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ABSTRACT
We consider the amount of communication required to ver-
ify the outcome of the Vickrey-Clarke-Groves (VCG) mech-
anism: an efficient allocation together with incentivizing
VCG payments. We compare this to the communication
required to verify the efficient decision rule alone, to assess
the overhead imposed by VCG payments. Our character-
izations are obtained by leveraging a connection between
the VCG outcome and a price equilibrium concept known
as universal competitive equilibrium. We consider four re-
lated environments within a common framework: the clas-
sic single-item setting, the multi-unit setting with decreasing
marginal values, the classic assignment problem with unit-
demand valuations, and the multi-unit assignment problem
with substitutes valuations. We find that the single-unit
settings have zero overhead, whereas the multi-unit settings
can have significant positive overhead. With multiple units,
the näıve VCG protocol that runs several efficient protocols
in sequence (one with all agents, and ones with an agent re-
moved, for each agent) is asymptotically optimal for several
parameter settings of the number of agents, commodities,
and units.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; J.4 [Computer Applications]:
Social and Behavioral Sciences—Economics

General Terms
Economics, Theory

1. INTRODUCTION
The Vickrey-Clarke-Groves (VCG) mechanism holds a cen-

tral place in the theory of mechanism design due to its
unique efficiency, incentive, and revenue properties. In its
traditional formulation, the VCG mechanism is “direct”: the
agents reveal their complete preferences to a center who then
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implements an efficient outcome. The center also charges
payments that make it a dominant strategy for agents to be
truthful. When incentives are the only concern, the reve-
lation principle states that there is no loss of generality in
restricting attention to direct mechanisms. However, other
considerations such as privacy often make “indirect” mecha-
nisms more attractive in practice [28].

Several indirect mechanisms have been proposed that com-
pute the VCG outcome (allocation and payments) for var-
ious environments. These take the form of iterative auc-
tions [1, 2, 7, 22]. In these cases VCG payments bring sincere
bidding (i.e., price-taking behavior) into an ex post Nash
equilibrium. Among other features, these auctions offer the
possibility that agent preferences need not be fully revealed
before the desired outcome is reached. This connects with a
second theme of the literature on resource allocation mech-
anisms: communication [14, 23].

In this paper we analyze how much communication is re-
quired to realize the VCG outcome. The incentivizing trans-
fers defined by the VCG mechanism impose an additional
“overhead” on the communication requirements of the ef-
ficient decision rule alone. We consider this overhead for
several environments: the classic single-item setting, the
multi-unit setting with decreasing marginal values, the clas-
sic assignment problem with unit-demand valuations, and
the multi-unit assignment problem with substitutes valua-
tions.

We consider the “nondeterministic” problem of verifying
that an allocation-payment outcome is indeed a VCG out-
come, rather than the more challenging“deterministic”prob-
lem of computing the outcome. Nonetheless, our results
also have implications for deterministic communication. In
characterizing communication requirements, we seek upper
and lower bounds that match as closely as possible. Our
lower bounds apply to deterministic communication as well,
whereas our upper bounds are derived by proving the exis-
tence of price equilibria of certain dimensions. The latter
can form the basis of formal “tâtonnement” procedures such
as auctions; a typical approach is to use the existence of
price equilibria to prove that certain linear programs com-
pute an efficient, discrete allocation, and to then interpret
dual methods (e.g., subgradient, primal-dual) on these pro-
grams as auction procedures [6].

Our key finding is that the single-unit settings impose no
overhead, whereas in the multi-unit settings there can be a
positive overhead, equivalent to a polynomial increase over
the communication of efficient protocols that do not consider
incentives. When our characterizations are not exact, they



are still asymptotically tight for several parameter settings
of the number of agents, commodities, and units.

Our analysis closely models that of Nisan and Segal [24]
(henceforth NS) for the efficient decision rule. They first
draw a connection between the communication requirements
of efficient outcomes and of competitive equilibria, showing
that they are equivalent. They then use this characteriza-
tion to lower bound the communication requirements of ef-
ficiency for several valuation classes. In an analogous fash-
ion, we leverage a connection between the VCG outcome
and “universal competitive equilibria,” introduced by Parkes
and Ungar [26] (later subsumed by Mishra and Parkes [22]),
to obtain lower bounds on communication for the various
environments we consider. Our upper bounds are obtained
through explicit constructions of universal competitive equi-
librium prices.

To our knowledge, ours are the first lower bounds on the
communication requirements of the VCG outcome in any
nontrivial settings beyond the simple single-item auction.
There are several results in the literature that show that
linear prices do not suffice to guarantee the existence of a
competitive or universal competitive equilibrium; see for ex-
ample Gul and Stacchetti [12] and Mishra and Parkes [22].
Such results only show, using counterexamples, that some
low-dimensional subspace of prices cannot encode the rele-
vant equilibrium prices. This does not provide a lower bound
on communication more generally, because special short en-
codings could be used for the constructed counterexamples.
In contrast, we use a “fooling set” technique drawn from NS
to show that no low-dimensional subspace can encode the
relevant equilibrium prices, and this translates into lower
bounds on communication.

Several mechanisms are incentive-compatible besides the
VCG mechanism. Fadel and Segal [8] investigate the “com-
munication cost of selfishness” more generally: what is the
minimum possible overhead, over all incentive-compatible
mechanisms, of computing incentivizing transfers? (They
ask this question for deterministic communication, and con-
sider other rules besides efficiency.) In the case of the effi-
cient rule, Reichelstein [27] notes that giving each agent the
sum of the others’ utilities from the computed outcome gives
incentivizing transfers—the efficient rule is implemented in
ex post Nash equilibrium. Fadel and Segal therefore con-
clude that the overhead is at most the number of agents:
the agents’ utilities for the outcome can be appended to the
communication of an efficient protocol, effectively commu-
nicating the transfers. Note though that this scheme can
be extremely costly to implement, and is infeasible if the
protocol is not allowed to run a deficit. The VCG mech-
anism remedies this problem, but at the cost of increased
communication.

A similar approach can be used for the VCG outcome: we
run an efficient protocol with all the agents, and then with
each agent removed in turn. At the end of each run, the
agents’ utilities for the computed outcome are also commu-
nicated. This gives enough information to verify VCG pay-
ments besides the efficient outcome. Roughly, this multiplies
the communication of the efficient protocol by the number of
agents. One question we ask in this paper is whether there
exist protocols with significantly smaller overhead than this
“näıve” protocol. With multiple units of each commodity,
the answer is negative for certain parameter settings: the
näıve protocol is asymptotically optimal.

The key contributions of the paper are:

1. An almost exact characterization of the communica-
tion requirement of the VCG outcome when goods are
homogeneous and agent valuations exhibit decreasing
marginal values

2. An exact characterization of the communication re-
quirement of the VCG outcome in the classic assign-
ment problem with unit-demand valuations

3. A lower bound on the communication requirement of
the VCG outcome in the multi-unit assignment prob-
lem with substitutes valuations, that is asymptotically
tight for several parameter settings of the model

We believe the techniques used to construct upper and lower
bounds for these various environments are also interesting
in their own right.

Section 2 introduces the model, including the different val-
uation classes considered. Section 3 describes the efficient
allocation problem, the VCG mechanism, and the communi-
cation model. Section 4 shows that verifying the VCG out-
come is equivalent to verifying a universal competitive equi-
librium. Section 5 describes the näıve protocol as well as its
analog for verifying universal competitive equilibria, which
gives a general bound on the overhead imposed by VCG pay-
ments. Section 6 then derives upper and lower bounds on
the communication requirements of the VCG outcome for
four different environments. Section 7 concludes.

2. THE MODEL
A seller wishes to allocate indivisible units of m hetero-

geneous commodities among a set of n agents. There are l

units of each commodity. Let M be the set of commodities
and N = {1, . . . , n} be the set of agents. Each agent’s con-
sumption set is X = {y ∈ ZM

+ : y(j) ≤ l, j ∈ M}, the set of
bundles.1

Agent i’s valuation vi assigns a real value to each bundle;
it is his privately observed “type”. Agent i’s valuation is
drawn from a class Vi, and the set of possible valuation
profiles, or environment, is the product set V = ×i∈NVi.
We make the following assumptions on bidder values and
utilities.

Private Values: Agent i’s value for bundle xi, vi(xi), does
not depend on the other agents’ types.

Quasi-linearity: If agent i obtains bundle xi and is charged
qi, it derives utility vi(xi) − qi.

Monotonicity: If x′
i ≥ xi, then vi(x

′
i) ≥ vi(xi).

Concave-extensibility: The concave closure v̄i of vi coin-
cides with vi on X.2

An agent’s utility depends only on the bundle it receives and
payment it issues, and not on allocations and other agents’
transfers more generally.

1The notation ZM
+ denotes the set of vectors with compo-

nents drawn from Z+ (the non-negative integers) and in-
dexed by elements of the set M . For xi ∈ ZM

+ , we write
xi(j) to denote the component corresponding to j ∈ M .
2The concave closure v̄i is the smallest concave function on
{y ∈ RM

+ : y(j) ≤ l, j ∈ M} such that v̄i(y) ≥ vi(y) for all
y ∈ X.



We distinguish between payments and prices. A payment
is a transfer from an agent to the seller. A vector of agent
payments is an element of Rn. Prices, on the other hand, are
defined over the space of bundles, and may be personalized
in our setting. We write pi(xi) to denote the price of bundle
xi to agent i. Prices are elements of RXn, but in certain
cases it will suffice to consider linear prices, described by
elements of RM . In this case the price of a bundle xi at linear
prices p is the usual dot product p · xi =

P

j∈M
p(j)xi(j),

and this is independent of the identity of the agent.
We will consider two important environments, in which

the agents’ valuations are all drawn from one the classes
below. Lehmann et al. [19] provide an excellent treatment
of the computational complexity of the allocation problem
with these classes and some of their generalizations.

Unit-Demand. A unit-demand valuation is described by a
vector wi ∈ RM

+ . The value of bundle xi is

vi(xi) = max
{j:xi(j)>0}

wi(j).

In words, the agent only values the first unit it obtains,
so it will select the first unit of the available commodity
it values the most.

Substitutes. A substitutes valuation satisfies the follow-
ing “substitutes” condition, introduced by Kelso and
Crawford [15]. For any two linear price vectors p′ ≥ p

and xi ∈ arg maxy∈X vi(y) − p · y, there is an x′
i ∈

arg maxy∈X vi(y) − p′ · y such that x′
i(j) ≥ xi(j) for

all j ∈ M such that p′(j) = p(j). In words, demand
does not decrease for any commodities that do not see
a price increase.

When there is just a single commodity (m = 1), concave-
extensible valuations are exactly those valuations that ex-
hibit non-increasing marginal values, and they satisfy the
substitutes condition. They can therefore be identified by
a vector wi ∈ Rl

+ where wi1 ≥ wi2 ≥ . . . ≥ wil, describ-
ing the marginal value of each unit. Unit-demand valua-
tions are concave-extensible and satisfy the substitutes con-
dition. The substitutes condition implies the existence of
a Walrasian equilibrium when l = 1 (recall that units are
indivisible) [15]. With multiple units, we need the addi-
tional assumption of concave-extensibility to guarantee that
a Walrasian equilibrium exists [9].

3. RESOURCE ALLOCATION
The objective is to implement a feasible, efficient alloca-

tion. An allocation is a vector of bundles x = (x1, . . . , xn).
An allocation is feasible if

P

i∈N
xi(j) ≤ l for all j ∈ M

(units may be discarded at no cost). Let Γ denote the set of
feasible allocations. An allocation x is efficient if

x ∈ arg max
y∈Γ

X

i∈N

vi(yi). (1)

In our model an efficient allocation always exists (because
the set of feasible allocations is finite), but it may not be
unique. The efficient rule is the correspondence that maps
valuation profiles to efficient allocations.

Note that two valuation vectors vi, v
′
i represent the same

preferences if they differ by a constant. We can therefore
assume that each valuation class Vi is normalized: there is a
bundle xi (typically the empty bundle) such that vi(xi) = 0

for all vi ∈ Vi. Translating a valuation by a constant does
not change the set of efficient allocations according to (1),
as expected.

3.1 Implementation
With selfish agents, it is not enough to simply query the

agents for their private information and then implement an
efficient allocation with respect to their reports. Ignoring for
the moment the issue of communication—a problem with
direct revelation—there is the issue that agents would over-
state their values to gain a better outcome for themselves in-
dividually. A resource allocation scheme can be augmented
with payments to incentivize the agents to report truthfully.

The Vickrey-Clarke-Groves (VCG) mechanism [5, 11, 30]
is the following procedure. Each agent i reports a valuation
ṽi ∈ Vi. The seller implements an efficient allocation x with
respect to ṽ and charges agent i the payment

q̂i =
X

j 6=i

ṽj(x
−i
j ) −

X

j 6=i

ṽj(xj), (2)

where x−i is an efficient allocation of the items among agents
N − i.3 We call (2) agent i’s VCG payment. More generally,
a Groves scheme [11] charges the payment

q̂i + hi(ṽ−i)

to agent i. Here hi is an arbitrary function that does not
depend on agent i’s report. The VCG mechanism is the
Groves scheme with hi ≡ 0. Note that (2) depends on the
particular efficient allocation x chosen, but not on the choice
of efficient allocation x−i among agents N − i. We must
therefore make reference to the associated allocation x when
talking of VCG payments. Note also that (2) is invariant
to any renormalization of the agents’ valuations—this is an
added feature of the VCG mechanism that does not hold for
Groves schemes in general.

It is well-known that truthful reporting is a dominant
strategy equilibrium of any Groves scheme. Moreover, if
the environment is smoothly path-connected, any efficient,
strategyproof direct mechanism must be a Groves scheme [10,
13].4 The VCG mechanism, in particular, has several attrac-
tive properties that make it central in the theory of mecha-
nism design. In a single-item setting, it corresponds to Vick-
rey’s second-price sealed-bid auction [30]. In our setting, the
VCG mechanism is individually-rational and does not run a
deficit. Among Groves schemes, the VCG mechanism is the
unique mechanism that satisfies the natural condition that
agents who acquire no items pay zero [3]. Finally, among all
individually-rational Groves schemes, it also maximizes the
revenue to the seller [16].

We have so far discussed direct mechanisms, where the
available strategy of each player i is to report a valuation
from Vi. To save on communication, the mechanism de-
signer may turn to an indirect mechanism, where agents
report messages from a space other than V, and possibly
several messages in sequence. The strategy of an agent in
this case is a complete contingent plan of the messages the
agent would send for each possible history of messages it
could face. If a strategy profile leads to an efficient allo-
cation with associated VCG payments (with respect to the

3The notation N − i is shorthand for N\{i}.
4All environments considered in this paper are smoothly
path-connected.



agents’ true valuations), then this strategy profile becomes
an ex post Nash equilibrium of the game induced by the
mechanism [8]. So VCG payments are also relevant to in-
direct mechanisms. As mentioned in Section 1, for various
environments, there are several auction designs that com-
pute VCG payments together with the efficient allocation
to bring sincere bidding into an equilibrium [1, 2, 7, 22].

Therefore, with incentives in mind, one outcome space we
will consider is Γ×Rn, namely feasible allocations together
with payments. The VCG rule is the correspondence that
maps valuations to efficient allocations with corresponding
VCG payments.

3.2 Realization
We consider the “verification scenario”. An omniscient

oracle knows the private information of each agent, and can
therefore identify a “desirable” outcome according to some
pre-specified rule, such as the efficient or VCG rule. The
oracle must prove to an outsider that his chosen outcome
is indeed desirable. To do this he sends a message to the
agents, which they will unanimously accept if and only if
the designated outcome is desirable with respect to their
private information. In this sense, the protocol verifies the
chosen outcome for the outsider when all agents accept the
message.

Let O denote the space of outcomes. A nondeterministic
communication protocol [17, 24] is a triple Π = 〈M, µ, h〉.
Here M is a message set, µ : V ։ M is a message corre-
spondence, and h : M → O is the outcome function. The
message correspondence µ has the following properties:

• Existence: µ(v) 6= ∅ for all v ∈ V.

• Privacy preservation: µ(v) =
T

i µi(vi) for all v ∈ V,
where µi : V ։ M for all i ∈ N .

Protocol Π realizes choice rule F : V ։ O if h(µ(v)) ⊆ F (v)
for all v ∈ V. In a protocol that realizes choice rule F , the
fact that the agents all accept a message m—where i accepts
m if and only if m ∈ µi(vi)—verifies that outcome h(m) is
correctly chosen, because h(m) ∈ h(µ(v)) ⊆ F (v).

The notion of a nondeterministic communication protocol
arises in both economics and computer science. The former
literature uses continuous communication, measured as the
amount of real numbers used to transmit a message. The
latter uses discrete communication, measured in bits. We
use continuous communication because it makes for clearer
statements of our results.

The communication requirement of a protocol with contin-
uous communication is the dimension of its message space.
(Note that if a message contains an element drawn from a
discrete set, this does not add to the communication burden
by this definition.) To characterize this dimension, we need
to provide a topology on the message space. Following NS,
we use the topology induced by the following metric: the
distance between messages m and m′ is

max
˘

ρ(µ−1(m), µ−1(m′)), ρ(µ−1(m′), µ−1(m))
¯

where

ρ(V,V
′) = sup

v∈V

inf
v′∈V ′

||v − v
′||∞

for V, V ′ ⊆ V. The motivation given by NS for this defini-
tion is that small changes in a message cannot drastically
distort its “meaning”: if message m′ is close to m, there is a

valuation consistent with m′ that is close to a valuation con-
sistent with m. This rules out the possibility of “dimension
smuggling”: using a lower-dimensional space to communi-
cate high-dimensional vectors.

The communication requirement of a choice rule is the
smallest communication requirement over all protocols real-
izing the rule. This will depend upon the environment V.
Clearly, the communication requirement of a given choice
rule will be (weakly) larger for environment V ′ than envi-
ronment V if V ′ ⊇ V. It should also be clear that the VCG
rule requires at least as much communication as the efficient
rule, because the VCG outcome specifies an efficient alloca-
tion. Additional communication may be required to verify
VCG payments. Following Fadel and Segal [8], we call this
added communication the overhead imposed by VCG pay-
ments.

4. PRICE EQUILIBRIA
We can now begin to characterize the communication re-

quirement of the VCG rule. Our approach is modeled on
that of NS for the efficient rule. They first draw a connection
between the efficient rule and the competitive equilibrium
rule. A competitive equilibrium (CE) is an allocation-price
pair 〈x, p〉 ∈ Γ × RXn such that

vi(xi) − pi(xi) ≥ vi(x
′
i) − pi(x

′
i) (3)

for all i ∈ N and all x′
i ∈ X, and

X

i∈N

pi(xi) ≥
X

i∈N

pi(x
′
i) (4)

for all x′ ∈ Γ.
In words, (3) says that bundle xi maximize agent i’s util-

ity at prices p, and (4) says that x maximizes the seller’s
revenue at prices p. A Walrasian equilibrium is a CE such
that prices p are linear. If 〈x, p〉 is a CE, we say that prices
p “support” allocation x. In our model, there always exists a
CE with nonlinear personalized prices [4]. The Fundamen-
tal Welfare Theorems say that: (1) if prices p support an
allocation x, the allocation is efficient, and (2) there always
exist supporting prices p for an efficient allocation x [21].
Bikhchandani and Ostroy [4] give proofs of these theorems
for our model. Furthermore, it is not hard to show that if
prices p support some efficient allocation, then they support
all efficient allocations. Thus we can speak of CE prices
p without reference to any allocation, in contrast to VCG
payments. Note also that renormalizing CE prices (translat-
ing any agent i’s personalized prices pi by a constant) again
gives CE prices. Like valuations, we can therefore assume
that CE prices are normalized.

The CE rule maps valuations to the associated set of com-
petitive equilibria. The outcome space here is Γ × RXn.
A nondeterministic communication protocol for this rule is
immediate from the definition of a CE. Suppose the oracle
wishes to prove to the outsider that 〈x, p〉 is a CE. It can
use the following “basic CE protocol”:

• The oracle broadcasts 〈x, p〉 as his message.

• Each agent i accepts the message if and only if xi max-
imizes its utility at prices p, and x maximizes revenue
at prices p (any agent can see the latter for himself).

The communication requirement of this protocol is the di-
mension of the transmitted prices p—recall that transmit-



ting discrete allocations adds nothing to the communication
burden. NS showed the following.

Theorem 1. [24] The communication requirements of the
efficient and CE rules are identical.

The actual statement of their result says that given a proto-
col for the efficient rule, there is a protocol for the CE rule
with the same message space, and vice-versa.5 This result
is very useful for characterizing the communication require-
ment of the efficient rule for various environments, because
it is often easier to instead characterize the communication
requirement of the CE rule.

For the VCG rule, the relevant price equilibrium concept
is universal competitive equilibrium (UCE), introduced by
Parkes and Ungar [26]. A UCE is a CE 〈x, p〉 such that
prices p also support any efficient allocation x−i of the units
among agents N − i. In the sequel, we will refer to the
economy with agents N as the “main economy”, and the
economies with agents N − i for each i ∈ N as the “marginal
economies”.

Again, a nondeterministic communication protocol veri-
fying the UCE rule is immediate. Let x be efficient for the
main economy, and let x−i be efficient for the marginal econ-
omy with agents N − i, for all i ∈ N . Let p be UCE prices.
To prove that 〈x, p〉 is a UCE, we can use the following“basic
UCE protocol”:

• The oracle broadcasts 〈x, x−1, . . . , x−n, p〉.

• Each agent i accepts the message if and only if xi and
x−k

i maximize its utility at prices p, for each k 6= i,
and allocations x, x−k for k ∈ N all maximize revenue
at prices p.

In analogy to Theorem 1, we have the following.

Theorem 2. The communication requirements of the VCG
and UCE rules are identical.

This follows from two statements that have already appeared
in the literature on UCE prices. Mishra and Parkes [22]
showed the following.

Theorem 3. [22] Let 〈x, p〉 be a universal competitive equi-
librium, and let x−i be any revenue-maximizing allocation of
the items among agents N − i at prices p. Then agent i’s
VCG payment is

q̂i =
X

j∈N−i

pj(x
−i
j ) −

X

j∈N−i

pj(xj). (5)

Note that the first term in (5) does not depend on the
revenue-maximizing allocation x−i chosen, so it can be com-
puted with knowledge of UCE prices p only. Therefore, with
knowledge of UCE prices, the outsider can reconstruct the
agents’ VCG payments to verify the outcome designated by
the oracle. Lahaie et al. [18], meanwhile, proved the follow-
ing.

Theorem 4. [18] If communication protocol 〈M, µ, 〈f, q〉〉
realizes the VCG rule, where f is the allocation function
and q is the payment function, then there is an assignment
p : M → RXn of prices to messages such that protocol
〈M, µ, 〈f, p〉〉 realizes the UCE rule.

5Parkes [25] independently established the same result for a
slightly more restricted model.

This last result shows that the communication require-
ment of the UCE rule is no greater than that of the VCG
rule, whereas Theorem 3 implies the reverse. This proves
Theorem 2.

5. NAÏVE PROTOCOLS
Before turning to specific environments, we give a gen-

eral bound on the overhead of VCG payments. Suppose
the oracle wishes to prove that x is efficient and that the
corresponding VCG payments are q̂ as defined by (2). Let
x−1, . . . , x−n be efficient allocations for each of the marginal
economies. Suppose also that the oracle has a protocol Π for
the efficient rule. The following “näıve” protocol (not to be
confused with the “basic protocols” of the previous section)
verifies VCG outcome 〈x, q̂〉.

• The oracle sends messages m, m−1, . . . , m−n that ver-
ify that x, x−1, . . . , x−n are efficient for their corre-
sponding economies, respectively, using Π.

• The oracle sends v′
i(x

−k
i ) for each i ∈ N and k 6= i,

where v′
i(yi) = vi(yi) − vi(xi) for each yi ∈ X.

• Each agent i accepts the complete message if an only
if

1. It accepts each m, m−1, . . . , m−n according to Π.

2. It is indeed the case that the values sent satisfy
v′

i(x
−k
i ) = vi(x

−k
i ) − vi(xi) for k 6= i.

At most ml agents get a nonempty bundle in x, and re-
moving an agent that receives nothing in x does not change
the efficient allocation. Therefore the leading messages can
be transmitted with (min{n, ml}+ 1)d real numbers, where
d is the communication requirement of the efficient rule. The
number of trailing values transmitted is min{n(n − 1), m2l2}.6

This gives us the following result.

Proposition 1. The communication requirement of the
VCG rule (equivalently, the UCE rule) is at most

(min{n, ml} + 1)d + min{n(n − 1), m2
l
2}, (6)

where d is the communication requirement of the efficient
rule (equivalently, the CE rule).

There is a parallel näıve protocol for the UCE rule, based
on a construction of UCE prices from CE prices for the main
and marginal economies. Consider Figure 1, which shows
a valuation for a single commodity exhibiting decreasing
marginal values. Geometrically, condition (3) means that
CE prices define a supporting hyperplane at the agent’s al-
located bundle. In this case prices of dimension 1 suffice
to support any single bundle. Now suppose that the agent
gets one item in the main economy, and three items in some
marginal economy. UCE prices must support each of these
bundles, but clearly no prices of dimension 1 can do this.

6We conjecture that for substitutes valuations—which cov-
ers all valuations considered in this paper—this can be im-
proved to min{n(n − 1), ml}. This can be shown for the
environment where m = 1 and the agents’ valuations ex-
hibit decreasing marginal values, as in Section 6.1.2, as fol-
lows. Since x−k

i ≥ xi for each i 6= k by the arguments of

Section 6.1.2, x−k can differ from x by only at most xk bun-
dles. Therefore the number of additional values that must
be communicated is at most

P

k∈N xk ≤ l.



xi

vi(xi)

Figure 1: To construct UCE prices from CE prices for the main and marginal economies, we take the lower
envelope of the latter. The resulting prices support all the necessary allocations (here, 1 unit and 3 units).

The figure suggests, however, that taking the lower enve-
lope of the CE prices for the main and marginal economies
could yield CE prices. In the following result, k = 0 refers
to the main economy.

Lemma 1. Let 〈x−k, p−k〉 be a competitive equilibrium for
economy k, for k = 0, . . . , n. Let π−k

i = vi(x
−k
i )− p−k

i (x−k
i )

be the payoff of agent i 6= k in economy k. Then the following
are UCE prices:

pi(y) = min
k 6=i

n

p
−k
i (y) + π

−k
i

o

. (7)

Proof. We first claim that pi(x
−k
i ) = p−k

i (x−k
i ) + π−k

i

for k = 0, . . . , n. If this were not the case there would be an
s 6= k such that

p
−s
i (x−k

i ) + π
−s
i < p

−k
i (x−k

i ) + π
−k
i

⇒ π
−s
i < vi(x

−k
i ) − p

−s
i (x−k

i )

which is a contradiction, because π−s
i is the maximum utility

that i can attain at prices p−s
i . We thus find that

vi(x
−k
i ) − pi(x

−k
i ) = vi(x

−k
i ) − p

−k
i (x−k

i ) − π
−k
i

= 0

for k = 0, . . . , n and i 6= k. Now let xi be an arbitrary
bundle, and let s be the index at which the minimum is
reached for xi on the right-hand side of (7). We have

vi(xi) − pi(xi) = vi(xi) − p
−s
i (xi) − π

−s
i

≤ vi(x
−s
i ) − p

−s
i (x−s

i ) − π
−s
i

= 0

= vi(x
−k
i ) − pi(x

−k
i )

for k = 0, . . . , n, where the inequality follows from the fact
that x−s

i maximizes agent i’s utility at prices p−s
i . Since xi

was arbitrary, x−k
i maximizes agent i’s utility at prices pi,

for k = 0, . . . , n.
Finally, fix k ∈ {0, . . . , n} and let x be an arbitrary feasible

allocation among agents N − k. We have
X

i∈N−k

pi(xi) ≤
X

i∈N−k

p
−k
i (xi) +

X

i∈N−k

π
−k
i

≤
X

i∈N−k

p
−k
i (x−k

i ) +
X

i∈N−k

π
−k
i

=
X

i∈N−k

pi(x
−k
i )

where the first inequality follows from the definition of p

and the second from the fact that x−k maximizes revenue at
prices p−k. Hence x−k maximizes revenue among allocations
to agents N − k at prices p, for k = 0, . . . , n. This shows
that p are UCE prices.

If CE prices are of dimension d, prices (7) are of dimen-
sion (6), mirroring the näıve VCG protocol. One would
hope that cleverer protocols exist that perform better than
the näıve protocols. In the next section, we will see that
this hope is not justified for some environments: decreas-
ing marginal values, and substitutes valuations. The näıve
protocols’ communication requirement is asymptotically op-
timal for these environments for certain parameter settings
of l, m, and n.

6. APPLICATIONS
We consider settings with homogeneous commodities (m =

1) and heterogeneous commodities in turn, and for each of
these the cases with single and multiple units, because their
associated environments exhibit different communication re-
quirements. Single-unit settings impose no overhead, while
multi-unit settings have positive overhead.

To prove lower bounds, we use a “fooling set” technique
common in the computer science literature [17], and inspired
by NS. A fooling set V∗ ⊆ V has the property that for any
two v, v′ ∈ V∗, we have µ(v) ∩ µ(v′) = ∅. This means that
the restriction of µ to V∗ has an injective selection σ : V∗ →
µ(V∗). If V is normalized and σ−1 is Lipschitz continuous,
we then have dimM ≥ dim µ(V∗) ≥ dimV∗, as NS explain
(see their Proposition 2). The challenge is in constructing
the fooling set. The injection σ will be obvious from our



constructions, as well as the fact that its inverse is Lipschitz
continuous. We will not find need to make σ explicit.

6.1 Homogeneous Goods

6.1.1 Single-Unit

We first consider the simple case with l = 1 units. This is
the problem of allocating a single item. This case is essen-
tially trivial, but serves to nicely illustrate our techniques
in the simplest possible setting. We first consider an arti-
ficial, restricted environment to show how overhead can be
incurred, then note that in the usual environment there is
no overhead.

Consider the environment with two agents where agent 1
always has a value of 1 for the item, while agent 2’s value
is w2 ∈ [0, 1). It is always efficient to allocate the item to
agent 1, so no communication is needed to verify this effi-
cient outcome. If agent 1 is removed, agent 2 gets the item.
UCE Prices p must therefore support both one unit and zero
units for agent 2: w2 − p2(1) = 0 − p2(0), or p2(1) = w2 af-
ter normalization. The dimension of the UCE price space is
therefore at least the dimension of agent 2’s valuation space,
which is 1. Setting a price of w2 on the item gives a UCE
price, so the dimension of UCE prices is at most 1, match-
ing the lower bound. By Theorem 2, the overhead of VCG
payments is 1 real number in this example.

The technique used in this example is typical. We con-
struct an environment where an agent obtains one more
unit in a marginal economy than in the main economy. Be-
cause UCE prices must support both these allocations, the
marginal price of the unit must equal the agent’s marginal
value for the unit. Therefore different valuation profiles must
lead to different UCE outcomes, and we have a fooling set.
See Figure 2 for a geometric interpretation.

xi

vi(xi)

Figure 2: If UCE prices support both 0 units and 1
unit, the slope of the prices must equal the marginal
value of the first unit.

In the usual environment where agent values are drawn
from [0, 1], the communication requirements of the efficient
and VCG rules (equivalently, of the CE and UCE rules) are
both 1 real number, so there is no overhead. The second-
highest value for the item is always a UCE price.

6.1.2 Multi-Unit

When l > 1, however, there is a positive overhead. As-
sume that agent valuations exhibit decreasing marginal val-
ues. It is well-known that CE prices of dimension 1 exist
in this case, even if units are indivisible. A nice way to see
this is via the greedy algorithm, which correctly constructs
an efficient allocation. Each unit is allocated in sequence
to the agent whose marginal value for the unit is greatest

(breaking ties arbitrarily). Let x be the efficient allocation
that results from this procedure. Assume (w.l.o.g.) that
agent 1 received the last unit, and that agent 2 would have
received the next unit if there were any more. Then any
p ∈ [v2(x2 + 1) − v2(x2), v1(x1) − v1(x1 − 1)] is a CE price,
giving us an upper bound of 1 (the lower bound of 1 is im-
mediate).

Combined with Theorem 2, the following lemma gives an
upper bound on communication for the VCG rule.

Lemma 2. With decreasing marginal values, there exist
UCE prices of dimension l.

Proof. As explained above, the greedy algorithm pro-
duces an efficient allocation x. Assume (w.l.o.g.) that agent
1 would receive the next unit if there were any, and let
a = v1(x1 + 1) − v1(x1). The UCE prices p we will con-
struct are personalized. Each pi depends only on the num-
ber of units and exhibits decreasing marginal prices, like the
agents’ valuations.

The price construction is as follows. The marginal price
of the first xi units to agent i is a. Let x−1, . . . , x−n be
efficient allocations for the marginal economies. Allocating
items greedily in marginal economy k in the same sequence
as for the main economy (and breaking ties the same way),
we see that we can assume x−k

i ≥ xi for k 6= i. For each
i, let yi = maxk 6=i x−k

i . The marginal prices of units xi + 1
to yi to agent i are the marginal values of the units the
agent. Note that at least one of these marginal prices is a.
Finally, the marginal price of any unit beyond yi for each
agent i is maxk{vk(yk) − vk(yk − 1)}. This completes the
price construction.

The construction ensures that each agent is indifferent be-
tween obtaining anything from xi to yi units, because the
marginal surplus of each of these units is zero. It also en-
sures that anything in this range is (weakly) preferred to less
than xi units or more than yi units. Thus the allocated bun-
dles maximize the agents’ utilities in the main and marginal
economies. To compute a revenue-maximizing allocation,
we can again use the greedy algorithm. The prices are con-
structed such that the sequence of assignments is identical
to the sequence of assignments used to determine the ef-
ficient outcome, for the main and marginal economies, so
the efficient allocations are also revenue-maximizing. The
constructed prices are therefore UCE prices.

To specify the prices, we need to communicate yi−xi real
numbers for each agent i ∈ N . We have

X

i

(yi − xi) ≤
X

i

X

k 6=i

(x−k
i − xi)

=
X

k

X

i6=k

(x−k
i − xi)

=
X

k

xk

= l

The last two equalities assume (w.l.o.g.) that all items are
allocated. This completes the proof.

To get a lower bound, consider now the environment where
agent 1 always has a marginal value of 1 for each unit, and
agents i = 2, . . . , n have unit demand. The marginal value
of agent i 6= 1 for its first unit is wi ∈ [0, 1). It is efficient
to give all units to agent 1. Let r = min{l, n − 1}. If agent



1 is removed, agents 2, . . . , r + 1 each get one unit. So for
i = 2, . . . , r + 1, UCE prices p must satisfy

vi(1) − pi(1) = vi(0) − pi(0)

⇒ pi(1) − pi(0) = wi

Normalizing prices so that pi(0) = 0 for each i ∈ N , we
see that the dimension of the UCE price space must be at
least the dimension of the space of valuations for agents
2, . . . , r + 1, namely r.

The agents’ valuations in this environment exhibit de-
creasing marginal values, so the lower bound holds for this
valuation class in general.

Proposition 2. The communication requirements of the
VCG rule with a single commodity and decreasing marginal
values is at least min{l, n − 1}.

As we saw above, the communication requirement of the
efficient rule is 1 in this environment, so computing VCG
payments imposes an r-fold increase in communication, in
the worst case. This overhead is positive for l > 1. The lower
bound matches the upper bound of Lemma 2 for n > l, and
the communication requirement is exactly l. In this case,
the näıve protocol gives an upper bound of 2l + 1 according
to Proposition 1 (see also footnote 6), so the näıve protocol
is asymptotically optimal. An exact characterization for the
case of n ≤ l remains an open question. We conjecture that
the lower bound is tight.

6.2 Heterogeneous Goods

6.2.1 Single Unit

The single-unit setting with heterogeneous goods is the
assignment problem, and the relevant environment is unit
demand. It is well known that a Walrasian equilibrium ex-
ists in this environment. There are two striking facts about
Walrasian prices in the assignment problem. First, the set
of Walrasian prices forms a lattice [29]. In particular, there
are minimum and maximum Walrasian prices. Second, min-
imum Walrasian prices p

¯
∈ RM

+ coincide with VCG pay-
ments: if agent i obtains item j in the efficient assignment,
then the VCG payment of agent i is p

¯
(j) [20].

First we characterize the communication requirement of
efficiency (equivalently, of the CE rule). For n > m, the
following is well known [29], but we have not come across
the characterization for n ≤ m.

Lemma 3. The minimum Walrasian prices have dimen-
sion min{m, n − 1} in the assignment problem.

Proof. Since the case n > m is known, assume n ≤ m.
Consider the minimum Walrasian prices p

¯
, and assume items

S ⊆ M are allocated, where |S| = n. The m−n unallocated
items must have a shadow price of 0, by standard arguments
from linear programming. We cannot have p

¯
(j) > 0 for all

j ∈ S. Otherwise p
¯
(j) − ǫ

P

j∈S
ej would also be Walrasian

prices for some ǫ > 0, and this would contradict the mini-
mality of p

¯
. So there is a j ∈ S with p

¯
(j) = 0, and n − 1

dimensions suffice.

A matching lower bound is obtained with the following
fooling set. All agents have the same unit-demand valuation
corresponding to w ∈ [0, 1]S×{0}M\S , where S is a subset of
items of size r = min{m, n−1}. Note that any assignment of
the items to the agents (where each agent gets exactly one

item, and any remaining items are discarded) is efficient.
Therefore, by Proposition 2 of NS [24], the communication
requirement of the efficient rule is at least the dimension of
the fooling set, namely r.

Proposition 3. The communication requirement of the
efficient rule in the assignment problem is min{m, n − 1}.

We now turn to the communication requirement of the
VCG rule, or equivalently, the UCE rule. Since minimum
Walrasian prices p

¯
coincide with VCG payments, it may

seem that simply transmitting p
¯

in the basic CE protocol of
Section 4 would suffice to verify the VCG outcome, giving
us an upper bound via Lemma 3. But this is not a valid
protocol: it does not prove to the outsider that the declared
prices p

¯
are in fact minimal, just that they are Walrasian.

To derive a protocol that also proves minimality, we appeal
to the following result. In the proof and what follows, ej is
the unit vector with a 1 in component j and 0’s in all others.

Lemma 4. Minimum Walrasian prices are UCE prices in
the assignment problem.

Proof. Walrasian prices p
¯

support the efficient assign-
ment σ : M → N with all agents present, by definition.
We will show that p

¯
also support an efficient assignment of

items M to agents N − 1. For each item j , let d(j) = {i ∈
N − 1 : j ∈ Di(p)}, where Di(p) is the demand set of agent
i at prices p. Assume for the moment that for all T ⊆ M ,

˛

˛

˛

˛

˛

[

j∈T

d(j)

˛

˛

˛

˛

˛

≥ |T | . (8)

It then follows from Hall’s theorem that for each j ∈ M , we
can select a distinct i ∈ N − 1 such that j ∈ Di(p). Prices p

¯therefore support this assignment of items to agents N − 1,
and by the same argument any efficient assignment to agents
N − i, for all i ∈ N , so p

¯
UCE are prices.

It remains to be shown that (8) holds. Assume (w.l.o.g.)

that σ(1) = 1. For T ⊆ M − 1, we have
˛

˛

˛

S

j∈T
d(j)

˛

˛

˛
≥

˛

˛

˛

S

j∈T
{σ(j)}

˛

˛

˛
≥ |T |, because p

¯
supports σ and the latter is

one-to-one. So let T ∋ 1. We claim that
[

j∈T

d(j)\
[

j∈T

{σ(j)} 6= ∅. (9)

(Note that this then implies (8).) Assume for the sake of
contradiction that (9) does not hold. Then there is a suf-
ficiently small ǫ > 0 such that for all i ∈ N\

S

j∈T
d(j), all

k ∈ Di(p), and all j ∈ T , we have

vi(ek) − p
¯
· ek > vi(ej) − p

¯
· ej + ǫ.

Therefore if we let p′ = p
¯
−ǫ

P

j∈T ej , Di(p
′) = Di(p) for i ∈

N\
S

j∈T
. For each agent i ∈

S

j∈T
d(j), k = σ−1(i) remains

in its demand set at prices p′ because k sees a price decrease.
Therefore p′ supports σ, contradicting the minimality of p

¯
.

This completes the proof.

Lemma 4 could also be proved by contradiction, using
Leonard’s [20] result that minimum Walrasian prices equal
VCG payments in the assignment problem. We prefer the
above proof because it is more elementary, making direct
appeal to the definition of a UCE. It implies Leonard’s result



as a corollary: since minimum Walrasian prices p are UCE
prices, by Theorem 3 we then have

pj =
X

k

pk −
X

k 6=j

pk = q̂i,

where i is the agent assigned item j. Hence UCE prices are
unique, and the price of an item is the VCG payment of the
agent that receives it.

For our purposes, the import of Lemma 4 is that the UCE
rule can be verified with a message space of dimension r via
the basic UCE protocol of Section 4, because there always
exists a minimum Walrasian price vector. This gives an up-
per bound of r for the VCG rule, by Theorem 2. The lower
bound for the CE price rule also applies to the UCE rule,
since a UCE is a CE, and this gives us an exact characteri-
zation.

Proposition 4. The communication requirement of the
VCG rule in the assignment problem with unit demand is
min{m, n − 1}.

Comparing with Proposition 3, we see that VCG payments
impose no overhead in the assignment problem.

6.2.2 Multi-Unit

The relevant environment here is concave-extensible, sub-
stitutes valuations. It is known that Walrasian prices of
dimension m exist in this case [9]. NS provide a match-
ing lower bound of m using a fooling set based on additive
valuations, which are a subset of the substitutes valuations.

For the VCG rule, we first provide a lower bound. We
assume n > m for clarity; a simple modification gives the
bound for n ≤ m. Consider the following fooling set. We
number the commodities 1, . . . , m. Each agent i’s valuation
is identified with a vector wi ∈ [0, 1)M . The last agent has
an additive valuation: vn(xn) =

P

{j:xn(j)>0} wn(j). Note
that only the first unit of any commodity may have non-zero
marginal value with this valuation. Each agent i among the
first m agents has unit demand for each commodity j 6= i,
and the marginal value of the first unit of j is wi(j). The
agent demands all l units of commodity i: the first l−1 have
a marginal value of 1, and the last has a marginal value of
wi(i). The remaining agents i = m + 1, . . . , n − 1 (if any),
have unit demand valuations as specified by wi. In addition,
the valuation profile satisfies

wi(i) = wn(i) > max
j 6=i,n

wj(i)

for i = 1, . . . , m. It is efficient to allocate one unit of each
commodity to agent n, and the l − 1 remaining units of
commodity i to agent i. Since giving agent n’s unit of i

to agent i also gives an efficient allocation, CE prices must
support both of these allocations. In particular, we have

wn(i) − pn(i) = 0. (10)

If we remove an agent i among the first m agents, min{l −
1, n−2} of the remaining agents besides n each get one unit
of i. For such agents j 6= i, n, UCE prices therefore satisfy

wj(i) + (l − 1) − pj(ei + (l − 1)ej)

= (l − 1) − pj((l − 1)ej)

⇒ wj(i) = pj(ei + (l − 1)ej) − pj((l − 1)ej), (11)

if j ≤ m, and otherwise

wj(i) − pj(ei) = 0, (12)

for m < j ≤ n − 1 (if any). Equation (10) pins down m

dimensions, while (11) and (12) together pin down an addi-
tional m min{l − 1, n − 2} dimensions. If we had n ≤ m, a
slight modification would give (n − 1) min{l − 1, n − 2} for
the latter, which yields the following result.

Proposition 5. The communication requirement of the
VCG rule with substitutes valuations is at least

min{m, n − 1}min{l − 1, n − 2} + m.

For n > m and l ≥ n − 1, the lower bound is (n − 1)m,
representing an (n− 1)-fold increase in communication over
the efficient rule. We do not have a way to construct UCE
prices for this environment besides the näıve construction
given in Lemma 1. This is not necessarily a poor approach
here. If l = m = n, the upper bound of the näıve protocol
together with the lower bound of Proposition 5 show that the
communication requirement of the VCG rule is Θ(n2). For
the efficient rule, we saw that communication is Θ(n) when
m = n. Hence VCG payments can increase communication
by an order of magnitude.

7. CONCLUSION
We have examined the nondeterministic communication

requirements of realizing the VCG outcome in settings with
indivisible units of different commodities. We leveraged
the known equivalence between the communication require-
ments of the VCG and UCE rules, in analogy to the NS
approach for the efficient rule. We gave a construction of
UCE prices from CE prices from the main and marginal
economies, yielding a näıve UCE protocol that mirrors the
näıve VCG protocol, and a general bound on the overhead
imposed by VCG payments.

We considered four different environments with concave-
extensible valuations. In single-unit settings—the single-
item auction, and the assignment problem with unit-demand
valuations—we found that VCG payments impose no over-
head. This is a striking observation, and it would be of inter-
est to understand if this is a general property of single-unit
settings. It is also natural to consider substitutes valuations
with just a single unit of each commodity, as in Kelso and
Crawford’s original model of firms and workers [15]. Per-
haps this environment has a positive overhead; note though
that Proposition 5 does not give any overhead when l = 1.
Mishra and Parkes [22] have shown that linear UCE prices
do not exist in this case, but perhaps another, less conven-
tional, low-dimensional subspace could encode UCE prices.

For multi-unit environments the characterizations are less
precise. Matching upper and lower bound are still lacking for
the environment with decreasing marginal values when n ≤
l. For n > l our characterization is exact, and it shows that
the näıve VCG protocol is asymptotically optimal. For the
environment of substitutes valuations, we do not even know
how to construct tailored UCE prices; only the construction
of Lemma 1 is known. This is the most significant remaining
open question. Nevertheless, if the number of units and
commodities is on the order of the number of agents, we
still find that the communication requirement of the VCG
rule is quadratic in the number of agents, which is an order
of magnitude increase over the efficient rule.

There are two broad avenues for future work. The first
is to try to derive upper and lower bounds for deterministic
communication protocols. Computing rather than verifying



the VCG outcome should require a strict increase in com-
munication, but we do not have any way to quantify this
increase. The second would be to examine Groves schemes
other than the VCG mechanism, with sufficient restrictions
(e.g., individual-rationality, no-deficit) to disallow protocols
such as Reichelstein’s [27] mentioned in Section 1. It could
be productive to characterize those Groves schemes that
have an associated price equilibrium concept, just as there
is UCE for the VCG mechanism, to understand the scope of
the approach used in this paper.
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