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Abstract

We propose an expressive auction design that allows adver-
tisers to specify the kinds of demographics and websites the
wish to target within an advertising network. The design al-
lows the network to differentiate impressions according to
relevant attributes (e.g., geographic location of the,useic

of the webpage). Advertisers can place bids for different
kinds of impressions according to their attributes, and can
also specify volume constraints to control exposure. The no
elty of the design is a bidding language that admits scalable
allocation and pricing algorithms. We discuss the incentiv
properties of different pricing approaches. We also prepos
a bidder feedback mechanism to mitigate the complexity of
expressive bidding.

Introduction

Advertising networks such as those run by Ad.com, Google,
and Yahoo! provide matching functions that display banners
throughout websites in a network of affiliates. The matching
is based on the nature of the advertisement, and a bid pro-
vided by the advertiser. The trend in display advertising is
to allow advertisers to specify what kinds of users they are
targeting, for example by geographic location, interests]
even online behavior (Story 2007). This points to the need
for auction mechanisms that can allow bidders to express
complicated valuations over user attributes.

The design of expressive auctions is an interdisciplinary
endeavor that draws on ideas from microeconomics and
computer science, in particular artificial intelligence.l A
techniques have found application in two key design areas:

e Bidding languagesBidders cannot exhaustively describe

combinatorial auctions this can be NP-hard. Effective al-
gorithms and heuristics are needed that perform well on
realistic problem instances (Boutilier 2002; Sandhe&im
al. 2005).

Our main contribution is to the bidding language literature
because the properties of our auction hinge on the structure
of our language. Our language is specifically designed to
admit tractable allocation algorithms.

We propose an expressive auction design for online dis-
play advertising. The auction allocates a forecasted sup-
ply of different kinds of impressions (views of an advertise
ment); impressions are differentiated according to the con
ditions under which they occur (e.qg., topic of the webpage
or geographic location of user). The supply is forecast over
a fixed time period such as a week. If market conditions
do not change, the computed allocation can be interpreted
as the expected amount of impressions that each bidder will
receive in the period. At any given time, however, it is best
to interpret the allocation as thrate at which bidders will
receive different kinds of impressions. Our view is that the
allocation should be recomputed at fixed time intervals.(e.g
daily), and also if there are significant changes in market
conditions, such as entry or exit of large bidders.

The auction is meant to be complemented with a schedul-
ing algorithm. The scheduler tries to display advertisetmen
over time in such a way that the realized allocation rate
matches the desired rate computed by the auction. This
scheduling problem is an orthogonal issue that we do not
address in this paper.

The core of our design is a bidding language that al-
lows bidders to specify values for different kinds of impres
sions, and also to place volume constraints on impressions

their values for every possible outcome. A language (syn- to control exposure. Besides expressiveness, the language
tax and semantics) is needed that can succinctly describe is designed with incentives and computational tractahitit

realistic valuation functions. The language is usually

mind. It allows for:

specified in terms of data structures that allow value in- 1. Efficient and scalable allocation algorithms, so thag-all

formation to be efficiently queried (Cavalkt al. 2005;
Boutilier & Hoos 2001; Nisan 2000).

Allocation algorithms.Given representations of the bid-
ders’ preferences, an efficient (value-maximizing) alloca
tion must be computed, and in practical settings such as

Copyright(© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cations can be quickly recomputed when needed

2. Unigue market-clearing prices that minimize the bidders

incentives to game the auction

3. Efficient, combinatorial algorithms for computing these

specific market-clearing prices

We also propose a bidder feedback mechanism that can rec-
ommend bid increases to agents who would like to achieve



greater volume of certain demographics.

The auction computes an “efficient” (value-maximizing)
rather than “optimal” (revenue-maximizing) allocatibiwe
focus on efficiency because there are currently several com-
peting ad networks, so it is unclear whether it is feasible to
exercise monopoly power in this landscape. Still, it may be
possible to modify our design to extract more revenue; this
would involve weighting bidders so that their bids are nbt al
considered equally. This kind of approach has already been

suggested for sponsored search auctions (Lahaie & Pennock

2007), and its application to the display advertising damai
is still an open and challenging problem.

Preliminaries

An impressionoccurs when a user observes an ad. The im-
pression is distinguished by the conditions in which the ad
was observed, for example:

e the user is in California
o the webpage has political content
o the time of day is “evening”

and so on. Formally, there is a set aftributes A =
{A1,..., A}, and each attribute is a set whlues for ex-
ample, the “state” attribute would bgCA, MA,NY, .. .}.
Distinct attributes are disjoirft.The attributes and their pos-
sible values are determined by the seller (the network). An
impression is a tuplé€ay, ..., as) such thata; € A; for

t =1,...s. Let M be the set of possible impressions (tu-
ples), with cardinalityn = II;_, | A|.

Let N = {1,...,n} be the set of bidders (advertisers).
An element oiZf represents a bundle of impressions. The
notationZ2! denotes the set of vectors with entries indexed
by elements of\/ and drawn fronZ_ (the non-negative in-
tegers). For; € Zf, we denote the entry corresponding
to impressionj € M by z;(j). Each bidder has a val-
uation defined over bundles; : Zﬂ‘f — Ry. The total

price of a bundle of impressions at pricesp € Rﬂ‘f is the
usual scalar produgtz; = >\, p(j)z:(j). Bidders have
guasi-linear utilities, so that the utility to biddéeof bundle
x; at priceyp is v;(z;) — p - ;.

To plan an allocation of impressions, we assume the seller
has an estimate of the number of units available of each im-
pression over some fixed time period. L€f) be the esti-
mate for the supply of impressigne M. The objective is to
compute an efficient allocation of the forecasted impressio
units together with market-clearing prices. An allocatisn
avector of bundles = (z4,...,z,). An allocation ifeasi-
bleif > | z:(j) < z(j) forall j € M (an impression does
not have to be allocated: the ad space can be left blank).
Let " be the set of feasible allocations. An allocatioiis

!Efficient can mean value-maximizing, when referring to al-
locations, or polynomial-time, when referring to algonthk. It
should be clear from context which definition applies.

2Certain attributes could be hard to measure for a given impre
sion; for example, we may not be able to identify the geogaph
location of a user. Each attribute can have its own “undefined
value to handle such cases.

efficientif
n
T € arg r;lealg( Zl v (Yi)-
1=

Prices are used to bring a level of stability to the agents’
bids. They also provide information on the cost of differ-
ent kinds of impressions to possible new entrants. Our auc-
tion quotes market-clearing prices. At clearing priceghea
agent prefers his own bundle of impressions to any other
possible bundle, and the allocation maximizes the seller’s
revenue. In this sense, demand equals supply, and bids
remain stable as long as agents act as pure price-takers.
Market-clearing prices are callecompetitive equilibrium
(CE) prices. LetD;(p) = argmaxv;(z;) — p - x; be the
set of utility-maximizing bundles for biddérat pricesp, its
“demand set.” A CE is an allocation-price pdir, p) such
thatz; € D;(p) for eachi € N, and such that eache M
with 3,y #:(7) < 2(j) hasp(j) = 0.

The Fundamental Welfare Theorems state that, if a CE
exists—a property that depends on the model and price
space in general—then (1)jfare CE prices{z, p) is a CE
for any efficient allocatiorr, and (2) if (z, p) is a CE,z is
efficient (Bikhchandani & Ostroy 2002). Computing an effi-
cient allocation is therefore consistent with the objextf
computing market-clearing prices.

It may seem that the number of different impressians
would be too large to make the design practical:is ex-
ponential in the number of attributes. Note though that it
does not make sense to let advertisers bid for impressions
that only exist in very low volumes, because decent supply
forecasts for such impressions would not be possible. This
restricts the number of differentimpressions that can lee us
fully allowed. (Bidders could be forbidden to bid on impres-
sionsj whosez(j) is too small, presumably through the bid-
ding interface.) Viewing the allocation problem as a combi-
natorial auction, the items here are impressions (combina-
tions of attributes values), hence prices are specified over
impressions rather than attributes.

Bidding Language

We first describe the bidding language in terms of the data
structures that would be used to encode its instances, and
then turn to the properties of the valuations it describes. W
do not discuss the actual bidding interface; there are many
conceivable interfaces for our language.

Bid Trees

To encode valuations, we propose “bid trees” that enable ad-
vertisers to specify values for various kinds of impression
Bid trees can be used to encode both the advertisers’ true
valuations and theieportedvaluations, or “bids”. The two

Tree-based languages have been proposed for combinatorial
auctions, such as the; g language of Boutilier & Hoos (2001), as
well as for combinatorial exchanges, such as TBBL by Cawtlo
al. (2005). The language proposed here represents a smakksr cla
of valuations than either of those languages, but is spgtélored
to the domain of display advertising.



(a) Bid tree. (b) Capacitated bid tree.

Figure 1: Instances of the bidding language.

need not coincide, as we explain later when addressing in- sions will come from FL, even though the run there should
centives, although for clarity we assume for now that they be limited. Hence we further allow advertisers to annotate
do. nodes with capacities. In Figure 1(b), there is a new node
For instance, suppose a car manufacturer wishes to run anfor fashion sites in CA, with a capacity of 0 to ensure no im-
online campaign to advertise a new truck model. The cam- Pressions are provided.The FL node now has a capacity of
paign should only run in California and Florida. In Florida, 50,000 impressions to ensure the campaign there is limited
the campaign should have a limited exploratory run across to this exposure.
a variety of sites, to see what demographics respond best to .
the new model. In California, the campaign should projecta Properties
“rugged” image for the truck. The company therefore de- The value functions encoded by bid trees can be described
cides to run its banner ad next to content with an “auto- formally as follows. Given biddei's bid tree, we can define
motive” or “sports” theme, and to avoid any content with a a family 7; of subsets ofi/ corresponding to each node. For
“fashion” theme. It also decides to value exposure on blogs instance, for the tree of Figure 1 we would have the set of all
and devalue mainstream news sites, because it would like impressions that occurred in CA, the set of all impressions
the campaign to have “grassroots” appeal. on automotive or sports sites in CA, the set of all impres-
A candidate bid tree for this kind of valuation is given in ~ Sions on automotive or sports blogs in CA, etc. Itis straight
sions over the network. The value of an impression from a is laminar: forany7, 7" € T, eitherT’ C T', T" C T, or
certain source is evaluated by traveling down the treeiollo ~ 7'NT" = 0. To eachl” € 7; is associated an integral capac-
ing attributes that apply, starting at the root, and summing ity cir (possibly+oo) and a valué;r. Define the functions
the values in the nodes along the way. For instance, impres- _ ; _
sions on automotive or sportg sites inyCA are valuetlif P vir(r) = { IE(TX: gtgegrv;isée ar (1)
they are news site$,6 if they are blogs, anél.5 otherwise.
An advertiser constructs its bid tree by starting with aroot for eachT € 7;. Herer is a non-negative scalar, represent-
node, and then creating more nodes by repeatedly branchinging a certain number of impressions. o
on an attribute at a leaf. An advertiser may branch on only ~ The agent's value for a bundle of impressianss then
some values of an attributé, rather than all values fad,,
if it chooses. The advertiser may also branch on sets of at- vi(w:) = Z vir (2i(T)) @
tributes, as long as the sets are disjoint; for instanceg-sep TeT
rate branches fof CA, FL} and{FL, NY} are not allowed, wherex;(T) is shorthand fOEjeT z;(5), namely the total
as this leads to ambiguous semantics. An attribute may not of all impressions fron". The volume constraints make the
be branched on at a node if it was already branched on at anyajuation functions nonlinear. Without loss of generality
ancestor node. we can assume th&t contains a nodé¢; } for eachj € M,
But there may still be a disconnect between the bid tree whose capacity is no more tha¥y).
in Figure 1(a) and the company’s valuation. Exposure out-  Danilov et al. (2001), generalizing results of Kelso &
side of CA or FL is worthless, but does not do any harm if Crawford (1982), show that valuations of the form (2),
it occurs, so it indeed has value $0. On the other hand, ex- where 7; is laminar and eachy;r exhibits decreasing
posure on fashion sites in CA does do harm, because it goesmarginal values over some interval (and-isc outside this
against the brand image the advertiser is trying to project interval), are “M-concave.” The actual specification ofsthi
in that state. Also, there is no telling how many impres- condition is not important for our treatment. Intuitively,



implies that impressions are “substitutes”: if the priceanf
impressionj € M is increased, an agent’s demand for the

recorded as a lemma. Proofs are collected in an appendix
(available from the authors).

other impressions does not decrease, because the agent sul-emma 1 Algorithm 1 correctly outputs a set of impres-

stitutes away from.

This M-concave property is a main motivation for adopt-
ing bid trees, besides their natural expressiveness. lels w
known that it implies the existence of a CE (Danilov, Ko-
shevoy, & Murota 2001; Kelso & Crawford 1982), and it
also allows for fast allocation and pricing algorithms.

Queries

There are two fundamental queries that are typically made
on bidding languages: value and demand queries.
query is a fundamental subroutine of the allocation and pric
ing algorithms discussed later, so it is important to under-
stand their complexity.

Value. On a value query, a bundle of impressians= Z4
is input and the value;(z;) according to the bid tree is
output.

Demand. On a demand query, pricgs€ R’/ are input,
and some utility-maximizing bundle at pricess output.

Each

sionsz; € D;(p).

Among the common bidding languages surveyed by
Nisan (2000), only XOR allows for polynomial-time de-
mand queries; for the others, evaluating a demand query
is NP-hard. The XOR language does not seem appropriate
here, however. It does not provide the ability to specify vol
ume constraints, and cannot succinctly represent theieeldit
valuation, which is plausible in this domain.

Allocation

A natural way to allocate impressions in an online fashion is
to give each arriving impression to the advertiser who value
it most among those advertisers for whom the extra impres-
sion would not violate any volume constraints. This scheme
is not efficient in our context. Volume constraints are the
source of the complication, as the following example illus-
trates.

ExampleThere are two biddersa, b} and two impressions

Clearly, the time to evaluate the response to a value query is available, one from Massachusetts (MA) and one from Cal-

at most the depth of the bid tree. This is at mgst |7Z;],
the size of the bid tree, but can i6¥log ;) if the tree is
balanced.

From a valuation of the form (2) derived from a bid tree,

the response to a demand query can be computed using Al-

gorithm 1. Forj € M, x; denotes the unit vector with entry
j being 1 and all others 0. Ldt be the zero vector. Let
w;i(j) = ZjeT b;7 be the marginal value from an impres-
sion on sitej, and letr; (j) = w;(j) — p(j) be the marginal
surplus.

Input: Pricesp € RM.
Output: A set of impressions; € D;(p).
Setz; := 0.
For eachl’ € T;, setdr := ¢;r.
Discard the elementse M that haver;(j) < 0.
Sort the remaining elements accordingro In case of
a tie, break arbitrarily.
foreachj € M in orderdo

Setk := mingrer, | jery dr-

Setz; == x; + kx;.

foreachT € 7; such thatj € T do

| Setdr :=dr — k.

end

end

Algorithm 1 : Greedy algorithm for demand queries on bid
trees.

Algorithm 1 is a greedy algorithm that computes a re-
sponse to a demand query.
decreasing order of marginal utility, and collects as much

ifornia (CA). The valuations as bid trees are
HOTINNO
MA

If the MA impression comes before the CA impression, the
greedy scheme assigns MAdaand CA tob, for a value of

2. But it is optimal to assign MA té and CA toa, for a
value of 3.

The scheme fails because it does not take into account
forecasted supply. Recall that our auction computes a de-
sired allocation over a fixed time period (equivalently, de-
sired allocation rates), and passes the result to a schredule
The efficient allocation problem can be formulated as a lin-
ear program:

iENTeT; jeT

st Y wm()<car (TeT,ieN) (3
JET
dow(i) <z2()  GeM) (4)
i€EN
i(j) 20 (i€ N,jeM)

Here (3) enforces the bidders’ capacity constraints and (4)
ensures that the number of impressions does not exceed the
supply. Because the agents’ valuations are M-concave, this
linear program in fact has an integer optimal solution. In ou

It considers impressions in context this is not important, because #{g) are estimates

anyway, and presumably large. However, this fact does

as possible of each impression until volume bounds are make the auction design also suitable to situations where

reached.
worst-case running time @ (m log m + mt;), wheret; is
the size of the bid tree. The correctness of the algorithm is

Including the sort, the greedy algorithm has a there is a small, fixed number of impressions available (e.g.

in a television station’s daily programming schedule),tso i
is recorded here as a proposition.



Proposition 1 When agents submit their valuations as bid
trees, the corresponding allocation LP has an integer opti-
mal solution.

A solution to the allocation LP can be found in poly-
nomial time using the Ellipsoid Method, and standard ap-
proaches such as the simplex method should perform well
in practice. However, the bidding language was designed
for use with thesubgradient methgdvhich has several ad-

Since a lattice has a unique minimal elemgiand a unique
maximal elemenp, the auctioneer may choose to consis-
tently implement either of these. The minimal element gives
the most possible surplus to the bidders, while the maximal
element gives the most possible revenue to the seller, among
the set of CE prices. Because the set of dual solutions to an
LP is convex, so is the set of CE prices, andget (1 — a)p

is also a vector of CE prices, for amye [0, 1]. This allows

vantages in this domain. The subgradient method operates the auctioneer to also choose to modulate the allocation of

on the dual of the allocation LP, although both primal and
dual optimal solutions result. It updates prices accordiing
the rule

PP =p" + Brg”,
wherep” is thekth iterate of the prices. Let? € D;(p")
for eachi € N, andy”* be a revenue-maximizing alloca-

tion at pricesp®. The “subgradienty” can be chosen as
y* =", 2. Note that if¢* = 0, demand equals supply and

surplus between the bidders and seller. Because bid trees
represent M-concave valuations, there exist purely combi-
natorial algorithms (i.e., that do not use floating-poiritrar
metic) for computing the minimal and maximal CE prices.
Chapter 12 of Murota (2003) shows how the problem of
computing either element can be formulated as the dual of a
shortest path problem.

To save on bandwidth and lessen the burden on the auc-
tion infrastructure, we would like changes in the agentd’ bi

p are market-clearing prices. There are various approachestrees to reflect actual changes in their valuations, ratreer t

for selecting the stepsiz#,, which typically depends on the
Euclidean norm ofy* (smaller norms imply smaller step-

gaming behavior. Competitive equilibrium prices are ukefu
because they ensure a certain stability in the bids. If agent

sizes); see for example Chapter 6.3 of Bertsekas (1999). To act purely as price takers, they are satisfied with the given

be clear, the iterates® are never actually quoted as prices,
except perhaps for the final one. Different iterates should
not be confused with different prices quoted over time be-
cause of changing market conditions. The final allocation
and prices can be implemented directly, or used as inputs to

allocation, and no changes in their trees are needed. The
auctioneer is also satisfied because no impression thal coul
have generated more revenue goes unallocated.

Of course, agents may realize that they are not in fact
price-takers, and that the prices—being dual variablebef t

a procedure that computes special CE prices (see the nextallocation LP—should vary as the bid trees are changed, ei-

section). Although Proposition 1 only guarantees the ex-
istence of a single integer optimal solution, the subgratdie
method still converges to such a solution because theéterat
z* are always integer.

The first advantage of this method is that computing the

ther in structure or value. It is therefore instructive tameo
sider what incentives the agents may have to alter their bid
trees. ldeally, we would like to reach a scenario where the
agents are satisfied with their current bid trees as far as the
allocation and prices that result. The next section addsess

subgradient reduces to a series of demand queries, whichthis design issue.

could be parallelized, and each demand query can be eval-

uated efficiently by Lemma 1. A second advantage is that
if bid trees change, the price computation can be restarted
from the current price vector rather than some default such
as0. If the changes to the bid trees are slight, only a few

rounds should be required to converge to the new prices.

Pricing
The linear programming approach to the allocation problem
is useful because it also provides prices for various kirfds o
impressions. Lep(j) be the dual variable corresponding to
the constraint foy in (4) in the allocation LP.

Proposition 2 If z is an optimal primal solution to the allo-
cation LP andp is an optimal dual solution, thefx, p) is a
competitive equilibrium.

The set of CE prices will typically not be unique. In our

Incentives

If no agent would gain by adapting its bid tree, no matter
how the other agents behave, this is known as a “dominant
strategy equilibrium” in pure strategies. A classic way to
achieve this in multi-agent systems is through VCG pay-
ments. Unfortunately, it may not be possible to charge VCG
payments in a competitive equilibrium in our model, be-
cause the price space is not rich enough—we only consider
linear prices. Bikhchandani & Ostroy (2002) show that in
general, nonlinear and personalized prices may be needed
to price the VCG payoff point when agents have M-concave
valuations. This kind of pricing does not seem appropriate
for this domain, because bidders can enter or leave the sys-
tem at any time in a typical online ad auction, and so it is
necessary to provide informative prices to new arrivals: Pe
sonalized prices provide no useful information to new en-

model, because each agent's valuation is M-concave, the settrants. Laboratory experiments suggest that linear paces

of competitive equilibrium prices is in fact a lattice undee
usual meet and join operations for real vectors.

Proposition 3 The set of competitive equilibrium prices is
a lattice when valuations are described by bid trees.

The lattice property is a key feature of our design. It al-
lows the auctioneer to be consistent in his choice of prices.

very informative: they are easy to interpret, and apply to
everyone simultaneously (Portetral. 2003).

An alternative then is to quote the linear prices that mini-
mize the incentives for bidders to adapt their bid tré@his

4Formally, the incentive to deviate for ageinis the maximum
increase in utilitye; that can be achieved by switching to another



may be a good compromise if bidders are bounded-rational  The proposition shows that, just as bids can be specified
and would not notice or bother to switch when this would at various levels of granularity, local updates to the babtr
yield just a small improvementin payoff. In this case, Parke can affect volumes at different levels of granularity. For i

et al. (2001) have shown that minimal CE prices maximize stance, if a bidder wishes to increase overall impressiens r
the incentives for truthful reporting. Therefore, implemte gardless of origin, the feedback scheme would suggest an
ing the smallest linear CE price vectpileads to the most appropriate increase at the root node.

“stable” system in a sense, if we restrict ourselves to lin-

ear prices. Again, the lattice property proves convenidnt. Conclusion

there were multiple minimal CE price vectors, there would e proposed an expressive auction design for the domain
be the added problem of choosing among these, and eachys gisplay advertising, for use within advertising netwerk
implies a different distribution of surplus among the bid- At the core of our design is a bidding language that allows
ders. Distributing surplus is a sensitive question: for in-  aqvertisers to specify values for different kinds of impres
stance, should the seller favor small or large bidders? The gjons, and that admits scalable allocation and pricing-algo
difficulty is compounded by the fact that once a selection is rithms. The language does not force the advertisers to refine
made, algorithms must be developed to compute the desired thejr values according to irrelevant attributes, but ratie
prices. lows them to specify bids at different levels of granularity
Volume constraints give the advertisers even more control
over their campaigns. There is also the possibility of pro-
viding feedback (again, at different levels of granuldyitp

help the advertisers assess the cost of volume increases at
different nodes.

Bidder Feedback

The discussion on incentives in the previous section
assumed—as is standard in game theory and mechanism

design—that bidders are perfectly rational and know their
valuation functions exactly. In practice, bidders varyhnit

level of sophistication. Some bidders may not have exact

value information, or may find it costly to place a precise

value on different impressions. It may be the case that such

advertisers only indirectly know their valuations throudg
mand information: given current prices, they know how
much volume they would like of different kinds of impres-

sions, but have not converted their demand function into a

valuation function. In this section, we describe a simpte bi

der feedback mechanism that can suggest bid tree updates

to bidders who want to increase their volume for different
kinds of impressions.
Suppose bidderwants to receive at leagt; impressions
from sites inT' C M, whereT € 7; is a node in biddei’s
bid tree. For example, the advertiser with the bid tree in
Figure 1(b) may only receive 10,000 impressions from FL,
and want to increase FL impressions to 20,000. Naturally,
the advertiser should first ensure that the volume constrain
for the node isc;r > d;7. If this change still does not give
the desired volume, the bigr should be increased.
Suppose we introduce the constraint

Z xi(j) = dir )

JjeET

into the allocation LP to find an efficient allocation. Let
be the optimal value of the dual variable corresponding to
this constraint. The following proposition confirms thais
informative feedback to the bidder.

Proposition 4 Suppose biddef increasesh;r to b, + A

in its bid tree, and leaves the bids in the other nodes un-
changed. Then there exists an efficient allocation, with re-
spect to the new profile of bid trees, in whicheceives at
leastd;r units of impressions froff C M.

bid tree, keeping the other agents’ trees fixed. We wish tominze
maXienN €;.
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Appendix

Proof of Lemma 1. Let z; be a set of impressions with
vi(x;) > —oo. If x;(§) > 0 butm;(j) < 0, then we can
increase utility while respecting volume constraints bir se
ting z;(j) := 0. So we can safely restrict our attention to
the set of impressionssuch thatr;(j) > 0, as Algorithm 1
does. LetU be the set of such impressions. We consider
the restrictionv;;; of v; to such sites. By Theorem 6.13 of
Murota (2003) this restriction is still M-concave, and so is
the functionv;y — py, wherepy denotes the restriction of
toU.

Sincewv;y — py is M-concave, the set af; such that
viu(x;) — (pu,x;) > —oco is a matroid, by Proposition 6.1
of Murota (2003). Therefore, by a result of Edmonds, the
greedy algorithm correctly identifies a maximum weight ba-
sis, which in this case corresponds to a utility-maximizing
bundle. O

Proof of Proposition 1. The primal is clearly feasible and
bounded, and hence so is the dual. From Propositiona2, if
andp are optimal primal and dual solutions, thén p) is a
competitive equilibrium, where the allocatianis possibly
fractional. So a fractional CE exists. Because the bidders a
have M-concave valuations, if then follows from Theorem
11.14 of Murota (2003) that there exists a CE, p) where

7' is integer. Applying Proposition 2 once again, we see that
2’ is an integer optimal solution to the primal. O

Proof of Proposition 2. Let p(j) be the dual variable cor-
responding to constraint fogr € M in (4), and letr;r be
the dual variable corresponding to the constraintifand
T € 7, in (3). Define

>

{TeT; | jeT}

>

{TeT; | jeT}
The dual of the allocation LP is as follows.

min SO mirer + Y p(5)2(5)

1ENTET; JjEM

mi(j) = T,

and

bi(j) = bit.

s.t. mi(4) > bi(4) — p(4) (i€N,jeM)
mir >0 (iEN,TE?;)
p(j) =0 (j € M)

Let z and (7, p) be optimal primal and dual solutions, re-
spectively. By the dual constraings,> 0. By complemen-
tary slacknessp(j) > 0 implies that) ", \ =:(j) = z(j).
This shows thatr maximizes the revenue to the seller at
pricesp.

Again, by complementary slacknessgif(j) > 0 then

mi(j) = bi(j) — p(j)-
Summing over allj € M yields

o mw(i) = D bi()wi(G) = Y p(i)ai(i). (6)

jeM JjEM JjeEM

The right-hand side of this equality is the surplus to bidder
i from outcome(z,p). Letz’ be any feasible allocation.
Summing the first dual constraints yields

o mwG) = D b)) = D p(i)ai()-

jeM jeM jeM

()

The right-hand side of this inequality is the surplus to leidd
i from outcome(z’, p). The left-hand side of (6) can be re-
written as

domw) =D mr | D w) |

jeEM TET; JET

and the right-hand side of (7) can be rewritten analo-
gously. By complementary slacknessy > 0 implies that
ZjeT z;(j) = «T, sox; maximizes the last expression,
given the primal feasibility constraints. Hence

> mili)aiG) = > mild)a ) )
jEM jEM
Combining (6), (7), and (8) shows that maximizes bidder
i's utility at pricesp. Hence(z, p) is a CE. O

Proof of Proposition 3. From Propositions 1 and 2, there
exists a CE(x, p) wherex is integer. Because the bidders’
valuations are all M-concave, it follows from Theorem 11.16
of Murota (2003) that the set of CE prices forms a lattice.

Proof of Proposition 4. Consider the primal program with
constraint (5) added. By strong duality, a solutiofs pri-
mal optimal for this program if and only if it is feasible and
optimal for the program obtained by dualizing constraint (5
This latter program has the objective

maxz Z Zb;sxi(j) — ;T

1€EN SeT; jeS

A
S T

We can drop the trailing constant/,r from the objective,
which recovers the original allocation LP, except that tlte b
vectorb has been replaced with the updated bid veétor
Hencez is an optimal solution when biddeélincrease$,;

by A, and since it was feasible for the original program, it
satisfies (5). O

where
if S=T
otherwise

bis + A
bis



