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Abstract

We propose an expressive auction design that allows adver-
tisers to specify the kinds of demographics and websites they
wish to target within an advertising network. The design al-
lows the network to differentiate impressions according to
relevant attributes (e.g., geographic location of the user, topic
of the webpage). Advertisers can place bids for different
kinds of impressions according to their attributes, and can
also specify volume constraints to control exposure. The nov-
elty of the design is a bidding language that admits scalable
allocation and pricing algorithms. We discuss the incentive
properties of different pricing approaches. We also propose
a bidder feedback mechanism to mitigate the complexity of
expressive bidding.

Introduction
Advertising networks such as those run by Ad.com, Google,
and Yahoo! provide matching functions that display banners
throughout websites in a network of affiliates. The matching
is based on the nature of the advertisement, and a bid pro-
vided by the advertiser. The trend in display advertising is
to allow advertisers to specify what kinds of users they are
targeting, for example by geographic location, interests,and
even online behavior (Story 2007). This points to the need
for auction mechanisms that can allow bidders to express
complicated valuations over user attributes.

The design of expressive auctions is an interdisciplinary
endeavor that draws on ideas from microeconomics and
computer science, in particular artificial intelligence. AI
techniques have found application in two key design areas:

• Bidding languages.Bidders cannot exhaustively describe
their values for every possible outcome. A language (syn-
tax and semantics) is needed that can succinctly describe
realistic valuation functions. The language is usually
specified in terms of data structures that allow value in-
formation to be efficiently queried (Cavalloet al. 2005;
Boutilier & Hoos 2001; Nisan 2000).

• Allocation algorithms.Given representations of the bid-
ders’ preferences, an efficient (value-maximizing) alloca-
tion must be computed, and in practical settings such as
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combinatorial auctions this can be NP-hard. Effective al-
gorithms and heuristics are needed that perform well on
realistic problem instances (Boutilier 2002; Sandholmet
al. 2005).

Our main contribution is to the bidding language literature,
because the properties of our auction hinge on the structure
of our language. Our language is specifically designed to
admit tractable allocation algorithms.

We propose an expressive auction design for online dis-
play advertising. The auction allocates a forecasted sup-
ply of different kinds of impressions (views of an advertise-
ment); impressions are differentiated according to the con-
ditions under which they occur (e.g., topic of the webpage
or geographic location of user). The supply is forecast over
a fixed time period such as a week. If market conditions
do not change, the computed allocation can be interpreted
as the expected amount of impressions that each bidder will
receive in the period. At any given time, however, it is best
to interpret the allocation as therate at which bidders will
receive different kinds of impressions. Our view is that the
allocation should be recomputed at fixed time intervals (e.g.,
daily), and also if there are significant changes in market
conditions, such as entry or exit of large bidders.

The auction is meant to be complemented with a schedul-
ing algorithm. The scheduler tries to display advertisements
over time in such a way that the realized allocation rate
matches the desired rate computed by the auction. This
scheduling problem is an orthogonal issue that we do not
address in this paper.

The core of our design is a bidding language that al-
lows bidders to specify values for different kinds of impres-
sions, and also to place volume constraints on impressions
to control exposure. Besides expressiveness, the language
is designed with incentives and computational tractability in
mind. It allows for:
1. Efficient and scalable allocation algorithms, so that allo-

cations can be quickly recomputed when needed

2. Unique market-clearing prices that minimize the bidders’
incentives to game the auction

3. Efficient, combinatorial algorithms for computing these
specific market-clearing prices

We also propose a bidder feedback mechanism that can rec-
ommend bid increases to agents who would like to achieve



greater volume of certain demographics.
The auction computes an “efficient” (value-maximizing)

rather than “optimal” (revenue-maximizing) allocation.1 We
focus on efficiency because there are currently several com-
peting ad networks, so it is unclear whether it is feasible to
exercise monopoly power in this landscape. Still, it may be
possible to modify our design to extract more revenue; this
would involve weighting bidders so that their bids are not all
considered equally. This kind of approach has already been
suggested for sponsored search auctions (Lahaie & Pennock
2007), and its application to the display advertising domain
is still an open and challenging problem.

Preliminaries
An impressionoccurs when a user observes an ad. The im-
pression is distinguished by the conditions in which the ad
was observed, for example:

• the user is in California

• the webpage has political content

• the time of day is “evening”

and so on. Formally, there is a set ofattributesA =
{A1, . . . , As}, and each attribute is a set ofvalues; for ex-
ample, the “state” attribute would be{CA, MA , NY, . . .}.
Distinct attributes are disjoint.2 The attributes and their pos-
sible values are determined by the seller (the network). An
impression is a tuple〈a1, . . . , as〉 such thatat ∈ At for
t = 1, . . . s. Let M be the set of possible impressions (tu-
ples), with cardinalitym = Πs

t=1|At|.
Let N = {1, . . . , n} be the set of bidders (advertisers).

An element ofZM
+ represents a bundle of impressions. The

notationZM
+ denotes the set of vectors with entries indexed

by elements ofM and drawn fromZ+ (the non-negative in-
tegers). Forxi ∈ Z

M
+ , we denote the entry corresponding

to impressionj ∈ M by xi(j). Each bidderi has a val-
uation defined over bundles,vi : Z

M
+ → R+. The total

price of a bundle of impressionsxi at pricesp ∈ R
M
+ is the

usual scalar productp·xi =
∑

j∈M p(j)xi(j). Bidders have
quasi-linear utilities, so that the utility to bidderi of bundle
xi at pricesp is vi(xi) − p · xi.

To plan an allocation of impressions, we assume the seller
has an estimate of the number of units available of each im-
pression over some fixed time period. Letz(j) be the esti-
mate for the supply of impressionj ∈ M . The objective is to
compute an efficient allocation of the forecasted impression
units together with market-clearing prices. An allocationis
a vector of bundlesx = (x1, . . . , xn). An allocation isfeasi-
ble if

∑n

i=1
xi(j) ≤ z(j) for all j ∈ M (an impression does

not have to be allocated: the ad space can be left blank).
Let Γ be the set of feasible allocations. An allocationx is

1Efficient can mean value-maximizing, when referring to al-
locations, or polynomial-time, when referring to algorithms. It
should be clear from context which definition applies.

2Certain attributes could be hard to measure for a given impres-
sion; for example, we may not be able to identify the geographic
location of a user. Each attribute can have its own “undefined”
value to handle such cases.

efficientif

x ∈ arg max
y∈Γ

n
∑

i=1

vi(yi).

Prices are used to bring a level of stability to the agents’
bids. They also provide information on the cost of differ-
ent kinds of impressions to possible new entrants. Our auc-
tion quotes market-clearing prices. At clearing prices, each
agent prefers his own bundle of impressions to any other
possible bundle, and the allocation maximizes the seller’s
revenue. In this sense, demand equals supply, and bids
remain stable as long as agents act as pure price-takers.
Market-clearing prices are calledcompetitive equilibrium
(CE) prices. LetDi(p) = arg max vi(xi) − p · xi be the
set of utility-maximizing bundles for bidderi at pricesp, its
“demand set.” A CE is an allocation-price pair〈x, p〉 such
thatxi ∈ Di(p) for eachi ∈ N , and such that eachj ∈ M
with

∑

i∈N xi(j) < z(j) hasp(j) = 0.
The Fundamental Welfare Theorems state that, if a CE

exists—a property that depends on the model and price
space in general—then (1) ifp are CE prices,〈x, p〉 is a CE
for any efficient allocationx, and (2) if〈x, p〉 is a CE,x is
efficient (Bikhchandani & Ostroy 2002). Computing an effi-
cient allocation is therefore consistent with the objective of
computing market-clearing prices.

It may seem that the number of different impressionsm
would be too large to make the design practical:m is ex-
ponential in the number of attributes. Note though that it
does not make sense to let advertisers bid for impressions
that only exist in very low volumes, because decent supply
forecasts for such impressions would not be possible. This
restricts the number of different impressions that can be use-
fully allowed. (Bidders could be forbidden to bid on impres-
sionsj whosez(j) is too small, presumably through the bid-
ding interface.) Viewing the allocation problem as a combi-
natorial auction, the items here are impressions (combina-
tions of attributes values), hence prices are specified over
impressions rather than attributes.

Bidding Language
We first describe the bidding language in terms of the data
structures that would be used to encode its instances, and
then turn to the properties of the valuations it describes. We
do not discuss the actual bidding interface; there are many
conceivable interfaces for our language.

Bid Trees
To encode valuations, we propose “bid trees” that enable ad-
vertisers to specify values for various kinds of impressions.3

Bid trees can be used to encode both the advertisers’ true
valuations and theirreportedvaluations, or “bids”. The two

3Tree-based languages have been proposed for combinatorial
auctions, such as theLGB language of Boutilier & Hoos (2001), as
well as for combinatorial exchanges, such as TBBL by Cavalloet
al. (2005). The language proposed here represents a smaller class
of valuations than either of those languages, but is specially tailored
to the domain of display advertising.
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Figure 1: Instances of the bidding language.

need not coincide, as we explain later when addressing in-
centives, although for clarity we assume for now that they
do.

For instance, suppose a car manufacturer wishes to run an
online campaign to advertise a new truck model. The cam-
paign should only run in California and Florida. In Florida,
the campaign should have a limited exploratory run across
a variety of sites, to see what demographics respond best to
the new model. In California, the campaign should project a
“rugged” image for the truck. The company therefore de-
cides to run its banner ad next to content with an “auto-
motive” or “sports” theme, and to avoid any content with a
“fashion” theme. It also decides to value exposure on blogs
and devalue mainstream news sites, because it would like
the campaign to have “grassroots” appeal.

A candidate bid tree for this kind of valuation is given in
Figure 1(a). The root node represents all possible impres-
sions over the network. The value of an impression from a
certain source is evaluated by traveling down the tree follow-
ing attributes that apply, starting at the root, and summing
the values in the nodes along the way. For instance, impres-
sions on automotive or sports sites in CA are valued at$.4 if
they are news sites,$.6 if they are blogs, and$.5 otherwise.

An advertiser constructs its bid tree by starting with a root
node, and then creating more nodes by repeatedly branching
on an attribute at a leaf. An advertiser may branch on only
some values of an attributeAt rather than all values forAt,
if it chooses. The advertiser may also branch on sets of at-
tributes, as long as the sets are disjoint; for instance, sepa-
rate branches for{CA, FL} and{FL, NY} are not allowed,
as this leads to ambiguous semantics. An attribute may not
be branched on at a node if it was already branched on at an
ancestor node.

But there may still be a disconnect between the bid tree
in Figure 1(a) and the company’s valuation. Exposure out-
side of CA or FL is worthless, but does not do any harm if
it occurs, so it indeed has value $0. On the other hand, ex-
posure on fashion sites in CA does do harm, because it goes
against the brand image the advertiser is trying to project
in that state. Also, there is no telling how many impres-

sions will come from FL, even though the run there should
be limited. Hence we further allow advertisers to annotate
nodes with capacities. In Figure 1(b), there is a new node
for fashion sites in CA, with a capacity of 0 to ensure no im-
pressions are provided.The FL node now has a capacity of
50,000 impressions to ensure the campaign there is limited
to this exposure.

Properties
The value functions encoded by bid trees can be described
formally as follows. Given bidderi’s bid tree, we can define
a familyTi of subsets ofM corresponding to each node. For
instance, for the tree of Figure 1 we would have the set of all
impressions that occurred in CA, the set of all impressions
on automotive or sports sites in CA, the set of all impres-
sions on automotive or sports blogs in CA, etc. It is straight-
forward to see that, because of the tree format, this family
is laminar: for anyT, T ′ ∈ Ti, eitherT ⊆ T ′, T ′ ⊆ T , or
T ∩ T ′ = ∅. To eachT ∈ Ti is associated an integral capac-
ity ciT (possibly+∞) and a valuebiT . Define the functions

viT (r) =

{

biT r if 0 ≤ r ≤ ciT

−∞ otherwise (1)

for eachT ∈ Ti. Herer is a non-negative scalar, represent-
ing a certain number of impressions.

The agent’s value for a bundle of impressionsxi is then

vi(xi) =
∑

T∈Ti

viT (xi(T )) (2)

wherexi(T ) is shorthand for
∑

j∈T xi(j), namely the total
of all impressions fromT . The volume constraints make the
valuation functions nonlinear. Without loss of generality,
we can assume thatTi contains a node{j} for eachj ∈ M ,
whose capacity is no more thanz(j).

Danilov et al. (2001), generalizing results of Kelso &
Crawford (1982), show that valuations of the form (2),
where Ti is laminar and eachviT exhibits decreasing
marginal values over some interval (and is−∞ outside this
interval), are “M-concave.” The actual specification of this
condition is not important for our treatment. Intuitively,it



implies that impressions are “substitutes”: if the price ofan
impressionj ∈ M is increased, an agent’s demand for the
other impressions does not decrease, because the agent sub-
stitutes away fromj.

This M-concave property is a main motivation for adopt-
ing bid trees, besides their natural expressiveness. It is well-
known that it implies the existence of a CE (Danilov, Ko-
shevoy, & Murota 2001; Kelso & Crawford 1982), and it
also allows for fast allocation and pricing algorithms.

Queries
There are two fundamental queries that are typically made
on bidding languages: value and demand queries. Each
query is a fundamental subroutine of the allocation and pric-
ing algorithms discussed later, so it is important to under-
stand their complexity.

Value. On a value query, a bundle of impressionsxi ∈ Z
M
+

is input and the valuevi(xi) according to the bid tree is
output.

Demand. On a demand query, pricesp ∈ R
M
+ are input,

and some utility-maximizing bundle at pricesp is output.

Clearly, the time to evaluate the response to a value query is
at most the depth of the bid tree. This is at mostti = |Ti|,
the size of the bid tree, but can beO(log ti) if the tree is
balanced.

From a valuation of the form (2) derived from a bid tree,
the response to a demand query can be computed using Al-
gorithm 1. Forj ∈ M , χj denotes the unit vector with entry
j being 1 and all others 0. Let0 be the zero vector. Let
wi(j) =

∑

j∈T biT be the marginal value from an impres-
sion on sitej, and letπi(j) = wi(j) − p(j) be the marginal
surplus.

Input : Pricesp ∈ R
M .

Output : A set of impressionsxi ∈ Di(p).
Setxi := 0.
For eachT ∈ Ti, setdT := ciT .
Discard the elementsj ∈ M that haveπi(j) < 0.
Sort the remaining elements according toπi. In case of
a tie, break arbitrarily.
foreachj ∈ M in order do

Setk := min{T∈Ti | j∈T} dT .
Setxi := xi + kχj .
foreachT ∈ Ti such thatj ∈ T do

SetdT := dT − k.
end

end
Algorithm 1 : Greedy algorithm for demand queries on bid
trees.

Algorithm 1 is a greedy algorithm that computes a re-
sponse to a demand query. It considers impressions in
decreasing order of marginal utility, and collects as much
as possible of each impression until volume bounds are
reached. Including the sort, the greedy algorithm has a
worst-case running time ofO(m log m + mti), whereti is
the size of the bid tree. The correctness of the algorithm is

recorded as a lemma. Proofs are collected in an appendix
(available from the authors).

Lemma 1 Algorithm 1 correctly outputs a set of impres-
sionsxi ∈ Di(p).

Among the common bidding languages surveyed by
Nisan (2000), only XOR allows for polynomial-time de-
mand queries; for the others, evaluating a demand query
is NP-hard. The XOR language does not seem appropriate
here, however. It does not provide the ability to specify vol-
ume constraints, and cannot succinctly represent the additive
valuation, which is plausible in this domain.

Allocation
A natural way to allocate impressions in an online fashion is
to give each arriving impression to the advertiser who values
it most among those advertisers for whom the extra impres-
sion would not violate any volume constraints. This scheme
is not efficient in our context. Volume constraints are the
source of the complication, as the following example illus-
trates.

Example.There are two bidders{a, b} and two impressions
available, one from Massachusetts (MA) and one from Cal-
ifornia (CA). The valuations as bid trees are

a : 2 1 b : 0

1

MA

If the MA impression comes before the CA impression, the
greedy scheme assigns MA toa and CA tob, for a value of
2. But it is optimal to assign MA tob and CA toa, for a
value of 3.

The scheme fails because it does not take into account
forecasted supply. Recall that our auction computes a de-
sired allocation over a fixed time period (equivalently, de-
sired allocation rates), and passes the result to a scheduler.
The efficient allocation problem can be formulated as a lin-
ear program:

max
x

∑

i∈N

∑

T∈Ti

∑

j∈T

biT xi(j)

s.t.
∑

j∈T

xi(j) ≤ ciT (T ∈ Ti, i ∈ N ) (3)

∑

i∈N

xi(j) ≤ z(j) (j ∈ M ) (4)

xi(j) ≥ 0 (i ∈ N , j ∈ M )

Here (3) enforces the bidders’ capacity constraints and (4)
ensures that the number of impressions does not exceed the
supply. Because the agents’ valuations are M-concave, this
linear program in fact has an integer optimal solution. In our
context this is not important, because thez(j) are estimates
anyway, and presumably large. However, this fact does
make the auction design also suitable to situations where
there is a small, fixed number of impressions available (e.g.,
in a television station’s daily programming schedule), so it
is recorded here as a proposition.



Proposition 1 When agents submit their valuations as bid
trees, the corresponding allocation LP has an integer opti-
mal solution.

A solution to the allocation LP can be found in poly-
nomial time using the Ellipsoid Method, and standard ap-
proaches such as the simplex method should perform well
in practice. However, the bidding language was designed
for use with thesubgradient method, which has several ad-
vantages in this domain. The subgradient method operates
on the dual of the allocation LP, although both primal and
dual optimal solutions result. It updates prices accordingto
the rule

pk+1 = pk + βkgk,

wherepk is thekth iterate of the prices. Letxk
i ∈ Di(p

k)
for eachi ∈ N , andyk be a revenue-maximizing alloca-
tion at pricespk. The “subgradient”gk can be chosen as
yk −

∑

i xk
i . Note that ifgk = 0, demand equals supply and

p are market-clearing prices. There are various approaches
for selecting the stepsizeβk, which typically depends on the
Euclidean norm ofgk (smaller norms imply smaller step-
sizes); see for example Chapter 6.3 of Bertsekas (1999). To
be clear, the iteratespk are never actually quoted as prices,
except perhaps for the final one. Different iterates should
not be confused with different prices quoted over time be-
cause of changing market conditions. The final allocation
and prices can be implemented directly, or used as inputs to
a procedure that computes special CE prices (see the next
section). Although Proposition 1 only guarantees the ex-
istence of a single integer optimal solution, the subgradient
method still converges to such a solution because the iterates
xk are always integer.

The first advantage of this method is that computing the
subgradient reduces to a series of demand queries, which
could be parallelized, and each demand query can be eval-
uated efficiently by Lemma 1. A second advantage is that
if bid trees change, the price computation can be restarted
from the current price vector rather than some default such
as0. If the changes to the bid trees are slight, only a few
rounds should be required to converge to the new prices.

Pricing
The linear programming approach to the allocation problem
is useful because it also provides prices for various kinds of
impressions. Letp(j) be the dual variable corresponding to
the constraint forj in (4) in the allocation LP.

Proposition 2 If x is an optimal primal solution to the allo-
cation LP andp is an optimal dual solution, then〈x, p〉 is a
competitive equilibrium.

The set of CE prices will typically not be unique. In our
model, because each agent’s valuation is M-concave, the set
of competitive equilibrium prices is in fact a lattice underthe
usual meet and join operations for real vectors.

Proposition 3 The set of competitive equilibrium prices is
a lattice when valuations are described by bid trees.

The lattice property is a key feature of our design. It al-
lows the auctioneer to be consistent in his choice of prices.

Since a lattice has a unique minimal elementp
¯

and a unique
maximal element̄p, the auctioneer may choose to consis-
tently implement either of these. The minimal element gives
the most possible surplus to the bidders, while the maximal
element gives the most possible revenue to the seller, among
the set of CE prices. Because the set of dual solutions to an
LP is convex, so is the set of CE prices, and soαp

¯
+(1−α)p̄

is also a vector of CE prices, for anyα ∈ [0, 1]. This allows
the auctioneer to also choose to modulate the allocation of
surplus between the bidders and seller. Because bid trees
represent M-concave valuations, there exist purely combi-
natorial algorithms (i.e., that do not use floating-point arith-
metic) for computing the minimal and maximal CE prices.
Chapter 12 of Murota (2003) shows how the problem of
computing either element can be formulated as the dual of a
shortest path problem.

To save on bandwidth and lessen the burden on the auc-
tion infrastructure, we would like changes in the agents’ bid
trees to reflect actual changes in their valuations, rather than
gaming behavior. Competitive equilibrium prices are useful
because they ensure a certain stability in the bids. If agents
act purely as price takers, they are satisfied with the given
allocation, and no changes in their trees are needed. The
auctioneer is also satisfied because no impression that could
have generated more revenue goes unallocated.

Of course, agents may realize that they are not in fact
price-takers, and that the prices—being dual variables of the
allocation LP—should vary as the bid trees are changed, ei-
ther in structure or value. It is therefore instructive to con-
sider what incentives the agents may have to alter their bid
trees. Ideally, we would like to reach a scenario where the
agents are satisfied with their current bid trees as far as the
allocation and prices that result. The next section addresses
this design issue.

Incentives
If no agent would gain by adapting its bid tree, no matter
how the other agents behave, this is known as a “dominant
strategy equilibrium” in pure strategies. A classic way to
achieve this in multi-agent systems is through VCG pay-
ments. Unfortunately, it may not be possible to charge VCG
payments in a competitive equilibrium in our model, be-
cause the price space is not rich enough—we only consider
linear prices. Bikhchandani & Ostroy (2002) show that in
general, nonlinear and personalized prices may be needed
to price the VCG payoff point when agents have M-concave
valuations. This kind of pricing does not seem appropriate
for this domain, because bidders can enter or leave the sys-
tem at any time in a typical online ad auction, and so it is
necessary to provide informative prices to new arrivals. Per-
sonalized prices provide no useful information to new en-
trants. Laboratory experiments suggest that linear pricesare
very informative: they are easy to interpret, and apply to
everyone simultaneously (Porteret al. 2003).

An alternative then is to quote the linear prices that mini-
mize the incentives for bidders to adapt their bid trees.4 This

4Formally, the incentive to deviate for agenti is the maximum
increase in utilityǫi that can be achieved by switching to another



may be a good compromise if bidders are bounded-rational
and would not notice or bother to switch when this would
yield just a small improvement in payoff. In this case, Parkes
et al. (2001) have shown that minimal CE prices maximize
the incentives for truthful reporting. Therefore, implement-
ing the smallest linear CE price vectorp

¯
leads to the most

“stable” system in a sense, if we restrict ourselves to lin-
ear prices. Again, the lattice property proves convenient.If
there were multiple minimal CE price vectors, there would
be the added problem of choosing among these, and each
implies a different distribution of surplus among the bid-
ders. Distributing surplus is a sensitive question: for in-
stance, should the seller favor small or large bidders? The
difficulty is compounded by the fact that once a selection is
made, algorithms must be developed to compute the desired
prices.

Bidder Feedback
The discussion on incentives in the previous section
assumed—as is standard in game theory and mechanism
design—that bidders are perfectly rational and know their
valuation functions exactly. In practice, bidders vary in their
level of sophistication. Some bidders may not have exact
value information, or may find it costly to place a precise
value on different impressions. It may be the case that such
advertisers only indirectly know their valuations throughde-
mand information: given current prices, they know how
much volume they would like of different kinds of impres-
sions, but have not converted their demand function into a
valuation function. In this section, we describe a simple bid-
der feedback mechanism that can suggest bid tree updates
to bidders who want to increase their volume for different
kinds of impressions.

Suppose bidderi wants to receive at leastdiT impressions
from sites inT ⊆ M , whereT ∈ Ti is a node in bidderi’s
bid tree. For example, the advertiser with the bid tree in
Figure 1(b) may only receive 10,000 impressions from FL,
and want to increase FL impressions to 20,000. Naturally,
the advertiser should first ensure that the volume constraint
for the node isciT ≥ diT . If this change still does not give
the desired volume, the bidbiT should be increased.

Suppose we introduce the constraint
∑

j∈T

xi(j) ≥ diT (5)

into the allocation LP to find an efficient allocation. Letλ
be the optimal value of the dual variable corresponding to
this constraint. The following proposition confirms thatλ is
informative feedback to the bidder.

Proposition 4 Suppose bidderi increasesbiT to biT + λ
in its bid tree, and leaves the bids in the other nodes un-
changed. Then there exists an efficient allocation, with re-
spect to the new profile of bid trees, in whichi receives at
leastdiT units of impressions fromT ⊆ M .

bid tree, keeping the other agents’ trees fixed. We wish to minimize
maxi∈N ǫi.

The proposition shows that, just as bids can be specified
at various levels of granularity, local updates to the bid tree
can affect volumes at different levels of granularity. For in-
stance, if a bidder wishes to increase overall impressions re-
gardless of origin, the feedback scheme would suggest an
appropriate increase at the root node.

Conclusion
We proposed an expressive auction design for the domain
of display advertising, for use within advertising networks.
At the core of our design is a bidding language that allows
advertisers to specify values for different kinds of impres-
sions, and that admits scalable allocation and pricing algo-
rithms. The language does not force the advertisers to refine
their values according to irrelevant attributes, but rather al-
lows them to specify bids at different levels of granularity.
Volume constraints give the advertisers even more control
over their campaigns. There is also the possibility of pro-
viding feedback (again, at different levels of granularity), to
help the advertisers assess the cost of volume increases at
different nodes.
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Appendix

Proof of Lemma 1. Let xi be a set of impressions with
vi(xi) > −∞. If xi(j) > 0 but πi(j) < 0, then we can
increase utility while respecting volume constraints by set-
ting xi(j) := 0. So we can safely restrict our attention to
the set of impressionsj such thatπi(j) ≥ 0, as Algorithm 1
does. LetU be the set of such impressions. We consider
the restrictionviU of vi to such sites. By Theorem 6.13 of
Murota (2003) this restriction is still M-concave, and so is
the functionviU − pU , wherepU denotes the restriction ofp
to U .

SinceviU − pU is M-concave, the set ofxi such that
viU (xi) − 〈pU , xi〉 > −∞ is a matroid, by Proposition 6.1
of Murota (2003). Therefore, by a result of Edmonds, the
greedy algorithm correctly identifies a maximum weight ba-
sis, which in this case corresponds to a utility-maximizing
bundle. �

Proof of Proposition 1. The primal is clearly feasible and
bounded, and hence so is the dual. From Proposition 2, ifx
andp are optimal primal and dual solutions, then〈x, p〉 is a
competitive equilibrium, where the allocationx is possibly
fractional. So a fractional CE exists. Because the bidders all
have M-concave valuations, if then follows from Theorem
11.14 of Murota (2003) that there exists a CE〈x′, p〉 where
x′ is integer. Applying Proposition 2 once again, we see that
x′ is an integer optimal solution to the primal. �

Proof of Proposition 2. Let p(j) be the dual variable cor-
responding to constraint forj ∈ M in (4), and letπiT be
the dual variable corresponding to the constraint fori and
T ∈ Ti in (3). Define

πi(j) =
∑

{T∈Ti | j∈T}

πiT ,

and
bi(j) =

∑

{T∈Ti | j∈T}

biT .

The dual of the allocation LP is as follows.

min
π,p

∑

i∈N

∑

T∈Ti

πiT ciT +
∑

j∈M

p(j)z(j)

s.t. πi(j) ≥ bi(j) − p(j) (i ∈ N , j ∈ M )

πiT ≥ 0 (i ∈ N , T ∈ Ti)

p(j) ≥ 0 (j ∈ M )

Let x and (π, p) be optimal primal and dual solutions, re-
spectively. By the dual constraints,p ≥ 0. By complemen-
tary slackness,p(j) > 0 implies that

∑

i∈N xi(j) = z(j).
This shows thatx maximizes the revenue to the seller at
pricesp.

Again, by complementary slackness, ifxi(j) > 0 then

πi(j) = bi(j) − p(j).

Summing over allj ∈ M yields
∑

j∈M

πi(j)xi(j) =
∑

j∈M

bi(j)xi(j) −
∑

j∈M

p(j)xi(j). (6)

The right-hand side of this equality is the surplus to bidder
i from outcome(x, p). Let x′ be any feasible allocation.
Summing the first dual constraints yields

∑

j∈M

πi(j)x
′
i(j) ≥

∑

j∈M

bi(j)x
′
i(j) −

∑

j∈M

p(j)x′
i(j). (7)

The right-hand side of this inequality is the surplus to bidder
i from outcome(x′, p). The left-hand side of (6) can be re-
written as

∑

j∈M

πi(j)xi(j) =
∑

T∈Ti

πiT





∑

j∈T

xi(j)



 ,

and the right-hand side of (7) can be rewritten analo-
gously. By complementary slackness,πiT > 0 implies that
∑

j∈T xi(j) = ciT , so xi maximizes the last expression,
given the primal feasibility constraints. Hence

∑

j∈M

πi(j)xi(j) ≥
∑

j∈M

πi(j)x
′
i(j). (8)

Combining (6), (7), and (8) shows thatxi maximizes bidder
i’s utility at pricesp. Hence〈x, p〉 is a CE. �

Proof of Proposition 3. From Propositions 1 and 2, there
exists a CE〈x, p〉 wherex is integer. Because the bidders’
valuations are all M-concave, it follows from Theorem 11.16
of Murota (2003) that the set of CE prices forms a lattice.�

Proof of Proposition 4. Consider the primal program with
constraint (5) added. By strong duality, a solutionx is pri-
mal optimal for this program if and only if it is feasible and
optimal for the program obtained by dualizing constraint (5).
This latter program has the objective

max
∑

i∈N

∑

S∈Ti

∑

j∈S

b′iSxi(j) − λdiT

where

b′iS =

{

biS + λ if S = T
biS otherwise

We can drop the trailing constantλdiT from the objective,
which recovers the original allocation LP, except that the bid
vectorb has been replaced with the updated bid vectorb′.
Hencex is an optimal solution when bidderi increasesbiT

by λ, and since it was feasible for the original program, it
satisfies (5). �


