

An Ironing-Based Approach to Adaptive Online Mechanism Design
in Single-Valued Domains

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Parkes, David C. and Quang Duong. 2007. An ironing-based
approach to adaptive online mechanism design in single-valued
domains. In Proceedings of the Twenty-second AAAI Conference
on Artificial Intelligence: July 22-26, 2007, Vancouver, British
Columbia, Canada, ed. American Association for Artificial
Intelligence, 94-101. Menlo Park, Calif.: AAAI Press.

Published Version http://portal.acm.org/citation.cfm?id=1619645.1619661

Accessed February 18, 2015 12:57:09 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4039777

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28933243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/4039777&title=An+Ironing-Based+Approach+to+Adaptive+Online+Mechanism+Design+in+Single-Valued+Domains
http://portal.acm.org/citation.cfm?id=1619645.1619661
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4039777
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

An Ironing-Based Approach to Adaptive Online Mechanism Design in
Single-Valued Domains

David C. Parkes and Quang Duong
School of Engineering and Applied Sciences, Harvard University

Cambridge, MA USA {parkes,qduong}@eecs.harvard.edu

Abstract

Online mechanism design considers the problem of se-
quential decision making in a multi-agent system with
self-interested agents. The agent population is dy-
namic and each agent has private information about
its value for a sequence of decisions. We introduce a
method (“ironing”) to transform an algorithm for on-
line stochastic optimization into one that is incentive-
compatible. Ironing achieves this by canceling deci-
sions that violate a form of monotonicity. The ap-
proach is applied to the Consensus algorithm and ex-
perimental results in a resource allocation domain show
that not many decisions need to be canceled and that
the overhead of ironing is manageable.

Introduction

Mechanism design (MD) studies the problem of deci-
sion making in multi-agent systems with rational, self-
interested agents each with private information about
their valuations for different decisions. The central
problem in MD is to provide incentive-compatibility
(IC). A mechanism is incentive compatible if the op-
timal strategy for an agent is to report its private in-
formation truthfully.

Online MD extends the methods of MD to dynamic
environments, in which the agent population is dynami-
cally changing, decisions must be made across time, and
there can be uncertainty about the set of feasible deci-
sions in future periods. Example applications include:

• Selling last-minute theater tickets. Customers arrive
to a ticket booth with a value for some number of
tickets and need a decision before some deadline.

• Selling network access. Customers arrive into a coffee
house with a value for access to a shared WiFi base
station for some contiguous period of time and before
some deadline.

This paper addresses a fundamental challenge in on-
line MD: how can one use general-purpose algorithms
for online stochastic optimization to make decisions
while also providing incentive-compatibility? In partic-
ular, we want to be able to achieve IC without requiring

Copyright c© 2007, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

either that the algorithm computes the optimal policy
or that the algorithm has access to a correct probabilis-
tic model of the environment.

To be concrete, consider the WiFi problem. As cus-
tomers arrive and depart they can choose to bid for
WiFi access. The current bids along with any current
allocations form the state of the mechanism at any point
in time. Suppose an online algorithm is used to propose
allocation decisions that maximize expected social wel-
fare given a probabilistic model of the bid arrival pro-
cess. We seek dominant-strategy IC. This means that it
is optimal for a customer to report her true valuation
for WiFi access and immediately upon arrival, whatever
the bids of other customers and for all possible futures.
This simplifies the bidding problem by removing the
need for wasteful counter-speculation.

The basic idea is very simple. Whereas the online al-
gorithm may not have the required properties to allow
for IC, we introduce a method (“ironing”) to transform
the algorithm into one with these properties. Ironing1

achieves this by canceling any allocation decision that
violates a form of monotonicity. We will see that the
quid pro quo for completely removing the strategic prob-
lem facing customers is that we must cancel only a small
number of decisions (typically < 1%).

To check for a violation of monotonicity, the ironing
procedure needs to perform sensitivity analysis on the
decisions of the online algorithm. Specifically: given
a proposed allocation it must be possible to construct
the sequence of decisions that would have been made for
an alternate bid that a provisionally allocated customer
could have made. For this to be possible we need the
property of uncertainty independence (UI). UI requires
that the realization of uncertain events, such as bids
and the supply of resources, is independent of decisions.
Without UI, the mechanism could have no knowledge
of the events of this kind that would have occurred sub-
sequent to the first period in which a different decision
would have been made.

1The term “ironing” is inspired by the ironing procedure
adopted by Myerson (1981) to make the allocation rule of
a revenue-maximizing (offline) auction monotone and thus
truthful. Ironing is an analytic technique in that paper.
Here it is performed online and made computational.

Here we have good news. First, UI appears to be
well motivated in many resource allocation domains.
Second, UI facilitates scalable computational meth-
ods for online stochastic combinatorial optimization
(OSCO) (Van Hentenryck & Bent 2006). UI allows one
to combine sample approximation methods with sys-
tematic search algorithms when evaluating which deci-
sion to make in some time period.

We illustrate the use of ironing by application to the
Consensus (C) algorithm for OSCO (Bent & Van Hen-
tenryck 2004). C is well-suited to ironing because its
use of combinatorial optimization allows for tractable
sensitivity analysis. When checking for violation of
monotonicity it is possible to compute a small number
of candidate bid values at which decisions could have
changed. Experimental results in a simulated WiFi do-
main show that not many decisions need to be canceled
and that the overhead of ironing is manageable.

Related Work

Current results in online MD fall into two broad cate-
gories (see Parkes (2007) for a survey).

First, special-purpose online algorithms have been
developed that provide dominant-strategy IC on spe-
cific problems (Lavi & Nisan 2000; Hajiaghayi, Klein-
berg, & Parkes 2004). These algorithms are designed
for worst-case performance and assume an adversary
whose objective is to minimize performance.

Second, a dynamic generalization of the Vickrey-
Clarke-Groves (VCG) mechanism can be used to
achieve IC when the goal is to maximize expected so-
cial welfare (Parkes & Singh 2003). This VCG-based
approach has two limitations: (a) it requires a correct
probabilistic model of the multi-agent environment and
an optimal (or ǫ-optimal) algorithm for online stochas-
tic optimization; (b) it achieves Bayes-Nash IC but not
dominant-strategy IC, so that truthful bidding is only
optimal when every agent plays this equilibrium and
given common priors.

We bridge these two categories by achieving
dominant-strategy IC while still adopting a probabilis-
tic model to inform the decision making of the mecha-
nism. We require neither a correct probabilistic model,
nor that the mechanism’s decision policy is optimal.

Awerbuch et al. (2003) also modify online algorithms
to make them monotonic, although in their work this
is achieved by modifying the input to the algorithm
rather than the output. Unlike our work, they adopt
an adversarial rather than probabilistic framework and
critically rely on finite-horizon problems where the de-
cision problem gets more and more constrained over
time. This ensures that (competitive) online algorithms
are “almost” truthful. A recent paper on “incremental
mechanism design” (Conitzer & Sandholm 2007) is in
the same spirit of achieving truthfulness through mod-
ifying an algorithm, albeit for offline mechanisms. Pai
and Vohra (2006) seek revenue-optimality in dynamic
auctions but are unable to assure monotonicity through
dynamic programming.

The Model

Consider discrete time periods T = {1, 2, . . . , }, indexed
by t and possibly infinite. Notation [t1, t2] denotes
{t1, . . . , t2}. A mechanism makes a sequence of deci-
sions k = (k1, k2, . . . ,), with decision kt ∈ Kt made in
period t, where Kt denotes the set of feasible (single-
period) decisions. We use K to denote the domain of
all possible single-period decisions.

Example 1. One can model the WiFi problem with
a decision kt in period t that defines an allocation of
resources for some period of time to a subset of unal-
located customers. The feasible decisions in period t
depend on resources that are already committed.

Each agent i has a private type θi ∈ Θi. The type of
an agent defines its value for sequences of decisions and
will be associated with both an “arrival” and a “depar-
ture” period. We consider direct-revelation mechanisms
in which each agent is restricted to make a single claim
about its type. Let θt denote the set of agent types re-
ported in period t. The state, ht = (θ1..t, k1..t−1), of a
mechanism in period t captures all information relevant
to its decision, i.e. the history of all reported types and
decisions made up until the current period.

An online mechanism M = (π, x) defines deci-
sion policy π = {πt}t∈T and payment policy, x =
{xt}t∈T , with decision kt = πt(ht, ω1..t) and payment
xt

i(h
t, ω1..t) ∈ R collected from each agent i ∈ nt(θ1..t),

in period t. Notation nt(θ1..t) is used to denote the set
of agents that are present in period t. The decision pol-
icy may itself be stochastic, modeled here by adopting
ω = (ω1, ω2, . . .) to denote the stochastic events inter-
nal to decision policy π.

Single-Valued Preferences

Agents have quasi-linear utility functions, so that each
agent seeks to maximize the expected difference be-
tween its value for decisions and its payment. We study
domains in which agents have single-valued (SV) prefer-
ences (Babaioff, Lavi, & Pavlov 2005). A SV preference
domain is defined by Li, the domain of interesting sets
(of decisions), and a partial order �L on interesting sets
L′ ∈ Li, where L′ ⊆ K. An agent has the same value
for any decision in some interesting set.

Example 2. In the theater tickets problem, SV prefer-
ences allow for a customer that has the same value for a
decision in an interesting set that defines an allocation
of two tickets to any of three shows. We cannot have
a customer with different values for different shows, or
with a different value for different numbers of tickets
to some show. In the WiFi problem, this allows for a
customer that has the same value for getting online for
any contiguous period of 20 mins (these allocations are
“interesting”) while she is present in the coffee house but
does not allow for a customer with some value for being
online for 5 mins and a different value for 20 mins.

Formally, an agent’s type, θi = (ai, di, (ri, Li)) ∈ Θi,
where Θi ⊆ T × T × R × Li, defines value ri for a

suitably timed decision in interesting set Li. Periods
ai and di define the agent’s arrival and departure and
delineate the interval of time in which the agent values
a decision. Agent i has valuation,

vi(θi, k)=

{

ri, if kt∈<Li,�L> for some t ∈ [ai, di]
0 , otherwise,

(1)

on a sequence of decisions k. Here, we adopt

<Li,�L> =
⋃

L′�LLi,L′∈Li

L′, (2)

to denote the set of decisions that are either in Li or
in some interesting set that is “better” (with respect
to �L) than Li. A decision that meets the criteria of
Eq. (1) is said to satisfy the agent.

We require that interesting sets are pairwise disjoint,
with L′

i ∩L′′
i = ∅ for all L′

i, L
′′
i ∈ Li. This ensures well-

defined (single-valued) value semantics, in that there
always exists a single type θi that defines an agent’s
valuation via Eq. (1). Without this, a decision for which
agent i has value could be included in two sets, L′

i and
L′′

i , for which neither L′
i �L L′′

i or L′′
i �L L′

i.

Example 3. In the theater ticket problem, period ai

models the earliest period of time at which the customer
can arrive at the ticket booth and period di models the
latest period of time at which the customer can check
back to pick up tickets. A partial order can be defined
to satisfy free-disposal so that a customer that demands
2 tickets for one of two shows is also happy with more
than 2 tickets. For disjoint interesting sets, we need, for
example that each customer is either indifferent between
shows A and B or indifferent between shows C and D.
We cannot model a domain in which some customers
are indifferent between shows A and B and some are
indifferent between shows B and C. The disjoint inter-
esting sets property is trivially satisfied in the standard
“single-minded” model in which each agent wants ex-
actly one bundle of goods, for example if every customer
is interested in exactly one show.

For a SV domain to be well-defined (and suitable
for ironing) we require it to satisfy the following three
properties:

Property A1: Lower-availability. Suppose de-
cision kt is feasible in period t and satisfies agents
W ⊆ nt(θ1..t), perhaps with kt ∈ < Li,�L> \Li for
some i ∈W . Then, there exists a feasible decision k′ in
the current period such that: (a) k′ ∈ Li for all i ∈ W ,
and (b) k′ does not prevent any future decisions that
would be possible following decision kt.

Property A2: Cancelability. Suppose decision kt is
feasible in period t and satisfies agents W ⊆ nt(θ1..t).
Then, for any W ′ ⊂ W there exists a feasible decision k′

in the current period such that: (a) k′ satisfies W ′ but
no agent in W but not W ′, and (b) k′ does not prevent
any future decisions that would be possible following
decision kt.

Property A3: Uncertainty Independence. The
realization of (true) agent types in future periods does
not depend on current or previous decisions.

Property A1 is useful because it allows one to focus
WLOG on exact policies, in which any decision kt made
in period t that satisfies agent i is in interesting set Li

and not in some L′ ≻L Li. Property A2 is important
because ironing needs to be able to modify a proposed
decision to cancel the positive impact on any subset of
provisionally satisfied agents.

Example 4. Properties A1 and A2 are satisfied in the
theater ticket problem when the partial order is defined
to respect free disposal. For example, suppose that Li

defines all allocations that allocate to the customer 2
tickets to show A or show B and an interesting set
L′ ≻L Li defines allocations that allocate to the cus-
tomer 2 tickets to one of show A or show B and 1
ticket to the other show. For Property A1, note that
if an allocation is made in L′ it is also feasible to just
allocate the customer 2 tickets in one of the shows and
discard the ticket to the other show. For Property A2,
note that it is always possible to simply decide not to
allocate tickets to a customer and cancel a decision.

As discussed earlier, Property A3 (UI) is important
both for ironing to be able to check for violations of
monotonicity and also for computational tractability in
interesting domains.

Example 5. UI is satisfied in the theater ticket problem
when the arrival of customers is independent of whether
or not there remain tickets to shows. When selling WiFi
access, UI requires that the arrival of customers is in-
dependent of particular decisions made about how to al-
locate WiFi.

Truthfulness and Monotonicity

We now provide a characterization of decision poli-
cies that can be truthfully implemented in well-defined
SV domains. To keep the presentation simple2 we
will assume restricted misreports, specifically no early-
arrival and no late-departure misreports so that misre-

port θ̂i = (âi, d̂i, (r̂i, L̂i)) must satisfy ai ≤ âi ≤ d̂i ≤ di.

Example 6. To motivate restricted misreports in the
theater tickets problem, suppose that it is too costly for
the customer to arrive at the ticket booth before ai and
too costly to return later than di and suppose the mecha-
nism will not release the tickets until an agent’s reported
departure. In the WiFi access problem, suppose that ai

is the first period at which the customer realizes her need
for Internet access, and that when bidding the customer
is required to make a deposit that is only returned if she
is present upon her reported departure.

2A more complicated monotonicity-based characteriza-
tion is available for dominant-strategy IC in which only one
of no early-arrival or no early-departure can be assumed; see
Hajiaghayi et al. (2005).

For dominant-strategy IC, we require that truthful
reporting is the optimal strategy for an agent whatever
the reports of other agents and whatever the realiza-
tion of stochastic events ω. (The OSCO algorithms will
use random sampling to predict possible future arrivals
of bids.) We call this property of a mechanism strong
truthfulness.

Adopt shorthand πi(θi, θ−i, ω) ∈ {0, 1} to indicate
whether policy π makes an interesting decision for agent
i in some period t ∈ [ai, di], given reports θ−i =
(θ1, . . . , θi−1, θi+1, . . .) by other agents and stochas-
tic events ω. Define the critical-value for agent i
with type θi = (ai, di, (ri, Li)) as vc

(ai,di,Li)
(θ−i, ω) =

min r′i s.t. πi((ai, di, (r
′
i, Li)), θ−i, ω) = 1, or ∞ if no

such r′i exists. This is the smallest value that agent i
could report and still receive an interesting decision, all
else unchanged.

Strong monotonicity is defined with respect to a par-
tial order on agent types,

θ1�θ θ2≡ (a1 ≥ a2)∧(d1≤d2)∧(r1≤r2)∧(L1�L L2)

In words, θ1 �θ θ2 if θ1 has a tighter arrival-departure
interval, a lower value and a higher interesting set with
respect to partial order �L than θ2.

Definition 1 (strongly monotonic). Stochastic policy
π is strongly monotonic if (πi(θi, θ−i, ω) = 1) ∧ (ri >
vc
(ai,di,Li)

(θ−i, ω)) ⇒ πi(θ
′
i, θ−i, ω) = 1 for all θ′i ≻θ θi,

for all θ−i, all ω ∈ Ω, where θi = (ai, di, (ri, Li)).

For example, in the WiFi access problem, strong-
monotonicity requires that when a decision policy allo-
cates to a customer in some period, it would also have
allocated to the customer (in some period) if the cus-
tomer had an earlier arrival, a later departure, a higher
value, or when asking for less resources.

Lemma 1. Agent i receives no value from the decisions
of an exact policy unless it reports some set L′

i �L Li.

Proof. The policy is exact, and thus will only make a
decision in L′

i. The result then follows from the defini-
tion of value in a SV domain since agent i will have no
value for a decision unless kt ∈ L′

i �L Li.

Given this lemma the following theorem follows as a
simple extension to results in Hajiaghayi et al. (2005).3

A mechanism is individual-rational (IR) if no agent
achieves negative utility in equilibrium.

Theorem 1. An exact policy π can be strongly truth-
fully implemented in an IR mechanism that does not pay
unallocated agents, and in a SV domain with no-early
arrival and no-late departure misreports, if and only if
the policy is strongly monotonic.

3Babaioff et al. (2005) deal with SV domains in a static
environment and require the existence of “distinguishing
minimal elements” for each interesting set. Roughly speak-
ing, these are decisions that are only of value to an agent
with that particular interesting set of decisions. In our set
up, disjointness of interesting sets means that every decision
in set Li is a distinguishing minimal element in this sense.

The payment policy that, when coupled with a
strongly monotonic policy provides truthfulness, is de-
fined to collect the critical-value from an agent upon
departure when the agent is allocated in some period,
with zero payment for an unallocated agent.

Our ironing method will enforce a stronger variant on
monotonicity, that we refer to as anytime monotonic-
ity. Let π

≤t
i (θi, θ−i, ω) ∈ {0, 1} denote whether or not

an interesting decision is made for agent i by period t.
Given this, anytime monotonicity is defined as:

Definition 2 (anytime monotonicity). Stochastic pol-

icy π is anytime monotonic if (π≤t
i (θi, θ−i, ω) = 1) ∧

(ri > vc
(ai,di,Li)

(θ−i, ω)) ⇒ π
≤t
i (θ′i, θ−i, ω) = 1 for all

θ′i ≻θ θi, for all θ−i, all ω ∈ Ω, and all t ∈ [ai, di].

This strengthens monotonicity to require that it holds
in any period and not just upon departure. This is
important to facilitate ironing, which must be based on
the information available when a decision is about to
be made for an agent.

Example: Failure of Monotonicity

But, will (approximately) optimal policies be automat-
ically monotonic? Consider a domain with 3 non-
expiring units of an identical good to allocate in T = 2
periods. Each agent i demands some quantity qi of
units. We present an example to show failure of mono-
tonicity with respect to value.4 Denote an agent’s
type (ai, di, (ri, qi)) and consider the following types for
agents 1 and 2 in period 1 and probabilistic information
about the type of an agent that will arrive in period 2:

period 1 A1 : (1, 1, (5, 1)), A2 : (1, 2, (500, 2))
period 2 A3 ∼ (2, 2, (1000, 3)) with high prob

(2, 2, (5000, 1)) with low prob

The optimal policy will not make a decision about A2

until period 2. Furthermore, it is not hard to see that
it will also choose not to allocate to A1. The marginal
value of saving the third unit is high, since it is likely
that type (2, 2, (1000, 3)) will arrive in period 2. Now,
suppose that agent A3 with type (2, 2, (5000, 1)) arrives
in period 2. The policy will allocate A2 and A3 in period
2. Consider now that agent 2’s type is (1, 2, (1000, 2)).
The optimal policy will now allocate to A1 in period
1 because the marginal value of saving the third unit
is low, since it cannot allocate to both A2 and another
type (2, 2, (1000, 3)) anyway and it is unlikely that type
(2, 2, (5000, 1)) will arrive. Then the unlikely event oc-
curs, A3 arrives and the policy allocates to A3 but not
A2 in period 2. We see a failure of monotonicity.

The Ironing Procedure

An ironing procedure is a “wrapper” around a decision
policy π that is able to modify the decision kt proposed

4We also have counterexamples for monotonicity with
respect to arrival, quantity, and departure, and for the ex-
piring goods domain considered in the experimental section.

by π in any period by canceling the effect of the decision
to some number of agents.

Given policy π, we say that we iron the policy to
construct ironed policy π̆. Let tπi (θi, θ−i, ω) ∈ T ∪ {∞}
denote the period (∞ if none exists) in which an in-
teresting decision is made for agent i given policy π.
Sometimes this is abbreviated to tπi (θi).

Definition 3 (ironing procedure). Consider period t

and exact policy π. Initialize ironed decision, k̆t := kt =

πt(ht, ω1..t). For each i ∈ nt(θ1..t) for which k̆t ∈ Li,
and given ω, check

tπi (θ′′i , θ−i, ω) ≤ tπi (θ′i, θ−i, ω), (3)

for all θ′′i �θ θ′i �θ θi. If this fails, then modify k̆t to
cancel the effect of the decision to agent i.

Given a proposed decision kt by policy π in some pe-
riod, the ironing method checks for anytime monotonic-
ity for all agents that are satisfied by decision kt. Eq. (3)
requires that the policy would have satisfied the agent
for all higher types θ′′i �θ θi, and in particular with
the period in which this occurs getting monotonically-
earlier for all θ′′i �θ θ′i �θ θi. If this is not verified then
the positive effect of the current decision to agent i is

canceled. The result is modified decision k̆t.

Theorem 2. Ironed policy π̆ satisfies anytime mono-
tonicity, and thus is strong monotonic and is feasible in
a SV domain that satisfies Properties A2 and A3.

Proof. If π̆
≤t
i (θ, ω) = 1 then tπi (θ′′i) ≤ tπi (θ′i) ≤ t for

all θ′′i �θ θ′i �θ θi, and thus π̆
≤t
i (θ̂i, θ−i, ω) = 1 for all

θ̂i �θ θi since tπi (θ̂i) ≤ t and Eq. (3) holds for all θ′′i �θ

θ′i �θ θi and thus for all θ′′i �θ θ′i �θ θ̂i �θ θi. Ironing
is feasible because Property A2 allows decisions to be
canceled and Property A3 makes it possible to know
what would have happened for alternate types.

Example 7. Here is a simple example to help to under-
stand why we must verify monotonically-earlier allo-
cations for θ′′i �θ θ′i �θ θi. Suppose we are in period
3 and policy π proposes to allocate to agent i. Upon
checking sensitivity information, we find that agent i
would be allocated in period 2 and then period 3 as we
trace higher types θi ≺θ θ′i ≺θ θ′′i (and thus monotonic-
ity.) Yet, if we allowed this decision in period 3 then π̆
would not be anytime monotonic because agent i report-
ing type θ′i would not survive ironing in period 2 because
in that period there would be no evidence available that
type θ′′i ≻θ θ′i will be allocated.

It is important to realize that the algorithm (A) used
to define the (un-ironed) decision policy π is ignorant of
the existence of the ironing procedure. The algorithm
A has no information about whether or not a decision
is canceled, and updates its local state as if the decision
proceeded as planned. An agent that is provisionally
satisfied in period t by A, but for which the effect of the
decision is canceled, ultimately goes unsatisfied. More-
over, in a resource allocation domain the resources (e.g.
tickets, WiFi access) go wasted.

We also have a counterpart to Theorem 2 that shows
that these decisions must be canceled:

Theorem 3. Given policy π with arbitrary future be-
havior, an ironing procedure can only ensure that ironed
policy π̆ is monotonic by canceling all decisions for
which Eq. (3) is not satisfied.
Proof. Suppose an interesting decision to agent i is
allowed in period t despite some θ′i �θ θi for which
tπi (θ′i) > t. But now there is no proof of monotonicity,
i.e. the policy need not allocate an agent with type θ′i in

some future period. Also, suppose π
≤t
i (θ′i, θ−i, ω) = 1

for all θ′i �θ θi but tπi (θ′′i) > tπi (θ′i) for some θ′′i �θ

θ′i �θ θi. Consider an agent with report θ′i and period

t′ = tπi (θ′i). Here, π
≤t′

i (θ′′i , θ−i, ω) = 0 for some θ′′i �θ θ′i
and the ironing procedure would need to cancel the de-
cision to ensure monotonicity, as above.

We now give our main theorem. Say that an adap-
tive, online algorithm (an example is provided in the
next section) satisfies delayed learning if the information
about an agent’s reported type is not used for learning
until the agent is no longer active.

Theorem 4. An adaptive, online algorithm that com-
putes an exact policy, coupled with ironing and delayed
learning can be truthfully-implemented in well-defined
SV domains and with no early-arrival and no late-
departure misreports.
Proof. (sketch) Delayed learning ensure that an agent’s
report cannot affect the model and thus have a new
way to influence the decisions made by the algorithm.
Coupled with ironing, we have strong monotonicity by
Theorem 2 (and see that ironing is feasible since the
domain is well-defined) and strong-truthfulness by The-
orem 1.

Note that critical-value payments are computed with
respect to the ironed policy. Determining this requires
reasoning about the ironing procedure. We make this
explicit in the next section, in reference to the Con-

sensus algorithm.

Discussion

Ironing is performed in a way that is transparent to the
algorithm A that is used to determine policy π. This
avoids a “ripple effect,” with cascading re-optimization
when ironing.

Suppose this was not the case and that the state of
the algorithm is updated to reflect whether or not a pro-
posed decision is canceled. Consider now that we are
checking for a violation of monotonicity given a pro-
posed decision to agent i in some period t = ai + 1.
When checking the effect of types θ′i �θ θi on the deci-
sion made in period ai we would need to consider not
only the effect of an alternate type θ′i on the decision
itself, but also the effect on whether or not the proposed
decision is canceled. To avoid this, we run algorithm A
in “open loop” and without feedback about ironing, so
that its future decisions are unaffected by whether or
not its current decision is canceled.

Ironing applied to Consensus

To illustrate the framework we apply ironing to the
Consensus (C) algorithm (Bent & Van Hentenryck
2004). C is a general-purpose, online algorithm for
stochastic optimization in environments that satisfy UI.
C is run in each period t and makes a decision just for
the current period. We often refer to a satisfying deci-
sion as an “allocation”because we apply this method to
a resource allocation domain.

function Consensus(ht, Tl, J)
votes(k):=0 for each k ∈ K
s(j):=GetSample(t, Tl) for each j ∈ {1, . . . , J}
for j ∈ {1, . . . , J} do

o:= Opt(ht,s(j))
votes(ot):=votes(ot)+1

end for

return arg maxk votes(k)
end function

Figure 1: The Consensus algorithm defined in state ht,
with look-ahead horizon Tl and J scenarios.

C (Figure 1) generates J scenarios for the future ar-
rival of agent types from the current period t until pe-
riod t + Tl, where Tl is the look-ahead horizon. Let
j ∈ {1, . . . , J} index a scenario and denote an individ-
ual scenario s(j). A scenario is a set of agent types with
arrival times in interval [t, t+Tl]. Given these scenarios,
C solves an optimization problem for each j, to deter-
mine what would be the optimal sequence of decisions
if the future looked exactly as predicted in s(j).

The solution to each one of these optimization prob-
lems generates a vote for the decision that would be op-
timal in the current period if the future did indeed look
like s(j). C ultimately selects the decision in the cur-
rent period that receives the most votes. As such, C is
elitist.5 Note that C exploits UI by sampling trajecto-
ries before making decisions.

As building blocks the C algorithm requires: (a) a
method GetSample(t, Tl) to generate a scenario, which
is a sample of a possible realization of types θ in peri-
ods [t+1, t+Tl]; (b) a method Opt(ht, s(j)) to solve an
offline, complete-information optimization problem to
determine an optimal sequence of decisions given a sce-
nario. C can be made adaptive by adopting historical
sampling, with a scenario generated by sampling from
the observed history (Van Hentenryck & Bent 2006).
We adopt this approach in our work.

Value Ironing

We first explain ironing with respect to value. The iron-
ing procedure needs to trace how the decisions made by
C would change in response to the report of a higher
value by a provisionally allocated agent. If the alloca-
tion occurs in period t∗, then a report of a higher value
could have a potential impact on the decision made by

5Other “anticipatory algorithms” have also been de-
fined (Van Hentenryck & Bent 2006) but we choose to study
C because of its simplicity.

function V-Ironing(ht∗, kt∗, i)

r̆i:=ri, t̆i:=t∗, h̆t := ht ∀t ∈ [ai, t∗], FAIL:=false

Construct DMt
i(h̆

t) for each t ∈ [ai, t∗]

while (mint∈[ai,t̆i]
rc+

i (h̆t, r̆i) < ∞) & (¬FAIL) do

r′i := mint∈[ai,t̆i]
rc+

i (h̆t, r̆i), set t′i to corresponding

period (break ties earlier)

update DMt
i(h̆

t) and h̆t for t ∈ [t′i + 1, t̆i] to reflect
value r′ and new decision in t′i

if tπ
i ((ai, di, (r

′

i, Li)), θ−i, ω) > t̆i then

CANCEL decision for agent i, FAIL:=true
else

t̆i := tπ
i ((ai, di, (r

′

i, Li)), θ−i, ω), r̆i := r′i
end if

end while

end function

Figure 2: The V-Ironing procedure for a policy computed
with the Consensus algorithm.

C in each period t ∈ [ai, t∗]. In particular, we must
check that tπi (r′′i) ≤ tπi (r′i) ≤ t∗ for all r′′i ≥ r′i ≥ ri

(supressing θ−i, ω and the irrelevant aspects of agent
i’s type from our notation.)

Suppose that Opt(ht, s(j)) is defined to maximize the
total value of the decisions in periods [t, t + Tl]. In
determining the sensitivity of C to different values we
must find the values for agent i for which the votes in
this period would have changed.

In particular, consider scenario j and let rc
i (h

t, j) de-
note the minimal value for which i is allocated in the so-
lution to Opt(ht, s(j)), and ∞ if there is no such value.
Note that this is the value at which the solution to this
particular offline problem would change. Sensitivity in-
formation for these offline problems leads to sensitivity
information for the online problem. Let ot(r′i, h

t, s(j))
denote the decision voted by scenario s(j) in period t
given value r′i.

Lemma 2. The decision ot(r′i, h
t, s(j)) voted by sce-

nario s(j) in state ht given value r′i to agent i is
constant for all r′i < rc

i (h
t, j), and constant for all

r′i ≥ rc
i (h

t, j) (breaking ties in the same way).

Proof. Let V (X) denote the total value of the optimal
solution X to Opt(ht, s(j)), where the solution is re-
stricted to those that do not allocate to agent i. Let
V−i(Y) denote the total value to agents 6= i of the
optimal solution Y to Opt(ht, s(j)), where the solu-
tion is restricted to those that do allocate to agent i
(and V−i(Y) = −∞ if no such solution exists.) For
v′

i < rc
i (h

t, j), the solution to Opt(ht, s(j)) is X and in-
dependent of v′

i. At v′
i = rc

i (h
t, j), we have solution Y

and V−i(Y)+v′
i = V (X). The total value of solution Y

(including the value to agent i) increases linearly with
v′

i for values v′
i ≥ rc

i (h
t, j), and by at least as much as

the total value of any other solution. Therefore Y is the
optimal solution for all v′

i ≥ rc
i (h

t, j).

Because of this we can compute break-point rc
i (h

t, j)
by solving two optimization problems, with i forced in
and out of the solution to Opt(ht, s(j)). The union of
the breakpoints over all scenarios defines possible values

at which the decision made by C (i.e., that with the
most number of votes) in state ht can change.

Figure 2 defines the value-ironing procedure. It

tracks the new state h̆t in periods t ∈ [ai, t∗] as agent i’s
value is increased. An important data structure is the

“decision map” for each period t ∈ [ai, t∗], DMt
i(h̆

t) =
{(r(m), k(m))}m∈{0,...M}, which defines the break-points

in value to agent i for which πt(h̆t) changes; where
r(0) := ri and (r(M), k(M)) = (∞,), and decision k(m)

is made for all r′i ∈ [r(m), r(m+1)), with M ≤ J + 1
by Lemma 2. DM’s are maintained for each period
t ∈ [ai, t∗] and used to track changes in the decisions

of C as ri increases. In the algorithm, rc+
i (h̆t, r̆i) de-

notes the smallest value r′i > r̆i at which the decision
in period t will change.

Theorem 5. Algorithm V-Ironing is a correct value-
ironing procedure for the Consensus algorithm.

Correctness follows from Lemma 2, with the proof
that the correct state of C is traced as ri increases es-
tablished by induction on current value r̆i.

A completely analogous algorithm can be used to
compute the critical-value payment. In the departure
period di for an allocated agent we initialize DM’s for
periods t ∈ [t∗, di] and values smaller than ri. We find
the smallest value for which: (a) agent i continues to
be allocated, (b) the allocation period is monotonically-
later as the agent’s value increases. If some value break-
point r̆i is found for which the agent would still be al-
located, but in some earlier period t̆i than r′i = r̆i + ǫ,
then an agent with type r̆i would not be allocated by
the ironed policy because the value-ironing check would
fail when performed online in period t̆i.

Value and Departure Ironing

We briefly describe ironing with respect to both value
and departure. For this, we require a maximal pa-
tience, ∆ ∈ {0, 1, . . .}, so that di ≤ ai + ∆ for all
types θi ∈ Θi. First we use the V-Ironing proce-
dure with agent i’s departure di substituted with every
possible later departure d′i ∈ [di, ai + ∆] and establish
(B1), tπi (d′i, r

′′
i) ≤ tπi (d′i, r

′
i) for all r′′i ≥ r′i ≥ ri. If

FAIL for any d′i then CANCEL the decision. Else, (as
a side effect of the procedure) construct timing map,
TMi(d

′
i) := {(r(m), t(m))}m∈{0,...,M}, with r(0) := ri

and (r(M), t(M)) = (∞, ai). This indicates the value
break-points for which tπi (θi) changes given departure
d′i: agent i would be allocated in period t(m) for value in
interval [r(m), r(m+1)). Second, we check monotonicity
with respect to misreports of both value and depar-
ture. For this, we establish (B2), that tπi (d′i + 1, r′i) ≤
tπi (d′i, r

′
i) for all r′i ≥ ri and all d′i ∈ [di, ai + ∆ − 1].

The break-points in the TM’s provide enough informa-
tion for this check. (B1) and (B2) imply (anytime)
monotonicity with respect to value and departure.

Experimental Results: Expiring Goods

We model the WiFi allocation problem. There are mul-
tiple, expiring units of an identical good available in
each period. Each unit represents a single channel.
Each bidder demands some number of channels qi for
some contiguous period of time li and have value ri. We
experiment with value and departure ironing and leave
full ironing, that is including also quantity and arrival
ironing for future work.

We consider T = 100 periods, S = 5 channels, num-
ber of arrivals in each period uniform on {1, . . . , nmax}
for nmax varying between 2 and 10, ri uniform on (0, 7],
qi uniform on {1, 2, 3}, duration δi (i.e. departure-
arrival+1) uniform on {1, . . . , 7}, and length of request
li uniform on {1, . . . , δi}.

6

We compare the C algorithm, with look-ahead
horizon Tl = 10 and number of scenarios J =
50 with a tree-sampling algorithm for planning in
MDPs (Kearns, Mansour, & Ng 1999), defined with
look-ahead horizon 4 and sample-width 6.7 Both al-
gorithms use historical sampling and are adaptive.
CPLEX8 is used to solve Opt in the C algorithm,
with tie-breaking adopted to prefer allocations of items
about to expire. All results are averaged over 10 trials.

Figure 3 (a) illustrates the value of C, C+V-Ironing
and C+V-D-Ironing (value and departure ironing),
with total value normalized with respect to the value
from an optimal offline solution computed with per-
fect hindsight. We also plot the (normalized) perfor-
mance of C on the first 20 time periods. The poor per-
formance, relative to that over the entire 100 periods,
shows that learning is effective.

The value of the ironed policies is within 0.1% of
C. Most significantly, we see that while ironing was
required, the ironing frequency is very low, with less
than 0.5% (0.8%) of allocations canceled with V-Ironing
(V-D-Ironing), and the maximal ironing occurring at
nmax = 9 (nmax = 6). The performance of tree-
sampling is much worse than that of C because of its
limited look ahead and sample width. Revenue from
C+V-D-Ironing (not plotted) varied from a normalized
value of around 0.1 to 0.4 as nmax varies from 2 to 10.

Figure 3 (b) illustrates the average computational
time to solve one instance for each of the different algo-
rithms. Measurements are made on a Dual 2.4GHz Pen-
tium IV with 2.5GB memory. The run-time for C+V-
Ironing and C+V-D-Ironing also includes the time to
compute payments. The performance of C and its iron-
ing variants scales well with the number of arrivals nmax

while tree-sampling was hard to scale beyond around

6Because allocations are for li periods, an agent with
arrival ai, duration δi and request length li is modeled with
corresponding departure di + δi − li because it has no value
for an allocation that is initiated in any later period.

7Parameters were optimized offline for each algorithm, to
strike a balance between run-time and performance. Look-
ahead is necessarily much smaller in tree-sampling

8www.ilog.com

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 v
al

ue

Maximal number of agent arrivals

Tree-sampling
C

C + V-Ironing
C + V-D-Ironing

C (first 20 periods)
 0

 500

 1000

 1500

 2000

 2500

 2 3 4 5 6 7 8

R
un

 ti
m

e
(s

ec
s)

Maximal number of agent arrivals

Tree-sampling
C

C + V-Ironing
C + V-D-Ironing

Figure 3: (a) Value of tree-sampling, C, C+V-Ironing, C+V-D-Ironing, and C evaluated on the initial 20 periods. (b)
Average computational time for a single instance (including computing payments for C+V-Ironing and C+V-D-Ironing).

nmax = 8 (even with pruning of dominated decisions.)
For nmax greater than 6, the number of allocations pro-
posed by C is fairly constant and the subsequent in-
crease in run-time for its ironing-variants reflects the in-
creased complexity of the offline optimization problems
rather than additional monotonicity checks. The rela-
tive cost of performing ironing for nmax = 7 is around
10x for V-Ironing and 22x for V-D-Ironing.

We also experiment with fixing qi to 1 and/or fix-
ing li to 1 for all agents. While ironing is still required
with either qi > 1 or li > 1, we find that C is already
monotonic for qi = 1 and li = 1 for all agents. Thus, it
appears that it is the combinatorics of the domain that
make C non-monotonic. To further explore conditions
for ironing, we introduced some low-probability, high-
value bids to mimic the monotonicity counterexample.
Call these “shocks”, and define them so that in every
period, an agent with δi = 1, li = 1, qi = 1 and ri = 56
arrives with some probability pi ∈ (0, 1]. The iron-
ing frequency increases to around 1% (5%) for C+V-
D-Ironing and the maximal ironing occurs at pi ≈ 0.05
(0.02), for S = 5 and S = 2 units of supply respectively.

Conclusions

Computational ironing opens the way to leveraging
general purpose online stochastic optimization within
adaptive, online mechanisms. To be a practical pro-
cedure, ironing requires sensitivity information about
a decision policy; e.g., so that the effect of different
bid values can be traced. If a policy is already mono-
tonic in some dimensions of the type space (e.g. with
respect to arrival), then ironing only needs to be per-
formed in the remaining dimensions. Ironing is not
a panacea, however. When decisions are canceled in
resource-allocation domains the resources are discarded.
Future work should develop algorithms for online op-
timization that are already “roughly monotonic,” with
ironing used to make them fully monotonic at little cost
in solution quality. It will also be interesting to extend
these techniques to handle revenue optimality.

Acknowledgments

The authors wish to acknowledge helpful comments on
this work from Florin Constantin, Rakesh Vohra and
Mallesh Pai as well as the extremely useful comments
from the anonymous reviewers. The first author is sup-
ported by an Alfred P. Sloan Fellowship.

References
Awerbuch, B.; Azar, Y.; and Meyerson, A. 2003. Re-
ducing truth-telling online mechanisms to online optimiza-
tion. In Proc. ACM Symposium on Theory of Computing
(STOC’03).
Babaioff, M.; Lavi, R.; and Pavlov, E. 2005. Mechanism
design for single-value domains. In Proc. 20th Nat. Conf.
on Artificial Intelligence (AAAI’05), 241–247.
Bent, R., and Van Hentenryck, P. 2004. The value of
Consensus in online stochastic scheduling. In Proc. 14th
Int. Conf. on Automated Planning and Scheduling.
Conitzer, V., and Sandholm, T. 2007. Incremental mecha-
nism design. In Proc. 20th International Joint Conference
on Artificial Intelligence (IJCAI-07), 1251–1256.
Hajiaghayi, M. T.; Kleinberg, R.; Mahdian, M.; and
Parkes, D. C. 2005. Online auctions with re-usable goods.
In Proc. ACM Conf. on Electronic Commerce, 165–174.
Hajiaghayi, M. T.; Kleinberg, R.; and Parkes, D. C. 2004.
Adaptive limited-supply online auctions. In Proc. ACM
Conf. on Electronic Commerce, 71–80.
Kearns, M.; Mansour, Y.; and Ng, A. 1999. A sparse sam-
pling algorithm for near-optimal planning in large Markov
Decision Processes. In In Proc. of 16th Int. Joint Conf. on
Art. Intell., 1324–1331.
Lavi, R., and Nisan, N. 2000. Competitive analysis of
incentive compatible on-line auctions. In Proc. 2nd ACM
Conf. on Electronic Commerce (EC-00).
Myerson, R. B. 1981. Optimal auction design. Mathematics
of Operation Research 6:58–73.
Pai, M., and Vohra, R. 2006. Notes on optimal dynamic
auctions. Kellogg School of Management. Available from
the authors.
Parkes, D. C., and Singh, S. 2003. An MDP-based ap-
proach to Online Mechanism Design. In Proc. 17th Annual
Conf. on Neural Inf. Proc. Systems (NIPS’03).
Parkes, D. C. 2007. Online mechanisms. In Nisan, N.;
Roughgarden, T.; Tardos, E.; and Vazirani, V., eds., Algo-
rithmic Game Theory. Cambridge University Press. chap-
ter 16.
Van Hentenryck, P., and Bent, R. 2006. Online Stochastic
Combinatorial Optimization. MIT Press.

