

Learning and Solving Many-Player Games Through a Cluster-
Based Representation

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Ficici, Sevan, David C. Parkes, and Avi Pfeffer. 2008. Learning
and solving many-player games through a cluster-based
representation. In Uncertainty in artificial intelligence:
Proceedings of the Twenty-fourth Conference: July 9-12, 2008,
Helsinki, Finland, ed. D. McAllester, P. Myllymaki, 187-195.
Corvallis, Or.: AUAI Press for Association for Uncertainty in
Artificial Intelligence.

Published Version http://uai2008.cs.helsinki.fi/

Accessed February 18, 2015 12:53:06 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4000306

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28933236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/4000306&title=Learning+and+Solving+Many-Player+Games+Through+a+Cluster-Based+Representation
http://uai2008.cs.helsinki.fi/
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4000306
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Learning and Solving Many-Player Games through a Cluster-Based
Representation

Sevan G. Ficici

Harvard School of Engineering
and Applied Sciences

sevan@eecs.harvard.edu

David C. Parkes

Harvard School of Engineering
and Applied Sciences

parkes@eecs.harvard.edu

Avi Pfeffer

Harvard School of Engineering
and Applied Sciences
avi@eecs.harvard.edu

Abstract

In addressing the challenge of exponential
scaling with the number of agents we adopt
a cluster-based representation to approxi-
mately solve asymmetric games of very many
players. A cluster groups together agents
with a similar “strategic view” of the game.
We learn the clustered approximation from
data consisting of strategy profiles and pay-
offs, which may be obtained from observa-
tions of play or access to a simulator. Using
our clustering we construct a reduced “twins”
game in which each cluster is associated with
two players of the reduced game. This al-
lows our representation to be individually-

responsive because we align the interests of
every individual agent with the strategy of
its cluster. Our approach provides agents
with higher payoffs and lower regret on aver-
age than model-free methods as well as previ-
ous cluster-based methods, and requires only
few observations for learning to be success-
ful. The “twins” approach is shown to be an
important component of providing these low
regret approximations.

1 Introduction

Consider the problem of solving non-cooperative
games of realistic size. As the number of agents in-
creases, the size of the game increases exponentially
and it becomes intractable to even represent a game
explicitly never mind solve for the equilibrium of the
game. Recognizing this, one direction adopted in the
literature on computational game theory is to assume
that games have some underlying structure and fo-
cus on succinctly representable games; e.g., graphical
games [6] and action-graph games [2]. But what if
there is no exact, structured representation of a game?
A second natural direction is to find a suitable approx-

imation of the game, that can be solved and will pro-
vide a good model of the strategic characteristics of
the actual game, so that agents have low regret from
adopting the strategy determined by solving the ap-
proximate game. This is the direction we follow in the
current paper.1

We consider the use of a cluster-based representation,
in which the same strategy is ultimately prescribed to
every agent in a cluster. A cluster groups together
agents with a similar “strategic view” of the game.
This means that they have similar payoffs and similar
effects on other agents. We do not require that the
actual game is symmetric and allow for agents with
different payoff functions even within a cluster. We do
not require explicit knowledge of the full game. In-
stead, we learn (offline) the cluster-based representa-
tion from data consisting of strategy profiles and pay-
offs. The data may be obtained from observations of
play, or we may have access to a simulator with which
to generate payoffs for different strategy profiles. We
learn both the clustering and also the payoffs to agents
in each cluster given each profile of cluster strategies.

A natural next step is to solve a clustered represen-
tation of the game to find a Nash equilibrium, and
recommend the equilibrium strategies to agents in the
original many-player game. However, using a naive
clustered representation leads to a situation in which
individual agents’ interests differ from their clusters’,
and therefore individual agents will not adhere to the
recommended strategies. To address this problem we
construct a “twins” game in which every cluster is rep-
resented by a pair of players. This representation is
individually-responsive because in addition to requir-
ing that the cluster strategies form a Nash equilibrium
of the reduced game induced by the clusters, we en-
sure that the interests of every individual agent within

1Finding approximation algorithms for solving games is
an active area (see Daskalakis et al. [3] for a recent survey),
but our focus is on effective, heuristic methods rather than
on achieving worst-case approximation bounds.

a cluster are aligned with the cluster strategy. As a re-
sult, no individual agent within a cluster would like to
deviate from the strategy prescribed to the cluster.

We present a motivating example of a vendor game
in Section 2. In Section 3, we introduce our cluster-
based model and explain our methods to learn a good
clustering from observations of play (or access to a
simulator) and to learn a good model of payoffs for a
given clustering. In Section 4 we explain how the twins
game is defined for a given instantiation of the cluster-
based model, and explain why the representation is
individually-responsive. We present experimental re-
sults in Section 5, where we consider the vendor game
(where vendors can be complements or substitutes for
each other) and a variant of the Santa Fe bar problem.
We compare our cluster-based model with other ap-
proaches and show that our model provides solutions
that give agents low regrets and good payoffs.

Related Work. Wellman et al. [11] propose and
study an approximate representation that is suitable
for symmetric games. To facilitate solving such a
game, these authors group agents into multiple clus-
ters, wherein all agents in each cluster are constrained
to follow the same strategy. In our approach, we would
use a single cluster for a symmetric game and solve it
with the twins representation. Our twins approach
provides individual responsiveness while allowing for
multiple clusters, which is essential for asymmetric
games. Furthermore, we do not require that the clus-
tered representation be exact, or that the full game be
known, but instead learn the cluster-based representa-
tion from observations.

On the other hand, Vorobeychik et al. [10] apply re-
gression learning techniques to model payoffs for con-
tinuous games. While these authors consider some
forms of strategy aggregation, they do not explicitly
seek to combine learning with the use of reduced game-
form representations. The novelty of our use of learn-
ing then is that we seek to integrate learning directly
with our reduced game representation, both for the
purpose of learning the structure of an appropriate
cluster representation and also for learning the payoffs
for the induced “twins” game. Further, our learning
is applied to many player games, whereas they restrict
attention to games with a small number of players.

The work on graphical games [6] assumes locality of
interaction, while we make no such assumptions, and
graphical games with many agents remain hard to
solve. In comparing with action graph games [2], we
note for example that our vendor game could be viewed
as an action graph game if the cluster-based approxi-

mation is in fact exact. But solving the action graph
game would still amount to solving a many player

game because individual agents would need to take
into account other agents in their own cluster. In con-
trast, our twins game allows us to reduce the number
of players while still being individually responsive.

Daskalakis and Papadimitriou [4] consider anony-
mous games, a special case of action graph games in
which the strategic considerations depend only on the
number of agents that adopt each strategy but not
their identity. They develop worst-case approxima-
tion results, including a polynomial time approxima-
tion scheme for finding an ǫ-approximate Nash equi-
librium when the number of strategies is two.

Kearns and Mansour [7] present summarization games,
a compact representation for games with many play-
ers. Their approach has two components: a summa-

rization function, which maps the space of N -player
strategy profiles onto the interval [0, 1], and a set of
payoff functions, one for each player. Each player’s
payoff function is a function of that player’s strategy
choice and the output of the summarization function.
They establish conditions under which the Nash equi-
libria of summarization games can be approximated
to within some epsilon in polynomial time, but do not
consider the use of summarization games as approxi-

mations to other games. Indeed, whereas most work
on approximation uses an exact representation of the
game to obtain an approximate solution, we instead
use an approximate representation of the game and
obtain an exact solution to that approximation.

Jehiel [5] advances the idea of an analogy-based expec-

tation equilibrium in which agents are clustered into
“analogy classes” and each agent plays a best-response
against the average strategy in each cluster. Whereas
our approach solves a reduced twins game with two
players per cluster, Jehiel’s approach still maintains an
explicit representation of every agent in solving for this
equilibrium. Rather than computational tractability,
Jehiel’s focus is on providing prescriptive power for
how people behave in strategic settings, along with al-
ternate explanations of some well known paradoxes in
extensive form games.

2 The Vendor Game

An example of a game that lends itself to our approach
is a vendor game. Here, we have a large number of
vendors, each selling a different product. The prod-
ucts belong to categories. For example, some vendors
may sell drinks while others sell sandwiches. Within
each category, the products are further differentiated.
For example, one drinks vendor may sell beer while
another sells lemonade. Each vendor must occupy one
of a small number of locations from which to operate
her vending services; a vending location may accom-

modate more than one vendor. What makes a vendor’s
decision require strategic thinking is the fact that cer-
tain vendors’ services are natural complements to each
other, whereas other services are substitutes for each
other. Thus, if a sandwich vendor and drink vendor
decide to operate in the same location, the two vendors
will benefit positively from their complementary rela-
tionship. In contrast, if two sandwich vendors decide
to operate in the same location, then they will split the
customers due to the fact that one vendor is a substi-
tute for the other. It is also possible that two vendors
operating in the same location will have no effect on
each other’s sales; we call this a neutral relationship.
Vendors operating in different locations have no effect
on each other. While these general relationships apply
across categories, they differ between vendors in the
same category. For example, orange juice may more
severely substitute for lemonade than for beer.

In modeling the full vendor game, let A be the set of
vendors (i.e., agents), where N = |A| is the number
of agents. Let T be the set of product types, where
each vendor sells one product type. Let S be the set
of possible vending locations; thus, S constitutes the
set of pure strategies that each vendor has. Let T
be a matrix that indicates how product types interact
on average. For each possible ordered pair of product
types ti, tj ∈ T , T (i, j) specifies the average impact
a product of type tj has on a product of type ti. If
T (i, j) = 0, then the product types do not interact. If
T (i, j) > 0, then the two product types are comple-
mentary. If T (i, j) < 0, then the two product types
are substitutes for each other.

The matrix T describes how product types interact
on average. Let matrix A describe how two spe-
cific vendors interact, in particular; A(x, y) gives the
impact that vendor ay has on vendor ax. Let ven-
dors ax, ay ∈ A sell products of types ti, tj ∈ T , re-
spectively; the value of A(x, y) is obtained by sam-
pling once from the normal distribution N(T (i, j), σ2),
where σ2 is a game parameter. In addition to the agent
interactions, each agent ax has an associated bias term
that specifies a base-line success level for the agent in-
dependent of the impacts of other agents. Let bx be
the bias for agent ax.

A pure strategy profile in the game is associated with
the selection of a location by each agent. Let sx repre-
sent the pure strategy choice of agent ax. The payoff
to player ax ∈ A playing strategy sx ∈ S is:

πax
(sx, s−x) = bx +

∑

ay∈A

{

A(x, y) if sx = sy

0 if sx 6= sy
(1)

Because the interaction between each pair of vendors

is different, this is a many player game with no obvi-
ously exploitable structure in its exact representation.
One solution method would be to construct a normal-
form representation of the game and apply a standard
solution algorithm. However, the size of the normal
form representation is exponential in the number of
vendors, so this method quickly becomes infeasible.
Our approach is based on the observation that in this
game, the agents naturally fall into clusters. Vendors
in the same category have a similar strategic view of
the game. They tend to be affected in similar ways
by other vendors, and they also affect other vendors in
similar ways. We next expand on this intuition.

3 The Cluster-Based Model

Our approach to compactly representing and tractably
solving asymmetric N -player games is to use a (gen-
erally) lossy compression. We group a large number
of agents into a much smaller number of clusters. The
fundamental assumptions made by our approximation
are that 1) agents clustered into the same cluster re-
ceive similar payoffs when they take the same action;2

2) agents clustered into the same cluster have simi-
lar influences on other agents in the same and differ-
ent clusters; and 3) within each cluster, the actions of
the individual agents are combined linearly. Thus, the
combinatorial effects of strategic interaction are cap-
tured at the level of the cluster, which is how we realize
our computational savings. In this section we intro-
duce the cluster-based representation and explain how
the model (both the cluster structure and the payoffs)
is learned from data. Before continuing, let us remark
that while we allow our game to be asymmetric (in
payoffs) we do presently require each agent to share
the same set of pure strategies S.

3.1 Defining the Model

Let K be the number of clusters that we wish to gener-
ate; this parameter allows us to express a trade-off be-
tween fidelity to the original game and computational
efficiency. Let C be a clustering of the N agents into K
clusters, with Ci ∈ C being the ith cluster of agents. A
cluster will be termed a “player” in the reduced game
induced by a clustering. We reserve the term “agent”
for an agent of the original N -player game.

For each combination of a cluster and a pure strategy
(i.e., each element in the cross product C×S), we con-
struct a linear equation with |S|K +1 terms. Each one
of these linear equations π̂Ci

(sx) is a regressor that es-
timates the payoff an agent in cluster Ci would receive
when it plays pure strategy sx, given the clustering C

2If necessary, agents’ payoffs can be normalized, accord-
ing to the data, to bring payoffs into the same scale.

and probabilistic information about the strategy pro-
file adopted by each cluster. Note that strategy sx may
be different from the strategy adopted by the cluster
with which agent ax is associated. The fact that there
is one equation per cluster per strategy captures the
first assumption that all agents in a cluster receive the
same payoff for the same action.

One of the terms in π̂Ci
(sx) is simply a constant βCi(sx)

to capture any “offset” effects. In defining the re-
maining terms, let ~s = (s1, . . . , sK) denote a strategy
adopted by each cluster. Given this, then the remain-
ing terms are of the form β~s

Ci(sx) Pr(~s|C), which is the

product of a constant β~s
Ci(sx) and the estimated prob-

ability Pr(~s|C) with which cluster strategy profile ~s is
adopted by the underlying agents, given empirically
observed data about the game (for all N agents) and
the clustering C. More precisely, assuming the strate-
gies of different agents are uncorrelated, we estimate
the joint probability as

Pr(~s|C) = ΠK
i=1 Pr(si|Ci), (2)

where Pr(si|Ci) is the estimated probability that an
agent in cluster Ci plays pure strategy si. This proba-
bility is estimated from the proportion of agents in the
cluster that play strategy si. Thus, the payoff to an
agent in a cluster depends only on the proportion of
agents playing each strategy in each cluster, and not
on the actions of individual agents. This captures our
second assumption above. The fact that the equations
are linear captures our third assumption.

Example. To concretely illustrate our regressor
equations, let us assume a game where all agents have
two pure strategies, L and R, and we wish to cluster
agents into two clusters, A and B. We thus generate
four regressors. For example, the estimated payoff ob-
tained by an agent in cluster A playing strategy L is
denoted π̂A(L). Following this notation, the payoffs
for agents in clusters A and B, using strategies L and
R, are:

π̂A(L) = βL,L

A(L) · Pr(L|A) · Pr(L|B)+

βL,R

A(L) ·Pr(L|A) ·Pr(R|B)+βR,L

A(L) ·Pr(R|A) ·Pr(L|B)+

βR,R

A(L) · Pr(R|A) · Pr(R|B) + βA(L) (3)

π̂A(R) = βL,L

A(R) · Pr(L|A) · Pr(L|B)+

βL,R

A(R) ·Pr(L|A) ·Pr(R|B)+βR,L

A(R) ·Pr(R|A) ·Pr(L|B)+

βR,R

A(R) · Pr(R|A) · Pr(R|B) + βA(R) (4)

π̂B(L) = βL,L

B(L) · Pr(L|A) · Pr(L|B)+

βL,R

B(L) ·Pr(L|A) ·Pr(R|B)+βR,L

B(L) ·Pr(R|A) ·Pr(L|B)+

βR,R

B(L) · Pr(R|A) · Pr(R|B) + βB(L) (5)

π̂B(R) = βL,L

B(R) · Pr(L|A) · Pr(L|B)+

βL,R

B(R) ·Pr(L|A) ·Pr(R|B)+βR,L

B(R) ·Pr(R|A) ·Pr(L|B)+

βR,R

B(R) · Pr(R|A) · Pr(R|B) + βB(R) (6)

Since we have two agent clusters and two pure strate-
gies, we have four regressors, each with five terms. For
example, in Equation (3) we are estimating the payoff
received by an agent in cluster A when it plays strategy
L. Note that the third term, βR,L

A(L) ·Pr(R|A) ·Pr(L|B),

represents the contribution to our agent’s payoff that
occurs when agents in cluster B play L in combination
with agents in cluster A playing R. Thus, even though
the agent for whom we are calculating the payoff is it-
self playing L, we are accounting for the effect that
any other agents within cluster A who are playing R
(in combination with cluster B agents playing L) may
have upon our agent’s payoff.

3.2 Model Learning

A key aspect to our work is that we do not require a

priori knowledge of the cluster-based model. Instead,
we may learn the model from observation of agent be-
havior and earned payoffs. We have two distinct set-
tings in mind:

• We have access to a data set about agent actions and
agent payoffs in the underlying game.

• We have access to a simulator that we can use to
generate payoffs for different strategy profiles in the
underlying game.

In both cases we are learning the model offline and
adopting the viewpoint of an analyst, not an agent
situated within the strategic environment. Notice that
in the second approach we need not have a complete
representation of the game, which would in general be
too large to represent. Rather, all that is required is a
way to generate payoffs for different strategy profiles.

From our observations we learn our cluster-based
model of the underlying N -player game. Each obser-
vation consists of an N -tuple pure strategy profile and
the corresponding payoffs received by each agent. We
require that every action in every cluster be seen at
least once in order to learn.

Given a clustering of the N agents into K clusters,
we can learn the β parameters for our regressors with
linear regression. Each observation of an N -agent in-
teraction typically provides several data instances for

the linear regression. For instance, consider our exam-
ple game above. Let cluster A contain NA agents, each
playing a uniform mixed strategy over pure strategies
L and R. If we have M observations, then we expect to
obtain NAM/2 data instances each for regressor Equa-
tions (3) and (4). In this way, each additional agent
that we might place into our full game will linearly
increase the number of instances for the linear regres-
sion. Thus, we expect the number of observations of
the full game that we need to be inversely proportional
to the number of agents, at least for the purpose of es-
timating parameters.

Agent Clustering. We may compute a linear re-
gression given any clustering of N agents into K clus-
ters. Clearly, we desire the clustering C that provides
us with the best regressors, so that we can most ac-
curately estimate agent payoffs. We use the sum of
squared errors over all agents over all regressor equa-
tions to quantify the quality of our estimations, where
the error of a regressor for an agent is the difference
between the estimated payoff for the agent, given the
N -tuple strategy profile, and the agent’s actual payoff.

Since we assume a finite number of agents, there exist
a finite number of possible clusterings into K clusters;
an optimal clustering must therefore exist. Neverthe-
less, the large number of possible clusterings precludes
exhaustive search. Therefore, we use k-means cluster-
ing to obtain the clustering C that we use to run our
linear regressions.

A key intuition in our work is that agents clustered
into the same cluster receive relatively similar payoffs
when they take the same action, given a shared con-
text of what the other agents in the system do. We
use this intuition to construct the features with which
k-means operates. Specifically, we place each agent
in an S-dimensional space, where S is the number of
pure strategies available to agents. Each dimension
corresponds to a pure strategy, and the location of an
agent in a particular dimension is the average payoff
the agent earned over our observations when it used
the corresponding pure strategy. Note that, here, we
are not conditioning further on what other agents do;
this is to keep both dimensionality and computational
complexity low. Because k-means does not always con-
verge onto the same clustering each time it is run, we
run it several times and choose the result that gives us
the lowest sum of squared errors in our regressors.

4 The Twins Game

Given that we have K clusters, an obvious reduction
would be to construct a K-player normal form game.
We would then solve this smaller K-player game and
then assign each agent within cluster i the strategy

(pure or mixed) used in Nash equilibrium by the i-
th player in the K-player game. This would follow
the approach of Wellman et al. [11], albeit slightly ex-
tended to an asymmetric setting. But one problem
with this approach is that, while the i-th player in the
K-player game has no incentive to unilaterally devi-
ate from equilibrium, cluster i cannot be treated as a
true “player” because it is not a monolithic decision
maker. Each cluster of agents consists of independent
decision makers, whose individual incentives might not
be aligned with the cluster-level incentives of the K-
player game. Thus, an individual in some cluster may,
in fact, wish to deviate from the prescribed K-player
strategy profile.

Rather than build a K-player game, we build a 2K-
player game, where each cluster is represented twice,
hence what we call a “twins game.” Each cluster C is
associated with two players, C and C′. (Recall that a
player captures a strategic entity in the clustered game
and is distinct from an agent in the underlying game.)
These players have multiple interpretations, depend-
ing on from whose point of view the players are being
considered. When considering the payoff of player C,
C is interpreted as representing a single agent in clus-
ter C, while C′ represents the rest of the agents in the
cluster in aggregate. The view from C′ is symmetric:
the payoff of player C′ represents that of a single agent
in the cluster, while C represents the rest of the cluster
C in aggregate. From the point of view of a player D

associated with a different cluster D 6= C, C and C′

together represent cluster C. When C and C
′ adopt

different strategies sC and sC′ , then for symmetry we
consider that half of the agents in the cluster play sC

and half play sC′ .

Under these interpretations, we can obtain the pay-
offs for each of the 2K players in the twins game for
a given strategy profile. Consider the player C associ-
ated with cluster C, where C plays strategy sC and C′

plays strategy sC′ . We instantiate the probabilities for
the other players in the linear regression model, and
thus define the payoff to player C, as follows,

Pr(si|C) =

{

1 if si = sC′

0 otherwise

For a cluster D 6= C,

Pr(si|D) =







1 if si = sD = sD′

1/2 if one of sD or sD′ = si

0 otherwise

where D and D′ are the players corresponding to clus-
ter D. The payoff to C is then π̂C(sC) as specified by
the regressor equations. The payoff to C′ is symmetric.

By representing each cluster twice, we can seek Nash
equilibria in which the incentives of individuals within
a cluster are aligned with the cluster itself. We care to
locate Nash equilibria where each player and its twin
use the same strategy. We will call such equilibria
twin symmetric Nash equilibria (TSNE). A TSNE is
guaranteed to exist, because there is always a twin
symmetric best response to a twin symmetric strategy
profile, so we can use the same argument as in Nash’s
proof of the existence of Nash equilibrium [9].

Let sC denote this strategy (pure or mixed), used by
both players C and C′ in a TSNE (and in turn used by
each underlying agent within the cluster.) From the
perspective of player C, strategy sC is a best response
to the strategies of the other players, and particularly
to C′ who also plays sC. In the construction of the
twins game, the payoff to player C equals the payoff
to an individual agent in cluster C playing sC when the
rest of cluster C plays sC′ . But in a TSNE, sC = sC′ .
Thus, if sC is the strategy recommended to C in a
TSNE, an individual agent in cluster C will be playing
a best response to its cluster as a whole playing sC. In
this way, we say that our representation is individually-

responsive. No individual agent will have incentive to
deviate from the strategy recommended to its cluster.

4.1 Example

Let us continue our example from Section 3.1. We have
two clusters of agents, A and B, and so will build a
four player game. Let us label the players A, A′, B, and
B
′, where A and A

′ correspond to the twin players for
cluster A, and similarly for the players for cluster B.
Table 1 shows how we convert our regressors to a twins
game. Each row of the table corresponds to a single
four-player pure-strategy profile. For brevity, we show
only 1/4 of the profiles, showing only those where A

plays L and A′ plays R. The leftmost column specifies
a four-player pure-strategy profile; for example, the
third row specifies a profile where players A, A

′, B, and
B′ play pure strategies L, R, R, and L, respectively.
The remaining columns indicate the payoffs received
by each player for each pure-strategy profile.

We compute player payoffs as described in the previous
section. The pure strategy that a player uses in a pro-
file determines which regressor equation we will use.
For example, in the profile LRLL, player A plays L,
and so we use Equation (3); player A′ plays R, and so
for this player we use Equation (4). We use Equation
(5) for players B and B′, since both play L.

The payoff to A for the profile LRLL is βRL
A(L) +βA(L).

This is the payoff that a cluster A agent would re-
ceive if it played L in the situation where all cluster
A agents actually play R (i.e., Pr(R|A) = 1.0) and

all cluster B agents play L. Similarly, the payoff to
A′ is βLL

A(R) + βA(R), which corresponds to the payoff
a cluster A agent would receive for playing R in the
situation where all cluster A agents actually play L
and all cluster B agents play L. More interesting is

the payoff for B, which is
βLL

B(L)+βRL
B(L)

2 + βB(L). This
is the payoff obtained by a cluster B agent if it would
play L in the situation where all cluster B agents ac-
tually play L and where half the cluster A agents play
L and half play R (i.e., Pr(L|A) = Pr(R|A) = 0.5).
Thus, when a player and its twin (e.g., A and A′) play
different pure strategies in a profile, we interpret this
as a uniform distribution over the two strategies when
computing the payoff for another player (e.g., B or B′)
in the twins game.

5 Experimental Results

In generating our observation set for the purpose of
experimentation, we build N agents to play the game
for some number of interactions. We provide agents
with a uniform distribution over their pure strategies
in order to generate an observation set with good sup-
port in the space of possible joint strategy profiles in
our twins game. From these observations, and with
a given number K of clusters, we learn our cluster-
based approximation; this entails clustering and linear
regression. We then construct the 2K-player twins
game. For comparison, we also construct a K-player
game, with one player per cluster and thus without in-
dividual responsiveness. Using Gambit [8], we find all
Nash equilibria of these reduced normal-form games.
For each TSNE of the 2K-player game and each NE of
the K-player game, we assign the equilibrium strate-
gies to the agents and have them interact for 100 iter-
ations. We then calculate mean payoffs and external
regret values for each agent in this new data. Note
that we do not need to solve the full N -player game.

In addition to comparing results from the 2K- and
K-player games, we compare the performance of our
approach with that of two model-free learning ap-
proaches. These methods are a form of reinforce-
ment learning whereby agents play strategies that have
yielded the highest mean rewards. Our first model-free
approach concerns agent-level learning (ALL). We ex-
amine the initial observation set to determine, for each
agent, which pure strategy provided the agent with the
highest mean payoff. Each agent then adopts the pure
strategy that provided it the highest mean payoff for
use in future interactions. We generate new interac-
tion data with agents playing these pure strategies,
and then determine mean agent payoff and regret val-
ues for the new data. Our second model-free approach
provides cluster-level learning (CLL). Here we exam-
ine the initial observation set to determine, for each

Table 1: Conversion of regression equations to normal-form “twins game” (partial specification).

Profile A A
′

B B
′

LRLL βRL
A(L) + βA(L) βLL

A(R) + βA(R)
βLL

B(L)+βRL
B(L)

2 + βB(L)
βLL

B(L)+βRL
B(L)

2 + βB(L)

LRLR
βRL

A(L)+βRR
A(L)

2 + βA(L)
βLL

A(R)+βLR
A(R)

2 + βA(R)
βLR

B(L)+βRR
B(L)

2 + βB(L)
βLL

B(R)+βRL
B(R)

2 + βB(R)

LRRL
βRL

A(L)+βRR
A(L)

2 + βA(L)
βLL

A(R)+βLR
A(R)

2 + βA(R)
βLL

B(R)+βRL
B(R)

2 + βB(R)
βLR

B(L)+βRR
B(L)

2 + βB(L)

LRRR βRR
A(L) + βA(L) βLR

A(R) + βA(R)
βLR

B(R)+βRR
B(R)

2 + βB(R)
βLR

B(R)+βRR
B(R)

2 + βB(R)

cluster, which pure strategy provided the agents in the
cluster with the highest mean payoff. Each agent in
the cluster then adopts this pure strategy. We then
generate new interaction data.

5.1 Vendor Game

We initialize the type-interaction matrix T as fol-
lows. Each product type is treated as a substi-
tute for itself, thus the diagonal of T is negative.
Off the diagonal, we randomly select between in-
teraction types (Pr(neutral) = 0.1, Pr(substitute) =
Pr(complement) = 0.45), but require T to contain
at least one complementary interaction. Substitution
means are drawn uniformly between [−3.0, 0.0], com-
plements from [0.0, 3.0], and neutral interactions have
a mean of zero.

In one experiment, we use 100 agents, two agent types,
two locations (L and R), σ2 = 1.5, and 15 obser-
vations per trial over ten trials. We cluster agents
into two groups (A and B). Table 2 summarizes our
experiment, showing mean agent payoffs and regrets.
The model-free learning methods clearly perform the
worst; the strategies (always pure) they learn give
agents the worst mean payoffs and highest mean re-
grets. The differences between the K- and 2K-player
games are most pronounced with respect to regret lev-
els. When we examine separately the performance
of pure-strategy Nash equilibria (PSNE) and mixed-
strategy NE (MSNE) of the K- and 2K-player games,
we find that agents’ regret levels when they use MSNE
derived from K-player games are over 2.3 times as
high as when they use mixed TSNE from 2K-player
games (p < 0.004). The K-player games often pro-
duce PSNE, and the regret levels from these PSNE
are an order of magnitude higher than the TSNE of
the 2K-player game. This shows that our twins-game
approach aligns the incentives of individual agents.

In another experiment, we look at different numbers
of agents (N =10, 100, or 200) combined with differ-

Table 2: Results from vendor game. 100 agents, 2 types,
σ2 = 1.5, K = 2, 15 observations per trial. When analysis
gives multiple NE in a K- or 2K-player game, we select the
NE giving the worst result. First row: mean payoffs over
all agents over all trials. Significant differences are CLL vs.
ALL (p < 0.065 paired sign-rank test), CLL and ALL vs.
K- and 2K-player games (p < 0.014). Second row: mean
external regret over all agents over all trials. Significant
differences are CLL vs. ALL (p < 0.11), CLL and ALL vs.
K and 2K (p < 0.01), and K vs. 2K (p < 0.04).

CLL ALL K-Player 2K-Player
Payoff -53.98 -40.20 -17.69 -15.50

Regret 87.75 64.44 17.56 3.06

ent numbers of observations (3, 5, 10, or 15); other
parameters are as above. Table 3 gives average re-
grets for some of our settings. Looking over all of the
data, two trends appear to emerge. First, the dispari-
ties between the approaches appears to grow with the
number of agents; thus, it becomes more important to
have a good strategy in our game with more agents.
Second, the level of regret for a given number of agents
appears to consistently diminish with our approach as
the number of observations increases. Nevertheless,
our method consistently finds solutions that give the
lowest average regret over all settings. We also ran ex-
periments where we varied the level of noise σ2 in agent
interactions. Though the R2 values of our regressions
suffer, the performance of our approach is surprisingly
robust. The general conclusion is that the model-free
methods perform poorly, and that the twins game ap-
proach produces lower agent regret values than the
game-form with one player per cluster.

5.2 Santa Fe Bar

The second game on which we test our approach is
a slight variation of the Santa Fe bar problem (also
known as the El Farol bar problem) [1]. In this
game, each of the N agents must independently de-

Table 3: Average regrets from vendor game for different
numbers of agents and observations. First column indicates
numbers of agents and observations. Note that neither
agent payoffs nor regret values are normalized by N .

CLL ALL K-Pl. 2K-Pl.
10, 3 7.6767 7.5127 4.2450 2.9837
10, 5 8.3199 6.1706 3.3321 0.5177
10, 10 7.8606 5.9436 0.7290 0.2226
100, 3 94.2589 32.4916 15.6744 4.3206
100, 5 85.0618 69.1498 10.5996 1.3062
200, 3 181.1111 122.8304 33.5588 5.4801
200, 15 151.1831 104.2937 2.0577 0.9401

cide whether or not to visit the El Farol bar. Unfortu-
nately, the bar’s capacity c ∈ (0, 1) allows only ⌊cN⌋
agents to fit comfortably. The set of pure strategies
for each agent consists of two items: either the agent
visits the bar, or stays at home. There are three pos-
sible outcomes for an agent: 1) the agent decides to
visit the bar, but the bar is full (denoted v•), 2) the
agent decides to visit the bar, and the bar has room
(denoted v◦), 3) the agent decides to stay at home
(denoted h). Each agent prefers these outcomes as fol-
lows: v◦ ≻ v•, v◦ ≻ h, and h ≻ v•. Once all N agents
make their choice to visit the bar or stay at home, we
obtain an N -player pure-strategy profile. The utility
for agent ax for outcome o is denoted by Ux(o).

Each agent shares the same utility function, giving us
a symmetric game. Since agents all share the same
preferences and affect others in the same way, we clus-
ter all agents into a single group; one cluster yields a
two-player twins game to solve. Thus, this game ex-
actly satisfies the first two assumptions of our cluster-
based representation. Note, however, that it violates
the third assumption: the payoffs are not linear in the
number of agents playing each strategy. Unlike in the
vendor game, an agent’s payoff here is only one of three
possible values, conditioned on whether the agent vis-
its the bar or stays at home, and whether the total
attendance exceeds the bar’s capacity or not. The de-
gree to which capacity is exceeded, or the amount of
available space, does not affect an agent’s payoff.

Because the Santa Fe bar game is symmetric, we can
use the method of Wellman, et al., [11] (WEL) to ap-
proximate a solution. Their approach to compressing
a symmetric game is to “coarse code” the profile and
outcome space. They divide the agents into some num-
ber of equally sized groups. Given the constraint that
all agents within a group must play the same strat-
egy, they perform equilibrium computations using the
subset of realizable strategy profiles and outcomes of
the original N -player game. Since we compress the
Santa Fe game down to a two-player twins game, the
most direct comparison with WEL is to use their ap-

Table 4: Average regrets from Santa Fe bar game with
different bar capacities. For capacity c = 0.4, the difference
in regret between our method and W↓5 is not statistically
significant. For capacity c = 0.5, the differences in regret
between our method, W↓2 and W↓5

∗ are not statistically
significant. All other differences between our approach and
the others are statistically significant (p < 0.006 paired
sign-rank test).

c 2K W↓2 W↓5 W↓2
∗ W↓5

∗

0.4 0.4820 4.0 0.3508 4.0 0
0.5 0.7264 0.7750 1.6908 0 0.6690
0.6 0.8368 1.8112 0.2068 1.8080 0

proach to divide the N agents into two groups of N/2
agents each, which also yields a two-player game. This
approach is denoted by W↓2. However, the approach
of WEL allows for more refined approximations that
use more clusters. As a point of comparison, we also
consider their approach with five clusters, denoted by
W↓5, which involves solving a five-player game.

Table 4 summarizes regret values obtained in ex-
periments that examine different bar capacities c ∈
{0.4, 0.5, 0.6}. For all three capacity values, we set
agent payoffs to be U(v◦) = 4.0, U(v•) = −6.0, and
U(h) = 0.0; we use ten agents. We run ten trials for
each value of bar capacity. We use 45 observations
(agent interactions) per trial for learning in our ap-
proach. For complete comparison, we show the regret
of the symmetric MSNE found by WEL (shown as W↓2

and W↓5), and also the regret of the best NE found
by WEL, whether symmetric or asymmetric (shown as
W↓2

∗ and W↓5
∗). Results for ALL and CLL are not

shown in this table; they are significantly worse than
the other approaches.

When the bar’s capacity is exactly a multiple of the
fraction of agents within a cluster, WEL discovers
asymmetric PSNE that are actually NE of the full
game. Except for this case, we see that our method
is better than W↓2 when the capacity is c = 0.4 or
c = 0.6, and is statistically equivalent to it when
c = 0.5. Even when we compare to WEL allowing
it to use five clusters, our method performs reason-
ably well. It is statistically equivalent to W↓5 when
c = 0.4. When c = 0.5, it is statistically equivalent to
the asymmetric equilibrium found by WEL (W↓5

∗),
and significantly better than the symmetric equilib-
rium (W↓5). However when c = 0.6, W↓5 is signifi-
cantly better. Note that our results are consistently
good despite the fact that our approach involves the
added step of learning (which WEL does not).

Figure 1 shows the actual symmetric MSNE for our
Santa Fe game for bar capacities c = 0.4, 0.5, 0.6. The
figure also shows the approximations to these mixed
Nash equilibria obtained with our method as well as

0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Capacity

P
r(

v
is

it
 b

a
r)

2K-Player

W↓2

W↓5

Figure 1: Symmetric mixed strategies obtained for
Santa Fe bar game for bar capacities c = 0.4, 0.5, 0.6.
X-axis indicates bar capacity, Y-axis indicates the
probability with which each agent visits the bar in
the mixed strategy. Data labeled “2K-Player” indi-
cate the average mixed Nash equilibria (and standard
deviation) of our 2K-player twins game over all 10
trials. Data labeled “W↓2” and “W↓5” indicate the
mixed Nash equilibria obtained with WEL using two
and five clusters, respectively. Bold line indicates the
actual mixed Nash equilibria of the Santa Fe game.

with W↓2 and W↓5. We see that our approach is more
consistently close to the actual symmetric MSNE of
the Santa Fe game. Thus, our approach appears bet-
ter able to detect changes in bar capacity, while at
the same time requiring that only a two-player twins
game be solved (W↓2 and W↓5 require two- and five-
player games to be solved). Indeed, it can be show
analytically that the finest distinction W↓2 can make
is whether bar capacity is less than N/2 or not.

6 Conclusions

We present a method for approximating the structure
of asymmetric N -player games for large N . This ap-
proximation uses a clustering approach to compress
the original N -player game into a vastly smaller and
more tractably solved 2K-player game, where K is the
number of groups into which we cluster the N agents.
Each of the K groups of agents is associated with two
players in the 2K-player game; we call these player
pairs “twins.” Nash equilibria in which twins use
the same strategy are “twin-symmetric” NE. We treat
these NE as K-player strategy profiles that we assign
to our agent groups; all agents within a group play the
same strategy. The K-player NE derived from twin-
symmetric NE have the property that the incentives of
all agents within a cluster are aligned with the strat-
egy assigned to that cluster. This prevents unilateral
deviation by individual agents from the K-player NE.
Importantly, our method does not assume knowledge
of the full N -player payoff function; instead, we can
learn an approximation to the payoff function through
a small number of observations of agent interaction.

We test our method on two different types of game:
a vendor game and the Santa Fe bar problem. We
show that when agents play solutions obtained from
our method, they achieve higher average payoffs and
lower external regret compared with two model-free
learning approaches we examine. We also compare to
compression results obtained with a modified version
of our approach that omits the 2K-player game. We
show that this variation is significantly less effective
in providing low regret. For the Santa Fe bar prob-
lem, data show that our method provides low regret
values more consistently than the compression method
by Wellman, et al. [11] when using the same number
of agent clusters. We also note that our approach is
orthogonal to that of Wellman, et al. [11]; for exam-
ple, we can divide the clusters of the twins game into
subclusters to allow for asymmetric equilibria, even in
symmetric games and even if learned with just one
cluster.

Acknowledgments

The authors thank the anonymous reviewers for their
helpful comments. The research reported in this paper
was supported in part by AFOSR grant FA9550-05-1-
0321 and NSF grant DMS 0631636.

References

[1] W. B. Arthur. Inductive reasoning and bounded ra-
tionality. Amer. Econ. Review, 84(2):406–411, 1994.

[2] N. Bhat and K. Leyton-Brown. Computing Nash equi-
libria of action-graph games. In UAI, 2004.

[3] C. Daskalakis, A. Mehta, and C. H. Papadimitriou.
Progress in approximate nash equilibria. In 8th ACM
Conf. on Electronic Commerce, 2007.

[4] C. Daskalakis and C. H. Papadimitriou. Computing
equilibria in anonymous games. In FOCS, 2007.

[5] P. Jehiel. Analogy-based expectation equilibrium.
Journal of Economic Theory, 123:81–104, 2005.

[6] M. Kearns, M. Littman, and S. Singh. Graphical mod-
els for game theory. In UAI, 2001.

[7] M. Kearns and Y. Mansour. Efficient nash compu-
tation in large population games with bounded influ-
ence. In UAI, 2002.

[8] R. D. McKelvey, A. M. McLennan, and T. L. Tur-
ocy. Gambit: Software tools for game theory, version
0.2007.01.30. http://gambit.sourceforge.net, 2007.

[9] J. F. Nash. Noncooperative games. Annals of Math-
ematics, 54:189–295, 1951.

[10] Y. Vorobeychik, M. P. Wellman, and S. Singh. Learn-
ing payoff functions in infinite games. Machine Learn-
ing, 67:145–168, 2007.

[11] M. P. Wellman, D. M. Reeves, K. M. Lochner, S.-F.
Cheng, and R. Suri. Approximate strategic reason-
ing through hierarchical reduction of large symmetric
games. In AAAI, 2005.

