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ABSTRACT
We study the problem of optimizing aggregate user utility
in wireless ad-hoc networks under the constraints of wire-
less interference. We develop a market-oriented approach
to bandwidth allocation with a tâtonnement process and
demonstrate its ability to effectively price bottleneck re-
source. One novelty is that we choose to price “interference
goods” to capture the externality imposed by one applica-
tion’s use of the network on other applications. In making
progress we also propose a modification to the CSMA proto-
col that is robust enough to handle a non-schedulable band-
width schedule. Experimental results on simulated network
topologies show that the market-based approach has bet-
ter scalability than alternate approximation methods and is
much more efficient in terms of runtime.

1. INTRODUCTION

1.1 Motivation
Traditionally, bandwidth allocation and link scheduling in

wireless ad-hoc networks are performed using either TDMA-
or CSMA-based techniques [12]. The latter requires unnec-
essary overhead due to contention and collision, while the
former is not adaptive enough to fit real-time usage pat-
terns, and requires careful allocation of time slots. Recent
research has proposed algorithms to schedule network usage
in response to specific flow demands in order to optimize
a total throughput objective [3, 4, 6, 8]. However, aggre-
gate throughput does not faithfully reflect the ultimate true
value of network usage since it fails to distinguish different
needs of different users.

Consider the example of a sensor network deployed in hos-
pital environment [14]. Different services such as patient
tracking, doctor paging and vital sign monitoring all have
differing priorities, and the value of the network traffic for
each service is not a simple linear function of the bandwidth
consumed by the service. Moreover, each service may be
able to consume a varying amount of bandwidth to achieve
different quality of service. For example, an electrocardio-
graph (ECG) can either report a high-bandwidth waveform
or a low-bit-rate heart rate. The latter has less overall value
but consumes considerably lower bandwidth.

These usage scenarios present the need for a resource
scheduler that is aware of application- and user-specific util-
ity, rather than mere bandwidth usage. Hence we propose to
consider the optimization of aggregate application utility as
the central goal of a new generation of resource schedulers.

We consider the following problem: a centralized sched-

uler is located at the base station and coordinates the schedul-
ing of various application flows on a wireless multihop net-
work. Each flow specifies a source and destination node
in the network and a utility function that depends on the
achieved bandwidth. Whenever a new flow is added or the
profiles of existing flows are changed, the central scheduler
re-runs its algorithm (possibly in an incremental fashion) in
order to compute a schedule that specifies next-hop target
and bandwidth consumption for each flow on each node.

We assume the central scheduler has global knowledge of
the connectivity and interference characteristics of the net-
works and can notify each node of the schedule. A good
scheduler will seek to maximize aggregate utility while scal-
ing to large networks with many flows. The approach we
take is market-oriented, where for now we use a central-
ized price-adjustment method coupled with distributed con-
trollers for each application where the controllers report
demand-sets given provisional prices. A tâtonnement pro-
cess continues until an (approximate) equilibrium is reached.

For now we are not interested in markets for their abil-
ity to mitigate issues of self-interest. This said, one appeal
of market-based methods is that they do suggest the possi-
bility of being able to handle self-interest, e.g. when users
may try to misrepresent the bandwidth requirements of an
application. Furthermore, the assumption of a centralized
(market) planner and global knowledge may be relaxed in
future research, for instance through replication of the cur-
rent market pricing and scheduling function across nodes in
the network.

We first introduce a formal definition for the utility-based
optimization problem, and introduce a linear-programming
relaxation based on earlier work of Jain et al. [6]. This
relaxation is interesting for two reasons: (a) it is scalable
whereas the full problem is NP-complete; and (b) it leads
to a novel market approach where virtual goods — repre-
senting interference structures — are priced. This pricing
of virtual, interference-related goods is an important part
of our solution. We propose a modification to the CSMA
method for Medium Access Control (MAC) that is robust
enough to handle as an input a non-schedulable flow vector,
which is generated by the approximation. This is also used
in our market approach which can be viewed as an alternate
approximation to the full optimization problem. We present
detailed experimental results for all three schemes: optimal,
approximate and market.

1.2 Related Work
Previous work has looked at the characterization of net-

work capacity and link scheduling problem in multi-hop net-



works. Some of this work explores the problem of optimizing
total bandwidth or throughput in multi-hop network given
flow demands [3, 4, 6, 8], mostly employing LP’s to formu-
late the optimization problem or develop theoretical bounds.
The work of Jain et al. [6] is important here because it for-
malizes the use of a conflict graph to model interference and
provides a formal optimization model for a non utility-based
version of our problem.

Radunovic et al. [11] argue that total throughput may
not be the right objective to optimize and introduce a class
of utility functions but adopt them as a proxy for fairness
rather than seeking explicitly utilitarian solutions. Andrews
et al. [1] consider the optimal utility problem in the situation
of multiple user sharing one single radio medium. Yang and
de Veciana [17] consider both user and network utility to
form a dual optimization problem but do not consider a
market-based approach.

Wellman’s [15] seminal work on market-oriented program-
ming has inspired this work. Wellman and colleagues ap-
plied the idea to a broad range of resource allocation prob-
lems such as network transportation and multi-commodity
flow problems [16]. Despite the negative results in general
equilibrium theory about the stability and convergence of
the competitive market equilibrium [2, 13], the tâtonnement
process tends to work quite well in practice in certain types
of computational markets.

2. PRELIMINARIES
Our formulation is based on the model of connectivity

graph and conflict graph developed by Jain et al. [6], aug-
mented here with the notions of applications and utilities.

For a given wireless network with n nodes, the connec-
tivity graph C is a directed graph defined by 〈N, L〉 where
N = {1, 2, ..., n} is the set of nodes representing wireless
devices and L = {lij : there exists a link from i to j} is the
set of directed links among them. Each link has its capacity,
Cap(lij), which is the maximum achievable data rate if the
link li,j is active during the entire time span T , to be defined
later.

A set of applications A = {1, 2, . . . , m} are competing to
use the network. Each application k ∈ A is defined by a tu-
ple 〈sk, dk, uk〉, which specifies a source node sk, a destina-
tion node dk and a utility function uk defined over the band-
width of a flow allocated to it from sk to dk. The minimum
requirements for a utility function is that it passes through
(0,0) and is non-decreasing. We discuss further restrictions
to utility functions, such as concavity and piecewise-linearity,
below.

A flow f is an assignment of bandwidth on each link in L

to each application, with fk
ij ≥ 0 denoting the bandwidth on

link lij assigned to application k. The following Flow Con-
servation Constraints must be satisfied for every application
k:

X

j:lji∈L

f
k
ji −

X

p:lip∈L

f
k
ip = 0, ∀i ∈ N \ {sk, dk} (1)

Equation (1) states that for every application k and ev-
ery non-terminal node i, the total inflow must equal the
total outflow. The application’s utility is uk(fk), where
fk =

P

j:lji∈L fk
ji−

P

j:lij∈L fk
ij for i = dk denotes the total

flow allocation to application k. Moreover, we call the com-
plete flow assignment for every application the flow vector,
denoted fA = (f1, ..., fm).

To model interference, define the conflict graph of the net-
work to be an undirected graph F = 〈VF , EF 〉, whose ver-
tices VF = L correspond to the links in the connectivity
graph. An edge 〈lij , lpq〉 ∈ EF means that the two links
interfere with each other and cannot be active simultane-
ously.1 The conflict graph is defined between links rather
than between nodes to allow general models of interference.2

The time span T is the index set of time slots in an epoch,
which is a repeating time period over which link scheduling
decisions are made. For every element in the set T , a deci-
sion has to be made as to which subset of the link L will be
active and for which application. Hence, we define a sched-
ule to be a function S : A×L 7→ {0, 1}T that defines for each
application the subset of the the total time span T for which
the application is active on a link. E.g., S(k, l) = {1, 3, 5}
means in time slots 1,3,5 link l will be active transmitting
application k’s data. We say a schedule S is feasible if the
following Schedulability Constraint is satisfied:

∀lij ∈ L, k1, k2 ∈ A : k1 6= k2

⇒ S(k1, lij) ∩ S(k2, lij) = φ (2)

∀lij , lpq ∈ L, k1, k2 ∈ A : 〈lij , lpq〉 ∈ EF

⇒ S(k1, lij) ∩ S(k2, lpq) = φ (3)

Equation (2) states that no two applications can occupy
the same link at the same time, and (3) states that no two
links that interfere with each other can be active at the same
time.

We say that a schedule S implements a flow vector fA =
(f1, ..., fm) iff S is feasible and the following is satisfied:

∀i, j ∈ N, k ∈ A, f
k
ij ≤ Cap(lij) ·

‖S(k, lij)‖

‖T‖
(4)

where ‖.‖ denotes the size of a set. This equation means
that the achieved bandwidth of an application on a link is no
more than the capacity of the link scaled by the proportion
of time the application is scheduled to occupy that link. We
say a flow vector fA is feasible if it can be implemented by
some feasible schedule S.

The Optimal Utility Scheduling Problem (Opt) is the fol-
lowing: given the connectivity graph C, the conflict graph
F and a list of applications A, compute a feasible schedule
S that maximizes the aggregate utility of all applications:

max
fA,S

X

k∈A

uk(fk) (5)

s.t. f
A and S satisfy (1)-(4)

The interpretation of the time span T depends on the
MAC protocol used at the link layer. In a TDMA-based
scheme, T is a discrete set of time slots within an epoch,
where an epoch corresponds to a superframe of several time
slots on a repeating schedule. In a CSMA protocol, we could
interpret T as an arbitrary set of time slots in which |T |
represents the fraction of slots in each epoch allocated to
the node. T can of course be generalized to correspond to
other ways of scheduling the link. For example, in a FDMA

1Note that we do not draw an edge from a vertex (link)
to itself in the interference graph, but we do draw an edge
between a pair of reverse links lij and lji.
2We make the simplifying assumption that there is no par-
tial interference but rather that interference is a boolean
concept. See Padhye et al. [10] for a discussion of this issue.



scheme, T could correspond to the set of frequencies, rather
than time slots.

The utility function is a map from overall bandwidth to
the application’s value for being able to achieve the given
bandwidth level. There are several properties of utility func-
tions considered in our model: First we require that it pass
through (0,0) by convention. Second it must be non-decreasing
(otherwise the application may just step down to operate at
a lower bandwidth than it is allocated). Finally we restrict
it to be in the class of piecewise linear functions, includ-
ing ones with discontinuous jumps. This restriction offers
two advantages. First, such functions have compact repre-
sentations and yet are able to approximate any reasonable
functions. One way to specify a piecewise-linear function is
to give a list of breakpoints (xi, yi), and two extra slopes
preSlope and postSlope before the first point and after the
last point. Second, piecewise linear functions are suitable
for integer linear programs.

Although we do not strictly require utility functions to
be concave, typical applications tend to have diminishing
marginal returns on bandwidth and thus have concave util-
ity functions. Figure 1 shows two examples of piecewise
linear concave utility functions. The first utility function
(0,0)-(1,10)-(2,15) represents an application with two modes
of operations and a decreasing marginal utility of each ad-
ditional unit of bandwidth. We will use this typical utility
function extensively in later experimental sections.

bandwidth

utility

1 2

10

15

bandwidth

utility

5 10

10

15

Figure 1: Examples of piecewise-linear concave utility
functions with discrete (left) or continuous (right)
bandwidth.

2.1 Complexity and Approximations
Jain et al. [6] have established that it is NP-hard to com-

pute the throughput-maximizing schedule in the presence
of interference, and moreover it is NP-hard to produce an
approximation within a constant ratio of the optimal solu-
tion. Since their formulation of the maximum throughput
scheduling problem is a special case of Opt with contin-
uous time span and identity utility function, Opt is also
NP-hard. This said, in our experimental work we formulate
and solve Opt as a mixed-integer program (MIP) and use
CPLEX3 where a solution is available in reasonable time.
This provides one of the benchmarks for the market system.

2.1.1 An LP relaxation
Following the ideas in Jain et al. [6], we can relax the MIP

formulation and consider instead a linear-programming (LP)
relaxation. This LP relaxation can be strengthened through
the introduction of additional non-violated constraints, namely
clique and odd-hole constraints.

The clique constraint is the following: A clique Q in the
conflict graph is a subset of vertices with edges between
3http://www.ilog.com

every pair of them, i.e. a set of links that mutually interfere
with each other. It is clear that at any given time period only
one link in a clique can be active, and consequently the total
number of active time periods of all links in a clique must
be less than the total number of time periods. Formally, for
a clique Q:

X

lij∈Q

X

k∈A

l

f
k
ij

‖T‖

Cap(lij)

m

≤ ‖T‖ (6)

The scaling factor ‖T‖
Cap(lij)

translates the bandwidth as-

signment to the number of time periods used. It suffices
to consider maximal cliques because a constraint for a non-
maximal clique Q1 is subsumed by the constraint for a max-
imal clique Q2 if Q1 ⊂ Q2.

Similarly, the odd-hole constraint is derived from an odd-
hole H , which is a cycle of odd number of links in the conflict

graph. Since at any given time period at most half ( ‖H‖
2

)
of them can be active, the aggregate number of active time
periods for all links in an hole over the entire epoch must

be smaller than
j

‖H‖
2

k

· ‖T‖. Odd-holes offer non-trivial

information compared to even-holes because of the rounding
operator. Formally, for an odd-hole, H :

X

lij∈H

X

k∈A

l

f
k
ij

‖T‖

Cap(lij)

m

≤
j‖H‖

2

k

· ‖T‖ (7)

Notice that the use of the floor and ceiling function makes
the constraint tighter and leads to a more refined upper-
bound. However, because the number of maximal cliques
and odd-holes are in general exponential in the number of
nodes we cannot possibly add all clique constraints and all
odd-hole constraints. Instead, this suggests an approxima-
tion algorithm in which a random (as many as feasible given
computational constraints) set of cliques and odd-holes con-
straints are introduced into the LP before it is solved.

Still, the difficulty with this approach is that the output
is a flow allocation which may not be schedulable [6]. Here,
we handle this through combining this LP-relaxation with
a novel CSMA-like scheme to (approximately) implement
this allocation in best-effort while ensuring schedulability.
The solution of the LP-relaxation becomes the upper-bound
flow-vector, or the “Optimal Rate Limiter,” for the modi-
fied CSMA scheme. Together, we refer to this combination
approach as the Orl-Csma scheduler.

b

a

s

1

3 f h

g

d

1

3

2

2

2

2

Figure 2: Examples of a multi-path flow-vector. Node
f has multiple outflows and will forward incoming packages
to g or h according to a dispatch schedule.

2.1.2 Modified CSMA
Every node will transmit data only in units that are equiv-

alent to the time length of one round in the TDMA schedule,
which we call a “package”.4 At the beginning of each round,
there is a short contention period in which nodes perform

4A package could consist of multiple packets at the PHY
layer.



Type of good Members Supplied Quantities
Link Pair (L) L = {lij , lji} ‖T‖
Clique (Q) ∀lij , lpq ∈ Q : 〈lij , lpq〉 ∈ EF ‖T‖

Odd-Hole (H) H = {li0j0 , li1j1 , ..., lih−1jh−1
:

j

‖H‖
2

k

· ‖T‖

〈likjk
, lik⊕1jk⊕1

〉 ∈ EF}

Table 1: Types of goods and their supplied quantities in Market

conventional CSMA-style carrier sensing and backoff in case
of collision. We assume that the contention period is short
compared to the round length, and hence the beginnings and
ends of all transmissions are aligned to round boundaries.

The source node of a flow will issue packages addressed
to its neighbors at a rate and fashion specified in the upper-
bound flow-vector. In the example upper-bound flow-vector
shown in Figure 2, source node s will issue 1 package to a and
3 packages to b during one epoch. A forwarding node will
attempt to retransmit each received package at a random
time in the next contention period to the next downstream
neighbor according to the flow-vector.

A forwarding node f with multiple outflows (and perhaps
multiple inflows) services each outflow according to a dis-
patch schedule. The dispatch schedule is assigned a ran-
dom permutation of the node’s outflows on each epoch. In
this way, we avoid biasing the delivery latency of flows that
would result from using a fixed transmission schedule.

3. THE MARKET-BASED APPROACH
In this section we will present a market-oriented approach

to approximate the above LP-relaxation approach. Here
too we make use of the modified CSMA scheduler, and the
combination of the market allocation method with the use
of the best-effort CSMA scheduler becomes the Market-

Csma algorithm. We adopt tâtonnement as an approach to
converge towards a market equilibrium. An overview of the
Market-Csma algorithm is provided in Figure 3.

Market

Connectivity Graph

Conflict Graph

Applications

Bandwidth 
Allocation

Rate-limited
CSMA

scheduler

CSMA 
“Schedule”

AA

A

A A

C

H

L

C
H

L

price

demand

Figure 3: Market protocol overview. First a
tâtonnement process is used to iterate between price-updates
and best-response from applications. Then, when approxi-
mate convergence is achieved the equilibrium allocation is
passed on to the best-effort CSMA scheduler as the rate lim-
iter.

In light of the constraints presented in the Orl problem
and its LP-relaxation, we price links, cliques and odd-holes
in the market to capture the constrained resources. For-
mally, a good in our market is defined as a set of links,
which we will call an interference group. A good indexed
by the interference group g is a license or permission to use
any one of the links in g for one period of time. Conversely,
in order to be able to use a physical link l in the final allo-
cation, an application has to purchase all of the goods that
correspond to an interference group containing l. In partic-
ular, we consider three types of goods, namely: link pair,

clique and odd-hole goods. The supplied quantities of each
type of good are as shown in Table 1.

The introduction of cliques and odd-holes as virtual goods
in addition to the physical link-pair goods in order to capture
the effect of interference appears to be a novel contribution.
In our experiments we find that these interference goods
(clique goods in particular) are the most demanded goods
in the market.

Suppose there are a total of L physical links {l1, ..., lL}
and G goods {g1, ..., gG}, we use the G-dimensional vectors
p, q and x to denote the price vector, supply vector and de-
mand vector for the goods, respectively. On the other hand,
because an application works naturally by first selecting a
set of physical links that it wants to use and then procuring
all the goods required to operate those links, we will also
define the effective link price vector pL and the link demand
vector xL as an alternative representation of the prices and
demands. The effective link price pL

i for each link li is the
sum of prices of all goods that the link is a member of:

p
L
i =

X

1≤j≤G:li∈gj

pj (8)

In response to these effective link prices, each application
k ∈ A states its demand on each link it wants to use (in
order to form a flow), which we will call the application-
level link demand vector xL

k . The component xL
ki denotes the

quantity of physical link li that application k demands. The
sum of xL

k across all applications k becomes the aggregate
link demand vector, denoted xL. This maps to a demand on
goods gj as:

xj =
X

1≤i≤L:li∈gj

x
L
i (9)

The Market protocol is defined as follows:

1. {g1, ..., gG} ← CHOOSE GOODS .

2. t← 0, p(0)← 0, H(0)← φ.

3. Price vector p(t) is announced.

4. Each application k ∈ A responds to p(t) by doing:

(a) Translate good-price p(t) to effective link price
pL(t).

(b) Compute its link demand vector xL
k (t)

= APP DEMAND(k,pL(t)).

(c) Translate link demand xL
k (t) to good demand xk(t).

(d) Submit quantity demanded, xkj(t), for each good
gj to the auctioneer sj for good gj

5. Each auctioneer sj sums over all bids from applications
to get the aggregate demand xj(t) for good gj .

6. If CONVERGE?(H(t),p(t),x(t)) output xL
k (t) as the

link allocation for each application k.



7. Otherwise one auctioneer sj is selected at random from
the set for which xj(t) 6= qj . This auctioneer updates
the price and all other prices remain unchanged: p(t+
1)← UPDATE PRICE(j,p(t), x(t)).

8. H(t + 1) ← H(t) ∪ {p(t),x(t)}, t ← t + 1, go to Step
3.

Note that H(t) is the history of price vectors and demand
vectors prior to time t. Upon termination of the protocol,
the equilibrium link demand xL

k for each application k ∈ A
becomes the final link allocation, which specifies how many
of each link every application is allowed to use during the
entire epoch of ‖T‖ rounds. Under the simplifying assump-

tion that Cap(li)
‖T‖

= 1 for all links, xL is also conveniently

the flow vector (bandwidth allocation), which can be passed
on to the next stage CSMA scheduler as the rate-limiter.

There are four main modules within the market. The
initial CHOOSE GOODS function will always include all
link-pairs, together with some subset of the possible hole
and clique goods.

APP DEMAND : Given the price vector pL, the sub-
problem facing each application k is to find the optimal link
demand in order to form a flow that gives the maximum net
utility:

xL
k (t) ∈ arg max

xL∈XL
uk(bw(xL))− xL · pL(t), (10)

where bw (xL) denotes the bandwidth of xL (treated as a
flow vector), and the dot-product computes the total price
of the link allocation xL the application has to pay under
the current link price vector. The dual meanings of xL as
both the link demand and the corresponding flow vector are
due to the assumption that Cap(li) = ‖T‖ for all links.5

Obviously the set of all possible link demands that the ap-
plication is allowed to choose from (XL) should be limited
by the flow conservation constraints. However, we do not
add the constraints that an application cannot demand more
than the total supplied quantities of goods, since adding
these supply constraints makes the sub-problem too com-
plex.

Without considering the supply constraints, the single-
application optimal flow problem reduces to a classic short-
est path problem with the effective link prices pL(t) as the
distance metric. Each application will simply compute the
shortest distance (minimum cost in this case) path between
its source and destination nodes, and will request multiple
units of the links along that path. The number of units
requested will be chosen to maximize net utility, and in
the case of concave utility function, the application will
keep increasing this number until the cost is higher than
its marginal utility.

UPDATE PRICE : For price tâtonnement we use the fol-
lowing Simple Reinforcement / Negative-Feedback Update
Rule: The auctioneer j selected in step (7.) will simply push
the price up or down by a small increment δ depending on
whether a good gj is over-demanded or under-demanded.
That is, pj(t + 1) ← pj(t) + δ if xj(t) > qj and pj(t + 1)←
pj(t)− δ if xj(t) < qj .

6

5In general, an arbitrary flow vector f can be translated to a
link demand by scaling the component for link li by a factor

of ‖T‖
Cap(li)

and rounding up to the next integer.
6Proportional updates can also be used (pj(t+1)← pj(t)+

CONVERGE? It is well known, e.g. Scarf [13] that mar-
ket dynamics may reach a cycle without converging to the
unique competitive equilibrium. In a discrete price and de-
mand space in our setting, we expect the market to fluctuate
among a limited number of states after a certain number of
initial iterations. Indeed this cycling behavior is frequently
observed in our experiments. When the market falls into a
trap and cycles through only a limited number of states, we
say that it reaches pseudo-convergence, and the set of states
that it cycles through form a dynamic equilibrium.

The following simple algorithm is used to detect conver-
gence of prices and demands. Consider the magnitude of
the first order differences of the price vector and demand
vector, if they tend to zero, the system reaches ideal conver-
gence; if they stabilize around non-zero values, the system
is fluctuating between a relatively stable set of states.

The Exponentially Weighted Moving Average (EWMA)
with parameter α for any scalar or vector variable x is:

E
∗
α[x](t) = αE

∗
α[x](t− 1) + (1− α)x(t) (11)

Using this, we define the average price vector at time t to
be an exponentially weighted moving average of historical
price vectors:

p̃(t) = E
∗
α[p](t) = αp̃(t− 1) + (1− α)p(t) (12)

The scalar first order difference of the price vector is defined
as the L-2 norm of the difference between the current price
vector and the average price vector:

∆p(t) = ‖p(t)− p̃(t)‖ (13)

Because this is still very volatile, we apply another EWMA
filter on it to obtain the average price vector difference:

∆̃p(t) = E
∗
β[∆p](t) (14)

Finally the algorithm detects a pseudo-convergence in price
vector when ∆̃p(t) stabilizes, i.e. its “moving standard de-
viation” is less than a certain percent of its moving average.

Std∗
γ [∆̃p](t)

E∗
γ [∆̃p](t)

≤ ǫ (15)

where Std∗γ is similar to the traditional standard deviation
but with the expectation operators replaced by E∗

γ :

Std
∗
γ [x](t) =

q

E∗
γ [x2](t)− (E∗

γ [x](t))2 (16)

Similar quantities are defined for the demand vector x(t)
and the algorithm determines that the market reaches a
pseudo-convergence when condition (15) and its counterpart
for demand vector are both met.

The weights (α, β, γ, ǫ) in the range (0,1) are the parame-
ters of the detection algorithm and determine how sensitive
it is to fluctuations and final stabilization. In general, the
smaller they are, the long it takes for the algorithm to de-
tect convergence. They are chosen empirically to be (0.90,
0.95, 0.95, 0.05) in the final implementation, which is able
to detect pseudo-convergence in all test cases. Although the
three rounds of EWMA smoothing filters seem excessive,

δ(xj(t) − qj) with smaller δ). However, in our experiments
a fixed increment tends to lead to less fluctuation, probably
because proportional changes tend to overshoot the efficient
prices due to the failure to expect discontinuous changes of
the demands around the efficient prices.



they are usually necessary due to the high fluctuation of the
price and demand vectors.

In Figure 4 we plotted the three quantities ∆p(t), ∆̃p(t)

and Std∗
γ∆̃p(t). The corresponding versions of the demand

vector are shown in Figure 5. Notice the contrasting be-
havior of the price and demand vector difference at around
iteration 1000: while the price vector difference drops sig-
nificantly and stabilizes at a lower level, the demand vector
difference rises and stabilizes at a higher level.
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Figure 4: Difference of Price Vector over Iterations.
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Figure 5: Difference of Demand Vector over Itera-
tions.

When the Market algorithm detects pseudo-convergence,
it simply outputs the last market state to the next stage
CSMA scheduler.

4. EXPERIMENTAL RESULTS
We compare the performance of four algorithms: Opt,

Orl-Csma, Market-Csma, and Naive-Csma. Naive-

Csma is a simple CSMA-based protocol in which nodes sim-
ply contend for the radio whenever they have data to send;
no bandwidth allocation is performed. Recall that Opt is
the MIP formulation of the optimal utility scheduling prob-
lem and explicitly constructs a feasible schedule to maximize
the aggregate utility of all applications.

We make use of two different interference models. In the
Level-0 model, two links sharing an endpoint will interfere
with each other. In the Level-1 model, in addition to Level-0

0

1
2

3

4

5
6

7

8

9

Figure 6: A randomly generated network to carry out
case study. 10 nodes are placed uniformly at random in
the unit square, with symmetric directional links connecting
every pair of nodes within distance 0.3.

interference, two links will interfere if the receiver endpoint
of one link is in range of the sender of the other link. This
model is more realistic in that links without an endpoint in
common, but with nearby endpoints, can interfere.

To characterize the performance of the four algorithms as
demand increases we first perform a case study on a spe-
cific instance of a randomly generated network shown in
Figure 6. We assume links have identical capacities of 10,
which is also the number of time periods. We generate a list
of homogeneous applications with random sources and des-
tinations and our typical (0,0)-(1,10)-(2,15) utility function
in Figure 1. We include them, in order, to form a sequence
of test cases to be scheduled by each algorithm. We assume
a Level-0 interference model. For CHOOSE GOODS we in-
clude all link-pair goods, all clique goods but no hole goods.

In Figure 7 we report the running time, average link us-
age, total and average bandwidth and utility on all test
runs. In addition, we also show the performance that would
be achieved if the solution to the LP-relaxation Orl was
schedulable. This is labeled “csma-ub” in the plots while
the Orl-Csma method is labeled “csma-sim.”7 Since data
points are taken more sparsely as the number of applications
increases, the x-axis has been compressed by a factor of 4 in
the right half of each graph for better visual presentation.
Some important observations from these results are:

• All three algorithms outperform Naive-Csma

significantly in both bandwidth and utility.
Naive-Csma suffers from overwhelming contention in
high demand and has degrading performance.

• Run-time complexity Opt≻Orl-Csma≻Market-

Csma. In terms of running time, Opt grows worse
than exponentially in the number of applications (note
the time axis is in log-scale), Orl-Csma grows approx-
imately exponentially and Market-Csma is almost
flat. There is an initial jump from 2 to 3 applications
of Market-Csma because prior to 3 applications, the
demand is so low even at all zero prices that the mar-
ket terminates immediately. The “running time” of
Naive-Csma is not plotted because it does not require
prior computation.

• Link Usage very similar, with Naive-Csma

slightly worse. Naive-Csma used the most link time

7Note that the bandwidth line of csma-ub is not necessar-
ily a strict upper-bound because the first stage Orl-Csma

optimizes for utility rather than bandwidth.
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Figure 7: Running Time, Link Usage, Total and Average Bandwidth and Utility of Opt, Orl-Csma (“csma-
sim”), Market-Csma and Naive-Csma. The performance that would be achieved if the solution to the LP-
relaxation Orl was schedulable is also shown (“csma-ub”). Note that the right half of each graph is compressed by a
factor of 4 along the x-axis.

since it tends to waste a lot of bandwidth in delivering
messages that will get dropped later. The absolute
upper-bound on link usage is 0.5 because at most 5
links can be active simultaneously under the Level-0
interference model, as shown in figure 6.

• Bandwidth Opt≈Orl-Csma≈Market-Csma. Al-
though the three algorithms are not geared towards
bandwidth maximization, it makes sense that band-
width must be roughly maximized in order to achieve
maximum utility. The Bandwidth characteristics of
the three algorithms are virtually indistinguishable,
with Market-Csma slightly lower than Opt and
Orl-Csma before they hit computational limits.

• Utility Opt≻Orl-Csma≻Market-Csma (but
close!). Despite similar usage of bandwidth re-
sources, the utility levels show real differences in
performance. In low demand when computational
constraint is not yet harsh for Opt,Orl-Csma tracks
Opt very closely (about 95%) while Market only
tracks about 80%-90% of Opt’s utility.

• Computationally constrained Opt under-
performs Orl-Csma and Market-Csma in high
demand. After Opt hits the computational bound
(>20 apps), Orl-Csma begins to outperform Optin
utility. Similarly after Orl-Csma hits the compu-
tational bound in extreme high demand (>70 apps)
Market-Csma catches up. Because the time limit
we set is extremely generous (30 minutes), we expect
that Market would be the most scalable algorithm
in practical settings.

For our second set of experiments we assess the perfor-
mance for a distribution over different network topologies,
interference models and utility functions. In each test case,
a network is generated with random placement of a random

number (5-15) of nodes, and the nominal range l chosen from
(0.3, 0.4). A random number (5-20) of applications with ran-
dom sources, destinations and randomly generated utility
functions will enter. A utility function is generated by choos-
ing a random range (1-5) of bandwidth and then choosing
random utility value (0-20) at each bandwidth level, guaran-
teeing non-decreasing but not concavity. We fix the number
of rounds at 10 and use the Level-0 or Level-1 interference
model at random. Each test case will run for at most 10
minutes by each algorithm.

In addition to average bandwidth, average utility and link
usage, we also look at a fairness metric [7] on bandwidth
and utility vectors. The fairness index for a vector x with
dimension n is defined as:

fairness(x) =
(
P

xi)
2

n ·
P

x2
i

(17)

A value closer to 1 means more fair. Table 2 summarizes
the performance metrics. All numbers are relative to Naive-

Csma as a baseline.

Algorithm Opt Orl-Csma Market-Csma

Utility 1.20x 1.22x 1.13x
Bandwidth 0.86x 0.95x 0.89x

Utility Fairness 0.89x 0.98x 0.99x
Bandwidth Fairness 0.76x 0.84x 0.88x

Link Usage 0.97x 1.04x 0.89x

Table 2: Performance Metrics of Opt, Orl-Csma and
Market-Csma, relative to Naive-Csma

In terms of efficiency, all three algorithms use less aggre-
gate throughput (and lower link usage except Orl-Csma) to
achieve higher aggregate utility compared to Naive-Csma.
Market-Csma tracks about 95% utility of Opt. Note that
Orl-Csma seems to outperform Opt on average in this ex-



Time Limit Opt Orl-Csma Market-Csma

10 min 52%/90% 100%/100% 100%/100%
5 sec ?/37% ?/96% 100%/100%

Table 3: Performance Metrics of Opt, Orl-Csma and
Market-Csma

periment due to the moderate computational constraints. In
terms of fairness, Opt is much poorer than the two CSMA-
based algorithms, probably due to the fact that Opt com-
putes and fixes a TDMA schedule once and for all, while
the CSMA-brand algorithms have the second stage best-
effort scheduler that contributes to a mixing and smoothing
of bandwidth and utility across applications.

The time limit of 10 minutes imposes moderate compu-
tational constraints that elevates the performance of Orl-

Csma compared to Opt. We can also expect that under
harsh computational constraints (such as in an online envi-
ronment, e.g. 5 seconds) Market-Csma will be the best
choice. To stress this point, we illustrate the solution qual-
ity of the three algorithms under various time constraints in
Table 3. The first number is the percentage of test runs in
which the algorithm returns an optimal solution (meaning
finding the optimal solution in MIP stage, or finding mar-
ket convergence). The second number is the percentage of
test runs in which the algorithm returns a solution at all,
possibly suboptimal.

5. CONCLUSIONS AND FUTURE WORK
It is conceivable that the Market allocation coupled with

CSMA scheduler could become an online realtime scheduling
protocol. The demand response in the market could be con-
tinuously fed to the second stage CSMA scheduler without
waiting to settle down on a particular stable state. A dis-
tributed and decentralized implementation can be achieved
by delegating each auctioneer onto some individual nodes,
and propagating the price information and bid information
by piggy-backing. A real implementation would also need
to consider the consequences of currency allocation policies
(if the currency is virtual) (see for example [5]), as well as
to specify utility functions appropriate for different appli-
cations [17, e.g.]. Another next step is to implement and
deploy our algorithms on real-life wireless network test beds
such as the MoteLab [9]. Further complication may arise
due to realistic wireless behaviors such as collision and par-
tial interference that’s not captured by our model or simu-
lator. Future research can also implement our algorithms in
TinyOS and measure relevant performance metrics in real-
life experiments.
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