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Abstract

Given two mutants, A and B, separated by n mutational steps, what is the evolutionary
trajectory which allows a homogeneous population of A to reach B in the shortest time? We
show that the optimum evolutionary trajectory (fitness landscape) has the property that the
relative fitness increase between any two consecutive steps is constant. Hence, the optimum
fitness landscape between A and B is given by an exponential function. Our result is precise
for small mutation rates and excluding back mutations. We discuss deviations for large
mutation rates and including back mutations. For very large mutation rates, the optimum
fitness landscape is flat and has a single peak at type B.

Key words: Evolutionary dynamics, finite populations

1 Introduction

In 1696, the following problem was posed in Acta Eruditorum: “I, Johann Bernoulli,
address the most brilliant mathematicians in the world. Nothing is more attractive
to intelligent people than an honest, challenging problem, whose possible solution
will bestow fame and remain as a lasting monument [...]. Given two points A and B
in a vertical plane, what is the curve traced out by a point acted on only by gravity,
which starts at A and reaches B in the shortest time?” Besides Johann Bernoulli,
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his brother Jacob, as well as Gottfried Leibniz, Guillaume de l’Hôpital, and Isaac
Newton solved this so called Brachistochrone problem. Newton is said to have
found the solution within hours (Rouse Ball, 1960). Four solutions (except the one
of de l’Hôpital) were published together. Amazingly, the solution turned out to be
the cycloid, which is the position of a point on a circle rolling along a straight line.
It has the parametric form

x(t) = h(t− sin t) y(t) = h(cos t− 1) (1)

To make things even more beautiful, the cycloid is also the curve for which the time
of a particle sliding down to the end point is independent of its starting point, as had
been shown by Huygens in 1659. Galileo Galilei had addressed the Brachistochrone
problem already in 1638 and - wrongly - concluded that the optimum curve would
be the arc of a circle.

Here, we address a related problem in biology (see Fig. 1): What is the curve of
fitness values on which a population (of constant size) evolves fastest from a fixed
starting point to a given end point? Admittedly, this problem is not quite as elegant
as the physics problem, since the answer will depend on the population size and
the mutation rate. For small mutation rates, we present an analytical solution for a
finite number of intermediate states. In this case, the fastest evolutionary trajectory
has exponentially increasing fitness values, which means that the relative fitness
increase is constant between any two consecutive steps. We discuss extensions of
our analysis to higher mutation rates and including back mutation.

2 Small mutation rates

For small mutation rates, u, each mutation either reaches fixation in the popula-
tion or becomes extinct before the next mutation arises (Crow and Kimura, 1970;
Gillespie, 1983; Bürger, 2000). More specifically, this approximation is valid if the
average time between two mutations, 1/(Nu), is much larger than the average time
until a mutant reaches fixation or extinction. The average time to fixation of a neu-
tral mutant in the Moran process is of the order of N generations (Moran, 1962).
For frequency independent selection, this is an upper bound for the fixation time.
Therefore, we come to the condition

u� 1

N2
. (2)

Often, however, the approximation is valid for much higher mutation rates of the
order of 1/N . This is the case if selection is stronger or if one considers the time in
which a small fraction of the population takes over most of the population instead
of the time in which a single mutant takes over the whole population.
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Fig. 1. The classical brachistochrone problem in physics determines the curve of fastest
decent of an object that is only affected by gravity. The figure shows a typical experimental
setup with four different curves. The fastest decent occurs on the third curve from the top,
which has the form described in Eq. 1. (b) To address a similar problem in biology, we
invert the y-axis of the setup. The force that leads to higher fitness values is now selection
instead of gravity. We consider the problem of a finite number of states (red circles). How
do we have to choose the fitness values on this curve to obtain the fastest fixation in the
terminal state?

Without loss of generality, we set the initial fitness to r0 = 1 (type A) and the
fitness of the final mutant (type B) to rn = R, where n is the number of steps on
the evolutionary trajectory. Mutations can only lead from type i to i+ 1. Later, we
will discuss the case of back mutations from i+ 1 to i. Our goal is to determine the
fitness values ri of the intermediate states i = 1, . . . , n− 1 such that the time from
the initial state i = 0 to fixation in the final state i = n is minimized.

We assume a Moran process (Moran, 1962; Ewens, 2004; Lieberman et al., 2005;
Nowak, 2006), but other processes with the same fixation probability will lead to
the same analytical results. We restrict ourselves to birth death processes. With
probability T+

j the number of mutants increases from j to j+1 and with probability
T−j it decreases from j to j − 1. The probability that a single mutant will take over
a population of size N and thus reach fixation is given by

ρ =
1∑N−1

j=0

∏j
k=1

T−j
T+

j

. (3)
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Obviously, any birth-death process in which the ratio T−j /T
+
j is the same has the

same fixation probability. This holds for the frequency independent case as well as
for the frequency dependent case (Nowak et al., 2004b; Traulsen et al., 2007). In the
Moran process, one individual is selected proportional to its fitness and produces
identical offspring, which replaces a randomly chosen individual. Mutants have
fitness r, while the wild type has fitness 1. This leads to T−j /T

+
j = 1/r. Another

possibility to obtain the same ratio is the following: Choose two individuals at
random. If the two individuals are different, one of them replaces the other with
probability proportional to his payoff. In other words, a mutant would replace a
wild type individual with probability r/(1 + r). This again leads to T−j /T

+
j = 1/r.

However, the ratio T−j /T
+
j is not always 1/r. If we select one individual to produce

identical offspring proportional to its fitness and one individual for death propor-
tional to the inverse fitness, the we obtain T−j /T

+
j = 1/r2. This implies a different

form of the optimal trajectory.

For any process with T−j /T
+
j = 1/r, the fixation probability of a mutant with

fitness rj in a population with fitness ri is given by

ρ(rj/ri) =
1− ri/rj

1− (ri/rj)
N . (4)

Here, N is the constant size of the population. Due to the small mutation rate, the
population will most of the time consist of a single type. Occasionally, a mutation
occurs and two types are present for a short time. If the resident has fitness ri and the
mutant has fitness rj , then the latter becomes extinct with probability 1− ρ(rj/ri).
The mutant reaches fixation with probability ρ(rj/ri). The rate of evolution that
takes the population from state i with fitness ri to state i + 1 with fitness ri+1

is given by the product of the mutation rate per generation, Nu, and the fixation
probability. This constant rate leads to an exponential distribution of the time until
a successful mutant arises that reaches fixation (note that the average time of the
process of fixation itself can be neglected due to the small mutation rates). The
average of this distribution is given by

Ti =
1

Nuρ(γi)
. (5)

We use the abbreviation γi = ri+1/ri for the fitness ratio between state i and i+ 1.
The average time to reach fixation in i = n starting from i = 0 is the sum of the
waiting times in the intermediate states,

T =
1

Nu

n−1∑
i=0

1

ρ(γi)
. (6)

How do we have to choose the fitness ratios, γi, to minimize this time? We can
solve this problem using Lagrange multipliers. The details of this calculation are
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shown in the Appendix. It turns out that the unique fastest evolutionary path has
exponentially increasing fitness given by

ri = Ri/n for i = 0, . . . , n. (7)

This exponential path is the fastest evolutionary path for an arbitrary number of
states, n, if the mutation rate, u, is smaller than the inverse of the squared population
size, u � N−2. The exponential path results from the fact that 1/ρ(x) is a strictly
convex function, see Appendix.

The exponential path is in line with the observation of Orr (2003) that the distri-
bution of fitness effects among beneficial mutations is independent of the fitness of
the wild type allele. This means that natural selection chooses from the same distri-
bution of fitness values regardless of the initial configuration. The same is true for
the optimal evolutionary trajectories calculated here: no matter where the system
starts, the relative fitness of the next mutant has the same value.

Interestingly, the result of an exponential path is also valid for R < 1, i.e. a path
with decreasing fitness values. The fastest way to reach a fitness minimum is given
by a decreasing fitness landscape with ri = Ri/d. However, the question how long
it takes to decrease the fitness to a minimum is usually of minor interest.

Note that we do not ask for the fastest way to reach a certain fitness value (this
would of course be a single mutation with this fitness), but for the fastest way to
reach a mutant which is n steps away.

3 Extensions of the analytical theory

Here, we present various possibilities to extend the analytical theory presented
above. Most extensions lead to some deviations from the simple exponential path.
In the Appendix, we discuss the case where different mutants have different muta-
tion rates. In the following, we discuss the effect of large mutation rates and back
mutations.

3.1 High mutation rates

The optimum path with exponentially increasing fitness has been derived for small
mutation rates. For larger mutations rates, the population usually consists of a mix-
ture of the different mutants. In this case, our analytical approach is no longer valid
and one has to resort to numerical simulations.

Once the mutation rates become so high that all states are reached within a short
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time, then a single individual will reach type B (state n) fast. In this case, a deter-
ministic framework based on the quasispecies equation can be used to describe the
dynamics (Eigen and Schuster, 1977; Eigen et al., 1989; Nowak, 1992, 2006; Jain
and Krug, 2007). We observe that some mutants of type B are present after a very
short time. To minimize their time to fixation, every other type should have fitness
1, such that the relative fitness advantage of the final state is maximized compared
to all other states. Thus, higher mutation rates lead to smaller fitness in the inter-
mediate states compared to the exponential path that is optimal in the limit of small
mutation rates, see Figs. 2-4 for numerical examples.

In Fig. 2, we show how the time to fixation in the final state for a system with a sin-
gle intermediate state depends on the fitness in this state. For small mutation rates,
the simulations agree well with our analytical theory. As expected, the deviations
become larger when the mutation rates increase. For high mutation rates, the fastest
fixation occurs when the intermediate fitness is minimized, as discussed above. The
fitness landscape is flat and has a single peak for mutant n. Fig. 3 shows how the
optimal fitness of the intermediate state depends on the mutation rate, u, and on the
population size, N . Fig. 4 addresses numerical simulations of trajectories with two
intermediate steps. Again, for low mutation rates the fastest path has exponentially
increasing fitness. For high mutation rates, a flat fitness landscape with a single
peak in the final state leads to the fastest fixation.

3.2 Back mutations

So far, we have neglected mutations that lead from type i back to type i − 1. Such
back mutations might alter our result of an exponential path. If back mutations are
included, the time until the population reaches fixation in state d for the first time
is obtained by solving a random walk, which leads to

T =
1

Nu

n−1∑
i=0

i∑
k=0

1

ρ(γk)

i∏
j=k+1

ρ (1/γj−1)

ρ(γj)
(8)

If the fitness is increasing along the trajectory and selection is strong, which means
N(rj+1 − rj) � 1 for all j, then the fixation probability of a mutant with lower
fitness is very small, ρ(1/γj−1) � 1. The product in Eq. (8) is then very small
except when k = i, where it is 1 by definition. Hence, we can neglect all terms
except those in which k = i. This allows us to remove one sum, and we return to
Eq. (6). Hence, for strong selection, even for the process with back mutations the
fastest evolutionary path has exponentially increasing fitness.

For weak selection and back mutations, however, the problem becomes different.
Weak selection means that the fitness difference between the states is small, R −
1 � 1 (Ohta, 2002). As weak selection is closely related to an undirected random
walk, one has to reduce the time that the population spends far away from the final
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Fig. 2. Fixation times depending on the fitness in the intermediate state for a system with
n = 2. For small mutation rates (u = 0.0001), the approximation from Eq. 5 (full lines)
agrees well with numerical simulations (symbols). For larger u, the fixation times are not
longer described well by the approximation in the limit of u � N−2, but the minimum
might still occur at the same point. For very large mutation rates (u = 0.1), a determin-
istic limit of the process can be used to describe the fixation times (dashed line), see Ap-
pendix. The dependence of the minimum on the mutation rate is shown in Fig. 3 (parameters
N = 100, r0 = 1, R = 2, averages over 105 independent realizations of the process).

state rather than optimize the time in each intermediate state. The fastest path can
be determined from a numerical optimization of Eq. (8). For example, with n = 2,
R = 1.01, andN = 100, we obtain for the intermediate fitness r1 = 1.0056 >

√
R.

Hence, the time for the first step is shorter than on an exponential path. If the path
has more than one intermediate step, the optimal path can even have highest fitness
in state n−1. For instance, n = 3,R = 1.01, andN = 100 leads to an optimal path
with r1 = 1.0035 <

√
R and r2 = 1.0155 > R. In this case, the time is minimized

if one secures first that the whole population reaches fixation near the final state.

Numerical simulations of the system with back mutations for high mutation rates
raise another problem: the definition of the ’final state’ of the evolutionary process
is no longer clear. For high mutation rates and allowing back mutations, it might
(almost) never happen that the entire population is of type B. One could ask for
the time it takes until the first mutant reaches type B, but this time does no longer
depend on the fitness in the final state. Thus, the fitness in state n − 1 could be
arbitrarily high and even higher than R. With the restriction rn−1 ≤ rn = R,
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Fig. 3. Dependence of the optimal path with a single intermediate state on the mutation rate
for population sizes N = 10, N = 100, and N = 1000 from simulations. For u � N−2,
we find the exponential path predicted by the theory (full line). For high mutation rates, the
optimal path becomes close to a neutral path. On the right hand side, the different paths
are drawn schematically: If the intermediate fitness is equal to the initial fitness (bottom),
the path is neutral. For an intermediate fitness of

√
R, the path is exponential (middle). For

intermediate fitness equal to R, the whole fitness difference occurs between the initial and
the first state (parameters r0 = 1, R = 2, averages over 105 independent realizations of the
process)

we find that the time until the first mutant reaches the final state is minimized for
rn−1 = R. Similar problems arise if one asks for a concentration of 50% of the
individuals in the final state. Instead, one could ask for the time it takes until the
stationary distribution is reached, starting from an initial population in state 0 (type
A). However, this question is far from our original goal to address the problem of
evolutionary brachistochrones.

4 Discussion

Evolutionary biology often assumes that natural selection has already maximized
fitness. Thus, what we observe in nature is close to the genotype with the maximum
fitness or the ESS. Underlying this view is the assumption that the organism we
observe is an outcome of a long evolutionary process over many generations.
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Fig. 4. Fixation times on a path with two intermediate steps, n = 3. The figure shows a
contour plot of the times on the path, where darker colors indicate shorter fixation times.
For u = 10−3 (left), the system can be described by a stochastic framework. In this case,
the optimal path is exponential with fitness values 1, R1/3, R2/3, R, indicated by the red
circle. For u = 10−1 (right), a deterministic framework is more appropriate due to the
high mutation rate. The fastest path is neutral with fitness values 1, 1, 1, R (population size
N = 100, fitness in end state R = 2).

However, when evolution occurs for a limited time only, the time required for the
evolutionary realization might sometimes determine what we observe. Then, a par-
ticular state might be realized in nature not because it has the highest fitness, but
because there is a sequence of intermediate evolutionary states which realize the
path connecting these states with the fastest rate.

In this paper, we discuss the rate of the evolution along a chain of evolutionary
states. We show that even if the fitness of the final state is exactly the same, the rate
of evolution through the chain greatly differ between paths depending on the fitness
of the intermediate states.

Such rate of evolution along different evolutionary paths can be important in a
variety of contexts. For example, affinity selection of antibodies during immune re-
sponses occurs by the clonal expansion of B cells expressing a surface immunoglob-
ulin with a higher affinity for antigen compared to their competitors (Gram et al.,
1992; Maclennan, 1994). It is quite important to achieve the fastest evolution through
somatic mutation and selection of B cells in germinal centers (Kepler and Perelson,
1993). In another example, the cancer initiation of colon cancer occurs through the
inactivation of two copies of a tumor suppressor gene in each stem cell (Nowak
et al., 2004a). The time until the cancer initiation is exactly the problem of speed
along the chain of mutations. Similarly, pathogens may reach escape states after
multiple mutations within the host body (Nowak et al., 1991; Sasaki, 1994; Iwasa
et al., 2003). Still another important implication could arise in the context of the
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origin of life, where the time to reach an important intermediate state can become
important if multiple attempts to create this intermediate state compete. In all of
these examples, fixation in the end state can be some important prerequisite for
further evolution or be associated with an important new property of the system.

We have analyzed the speed of the simplest possible situation, which is a single tra-
jectory of sequential mutations between an initial genotype A and a final genotype
B. From this analysis, we can obtain important insights in the problem of evolu-
tionary speed. We have discovered that there exists a best choice of fitness values
for the intermediate states. The fastest fitness landscape depends on the relative
magnitude of the mutation rate (compared to the inverse of the population size).

For small populations and low mutation rates, the population is monomorphic most
of the time. In this case, a continuous improvement, i.e. each mutational step in-
creases the fitness by the same factor, leads to the fastest evolutionary trajectory.
On all other trajectories, it will take longer to reach the end state. For example, one
could consider a path in which the fitness of the end state is immediately reached.
Then, there are no longer any selective differences to the end state available and this
neutral evolution would take a much longer time than the path with improvement
by the same factor.

In contrast for large populations and high mutation rates, the system can be de-
scribed by a deterministic approach based on quasi-species dynamics. In this case,
the result is completely different. Now, the fastest evolutionary trajectory is given
by neutral (or even slightly deleterious) intermediate states and only the last step
leads to a fitness advantage. In this way, the selective advantage of individuals in
the end state (which appear after a very short time) is maximized compared to all
other types and fixation occurs fastest.

These findings may also have implications for understanding cancer progression via
the inactivation of tumor suppressor genes (Knudson, 1971; Nowak et al., 2004a;
Iwasa et al., 2004a,b; Michor et al., 2004). For small mutation rates (and small
populations of cells), the fastest progression would occur if inactivating each allele
leads to the same relative fitness increase (i.e. an exponentially trajectory). For
large mutation rates (and large population sizes), the fastest progression occurs if
inactivating the first allele of the tumor suppressor gene is neutral, and inactivating
the second allele leads to a large fitness increase of the (pre-) cancer cell.

To address some of those applications in more detail, the theoretical framework
presented here might have to be extended, for example to include multiple different
paths leading from A to B (Weinreich, 2005; Weinreich et al., 2006; Poelwijk et al.,
2007).

Evolutionary trajectories through a discrete phenotype space are characterized by
a time-scale on which mutations accumulate. Here, we have addressed the ques-
tion for which fitness values evolution proceeds fastest, and we have calculated the
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resulting fitness values in some simple cases.

A Appendix

A.1 The fastest trajectory for small mutation rates

Any solution for the fitness ratios γi has to fulfill r0 = 1 and rn = R, i.e. r =∏n−1
i=0 γi. In order to optimize the time T in Eq. (6) with this side condition, we

introduce the Lagrange function

L =
n−1∑
i=0

1

Nu

1

ρ(γi)
+ λ

(
R−

n−1∏
i=0

γi

)
. (A.1)

Here, λ 6= 0 is the Lagrangian multiplier which guarantees that the side condition
is fulfilled. For the optimum trajectory, L has an extremum. A necessary condition
for this is

∂

∂γj

L = −λR
γj

+
1

Nu

∂

∂γj

1

ρ(γj)
= 0 (A.2)

for all γj . Hence, the following equation has to be fulfilled for j = 1, . . . , n− 1

γj
∂

∂γj

1

ρ(γj)
= const. (A.3)

One possibility is to choose a constant fitness ratio γj between adjacent states.
Hence, the optimal path has exponentially increasing fitness given by

ri = Ri/n for i = 0, . . . , n. (A.4)

In the more general case of different mutation rates, ui 6= uj , the Lagrange function
reads

L =
n−1∑
i=0

1

Nui

1

ρ(γi)
+ λ

(
R−

n−1∏
i=0

γi

)
, (A.5)

and the condition for the optimal path becomes

γj

uj

∂

∂γj

1

ρ(γj)
= const. (A.6)

An anonymous referee made us aware of the following alternative way to derive
our main result, which also allows to show the uniqueness of the solution: Setting
x = − log γ, the inverse fixation probability can be written as

1

ρ(γ)
=

1− γ−N

1− γ−1
=

N−1∑
k=0

γ−k =
N−1∑
k=0

ekx = f(x). (A.7)
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It can be shown that f(x) is a strictly convex function, i.e. λf(x) + (1− λ)f(y) ≥
f
(
λx+ (1− λ)y

)
. In our case, this leads to a lower bound for the time T until the

final state is reached,

T Nu =
n−1∑
i=0

1

ρ(γi)
=

n−1∑
i=0

f(xi) ≥ f

(
n−1∑
i=0

xi

)
= f

(
− log

n−1∏
i=0

γi

)
= f (− logR) .

(A.8)
Both sides of the equation are equal if and only if all fitness ratios are equal, γi =
R1/n for all i. Thus, the exponential path is the only path on which evolution occurs
fastest.

A.2 The limit of large populations

For large populations, we can approximate the dynamics by a deterministic equa-
tion which is obtained from the stochastic dynamics in the limit N → ∞. Since
populations are typically mixed in this case, we have to describe the dynamics of
selection and mutation in more detail than before. For example, it can make a dif-
ference if mutations arise spontaneously or only during reproduction. In every time
step, we select an individual proportional to its fitness. With probability 1 − u, it
produces identical offspring. With probability u, it produces a mutant offspring.
An individual in state i can only produce a mutant in state i+ 1. Then, a randomly
selected individual is removed from the population. The probability Tj→i that an
individual of type i replaces and individual of type j in this process is given by

Tj→0 =
x0r0
〈r〉

(1− u)xj

Tj→i =

(
xiri

〈r〉
(1− u) +

xi−1ri−1

〈r〉
u

)
xj i = 1, . . . n− 1 (A.9)

Tj→n =

(
xnrn

〈r〉
+
xn−1rn−1

〈r〉
u

)
xj

xj is the now fraction of individuals in state j. The average fitness 〈r〉 is given by
〈r〉 =

∑n
l=0 xlrl. The rate at which the density of individuals in state i, xi, changes

in the limit N →∞ is given by ẋi =
∑n

j=0 Tj→i − Ti→j , see Traulsen et al. (2006)
for details. In our case, the system of equations simplifies to
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ẋ0 =x0
r0(1− u)− 〈r〉

〈r〉

ẋi =xi
ri − 〈r〉
〈r〉

(1− u) +
xi−1ri−1 − xi〈r〉

〈r〉
u i = 1, . . . n− 1 (A.10)

ẋn =xn
rn − 〈r〉
〈r〉

+ xn−1
rn−1

〈r〉
u.

To compare this to a finite population of size N , we compute numerically the time
it takes starting in state xi = δi,0 until the population density in state n is 1− 1/N .
Fig. 2 shows that this approximation works for N = 100 and u = 0.1 for a single
intermediate step, n = 2, if the fitness in the intermediate state is sufficiently small.
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