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Abstract. We present a simple game-theoretic model for the ESP game,
an interactive game devised to label images on the web, and characterize
the equilibrium behavior of the model. We show that a simple change
in the incentive structure can lead to different equilibrium structure and
suggest the possibility of formal incentive design in achieving desirable
system-wide outcomes, complementing existing considerations of robust-
ness against cheating and human factors.

1 Introduction

Showcased by the early success of “Games with a Purpose” [3], human compu-
tation considers the possibility that networks of people can be leveraged to solve
large-scale problems that are hard for computers. Work by von Ahn and oth-
ers has shown the tremendous power that networks of humans possess to solve
problems while playing computer games [4, 7, 5, 6]. The ESP game is an example
of such human computation; it is an interactive system that allows users to be
paired to play games that label images on the web [4]. Users play the ESP game
because it is an enjoyable game to play, with the added side-effect that they are
doing useful work in the process. Subsequent work to the ESP game has included
Peekaboom [7], Phetch [5], and Verbosity [6]. Hsu and colleagues [2, 1] developed
a simple game called PhotoSlap for determining content of images and provided
a game-theoretic analysis for PhotoSlap.

While there has been incredible progress in the area of human computation,
there is still much more potential. For “Games with a Purpose”, it seems espe-
cially appropriate to use game theory to better understand how to design incen-
tives in order to achieve system-wide goals. For example, it appears anecdotally
that during play of the ESP game that people coordinate on easy words and that
the game is less effective in labeling less obvious, harder words. Through this
line of work, we ultimately aim to show that proper incentive design along with
appropriate system design is an important paradigm for human computation
and peer production problems.

This paper aims to study behavior in the ESP Game through a game-
theoretic light. We propose a simple model of the game and consider two different
models of payoffs, namely match-early preferences (MEP) and rare-words-first



preferences. Match-early preferences model the setting in which players wish to
complete as many rounds as possible and receive the same score irrespective of
the words on which they match. The match-early preferences model is meant
to reflect the current method of assigning scores to outcomes in the ESP game.
Here we show that low effort is a Bayesian-Nash equilibrium for all distributions
on word frequencies, with players focusing attention on high-frequency words.
Rare-words-first preferences model the setting in which players wish to match
on infrequent words before frequent words, we suppose because of appropriately
designed incentives, and the speed with which a match is achieved is only a
secondary consideration. We show that under this preference model, there is a
significant difference in the equilibrium structure.

We briefly describe elements of the ESP game before introducing the model
in the next section. In the ESP game, players are randomly paired with another
player in the system for a set of 15 images. Players try to label as many images
of the 15 as they can in the allotted 2.5 minutes. Players receive a fixed number
of points after agreeing on a common word. In the set of 15 images, players get
bonus points after agreeing on five images, ten images, and fifteen images in
the same set. The only words that are used from the input streams are the first
agreed word. An interesting feature of the ESP game, not modeled here, is the
use of Taboo words [4]. Taboo words are words that are displayed next to the
image that players cannot enter for the corresponding image. Taboo words are
words that have been entered sufficiently many times in previous plays of the
image and encourage players to enter different words so that the set of labels
for an image can be extended.1 Modeling the effect of the Taboo Words is an
important direction for future work.

2 An ESP Model with Match-Early Preferences

We model the ESP game as a two-player, two-stage game of imperfect informa-
tion. We focus on modeling one of the 15 rounds, and thus the game associated
with a specific image. We model the ESP game with each player sampling words
from a universe of possible words associated with the picture, to which we asso-
ciate a frequency ordering. Players can vary the effort level that relates to how
likely they are to sample frequent words as opposed to infrequent words. Then
players decide which order to play their sampled words in the game. In the model
of match-early preferences, we instead capture the strategic behavior of having
15 rounds under a time constraint by providing a preference for matching in an
earlier location than a later location.

Let d > 0 denote the dictionary size, representing the number of words that
each player will think of for the image at hand. We model a universe of words
U = {w1, w2, ..., wn}, that represents all possible words to describe the image
and the knowledge that the game designer is trying to learn. Each word has an
1 In addition, von Ahn and Dabbish came up with a number of methods to circumvent

cheating, where possible methods of cheating include players trying to be paired with
themselves and global strategies such as entering “a” for every image [4].



L M H

x1; x2; x3; :::; xd x1; x2; x3; :::; xd x1; x2; x3; :::; xd
D � UL D � UM D � UH

Fig. 1. The game tree above represents the decision space of one player

associated frequency, where fi denotes the frequency of word wi. We assume that
a player can rank the words sampled by frequency. The frequencies satisfy the
property that

∑n
i=1 fi = 1. We assume that the words in the universe are ordered

according to decreasing frequency, that is f1 ≥ f2 ≥ ... ≥ fn. The frequency of
word i can be considered the frequency that the word would be mentioned if a
population of humans were each asked to state d words related to the image. We
assume that 1 < d < |U |.

Though this game has no communication between players and thus is prop-
erly analyzed as a normal-form game, it is useful to talk about a first stage
(choosing an effort level) and a second stage (choosing a permutation on the
dictionary). In the first stage of the game, players privately choose an effort
level: E = {L, M, H} for low, medium or high. The choice of effort level deter-
mines the set of words in the universe from which a player samples her dictionary.
If a player chooses L in the first stage of the game, the dictionary is sampled
from the top nL > 0 words (without replacement). We say that a player that
chooses effort level L has universe UL, where UL is exactly the set of the highest
nL frequency words in U . If a player chooses effort M in the first stage of the
game, the dictionary is sampled from the top nM > nL > 0 words. If a player
chooses effort H, the dictionary is sampled from the top nH = n words (i.e., the
entire universe). That is, word i in U is chosen with probability fi,H = fi.

Given word x ∈ U , fe(x) represents the frequency of word x given the player
has chosen effort level e. In Figure 1, this sample is modeled as a move by nature
and can be considered to be the point at which a player learns her “type”, namely
her dictionary of words. Figure 1 represents the choices of a single player in the
game, though both players are symmetric. Note that nL, nM , nH , and d are
parameters of the model and there is no cost associated with each of the first
level actions. We establish that low effort is an equilibrium under match-early
preferences even without introducing a cost, which would increase with effort
and presumably increase the benefits of low effort. We leave introducing cost
into this model for future work.

In the second stage, once each player privately learns her dictionary based on
the effort level chosen, players choose a permutation on the words. This models



the decision about the order in which a player should enter words. This order on a
player’s dictionary defines the second-stage action of each player and determines
the outcome of the game. The outcome is defined by the first word that is in
the ordered-list of both players and the location (where the location is defined
to be the maximum value of the two positions where the word occurs in each
ordered-list). In what follows, we refer to D1 as the dictionary for player 1 and
D2 as the dictionary for player 2. The second stage strategy s1 ∈ S1 for player 1
defines a specific order s1(D1) on the words in D1, for every possible dictionary.
Likewise, player 2 has a second-stage strategy s2 ∈ S2 that defines an order
s2(D2) for every dictionary. We restrict our attention to strategies that involve
playing all words in the dictionary since any strategy that does not involve
playing all words is weakly dominated by one that involves playing all words.
We also restrict our attention to consistent strategies, strategies for a player
that do not change the relative ordering of elements depending on the player’s
realized dictionary. In other words, a consistent strategy involves specifying a
total ordering of elements on U and applying that total ordering to the realized
dictionary.

A complete strategy for the ESP game is an ordered pair σi = (ei, si) ∈
E × Si = Σi. This defines the play in both stages for all possible dictionaries.
We focus here on pure strategies.

Definition 1. Suppose player 1 outputs a list of words x1, x2, ..., xd and player 2
outputs a list of words y1, y2, ..., yd. If there exists 1 ≤ i, j ≤ d such that xi = yj,
there was a match and this match occurred in location max(i, j). It is possible
for two sequences to have more than one match, so we concern ourselves with
the first match, that is the pair i, j that minimizes max(i, j) such that xi = yj.

An outcome is an ordered pair o = (w, l) ∈ (U ∪ φ) × ({1, ..., d} ∪ φ) where
(φ, φ) indicates there was no match and the (w, l) pair otherwise indicates that
the first match on word w ∈ U in location l ∈ L where L = {1, 2, . . . , d}∪φ. Let
O denote the set of possible outcomes. Since s1(D1) and s2(D2) specify orderings
on given dictionaries, they induce an outcome: the location of the first match.

Let outcome function g(s1(D1), s2(D2)) ∈ O denote this outcome. The loca-
tion (if any) of the first match is denoted by gl(s1(D1), s2(D2)) ∈ L.

Each player i has valuation vi(o) on outcome o, which induces a (weak)
total preference ordering on outcomes. For match-early preferences, we require
(w1, l1) ≡ (w2, l1) ≡ ... ≡ (wn, l1) Â (w1, l2) ≡ (w2, l2) ≡ ... ≡ (wn, l2) Â ... Â
(w1, ld) ≡ (w2, ld) ≡ ... ≡ (wn, ld) Â (φ, φ) for all players.

Let Pr(Di|ei) denote the probability of dictionary Di given effort level ei.
Often times we write this as Pr(Di) and leave the effort level implicit.

Definition 2. The probability of first match in li given s1(D1), s2, and dis-
tribution Pr(D2), is p(li, s1(D1), s2) =

∑
D2

Pr(D2)I(gl(s1(D1), s2(D2)) = li).
Similarly, the probability of first match in li on wj is p(wj , li, s1(D1), s2) =∑

D2
Pr(D2)I(g(s1(D1), s2(D2)) = (wj , li)). Often times we will abbreviate

p(li, s1(D1), s2) as p(li) and p(wj , li, s1(D1), s2) as p(wj , li).



Let ui(si(Di), s2−i(D2−i)) = vi(g(s1(D1), s2(D2))) be the utility of player i
given D1, D2. Let ui(si(Di), s2−i) =

∑
D2−i

Pr(D2−i)ui(si(Di), s2−i(D2−i)) be
the expected (interim) utility of player i given Di with respect to the distribu-
tion on all possible dictionaries of the other player, as induced by her effort level.
Let ui(σi, σ2−i) =

∑
D1

∑
D2

Pr(D1|e1) Pr(D2|e2)ui(si(Di), s2−i(D2−i)) be the
expected (ex ante) utility of player i before dictionaries are sampled, given com-
plete strategies σ = (σ1, σ2).

We analyze the second stage of the game before analyzing the complete game.
For this, consider the game induced by fixing top level effort levels (e1, e2) for
the two players (the second stage game conditioned on effort e1 and e2). In the
second stage, each player knows her own dictionary but not the dictionary of
the other player. We can now define two useful equilibrium concepts:

Definition 3. Strategy profile s∗ = (s∗1, s
∗
2) is an ex post Nash equilibrium of

the second stage of the ESP game conditioned on effort levels e1 and e2, if for
every D1 and every D2, we have:

ui(s∗i (Di), s∗2−i(D2−i)) ≥ ui(s′i(Di), s∗2−i(D2−i)), ∀s′i 6= s∗i , ∀i ∈ {1, 2} (1)

Definition 4. Strategy profile s∗ = (s∗1, s
∗
2) is a strict Bayesian-Nash equilib-

rium of the second-stage of the ESP game conditioned on effort levels e1 and e2

if for both players i ∈ {1, 2}, for every Di,

ui(s∗i (Di), s∗2−i) > ui(s′i(Di), s∗2−i), (2)

where the probability adopted in interim utility ui for the distribution on the
dictionary of player 2− i is induced by the effort of that player in the first stage.

Definition 5. Strategy profile σ∗ = (σ∗1 , σ∗2) ∈ Σ1×Σ2 is a strict Bayesian-Nash
equilibrium of the ESP game if for players i ∈ {1, 2}, ui(σ∗i , σ∗2−i) > ui(σ′i, σ

∗
2−i).

Since the effort level chosen by each player is not visible to the other player,
there is no need for a subgame perfect refinement.

3 Effort Level of Players under Match-Early Preferences

In this section, we analyze the equilibrium behavior under match-early prefer-
ences. We show that playing decreasing frequency in conjunction with low effort
is a Bayesian-Nash equilibrium for the ESP game. First we see that playing play-
ing words in order of decreasing frequency is not an ex-post Nash equilibrium
for the second stage of the game.

Lemma 1. Suppose that players are playing the same effort level and there are
three words in the universe, w1, w2, and w3 with associated probabilities f1,e,
f2,e, f3,e, and with f1,e > f2,e > f3,e. The second stage strategy profile s =
(s1, s2), where s1 and s2 are the strategies of playing words in order of decreasing
frequency, is not an ex-post Nash equilibrium.



Since playing words in order of decreasing frequency is not an ex-post Nash
equilibrium, we focus instead on Bayesian-Nash equilibrium. The following defi-
nition of stochastic dominance will enable equilibrium analysis for any valuation
function that satisfies MEP. In Lemmas 2 and 3, we show that this notion of
stochastic dominance is both sufficient and necessary for utility maximization.

Definition 6. Fixing effort levels e1 and e2 and fixing opponent’s second-
stage strategy s2, we say second-stage strategy s1 with match vector
(p(l1, s1(D1), s2), p(l2, s1(D1), s2), ..., p(ld, s1(D1), s2)) stochastically dominates
second-stage strategy s′1 with match vector (p(l1, s′1(D1), s2), p(l2, s′1(D1), s2),
..., p(ld, s′1(D1), s2)) with respect to dictionary D1 if for every 1 ≤ k ≤ d,∑k

a=1 p(la, s1(D1), s2) ≥ ∑k
a=1 p(la, s′1(D1), s2). We say that the stochastic

dominance property is strict if there exists a k such that 1 ≤ k ≤ d and∑k
a=1 p(la, s1(D1), s2) >

∑k
a=1 p(la, s′1(D1), s2).

Lemma 2. If strategy s1 stochastically dominates strategy s′1 with respect to dic-
tionary D1, for fixed opponent strategy s2, then u1(s1(D1), s2) ≥ u1(s′1(D1), s2),
for all valuations consistent with match-early preferences.

Lemma 3. If u1(s1(D1), s2) ≥ u1(s′1(D1), s2) for all valuations that are consis-
tent with match-early preferences, then strategy s1 must stochastically dominate
strategy s′1 with respect to D1, for fixed opponent strategy s2.

Lemmas 2 and 3 can be extended to show strict stochastic dominance implies
strictly greater utility and vice versa, for all valuations consistent with MEP.

Lemma 4. Given player 2 plays her words in order of decreasing frequency, the
probability of first match in location l1 is strictly maximized when player 1 plays
her most frequent word first, for all dictionaries D1 and effort levels e2.

Lemma 5. For 1 ≤ k < d, given player 1 played her k highest frequency words
first and player 2 plays her words in order of decreasing frequency, the probability
of first match in locations l1, ..., lk is strictly maximized when player 1 plays her
k + 1st highest frequency word next, for all dictionaries D1 and effort levels e2.

Lemmas 2, 4, and 5 establish that playing decreasing frequency is a strict
best response to an opponent who plays decreasing frequency.

Theorem 1. The strategy profile consisting of players playing words in order
of decreasing frequency (denoted (↓, ↓)) is a strict Bayesian-Nash equilibrium of
the second stage of the ESP game, conditioned on any choice of effort levels
e1 and e2, for any distribution over U and any valuation function that satisfies
match-early preferences.

To show that playing L at the top-level along with playing decreasing fre-
quency is a Bayesian-Nash equilibrium, we use the following definition of stochas-
tic dominance for the top level of the game which fixes the equilibrium strategy
for the bottom-level. The definition uses the following notation for a k-truncation
of dictionary D: D(k) is the set of k highest frequency words in D.



Definition 7. Fixing player 2’s complete strategy (e2, s2), a complete strategy
(e1, s1) stochastically dominates complete strategy (e′1, s1) for player 1 if:
∑

D1,e1

Pr(D1,e1 |e1)
∑

D2,e2

Pr(D2,e2 |e2) · I(gl(s1(D1,e1(k)), s2(D2,e2(k))) = l1, ..., lk) ≥
∑

D1,e′1

Pr(D1,e′1 |e′1)
∑

D2,e2

Pr(D2,e2 |e2) · I(gl(s1(D1,e′1(k)), s2(D2,e2(k))) = l1, ..., lk) ∀k

where gl(s1(D1,e1(k)), s2(D2,e2(k))) gives the outcome when second-stage strate-
gies s1 and s2 act on D1,e1(k) and D2,e2(k) and I(·) is the indicator function.
The dominance is strict if there exists a k such that the above inequality is strict.

Since Theorem 1 establishes that (↓, ↓) is a strict Bayesian-Nash equilibrium
of the second stage, for all effort levels, we set (s1, s2) = (↓, ↓) and we know that
I(gl(s1(D1,e1(k)), s2(D2,e2(k))) = l1, ..., lk) = I(D1,e1(k)∩D2,e2(k) 6= ∅). Similar
to Lemmas 2 and 3, we can show that stochastic dominance in Definition 7 is
sufficient and necessary for utility maximization.

In order to establish stochastic dominance, we construct a randomized map-
ping for each dictionary that can be sampled when playing M to a number of
dictionaries that can be sampled when playing L. Each dictionary in DM is
mapped to a dictionary in DL that is at least as likely to match against the
opponent’s dictionary, averaged over the distribution of all possible dictionaries
for the opponent. This is shown in Lemma 6. In order to complete the proof, it
is necessary to show that under the randomized mapping, no element in DL is
mapped to with greater probability under the randomized mapping than under
the original distribution over DL. This fact is shown in Lemma 7.

The randomized mapping h can be described as follows: Consider a dictionary
D ∈ DM , D = A ∪ B, where A is the set of “low words” and B is the set of
“medium words” (in other words, A = D∩UL and B = D∩ (UM −UL)). Under
our randomized mapping, D is mapped to all dictionaries in DL ∈ DL such that
A ⊂ DL. In other words, D is mapped to dictionary DL ∈ DL with non-zero
probability if and only if A ⊂ DL. If A ⊂ DL, then D is mapped to DL with
the same probability that you could would get DL if you continued to sample
individual words from UM (without replacement) until you got d “low words”.
Note that if D contains only medium words, D is mapped to all dictionaries
in DL with non-zero probability. Likewise, if D contains only low words, D is
mapped to only one dictionary in DL.

Lemma 6. For any D1,M , where D1,M is a dictionary sampled with respect to
the M effort level, for any h that satisfies the property that D1,M is mapped to
a dictionary in DL that contains the set D1,M ∩ UL, any effort level of player 2
and when players play decreasing frequency in the second stage, we have that:

∑

D2

Pr(D2) · I(h(D1,M )(k) ∩D2(k) 6= ∅) ≥
∑

D2

Pr(D2) · I(D1,M (k) ∩D2(k) 6= ∅) ∀k and D1,M (3)



In addition, the inequality is strict for all k > k′ when h(D1,M ) 6= D1,M and k′

is the first coordinate where h(D1,M ) and D1,M differ.

Lemma 7 states the distribution obtained from sampling UL directly is the
same as the distribution obtained from sampling a medium dictionary, followed
by the randomized mapping (sampling UM until you get d low words).

Lemma 7. Pr(D1,L|L) =
∑

D1,M
Pr(D1,M |M) · Pr(h(D1,M ) = D1,L)

Lemma 8 uses Lemmas 6 and 7 to show that playing L stochastically dom-
inates playing M , assuming players play decreasing frequency in the second
stage. An identical argument can be used to show that playing L stochastically
dominates playing H, assuming players play decreasing frequency in the second
stage.

Lemma 8. For any effort level e2 and when players play decreasing frequency
in the second stage:

∑

D1,L

Pr(D1,L|L)
∑

D2

Pr(D2) · I(D1,L(k) ∩D2(k) 6= ∅) >

∑

D1,M

Pr(D1,M |M)
∑

D2

Pr(D2) · I(D1,M (k) ∩D2(k) 6= ∅) ∀k (4)

Theorem 1 together with Lemma 8 give us the following result.

Theorem 2. ((L, ↓), (L, ↓)) is a strict Bayesian-Nash equilibrium for the com-
plete game. Additionally, (L, ↓) is a strict best-response to both (M, ↓) and (H, ↓).

4 The Effect of Rare-Words First Preferences

In this section, we consider the effect of modified preferences. We introduce a new
model called rare-words first preferences and show some initial results regarding
how equilibrium behavior is different under this new model.

Definition 8. Under rare-words first preferences, players prefer to match on
rare words, with location as a secondary consideration. Any valuation function
v(o) that satisfies rare-words first preferences satisfies the following total ordering
on outcomes: (wn, l1) Â (wn, l2) Â ... Â (w1, ld−1) Â (w1, ld) Â (φ, φ).

This preference relation allows for a virtually identical definition of stochastic
dominance as Definition 6 which in turn leads to results analogous to Lemmas 2
and 3, namely that stochastic dominance is both sufficient and necessary for
utility maximization.

The following lemma is in stark contrast with the results in section 4, where
we showed that (↓, ↓) is a strict Bayesian-Nash equilibrium in the second stage,
for all distributions over U , all valuation functions that satisfy MEP, and any
pair of effort levels. Lemma 9 shows that we cannot say (↓, ↓) is a Bayesian-
Nash equilibrium for the second stage of the game for any distribution, without
making more assumptions on the valuation function.



Lemma 9. Consider any distribution over U = {w1, w2, ..., wn} and suppose
that player 2 is playing her words in order of decreasing frequency. For any dic-
tionary of player 1, no consistent strategy of player 1 can stochastically dominate
all other consistent strategies.

Similarly, Lemma 10 shows that when a player is playing increasing frequency,
we need to make more assumptions on the valuation function to discern the best-
response in the space of consistent strategies.

Lemma 10. Consider any distribution over U = {w1, w2, ..., wn} and suppose
that player 2 is playing her words in order of increasing frequency. For any dic-
tionary of player 1, no consistent strategy of player 1 can stochastically dominate
all other consistent strategies.

We leave it as future work to characterize the set of sufficient and necessary
conditions for which playing words in order of increasing frequency in conjunc-
tion with high effort for both players is a Bayesian-Nash equilibrium. Under-
standing the incentive structure that leads to high effort is important since it
is one way the system designer can extend the set of labels for an image. In
addition to this, future work should identify specific score functions that provide
desirable equilibrium, and also move to analyze the larger context of a system of
bilateral games with a view on understanding methods to induce large-scale de-
sirable behavior, including such aspects as formalizing the role of Taboo Words
and leveraging the entire sequence of words suggested by a player rather than
just the particular match.
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