 The 1947-85 data were randomly divided into training and test 
sets of equal size. The random split was possible because the peace 
years variable induced conditional temporal independence. As a 
further check on the choice of M, the pre-1986 data were split again, 
and the choice of M was rechecked and validated with the new test 
set. We chose to do final validation on the data split temporally, that 
is, the last four years of the data set, to provide a tougher test for the 
neural net forecasts. The use of this hold-out set also makes our 
validation look more like a true forecasting exercise. 
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TABLE 1. Logit and Neural Network Forecasting Performance 
Conflict: % Correct Number Peace: % Correct Number 

Year Loait N N of 1s Loait N N of 0s 
1947-85 0 25.3 892 100 99.58 20,155 
1986 0 18.5 27 100 99.83 584 
1987 0 14.3 28 100 98.98 587 
1988 0 23.1 13 100 99.34 609 
1989 0 12.5 16 100 99.51 61 8 
1986-89 0 16.7 84 100 99.42 2,398 
Total 0 24.6 976 100 99.57 22,553 

Forecasts 

Table 1 gives one view of the comparative forecasting 
performance of the logit and neural network (NN) 
models. In the table, we divide the forecasts into conflict 
(1) and peace (0). The left-hand portion reports success 
at forecasting conflict when it occurred, and the right- 
hand portion gives success at forecasting no conflict 
when there was none. As is clear, since the logit model 
never forecasts that a conflict will occur in any one dyad 
(i.e., the probability never reaches 0.50), it forecasts 
incorrectly for all the cases of conflict and correctly for 
all the cases of peace.14 This is no great success, of 
course, since the optimistic claim that conflict will never 
occur is correct 96% of the time! 

The table indicates that the neural network model 
performs substantially better than the logit, using the 
identical set of explanatory variables. It is nearly as good 
as the logit at predicting peace, with all probabilities 
exceeding 99% correct. More important, when military 
conflict occurs, the neural network model makes a 
successful forecast 16.7% of the time. This is not high in 
an absolute sense, but it is much better than the logit 
success rate of zero. Given the high costs of military 
conflict and the tremendous benefits of knowing ahead 
of time when a war will occur, this improved forecasting 
performance could be of significant policy value. More 
significant, from our perspective, is that the model's 
forecasting performance confirms a durable causal struc- 
ture. The relatively high percentage of successful predic- 
tions is within a reasonably narrow range, from 12.5% to 
23.1%, for each of the four out-of-sample years, which 
further confirms the overall result with separate, al- 
though not independent, observable implications. Fur- 
thermore, most of these figures are lower than their fit to 
the training set, which is as it should be if we expect not 
only structure but also change in the real world. The 
model predicts 25.3% of conflicts correctly in-sample but 
only 16.7% correctly out-of-sample, which indicates ei- 

l4 If the costs of misclassifying wars versus peace differ, then decision 
theory indicates that one should merely change the threshold of 
prediction from the 0.50 that is used here and in virtually all the 
literature. But that would merely increase the predictions of 1 and 
correspondingly decrease the predictions of 0 with no other changes in 
the statistical model and/or interpretation, so we retain the traditional 
0.50 cutoff. Figure 1, below, demonstrates that the neural net, but not 
the logit, fits well for any chosen threshold. The 0.50 threshold seems 
the most appropriate to us, but none of our comparisons depend on it, 
and there is no choice of threshold that would make the logit's 
performance close to the performance of the neural net. 

ther slight overfitting (the difference is just outside 
the 95% confidence interval) or change in the real 
world after 1985.15 

Table 1 demonstrates that the neural network 
model discriminates far better than the logit model by 
assigning very different probabilities of international 
conflict to the available dyads. It does not indicate 
whether either model's probability values are correct 
except for above and below the 0.50 mark. For 
example, if we observe 1,000 dyads with a 0.10 
probability of going to war, none of these individual 
pairs would be predicted to fight, but we would expect 
to see 100 wars from somewhere in the set. We now 
evaluate the extent to which the two model's predic- 
tions have this desirable characteristic. 

We begin by computing predicted probabilities for 
each dyad from the logit and neural network models. 
We then sort these into bins of 0.1 width: [O, 0.1), [0.1, 
0.2), . . . , [0.9, 11. Within each bin, we compute the 
mean predicted probability (which presumably will be 
near its respective midpoint) as well as the observed 
fraction of 1s in each bin. We compare the two to 
check the fit of the model in the training set and to 
evaluate the forecasts in the test set. Figure 1 plots 
these numbers for both statistical models. 

The in-sample graph in Figure 1 shows that the 
predicted probabilities and observed fraction of con- 
flict match fairly closely for the neural network 
model. The logit model is reasonably close as well 
when the mean probability is 0.25 or less, but it does 
much worse for higher (i.e., more interesting) pre- 
dicted probabilities. This is especially important from 
our perspective: The logit model not only predicts 
peace breaking out all over but also becomes more 
inaccurate as the probability of conflict increases, 
even though these cases are very rare.16 In contrast, 

l5 The logit model is the standard in international relations, but it 
is interesting to compare our results to that of a GAM. Using 
identical explanatory variables, the GAM forecast slightly better 
than logit but much worse than a neural network. Using the same 
comparisons as in Table 1, the GAM correctly predicted 5.6% of all 
in-sample disputes (and 99.9% of all nondisputes). Similarly, the 
GAM equivalent of Figure 1 showed performance that was slightly 
better than the logit but much worse than the neural network. 

The one possible exception is the last mean probability bin for 
the logit, which has very few observations, so the fraction of 
conflicts has much higher sampling variability. (We chose not to 
add error bars for each point so that the graphs are easier to read; 
the precision with which each point is estimated is higher at the left 
than the right of the graph.) 
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FIGURE 1. Logit and Neural Network (NN) Probabilities versus Actual Outcomes 

In-Sample (1 947-85) 
1 

Forecast (1 986-89) 
1 

Mean Prob(y = 1) 

Note: Probabilities from each model are sorted into bins 0.1 wide (0, 0.1: 0.1, 0.2, . . . ) and averaged. These averages are plotted horizontally and the 
actual fraction of ones in the bin are plotted vertically. A line for a model that fits the data will differ from the (dotted) 45 degree line only by random chance. 
In both the in-sample graph (on the left) and the forecast out-of-sample graph (on the right), the fit is better for NN than logit, and, in addition, NN 
predictions exist for much higher probability bins than logit predictions. 

when the neural network model gives a probability, it is 
a reasonably accurate assessment of the odds of a 
conflict occurring within the sample. Of course, an 
equally important difference between the two models is 
the much more acute discriminatory power of the neural 
network model, which we can see because the logit never 
yields any predicted probability of conflict above 0.50. 

Whereas the in-sample graph in Figure 1 evaluates the 
fit of the two models to the same data, the out-of-sample 
graph uses the same technique to evaluate forecasting 
success. Again, there is a reasonably close correspon- 
dence between the estimated probabilities and observed 
fraction of conflict for both models. They track each 
other very well for the lower probability bins, indicating 
the same high level of success. (The fact that the logit 
model did not fit well to the last two points in-sample but 
did fit the out-of-sample plot seems to be a lucky 
coincidence.) More interesting is that whereas the logit 
model has no forecasts in the high-probability region, 
the neural network model tracks the observed fractions 
reasonably well even for the sparsely populated high 
probability bins. One possible problem is the noticeable 
overestimation of conflict for the neural network model 
in this high-probability region (which indicates that our 
forecasts could be improved), but the observed numbers 
are both fairly small and not that far off. 

We believe these forecasts are quite solid, and al- 
though many uncertainties remain, they seem to be far 
better than any previously produced. They are also more 
accurate than many scholars thought would be possible. 
This clearly indicates that the neural net model we use is 
superior to the logit model in our data. 

Causal Structure 
We believe our model reveals clear evidence of structure 
in international conflict data. This evidence is consistent 
with that predicted by our conjecture about models of 
conflict. 

To interpret the results, we created what we call 
marginal effect graphs that plot the probability of 
conflict by one explanatory variable, holding all the 
others constant at a designated value. Since our 
conjecture about conflict studies holds that the effect 
of most variables will be larger (i.e., more discrimi- 
nating) when the ex ante probability of war is greater, 
we hold constant the other variables at two values: 
high and low probability of conflict. (For simplicity, 
we compute these by the median of each explanatory 
variable among observations, where Y = 1 and Y = 
0, respectively.) 

Figure 2 presents these graphs for the logit and 
neural network model for each of the explanatory 
variables except democracy (which we will discuss 
separately). The low and high controls for the logit 
model appear in columns one and three, and for the 
neural nets these are given in columns two and four. 
Each explanatory variable appears in a separate row; 
the vertical lines on the graph are one-standard-error 
bars surrounding the predicted probability. (Examin- 
ing results as we do, by grouping dyads according to 
the ex ante probability of conflict, creates no selection 
bias, nor does selecting cases based on the probability 
of conflict, because the analysis has already been 
conducted with all dyads.) 

Substantively, the neural network analysis in Figure 
2 shows a few similarities to conventional logit anal- 
ysis, but it also demonstrates features consistent with 
our conjecture. As can be seen by comparing the first 
and third columns, logit analysis allows for greater 
effects of the explanatory variables when the ex ante 
probability of conflict is high, but the differences are 
small, and virtually all the logit effects are substan- 
tively small. Even in the high ex ante case (column 3), 
only contiguous and peace years have a notable 
substantive effect on the probability of conflict. Thus, 
the logit model presented here is similar to the typical 
logit model of conflict: democracy (see Figure 3), 
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FIGURE 2. Marginal Effects of Explanatory Variables, 1947-85 
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Vote: Each graph gives the probability of a military conflict (vertically) by a single variable horizontally, with other variables not represented in each graph 
ield constant at designated values that govern high or low ex ante probabilities of conflict. Note how the effects are much larger for the neural network 
:han logit columns, and especially large for high ex ante probability of conflict dyads under neural networks. 

contiguity, and peace years have statistically significant, 
though substantively small, effects on conflict, whereas 
the other variables have statistically insignificant (or 
marginally significant) and very small substantive influ- 
ence. 

In contrast, the neural network model produces much 
larger changes in the effect of any variable as we move 
from a low to a high ex ante probability of conflict 
(compare the second and fourth columns). This is 

particularly obvious for some of what normally might 
be considered "control" variables. For example, con- 
tiguity has a strong effect on the probability of a 
dispute in the logit analysis, but this effect is more 
than doubled for the high-probability case in the 
neural network analysis. The effect of contiguity is so 
strong that it is not hidden by the logit analysis, but 
allowing for complex interactions shows that it has the 
extremely strong influence that we would expect but 
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that previous researchers were unable to demonstrate. 
The neural network analysis also reveals the impor- 

tance of duration dependence (peace years) when the 
ex ante probability of a dispute is high. Although the 
logit analysis finds some evidence of this dependence, it 
is quite modest. For high ex ante probability of war 
situations, with a conflict occurred last year, the prob- 
ability of another under logit analysis is less than 0.25, 
compared to almost 0.80 under neural network analy- 
sis. It takes about a decade for this probability to 
recede to nearly zero. Clearly, both analyses give a 
similar pattern of decay, but the more flexible NN gives 
a much higher maximum probability of a dispute. The 
effect of the duration of peace on the probability of a 
dispute is clearly underestimated in the logit analysis. 
Duration dependence is sufficiently strong to emerge in 
the logit analysis to some degree, but the lack of 
interactions in that model does not allow us to discern 
how critical time is in forecasting future disputes. 

NN also reveals that two important determinants of 
disputes, similarity and asymmetry, have a very strong 
but nonmonotonic effect on probability. The logit 
analysis assumes that all effects are monotonic and so 
cannot detect these kinds of relationships. The NN 
analysis reveals a stronger and more complex associa- 
tion between these variables and conflict.l7 

Our findings of nonmonotonic effects are consistent 
with the more game-theoretic studies of Bueno de 
Mesquita and Lalman (1992) and Signorino (1999). 
Both similarity and asymmetry are the two standard 
measures of the benefits and costs of conflict. For 
example, these theories assume that as one side ac- 
quires comparatively more military capability, the 
probability of conflict will rise and then fall, but no logit 
model in the literature or here supports this claim for 
either asymmetry or similarity, or even indicates that 
either has results of any kind of important size. In 
contrast, the NN results reveal both are very important 
in high ex ante probability dyads in just the manner 
predicted by theory. Indeed, in the high ex ante prob- 
ability dyads, a large change in either similarity or 
asymmetry can increase or decrease the probability of 
conflict by more than 50 points. 

Finally, NN models show a clear influence of dyadic 
democracy on the probability of conflict. The logit 
analysis, which averages effects over all dyads, shows a 
small but significant pacific effect of democracy. The 
linear nature of the logit model requires that the effects 
of each partner's democracy scores be additive. The 

l7 AS a diagnostic, we also applied generalized additive models to the 
data. GAMs reveal nonmonotonic effects for these two variables, but 
their influence, which is averaged over all cases, is substantively much 
smaller than the effects found by the neural net for the high ex ante 
probability cases. Furthermore, the GAM effects, which are the 
"average" of the NN effects over all combinations of the other 
independent variables, are dissimilar to the NN effects shown. This 
must be the case if the NN effects at the differing combinations of the 
independent variables are different; the GAM cannot accommodate 
this. Of course, logit models can be "tricked" into allowing for 
nonmonotonicities, although these must be specified in advance. As 
with linear regression, in practice it is hard to get good logit estimates 
of nonmonotonic effects because of multicolinearity and the arbi- 
trariness of nonmonotonic specifications. 

contour plots implied by the NN model, given in Figure 
3, show that the pacific effect of democracy is nil when 
the ex ante probability of conflict is low but is strong 
when the probability is high. In the latter case, the 
maximal influence of a movement on the democracy 
scale is about 40 points, much larger than any effect 
found in the logit analysis. The nonmonotonicity and 
nonadditivity allowed by the NN model reveals that the 
pacific effects are strongest when both partners score 
high on the democracy scale and are much smaller 
substantively in the rest of the plot. Interestingly, the 
most quarrelsome dyads are those in which both part- 
ners have a middling democracy score.18 

Dyads containing an extreme autocracy are more 
likely to fight than are very democratic dyads, but they 
are less likely to fight than dyads with middling democ- 
racy. This effect is found only in the NN analysis, which 
both allows for massive interactions and nonmonotonic 
effects of individual variables. In other words, democ- 
racy does have pacific effects, but only among dyads 
that are otherwise likely to be conflictual and only 
among the most democratic nations. A portion of that 
effect is strong enough to emerge even in the logit 
model, which averages small and large effects, but its 
substantial influence is seen only in the NN analysis. 
Thus, democratic peace theorists such as Maoz and 
Russett (1994) appear to be right, although they 
heavily underestimate the pacific effect when democ- 
racy is important and overestimate it in cases in which 
democracy matters little. 

The simple plots we provide here cannot, of course, 
demonstrate the full structure of the neural network or 
its power. That is more clearly shown in its ability to 
forecast disputes much better than any linear or addi- 
tive analysis. Yet, these plots do show that our results 
are stronger than those found by more standard meth- 
ods and that neural nets can find contingent causal 
structures missed by the simpler, uncontingent, logit 
model. 

CONCLUDING REMARKS 

We have proposed a simple conjecture that appears to 
explain a significant and well-known problem with 
international conflict studies. The conjecture is consis- 
tent with a variety of implications we can observe from 
the literature. It also suggests a set of specific problems 
with the most common statistical model used in the 
field. To evaluate our conjecture, we adapted a statis- 
tical model that better matches the features of our 
conjecture and, as a consequence, the substantive 
concerns of quantitative and qualitative researchers. 
The result is a superior statistical model of interna- 
tional conflict. It appears to be the only large-N 
statistical model that estimates the probability of any 
international conflict at some level higher than 0.50 

1s In the postwar data there are relatively few dyads in the interior of 
the plot. Therefore, the confidence intervals, which would be difficult 
to show in this type of graph, are much wider in the middle region. 
Since the confidence intervals for Figure 3 are a function of several 
model parameters, they would be most easily computed using the 
simulation technique described in King, Tomz, and Wittenberg 2000. 
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FIGURE 3. Marginal Effects of Democracy: 1947-85 
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(ours exceeds 0.90 for some cases). We are able to 
predict about 17% of conflicts from data on the years 
prior to the conflict. 

This forecasting result can only be driven by an 
underlying structure of international politics that stays 
relatively stable over time. Confirming the existence of 
and understanding this structure has been a holy grail 
in quantitative conflict studies, and we believe our 
neural network approach represents progress toward 
this goal. Along with the graphical tools we introduce, 
these models may have the potential to uncover struc- 
ture in other areas. 

Neural networks are computationally and intellectu- 
ally complex, but they are no more than extensions of 
standard interactive models. While early neural net- 
work research often seemed to overfit the data, new 
Bayesian analysis can surmount much of that problem. 
It seems unlikely that the effect of any variable com- 
monly used in the field is completely independent of 
the levels of other variables, as standard approaches 

assume. Neural networks are designed to unlock such 
complicated structures. There is no question that they 
do a wonderful job of recognizing patterns in other 
disciplines, but they also can find complicated struc- 
tural regularities in standard international relations 
conflict data. 

APPENDIX: BAYESIAN METHODS FOR 
NEURAL NETWORK MODELS 

The Model 
The basic neural network model we estimate is given in 
equation 3. To it we add a standard Bayesian setup to shrink 
the parameter space.19 We do this by adding two levels of 
hierarchy. First, we assume independent normal distributions 
N(0,  l/a,) for each group of the parameters (and hence the 

l9 The explanatory variables are normalized before being input to the 
neural net to improve computational accuracy. All interpretations in 
this articIe are based on the original, unnormalized measures. 
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index h) ,  with one for the constant terms p,, one for each 
element of p other than p,, and one for the set of elements 
of y. In addition, for each of the a, elements, which control 
how strongly any parameter is influenced by its prior to be 
small, we assume an (uninformative) improper uniform prior 
distribution (which is one way of expressing a degree of igno- 
rance or uncertainty about which values are more or less likely). 

As discussed in the text, we select M in the model by 
comparing the test set performance of models with different 
M's. M should be large enough for the model to be ade- 
quately complex and is theoretically unrestricted in mag- 
nitude in the Bayesian setting. In the interest of model 
parsimony and computational efficiencylfeasibility, we follow 
the general practice of searching for the smallest possible M 
that gives satisfactory performance and restricting the total 
number of parameters in the resulting model (M(k + 2) + 
1, where k is the number of independent variables) to not 
exceed n/10. To this end we experimented with M set at 5,10, 
15, 20, 25, 30, 35, 40, 50.20 Since the testhalidation set 
performance of models with M around 25 was obviously 
better than around 20, and an M larger than 25 did not yield 
significant improvement, we set M at 25.21 

The Posterior Distribution of the 
Parameters 
By Bayes's theorem, the posterior distribution is, of course, 
the product of the prior distributions and the likelihood 
function: 

where  IT^, the probability of conflict, is defined in the second 
and third lines of equation 3.22 

Ideally, we would be able to draw random samples of y, P, 
and a directly from this posterior distribution to compute 
quantities of interest. Indeed, this has been accomplished 
with a hybrid version of Markov Chain Monte Carlo 
(MCMC) methods (Neal 1996). Yet, runs that provide exact 
draws from the posterior with MCMC methods take an 
inordinately long time to complete. The method also has all 
the usual problems caused by a lack of agreement on how to 
assess stochastic convergence in MCMC algorithms. 

After trying Neal's approach, we felt that more time to 
experiment with different specifications to understand the 
data was necessary, so we adopted the normal approximation 

20 Estimation was via the EM algorithm that alternates the error 
function minimization with respect to y and P given or, and the value 
updating of or,, given y and P. Optimization used conjugate gradients, 
with initial weights randomized and all training data (no noise added 
to inputs) presented in a batch. The cutoff criterion for the training 
process was an error tolerance of 0.00001. 
21 Given our large sample size, this seemingly large M actually yields 
a ratio of parameters to data points that is smaller than typical and 
considerably smaller once we take into account the prior. 
22 Note that the model is technically unidentified, although in an 
inconsequential manner. Switching y, with y, and &,)with P(, yields 
identical values for mi. This causes no problems for our computation 
of the various marginal effects of the independent variables. It could 
cause problems in applying standard optimization algorithms, but 
computationally efficient techniques that have been developed to 
evaluate the gradient work well despite this problem (Bishop 1995, 
141). 

approach (MacKay 1992a, 1992b, 1992c, 1994).23 It approx- 
imates the posterior distribution of the model parameters as 
multivariate normal, which makes analytic solutions possible. 
As in standard maximum likelihood estimation, the variance 
matrix of the parameter estimates is found by inverting the 
He~sian. '~ 

Posterior Probabilities of Conflict 
One of our goals is to generate forecasts of international 
conflict. The other is to see how these forecasts would change 
in accord with various configurations of the explanatory 
variables,Xi. For both goals, we need to specify the posterior 
probability of the forecasts. 

Conceptually, computing the forecast posterior is simple 
and in principle can be accomplished by the usual simulation 
methods that apply to virtually every other statistical model 
(see King, Tomz, and Wittenberg 2000). That is, draw 
random samples of P, y, and a from their posterior distribu- 
tion in equation 4 (or their asymptotic normal approxima- 
tion), insert them into the functional form in the second and 
third lines of equation 3 to compute T,, and take a random 
draw from a Bernoulli distribution with this parameter (the 
first line of equation 3). In practice, we use MacKay7s (1994) 
faster analytical approximations to accomplish the same task. 

The Data 
The data set used here was provided by Richard Tucker 
(1997), and corresponds to the data used in Beck and Tucker 
(1998). The data set consists of observations on PRDs from 
1947-89 (or a shorter period if earlier data was either not 
available or the dyad became a PRD after 1947, usually 
because one partner became independent later than 1947). 
The peace years variable until the first dispute was coded as 
the time since a dyad became a PRD, that is, the first year a 
dyad was at risk of a dispute was the year it became a PRD. 
Dyads that involved a major power in a region in which it had 
little or no interest (e.g., China in Latin America) were 
excluded; operational rules for this exclusion are in Tucker 
(1997). Note that excluding these dyads affects the affinity 
measure. These coding rules yielded 23,529 dyad-years. Both 
alliance data (for the similarity measure) and national capa- 
bilities data (for the asymmetry measure) were taken from 
data sets created by the Correlates of War project; this 
project also defined the domain of nation states which were 
used to construct the PRDs. The actual alliance data were 
provided by J. David Singer; the capabilities data were from 
Singer and Small 1993 and the system membership data were 
taken from the Peace Science Society (International) web site 
(http://pss.la.psu.edu/DATARES.HTM). 

23 The software we used to estimate the model ("Bigback5" by David 
MacKay) is available at http://wol.ra.phy.cam.ac.uk/mackay/bigback/ 
bigback5.tar.g~. 
24 In view of current computational limitations, we feel that the 
normal approximation approach to Bayesian neural nets provides 
good performance and is, at present, more useful than the MCMC 
approach. But, of course, new computational breakthroughs may 
change matters, and users are encouraged to explore alternative 
methods as they become feasible. 
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