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ABSTRACT
Interdependent values (IDV) is a valuation model allowing
bidders in an auction to express their value for the item(s) to
sell as a function of the other bidders’ information. We in-
vestigate the incentive compatibility (IC) of single-item auc-
tions for IDV bidders in dynamic environments. We provide
a necessary and sufficient characterization for IC in this set-
ting. We show that if bidders can misreport departure times
and private signals, no reasonable auction can be IC. We
present a reasonable IC auction for the case where bidders
cannot misreport departures.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory
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1. INTRODUCTION
The interest in dynamic auctions has surged over the last

couple of years, motivated by their widespread use in elec-
tronic markets. A visible example is the eBay marketplace in
which there are interesting dynamics both within and across
auctions [7]. In most of these auctions, however, the interac-
tion between bidder valuations is limited and only indirect,
through the competition between bids. In many auctions
such interaction is of interest, for instance when bidders have
limited information about the value of the item(s) to be sold.
A model from the auction theory literature that allows the
bidders’ values to be more sensitive to the information in the
market is that of interdependent values (IDV): each bidder’s
value is defined as an aggregation (expressed via a valuation
function) of the others’ information, but he only knows his
own private information (called his signal) [5].

Here is an example that illustrates our model. The item
to sell is a rising Internet portal (such as YouTube); the
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bidders are several Internet powerhouses (such as Yahoo! or
Google). For example, a bidder may express its value as
$1.32 billion (the signal) + one fifth the maximum (or the
average) signal among all the other bidders. Each bidder
may become interested in buying the portal at a different
time (construed as its arrival), and each bidder may have a
different time (construed as its departure) at which it con-
siders that it is more efficient for it to launch a portal of its
own, and when its value for the portal drops to zero.

We introduce a model of interdependent valuations in dy-
namic settings and establish1 a general negative result in
this setting: there exists no individually rational, IC, rea-
sonable dynamic auction for IDV bidders that are allowed
elementary misreports. This stands in contrast with the pri-
vate values environment [4]. Elementary misreports model
bidders as being able to report any signal, any departure
but an arrival no earlier than their true one. We present
an IC reasonable auction for the case where bidders cannot
misreport their departure.

Related work
Dasgupta and Maskin [2] provide an IC (static) auction that
is efficient when bidders’ signals are one dimensional. Ito
and Parkes [6] instantiate this model to linear contingent
bids and also extend it to single-minded combinatorial auc-
tions. Aoyagi [1] investigates optimal pricing schemes in our
framework. In his model however, bidders are assumed to
be reporting honestly and a bidder’s valuation may change
based on past decisions of other bidders.

Hajiaghayi et al. [3, 4] provide competitive auctions in
a dynamic environment, but they model bidders’ values as
private. The IC characterization that we provide in this
paper generalizes similar characterizations that are provided
in earlier work for private value environments [4, 8].

2. PRELIMINARIES
We assume that there is only one item for sale.2 Each

bidder i has a privately known activity interval: its bounds
are the agent’s arrival ai and departure di. Each bidder i

has private information si influencing its value for the item.
We call si its signal and assume that it can be expressed as
a one-dimensional, non-negative quantity. A bidder’s type
captures its private information: (arrival, departure, signal).
Finally, each bidder has a known valuation function vi that

1All proofs are omitted in the interest of space and appear
in the full version of the paper [9].
2Our results generalize immediately to settings with known
supply of multiple units of an item and unit-demand bidders.



aggregates all signals available in the market and determines
i’s actual value for the item.

For some time t denote by A≤t (resp. θ≤t) the signals
(resp. types) of bidders that arrive at or before t. Similarly,
if ai ≤ t then A

≤t
−i (resp. θ

≤t
−i) denotes the signals (resp.

types) of all bidders except i that arrive at or before t.
Bidder i’s value for the item for an allocation at time t is

modeled as vi(si, A
≤di) at t = di, zero for t > di, but unde-

fined for t < di. Before di the signal information from some
bidders may not be yet revealed and thus i’s value is unde-
fined. This is a significant change from the standard model
for online, private-value auctions in which a bidder’s valua-
tion is known throughout his time in the auction. We model
a bidder’s value as zero after departure to indicate that a
bidder is uninterested in an allocation after his departure.

For example, vi(si, A
≤di) = 0.8si + 0.2 max{sj : aj ≤ di}

if bidder i, whose signal is si, estimates the item’s value
to be the weighted average of si and the maximum signal of
another bidder. In a private values setting, vi(si, A

≤di) = si.
We consider a model of elementary misreports in which the

misreports available are arbitrary signal misreports coupled
with late arrival misreports and arbitrary departure misre-
ports. If one construes the arrival time as the period at
which a bidder first learns of the existence of the auction or
the time at which a bidder’s signal is realized, whichever is
latest, then it becomes nonsensical to consider early reports.
As an auction designer we wish to provide incentives for a
bidder to share that signal with other bidders.

Let bidder i’s true type be (ai, di; si), i’s reported type
be (a′

i, d
′
i; s

′
i) and let θ−i denote the reported types from

other bidders 6= i. A (deterministic) auction defines an al-
location rule qi(a

′
i, d

′
i; s

′
i, θ−i) ∈ {0, 1} to indicate whether

or not bidder i is allocated the item, and a payment rule
pi(a

′
i, d

′
i; s

′
i, θ−i) ≥ 0 to define the payment made by bidder

i. In a dynamic environment these must be online com-

putable, i.e. qi(a
′
i, d

′
i; s

′
i, θ−i) = qi(a

′
i, d

′
i; s

′
i, θ

≤d′
i

−i ) for all i,
all θ, and similarly for payments. Moreover, payments must
be collected by departure.

Bidders are modeled with quasilinear utilities: the utility
of bidder i with type (ai, di; si) when reporting (a′

i, d
′
i; s

′
i) is

qi(a
′
i, d

′
i; s

′
i, θ−i)vi(si, A

≤di

−i ) − pi(a
′
i, d

′
i; s

′
i, θ−i).

Whatever his report, i’s true value for the item is vi(si, A
≤di

−i ).
Given this model of self-interest we restrict attention to

auctions having an equilibrium in which every bidder chooses
to report his true type immediately upon arrival:

Definition 1. We say that an auction is (ex post) in-
centive compatible (IC, also known as truthful) if, for any
truthfully reported types of other bidders, the ex post utility
of any bidder is maximized if he reports his true type as well
(i.e. truthful reporting is an ex post Nash equilibrium).

Definition 2. We say that an auction is (ex post) indi-
vidually rational (IR) if, for any truthfully reported types,
losing bidders pay zero and the winner’s payment is at most
his true value for the item.

Two assumptions are necessary for IC in static IDV auc-
tions (see [2]) and therefore we adopt them as well: (1)
v-monotonicity: a higher private signal cannot result in a
lower value for the item; and (2) the single crossing con-
dition (SCC): an infinitesimal change in bidder i’s private
signal influences i’s value more than it influences the value
of j if i’s value is equal to j’s and at least as high as the
values of the other bidders.

3. IC CONSIDERATIONS
Let A be a dynamic auction for IDV bidders. Fix bidder

i and let (a′
i, d

′
i, s

′
i) denote his reported type and fix the

reports of other bidders θ−i = θ
≤d′

i

−i .
The following conditions (that we will refer to as cad) are

necessary and sufficient for A to be ex post IC and IR:
Critical signal: Let

sc
i [a

′
i, d

′
i, θ−i] = inf{si : i wins in A reporting (a′

i, d
′
i, si)}

and ∞ if no such si exists (e.g. if the item has already
been sold). Then when s′i > sc

i [a
′
i, d

′
i, θ−i], bidder i

must win in A at price vi

“

sc
i [a

′
i, d

′
i, θ−i], A

≤d′
i

−i

”

.

Arrival monotonicity: sc
i [a

+
i , d′

i, θ−i] ≥ sc
i [a

′
i, d

′
i, θ−i],

∀ a+
i ∈ (a′

i, d
′
i]

Departure monotonicity: for ∀ d′
i ∈ [a′

i, d
′
i):

vi

„

sc
i [a

′
i, d

−
i , θ

≤d
−
i

−i ], A
≤d

−
i

−i

«

≥ vi

“

sc
i [a

′
i, d

′
i, θ

≤d′
i

−i ], A
≤d′

i

−i

”

This condition allows the critical signal sc
i to fall for the

early departure d−
i if the later signals are “bad news” for i.

The time-monotonicity conditions ensure that the price i

pays is lowest when he reports his interval honestly.
Say that an auction “allocates late” if the winning bidder

is never allocated the item until his reported departure; then
no bidder would want to misreport a late departure since his
value at departure for the item would be 0.

Theorem 1. The conditions cad are necessary and suf-
ficient for IC and IR in an online, interdependent value en-
vironment, and when the auction allocates late.

In private values settings vi(s) = si and cad amount to re-
quiring the existence of a critical value function vc

i [ai, di, θ−i]
such that vc

i [a
+
i , d−

i , θ−i] ≥ vc
i [ai, di, θ−i] if [a+

i , d−
i ] ⊂ [ai, di].

That recovers Theorem 5 from Hajiaghayi et al. [4].

3.1 Obvious Winner Acceptance
In private value settings, an auction satisfies consumer

sovereignty (CS) if, with arbitrary fixed values of the other
bidders, any bidder can win provided he reports a high
enough value. Obvious Winner Acceptance (OWA) makes
CS appropriate to our online, interdependent values setting,
where we also condition on the item still being available:

Definition 3. We say that an auction satisfies obvious
winner acceptance (OWA) if there is some time T (the OWA
cut) with the following property: whenever some bidder w’s
(with aw ≥ T) activity interval is disjoint from any other
bidder’s activity interval there is some finite value Sw (that
can depend on the other bidders’ signals) such that w wins
the item with any signal at least as high as Sw.

The OWA condition requires that there is some time, past
which if w faces no active competition then for some (high
enough) signal, bidder w must win. Bidder w is in this
case the “obvious winner”. If the OWA cut is before bidder
w’s [aw, dw] interval and the auction is IC then the OWA
threshold Sw[aw, dw, θ−w] must be sc

w[aw, dw, θ−w].
We call an auction reasonable if it satisfies OWA but it

does not sell to a bidder reporting his lowest possible signal.
By leveraging the IC characterization, one can show that

any IC, IR auction satisfying OWA must sell, after the OWA
cut, to a bidder whose arrival makes him the only active
bidder, whatever its signal and regardless of whether some
other bidder later arrives during his activity interval:



On each departure di, decide as follows if i wins the item:
Let s

≥
i = min{s′i : vi(s

′
i, s−i) ≥ vj(s

′
i, s−i)∀j : aj ≤ di}.

For all j 6= i such that dj ∈ [di − ∆, di) let sthr
i [j] be

the infimum of all signals s with the following property:
whenever i reports some signal s′i ≥ s along with an arrival
of dj , j does not have the highest value across all active or
departed bidders (including i) at dj . Let

s
∗
i = maxj: di−∆≤dj<di

{sthr
i [j]} and

s
c
i = max{s∗i , s

≥
i }

Sell to i only if si ≥ sc
i (sc

i is i’s critical signal).

Figure 1: IC, IR and reasonable auction for the case

of no departure misreports.

Theorem 2. There is no reasonable, IC and IR auction
in the interdependent values, online environment when bid-
ders can misreport arrival (later only), departure and signal.

Intuitively, if the only active bidder w at aw does not
win, he may ex post regret not reporting a high signal when
signals from bidders arriving within [aw, dw] raise its value.
Imposing IC transforms the OWA requirement of selling to
the obvious winner into obliviously selling to what can be
an obvious loser, e.g. when w has a very low signal.

3.2 IC auction if departures are known
Even though not possible when bidders are allowed ele-

mentary misreports, reasonable IC auctions are possible for
more restricted environments. Such an auction for the case
of late arrivals and early departures, but no signal misre-
ports, is given in the full version of the paper [9]. We focus
here on the more realistic setting of late arrival and signal
misreports only (i.e. departures are known): this is the case
if, e.g., the seller sets a (possibly different for each bidder)
deadline for buying the item.

The auction of Fig. 1 is an IC, reasonable auction in this
setting, assuming an upper bound ∆ on the patience of any
bidder (di − ai ≤ ∆, ∀ i). The auction will sell to bidder i

only at his departure, provided that:

1. at di he has the highest value (implied by SCC and

si ≥ s
≥
i )

2. no earlier departing bidder j would have had the high-
est value at dj , had he observed i’s signal.3 This is a
valid scenario if ai is actually a late arrival misreport.

Why does the auction worry about 2.? Say bidder i loses to
j whose value depends significantly on i’s signal and great
news arrive for i after j’s departure. Then in retrospect (i.e.
ex post), i may be tempted to stop j from winning by hiding
his signal from j via a late arrival misreport.

Theorem 3. The auction in Fig. 1 is IC and IR in inter-
dependent, online environments, when v-monotonicity and
SCC hold and when bidders can only misreport signals and
arrival times but not departure times.

In the example of Fig. 2: v1(s1, s−1) = 3

5
s1 + 2

5
max(s−1),

v2(s2, s−2) = 13

15
s2 + 2

15
avg(s−2), v3(s3, s−3) = 3

5
s3 + 2

5
400

and signals s1 = 600, s2 = 690, s3 = 900. If 3 reports a3

3It is enough to check arrivals that coincide with departures
since the set of departed bidders only changes on departures.

• at d1: v1 = 636 < v2 = 678.

• at d2: v1 = 636; v2 = 698; v3 = 700.

If 3 reports a′
3 = d3 − ∆ : v1 = 720; v2 = 698, v3 = 700.

If we naively sold to a departing bidder if he had the high-
est value, 3 could do better by reporting a′

3 (and winning)
when his true arrival is a3 (when 1 would win). For the

auction in Fig. 1, s
≥
3 = 896.25 = sthr

3 [2] and sthr
3 [1] = 1000,

since if 3 reports an arrival of d1, v3 ≥ v1 ⇐⇒ s3 ≥ 1000.

Time

3

5
s1(= 600) + 2

5
max(s

−1)

a2

a3 d3

d2

a1 d1

13

15
s2(= 690) + 2

15
avg(s

−2)

3

5
s3(= 900) + 2

5
400

d3 − ∆

Figure 2: Example setting for the auction in Fig. 1.

The auction checks that no earlier arrival of 3 would

have resulted in it losing, in case its reported arrival

a3 is actually a late arrival misreport.

The auction in Fig. 1 is reasonable (in particular, it sat-
isfies OWA) under the following mild requirement: ∀ i, ∀
fixed s−i, vi(si, s−i) ≥ vj(si, s−i) if si is high enough.

When bidders cannot misreport arrivals either, this auc-
tion becomes the interdependent second-price auction in [5].
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4. FUTURE WORK
We intend to study optimal auctions (wrt to efficiency

and revenue) in our setting. Preliminary investigation shows
that naive dynamic programming does not immediately pro-
vide IC auctions: additional cross-state constraints must be
imposed. Another future research path is to instantiate the
contingent-value model as well as more sophisticated models
for the dependence of an agent’s value on time.
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