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We describe a modular elicitation framework for iterative combinatorial auctions. The framework
includes proxy agents, each of which can adopt an individualized bidding language to represent
partial value information of a bidder. The framework leverages algorithms from query learning to
elicit value information via bids as the auction progresses. The approach reduces the multi-agent
elicitation problem to isolated, single-agent learning problems, with competitive equilibrium prices
used to facilitate auction clearing even without complete learning.

Categories and Subject Descriptors: J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms: Algorithms, Economics

Additional Key Words and Phrases: combinatorial auction, preference elicitation, query learning

In a combinatorial auction, bidders place bids on packages rather than just in-
dividual items in order to account for complements or substitutes. The study of
combinatorial auctions has blossomed in recent years, driven by important appli-
cations in both the public and private sectors, ranging from spectrum allocation to
supply-chain management. Combinatorial auctions can be broadly categorized into
single-shot and iterative auctions. The distinction is important because iterative
auctions, unlike single-shot auctions, allow for coordinated preference elicitation
coupled with price discovery.

In a single-shot auction bidders report their preferences in some bidding language.
The auctioneer then computes an allocation and payments and the auction ends.
The winner-determination problem is typically solved in practice through mixed-
integer programming (MIP) techniques, and because of this bidding languages are
often designed so that they have straightforward conversions to MIP formulations.
This is true of bidding languages proposed in the AI literature: languages formu-
lated in terms of “atomic bids” (bids on single bundles) such as XOR, OR, and
OR* [Nisan 2000]; languages that use logical connectives to describe complements
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and substitutes [Boutilier and Hoos 2001; Cavallo et al. 2005]; and practical lan-
guages that allow side constraints and non-price attributes [Sandholm and Suri
2006]. The flexibility of MIP formulations leads to a wealth of plausible bidding
languages.

In an iterative auction bidders communicate claims about value information in
the form of bids over several rounds, typically in response to price feedback. Iter-
ative combinatorial auctions are commonly adopted in practical applications, for
example in the context of sourcing [Sandholm 2007], because of the advantages that
they provide in guiding bidders towards packages of items on which they are espe-
cially competitive. But in contrast to single-shot designs, and despite the practical
importance of iterative designs, the existing literature related to iterative auctions
has considered only a few bidding languages. The auction designs that provide
provable guarantees on efficiency and convergence are restricted to the XOR lan-
guage, in the sense that the partial value information accumulated across rounds,
in the form of bids, is represented in XOR [Ausubel and Milgrom 2002; de Vries
et al. 2007; Parkes 1999]. But in some settings this may not be practical; for in-
stance, XOR representations are exponential in size when valuations are additive
over small, disjoint sets of items. The prevalence of XOR in iterative combinatorial
auctions is an artifact of the way they are often designed: an iterative auction can
be interpreted as a dual method on a linear program for the allocation problem,
and a linear programming formulation leads naturally to XOR representation of
bids and prices [de Vries et al. 2007; Parkes and Ungar 2000].

In recent work, we have developed a modular framework for iterative combinato-
rial auctions that aims to overcome this restriction [Lahaie 2007; Lahaie et al. 2005;
Lahaie and Parkes 2004]. In our work, we view an iterative auction as a way of per-
forming coordinated learning of the individual bidders’ valuations for the purpose
of identifying an efficient allocation. We are interested in learning the valuations
only to the extent needed to identify an efficient allocation. In general, it will be
possible to terminate before the bidder valuations are completely learned. The
general framework is given in Figure 1. It consists of four components: the bidders
with their valuation functions v = (v1, . . . , vn); proxies associated to each of the
bidders, which hold partial valuation information ṽ in an appropriate structured
representation; a winner-determination engine that takes the partial valuations and
computes a tentative allocation S; and a pricing engine that computes prices p to
tentatively clear the market.

The proxies issue queries to their agents to form an estimate of the agent valu-
ations. At well-defined breakpoints, the proxies halt their elicitation and forward
their estimates to the winner-determination engine, which computes an efficient
allocation with respect to these reports. The allocation and reports are then for-
warded to the pricing engine, which computes market-clearing prices. Finally, the
allocation and prices are communicated to proxies and on to agents as necessary. If
the market clears—each agent’s allocated bundle maximizes its utility at the quoted
prices—then the auction terminates; otherwise the elicitation process repeats.

The elicitation component of our framework is completely modular. As our figure
suggests, the choice of representation language can differ across proxies. Proxies
interact with their respective agents through a standard interface of value and de-

ACM SIGecom Exchanges, Vol. 7, No. 2, June 2008.



A Modular Framework for Iterative Combinatorial Auctions · 3

Winner Determination Pricing
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Fig. 1. Sketch of the framework.

mand queries. On a value query, the agent is a given a bundle and replies with
a claim of its value for the bundle. On a demand query, the agent is given prices
and replies with a claim of the bundle that maximizes its utility. Both are natu-
ral in economic contexts, and our choice also allows us to draw on algorithms for
active learning in computational learning theory [Kearns and Vazirani 1994]. This
literature typically considers value and equivalence queries [Angluin 1987]. On an
equivalence query, the agent is given the estimate ṽi; the agent either confirms that
ṽi = vi, or provides some bundle as a counterexample to this fact. The key insight
is that, in an auction problem, equivalence queries can be replaced with demand
queries using the allocation and prices computed at each stage. These are suffi-
cient to simulate equivalence queries until the efficient allocation is known. The
demand queries in our approach are derived with the larger multi-agent process in
mind, because prices are computed with global knowledge of all estimated valua-
tions ṽi. Thus the result is truly a multi-agent elicitation process rather than just
isolated, single-agent learning processes with price-based queries. To date there
are polynomial-query learning algorithms for XOR, OR, and Polynomials [Lahaie
et al. 2005; Lahaie and Parkes 2004; Schapire and Sellie 1996]. If our choice of
queries seems restrictive, we also note that demand queries are quite powerful and
can simulate several other types of queries [Blumrosen and Nisan 2005]. Also, our
demand queries may quote personalized bundle prices, as opposed to item-based
prices, which limit the kinds of languages that can be efficiently learned [Blum et al.
2004].

The framework also provides flexibility in the choice of allocation algorithm, as
long as it properly interfaces with the proxies. The winner-determination problem
is typically formulated and solved as a MIP, and this is the approach we adopt in
our framework. We therefore require that the problem of evaluating a value query
on each proxy’s representation ṽi have a succinct formulation as a maximization

MIP. This allows the representations to be integrated into a MIP formulation of
the winner-determination problem.
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The current options for the pricing engine are more limited. The simplest ap-
proach is to use the estimates ṽ themselves as tentative clearing prices, or ṽ dis-
counted by “core payoffs” for the agents [Ausubel and Milgrom 2002]. One could
also use item prices in early rounds to drive forward elicitation. It is important to
ensure that bidders have a practical way to compute responses to demand queries
when faced with prices. For this, we define the notion of a pricing language, not
evident to date in the literature. In analogy to our requirement on bidding lan-
guages, instances of a pricing language should allow for succinct minimization MIP
formulations of value queries. This allows agents that represent their valuations in-
ternally in some bidding language (not necessarily the same as the proxy language)
to formulate and solve a demand query as a MIP. XOR and Polynomials are suitable
pricing languages, but to date this does not seem to be the case for OR. Of course, if
agents already have bidding language representations of their valuations, one might
wonder why we need elicitation at all. Note though that winner-determination al-
gorithms tailored to the agents’ representations may not be available. With our
modular framework, we can recover agent valuations in a representation suitable for
the winner-determination engine, which introduces modularity in the components.

Modularity in the proxies’ bidding languages can bring about significant benefits
in performance. To illustrate this, we performed experiments where each agent’s
valuation had a succinct OR representation, generated from legacy distributions
in the CATS test suite [Leyton-Brown et al. 2000]. We tested two instantiations
of our framework, one with XOR representations at the proxies, the other with
Polynomial representations. Because we used ṽ as prices in each round, the proxy
representations had to be drawn from a language suitable for both bidding and
pricing, which excluded OR. We tuned a parameter that, roughly, determines the
degree to which items are complements or substitutes. For settings where items
are mostly complements, the Polynomial framework converges in under a minute,
whereas the XOR framework does not converge after 24 hours. This reflects the
fact that the agents’ underlying valuations have succinct Polynomial representa-
tions, but the smallest XOR representations are exponential in size, and thus even
the partial representations ṽ become unwieldy with XOR. The reverse situation
holds for settings where items are substitutes: XOR can perform dramatically bet-
ter. In this sense the two languages complement each other, and this exemplifies
the modularity of our approach: with modest insight into the complement or sub-
stitute properties of the agents’ valuations, an auctioneer can choose an appropriate
language at each proxy.

We view this work as providing a first step towards more modular iterative com-
binatorial auctions that can provide the flexibility in bidding languages that has
proved useful in single-shot designs. There is still much work to be done. The
current catalog of languages for which learning algorithms are available is limited,
and the pricing methodology is still rudimentary. The advantage of the framework
is that the multi-agent elicitation problem can be reduced to isolated, single-agent
learning problems using familiar queries. We hope that this divide-and-conquer
approach will help drive forward progress on the elicitation aspects of iterative
combinatorial auctions.
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