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Abstract

We provide a simple protocol for secret reconstruction in any threshold secret sharing scheme,
and prove that it is fair when executed with many rational parties together with a small minority
of honest parties. That is, all parties will learn the secret with high probability when the honest
parties follow the protocol and the rational parties act in their own self-interest (as captured by
a set-Nash analogue of trembling hand perfect equilibrium). The protocol only requires a stan-
dard (synchronous) broadcast channel, tolerates both early stopping and incorrectly computed
messages, and only requires 2 rounds of communication.

Previous protocols for this problem in the cryptographic or economic models have either
required an honest majority, used strong communication channels that enable simultaneous
exchange of information, or settled for approximate notions of security/equilibria. They all also
required a nonconstant number of rounds of communication.
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1 Introduction

A major concern in the design of distributed protocols is the possibility that parties may deviate
from the protocol. Historically, there have been two main paradigms for modeling this possibility.
One is the cryptographic paradigm, where some parties are honest, meaning they will always follow
the specified protocol, and others are malicious, meaning they can deviate arbitrarily from the
protocol. The other is the economic paradigm, where all parties are considered to be rational,
meaning that they will deviate from the protocol if and only if it is in their interest to do so.

Recently, some researchers have proposed studying mixtures of these traditional cryptographic
and economic models, with various combinations of honest, malicious, and rational participants.
One motivation for this that it may allow a more accurate modeling of the diversity of participants
in real-life executions of protocols. Along these lines, the papers of Aiyer et al. [3], Lysyanskaya and
Triandopoulos [34], and Abraham et al. [2] construct protocols that achieve the best of both worlds.
Specifically, they take protocol properties that are known to be achievable in both the cryptographic
model (with honest and malicious parties) and the economic model (with only rational parties),
and show that protocols with the same properties can still be achieved in a more general model
consisting of malicious and rational parties.

Our work is of the opposite flavor. We consider properties that are not achievable in either
the cryptographic or economic models alone, and show that they can be achieved in a model
consisting of both honest and rational parties. Specifically, we consider the task of secret recon-
struction in secret sharing, and provide a protocol that is fair, meaning that all parties will receive
the output, given rational participants together with a small minority of honest participants. In
standard communication models, fairness is impossible in a purely economic model (with only
rational participants) [23, 28] or in a purely cryptographic model (with a majority of malicious
participants) [13]. Previous works in the individual models achieved fairness by assuming strong
communication primitives that allow simultaneous exchange of information [23, 22, 2, 28, 32, 33, 24]1

or settled for approximate notions of security/equilibria [15, 9, 20, 43, 28], whereas we only use a
standard (i.e. synchronous but not simultaneous) broadcast channel and achieve a standard notion
of game-theoretic equilibrium (namely, a trembling hand perfect equilibrium).

Thus, our work illustrates the potential power of a small number of honest parties to maintain
equilibria in protocols. These parties follow the specified strategy even when it is not in their
interest to do so, whether out of altruism or laziness. While we study a very specific problem
(secret sharing reconstruction, as opposed to general secure function evaluation), we hope that
eventually the understanding developed in this clean setting will be leveraged to handle more
complex settings (as has been the case in the past).

Below, we review the cryptographic and economic paradigms in more detail. We then introduce
the secret-sharing problem we study and survey recent works on this problem in the purely economic
model. We then describe our results and compare them to what was achieved before.

1.1 The Cryptographic Paradigm

In the cryptographic paradigm, we allow for a subset of the parties to deviate from the protocol
in an arbitrary, malicious manner (possibly restricted to computationally feasible strategies), and
the actions of these parties are viewed as being controlled by a single adversary. Intuitively, this

1Actually, the impossibility results of [23, 28] also hold in the presence of a simultaneous broadcast channel and
thus the works of [23, 22, 2, 28] use additional relaxations, such as allowing the number of rounds and/or the sizes of
the shares to be unbounded random variables.
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captures worst-case deviations from the protocol, so protocols protecting against such malicious and
monolithic adversaries provide a very high level of security. Remarkably, this kind of security can be
achieved for essentially every multiparty functionality, as shown by a series of beautiful results from
the 1980’s [50, 21, 11, 7, 44]. However, considering arbitrary (and coordinated) malicious behavior
does have some important limitations. For example, it is necessary to either assume that a majority
of the participants are honest (i.e. not controlled by the adversary) or allow for protocols that are
unfair (i.e. the adversary can prevent some parties from getting the output). This follows from a
classic result of Cleve [13], who first showed that there is no fair 2-party protocol for coin-tossing
(even with computational security), and then deduced the general version by viewing a multiparty
protocol an interaction between two super-parties, each of which controls half of the original parties.
Lepinski et al. [32] bypass this impossibility result by assuming a strong communication primitive
(“ideal envelopes”) which allow simultaneous exchange of information, but it remains of interest to
find ways of achieving fairness without changing the communication model.

1.2 The Economic Paradigm

In the economic paradigm, parties are modeled as rational agents with individual preferences, and
will only deviate from the protocol if this is in their own self interest. This approach has become
very popular in the computer science literature in recent years, with many beautiful results. There
are two aspects of this approach:

1. Design computationally efficient mechanisms (i.e. functionalities that can be implemented by
a trusted mediator) that give parties an incentive to be truthful about their private inputs,
while optimizing some social choice function, which measures the benefit to society and/or
the mechanism designer [36, 31, 5].

2. Implement these mechanisms by distributed protocols, with computational efficiency empha-
sized in distributed algorithmic mechanism design [16, 17, 18] and extended to also emphasize
additional equilibrium considerations in distributed implementation [47, 41, 42], so that par-
ties are “faithful” and choose to perform message passing and computational tasks in ex post
Nash equilibrium. More recent works achieve a strong form of distributed implementation,
with provably no additional equilibria [33, 24], but require strong communication primitives.

Note that distributed algorithmic mechanism design is different in spirit from the traditional
problem considered in cryptographic protocols, in that parties have “true” private inputs (whereas
in cryptography all inputs are considered equally valid) and there is freedom to change how these
inputs are mapped to outcomes through choosing appropriate social choice functions to imple-
ment (whereas in cryptography, the functionality is pre-specified.) Nevertheless, recent works have
explored whether we can use the economic model to obtain ‘better’ solutions to traditionally cryp-
tographic problems, namely to compute some pre-specified functionalities. One potential benefit is
that we may be able to incentivize parties to provide their “true” private inputs along the lines of
Item 1 above; the papers [35, 48] explore for what functionalities and kinds of utility functions this
is possible in the presence of game-theoretic agents.

A second potential benefit is that rational deviations may be easier to handle than malicious
deviations (thus possibly leading to protocols with better properties), while also preferable to
assuming a mixture of players at the honest and malicious extremes. This has led to a line of
work, started by Halpern and Teague [23] and followed by [22, 2, 28], studying the problems
of secret sharing and multiparty computation in the purely economic model, with all rational
participants. One can also require notions of equilibria that are robust against coalitions of rational
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players [2]. While this approach has proved to be quite fruitful, it too has limitations. Specifically,
as pointed out in [22, 28], it seems difficult to construct rational protocols that are fair in the
standard communication model, because parties may have an incentive to stop participating once
they receive their own output. The works [23, 22, 2, 28], as well as [33, 24] applied to appropriately
designed mediated games, achieve fairness by using strong communication primitives (simultaneous
broadcast, “ballot boxes”) that allow simultaneous exchange of information.

As mentioned above, we achieve fairness in the standard communication model by considering
a mix of rational participants together with a small minority of honest participants. Note that
Cleve’s [13] proof that an honest majority is necessary in the cryptographic setting, by reduction
to the two-party case, no longer applies. The reason is that we cannot view a subset of the rational
parties as being controlled by a single super-party. Even in coalitional notions of equilibria, each
individual in that subset would only agree to a coordinated (joint) deviation if it is in its own
interest to do so.

Our protocol is for the share reconstruction problem in secret sharing, which we now describe
in more detail.

1.3 Secret Sharing

In a t-out-of-n secret-sharing scheme [46, 8], a dealer takes a secret s and computes n (randomized)
shares s1, . . . , sn of s, which are distributed among n parties. The required properties are that (a)
any set of t parties can reconstruct the secret s from their shares, but (b) any set of fewer than t
parties has no information about s (i.e. they would have been equally likely to receive the same
shares for every possible value of s).

Secret sharing is a fundamental building block for cryptographic protocols [21, 7, 11, 44]. Typ-
ically, these protocols are structured as follows. First, every party shares its private input among
all the parties. Then the computation of the functionality is done on shares (to maintain privacy).
And at the end, the parties reveal their shares of the output so that everyone can reconstruct it.
Our focus in this paper is on this final reconstruction step. Typically, it is assumed that there
are enough honest parties in the protocol to ensure that the secret can be reconstructed from the
revealed shares, even if some parties refuse to reveal their shares or even reveal incorrect values.
This turns out to be achievable if and only if more than a 2/3 fraction of the players are honest [12].
(In previous versions of this paper, we restricted attention to fail-stop deviations where a party may
stop participating in the protocol early but otherwise follows the prescribed strategy, in which case
only an honest majority is needed in the traditional cryptographic model.)

1.4 Rational Secret Sharing

It is natural to ask whether we can bypass this need for an honest majority by considering only
rational deviations from the protocol. As noted above, the study of secret sharing with only rational
participants was initiated by Halpern and Teague [23], and there have been several subsequent
works [22, 28, 2]. In these works, it is assumed that participants prefer to learn the secret over
not learning the secret, and secondarily, prefer that as few other agents as possible learn it. As
pointed out in Gordon and Katz [22], any protocol where rational participants reveal their shares
sequentially will not yield a Nash equilibrium. This is because it is rational for the t’th player to
stop participating, as she can already compute the secret from the shares of the first t− 1 players
and her own, and stopping may prevent the first t− 1 players from learning it.

One way to get around this difficulty is to assume a simultaneous broadcast channel, where all
parties can broadcast values at the same time, without the option of waiting to see what values
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the other parties are broadcasting. All parties simultaneously revealing their shares is a Nash
equilibrium. That is, assuming all of the other parties are simultaneously revealing their shares, no
party can increase her utility by aborting (stopping early) instead of revealing. This basic protocol
is instructive because it has several deficiences:

1. A simultaneous broadcast channel is a strong (and perhaps unrealistic) communication prim-
itive, particularly in the context of trying to achieve fairness, where the typical difficulties are
due to asymmetries in the times that parties get information. For example, fair coin-tossing
is trivial with a simultaneous broadcast channel (everyone broadcasts a bit, and the out-
put is the exclusive-or), in contrast to Cleve’s impossibility result for synchronous broadcast
channels [13].

2. Nash Equilibrium in this context is a very weak guarantee. For example, as argued by Halpern
and Teague [23], it seems likely that rational parties would actually abort. The reason is that
aborting is never worse than revealing, and is sometimes better (if t− 1 other parties reveal,
then the tth party will always learn the secret and can prevent the other parties from doing
so by an abort.)

Halpern and Teague [23] and follow-up works [22, 2, 28] focus on the second issue. That is, they
allow simultaneous broadcast, and explore whether stronger solution concepts than plain Nash
equilibrium can be achieved. Halpern and Teague [23] propose looking for an equilibrium that
survives “iterated deletion of weakly dominated strategies.” They prove that no bounded-round
protocol can achieve a fair outcome in equilibrium when adopting this solution concept. However,
they and subsequent works by Gordon and Katz [22] and Abraham et al. [2] show that fair outcomes
are possible even with this equilibrium refinement using a probabilistic protocol whose number of
rounds has finite expectation. Moreover, Abraham et al. [2] show how to achieve an equilibrium
that is resistant to deviations by coalitions of limited size. Kol and Naor [28] argue that “strict
equilibria” is a preferable solution concept to the iterated deletion notion used by Halpern and
Teague [23], and show how to achieve it with a protocol where the size of shares dealt is an
unbounded random variable with finite expectation. (They also show that a strict equilibrium
cannot be achieved if the shares are of bounded size.) In all of the above works, the protocols’
prescribed instructions crucially depend on the utilities of the various players.

The works of Lepinski et al. [33] and Izmalkov et al. [24] also can be used to obtain fair
protocols for secret sharing by making an even stronger physical assumption than a simultaneous
broadcast channel, namely “ballot boxes.” Specifically, they show how to compile any game with
a trusted mediator into a fair ballot-box protocol with the same incentive structure. Since the
share-reconstruction problem has a simple fair solution with a trusted mediator (the mediator
takes all the inputs, and broadcasts the secret iff all players reveal their share), we can apply their
compiler to obtain a fair ballot-box protocol. But our interest in this paper is on retaining standard
communication models.

1.5 Our Results

In this paper, we address both issues above. Specifically, we assume that there is a small number
k of honest participants (which can be much smaller than the secret-sharing threshold t), and
the rest are rational. In this setting, we exhibit a simple protocol that only requires a standard
communication model, namely synchronous broadcast, and in cases where the total number of
players is sufficiently large, achieves fair outcomes with high probability with respect to a strong
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solution concept, namely (a set-Nash analogue of) trembling hand perfect equilibrium. We describe
both aspects of our result in more detail below.

Synchronous Broadcast. With a synchronous (as opposed to simultaneous) broadcast channel,
the protocol proceeds in rounds, and only one party can broadcast in each round.2 When all parties
are rational, the only previous positive results in this model are in works by Kol and Naor [28, 27],
who achieve a fair solution with an approximate notion of Nash equilibrium — no party can improve
her utility by ε by deviating from the protocol. However, it is unclear whether such ε-Nash equilibria
are satisfactory solution concepts because they may be unstable. In particular, how can everyone
be sure that some parties will not try to improve their utility by ε? Once this possibility is allowed,
it may snowball into opportunities for even greater gains by deviation. Indeed, Kol and Naor argue
in favor of strict Nash equilibria, where parties will obtain strictly less utility by deviating (and
show how to achieve strict equilibria in the presence of a simultaneous broadcast channel).

In our work, we achieve an exact notion of equilibrium (i.e. ε = 0). However, we allow a
negligible probability that the honest parties will fail to compute the secret correctly, so our notion
of “fairness” is also approximate. Nevertheless, we feel that the kind of error we achieve is preferable
to ε-Nash. Indeed, the equilibrium concept is supposed to ensure that parties have an incentive to
behave in a particular manner; if it is too weak, then parties may ignore it entirely and whatever
analysis we do may be rendered irrelevant. On the other hand, if we achieve a sufficiently strong
notion of exact equilibrium, then we may be confident that players will behave as predicted, and we
are unlikely to see any bad events that are shown to occur with small probability under equilibrium
play.

Trembling-Hand Equilibrium. In order to establish the equilibrium properties of the protocol,
we introduce a framework of “extensive form games with public actions and private outputs,” and
use the formalism of incomplete information games to model players’ uncertainties about the inputs
(i.e. shares) of other players as well as uncertainty about which players are honest and which are
rational. (For simplicity, we assume that each player is honest independently with some probability
p, but with small modifications, the result should extend to other distributions on the set of honest
players.) The solution concept of Bayesian Nash equilibrium handles the uncertainty that a player
has about the shares dealt to other players and requires that beliefs are updated according to
Bayes rule “whenever possible,” meaning that this occurs when the observed actions are consistent
with the equilibrium. A standard refinement is that of Bayesian subgame perfect Nash equilibrium,
which captures the idea that the strategy is rational to follow regardless of the previous history
of messages; intuitively, this means that the equilibrium does not rely on irrational empty threats
(where a player will punish another player for deviating even at his own expense). In fact, we achieve
the additional refinement of trembling hand perfect equilibrium [45], which strengthens this notion
by requiring that players update their beliefs in a consistent and meaningful manner even when
out-of-equilibrium play occurs. It is one of the strongest solution concepts studied for extensive
form games, and was advocated in this context by Peter Bro Miltersen (personal communication)
and Jonathan Katz [26].

Our Protocol. The protocol that we instruct honest players to follow is simple to describe.
The participants take turns broadcasting their shares in sequence. However, if any of the first

2For round efficiency, sometimes people use a slightly more general channel where many parties can broadcast
in a single round, but deviating parties are can perform ‘rushing’ — wait to see what others have broadcast before
broadcasting their own values. We describe how to extend our results to this setting below.
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t− 1 parties deviates from the protocol by stopping and refusing to broadcast her share, then the
protocol instructs all parties subsequent to the first t−1 to do the same. The intuition behind this
protocol is that if there is likely to be at least one honest party after the first t−1 parties, then each
rational party in the first t−1 parties will also have an incentive to reveal its share because by doing
so, the honest party will also reveal her share and enable the rational parties to reconstruct the
secret. Then we observe that as long as the set of honest parties is a random subset of k = ω(log n)
parties, and assuming that the total number, n, of players is sufficiently large, then there will be
an honest party after party t − 1 with all but negligible probability, as long as t ≤ (1 − Ω(1)) · n.
Thus, assuming that parties have a nonnegligible preference to learn the secret, we obtain an exact
equilibrium in which everyone learns the secret with all but negligible probability.

In order to deal with the possibility that some players may try to reveal incorrect shares, we use
information-theoretic message authentication codes (MACs) to authenticate the shares, following
Kol and Naor [28]. Intuitively, we can tolerate the (negligible) forgery probability of the MACs
(without getting an ε-Nash equilibrium) because the first t − 1 players actually achieve strictly
higher utility by revealing a valid share than by not doing so.

In addition, the incentives in our protocol hold regardless of what information the first t − 1
players have about each others’ actions, and similarly for the last n − t + 1 players. Thus, our
protocol can actually be implemented with only 2 rounds of communication (in contrast to all
previous protocols, which required a super-constant number of rounds); we discuss how to formalize
this below.

Modeling Contributions. While the intuition for our protocol is quite natural, modeling it
game-theoretically turns out to be quite delicate. As discussed above, we introduce a Bayesian
framework for capturing the uncertainty that players have about each others’ secrets and which
other players are honest vs. rational. Additional modeling contributions include:

Set Nash We find it useful to avoid specifying the exact actions that rational players should take
in situations where the choice is irrelevant to the overall strategic and fairness properties
of our protocol. We do this by developing a variant of the notions of Set-Nash [30] and
CURB (Closed Under Rational Behavior) Sets [6] for extensive-form games and trembling-
hand perfect equilibrium. Roughly speaking, this notion allows us to specify the equilibrium
actions only in cases that we care about, and argue that players have no incentive to deviate
from the specified actions provided that all other players are playing according to the specified
actions (even if they may act arbitrarily when the action is unspecified) and given the existence
of a small number of honest players. Since the honest strategy is consistent with the specified
equilibrium actions, this solution concept ensures that even repeated rational deviations from
the honest strategy (which we envision to be initial “program” distributed to all players) by
all but a small number of players will keep everyone consistent with the specified actions.
When this occurs as predicted, we show that all honest players will learn the secret with all
but negligible probability, and thus fairness is maintained.

Modeling Rushing To save on rounds, the cryptography literature often allows protocols that
specify messages for several players at once, but allows the possibility that deviating players
may wait to see other players’ messages before computing their own (i.e. simultaneity is
allowed but not enforced). Modelling such “rushing” game-theoretically was posed as a
challenge in the survey of Katz [26]. As mentioned above, we argue that our protocol can
be collapsed to two rounds of communication. To capture the possibility of rushing game-
theoretically, we follow an idea of Kalai [25], and argue that the specified strategy remains an
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equilibrium for every ordering of players within each round. Thus, players have no incentive
to wait for other players’ messages; sending the same message will maximize their utility
regardless of what other players send in the same round. (An alternative approach to modeling
rushing would be to argue, in the spirit of an ex post Nash equilibrium, that players have
no incentive to revise their messages after seeing the actions (and thus learning the private
information) of others so long as the others play the equilibrium. We do not explore this
possibility here.)

1.6 Future Directions and Independent Work

We view our work as but one more step in the line of work understanding the benefits of bringing
together cryptography and algorithmic mechanism design. (See the survey [26].) While our main
theorem is admittedly far from achieving an end goal that one would want to implement as is, we
hope that our high-level message (regarding the benefit of a few honest players with many rational
players) and our game-theoretic modelling (e.g. the Bayesian framework, the use of set-Nash, and
the modelling of rushing) prove useful in subsequent work. Some specific ways in which our results
could be improved are:

• Handling other distributions on (i.e. beliefs about) the set of honest players. Intuitively, this
should be possible by having the dealer randomly permuting the order of the players and
including the permutation in the shares (or publishing it). See Remark 5.1.

• Achieving solution concepts that are robust even to coalitional deviations from the protocol.
In an earlier version of our paper [38], we demonstrated coalition-proofness (against “stable”
coalitions) in a model that is even more simplified than the fail-stop one. As we have men-
tioned, Abraham et al. [2] show how to handle arbitrary, not necessarily stable, collusions of
a small number of players.

• Generalizing from secret sharing to secure multiparty computation. Indeed, this is the main
application for secret sharing and their reconstruction protocols.

• Getting stronger impossibility results for the entirely rational setting (prior impossibility
results either require players to learn the secret with pprobability 1 [28], or suffered other
restrictive constraints [39]) or, alternatively, finding a purely rational protocol.

O’Neill and Sangwan [37] extend the results from a preliminary version of our paper [39] in
several ways, including achieving a strict Trembling Hand Perfect Equilibrium for a restricted
deviation model (which is still more general than the fail-stop deviation model we considered
in [39]) and handling a small number of “malicious players.”

2 Definitions

2.1 Games with Public Actions and Private Outputs

To cast protocol executions into a game-theoretic setting, we introduce the notion of extensive games
with public actions and private outputs. The basis of this new notion is the more standard definition
of extensive form games with perfect information. Extensive form games enable us to model the
sequential aspect of protocols, where each player considers his plan of action only following some of
the other players’ messages (the “actions” of the game-theoretic model). The perfect information
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property captures the fact that each player, when making any decision in the public phase of the
protocol, is perfectly informed of all the actions by other players that have previously occurred.
Thus, extensive form games with perfect information are a good model for communication on a
synchronous broadcast channel.

We build upon extensive form games with perfect information and augment them with an
additional final private stage. This additional stage models the fact that at the end of the game,
each player is allowed to take some arbitrary action as a function of the history h ∈ H of messages
so far. This action, along with the “history” of public actions that have taken place during the
execution of the game (as well as the players’ inputs) has a direct effect on players’ payoffs.

Working in the framework of Bayesian games of incomplete information, players i ∈ N are
handed private inputs θi that belong to some pre-specified set Θi (the “types” of the game-theoretic
model) and specify a distribution according to which the various inputs are chosen. Players’ inputs
can be thought of as the shares for the secret-sharing scheme, and are generated jointly with the
actual secret. The secret is thought of as a “reference” value δ ∈ ∆ that is not given to the players
at the beginning of the protocol (but may be determined by them through messages exchanged),
and is used at the output stage along with private actions to determine player utilities; in game-
theoretic terms, this secret can be considered to be picked by “Nature” in the first round of the
game and then induces a distribution µ on the private types of agents. Nature sends each player
a private message about its own type. Despite this uncertainty about other players’ inputs, this
remains a game of perfect information, with all previous actions of other players (just not that of
Nature) known to each player. One additional change we make from the standard definition of
Bayesian extensive-form games is that we allow the set of actions available to a player to depend
on her type. This will be useful later on when we wish to model the possibility that some players
are “honest,” and will always follow a specified strategy even if it is not in her interest to do so.
Whether a player is honest or rational will be indicated in her type, and honesty will be modeled
by restricting the action sets of honest players to the message given by the specified strategy.

Definition 2.1 (Extensive game with public actions and private outputs). An extensive form game
with public actions and private outputs is a tuple Γ = (N,H,P,A,L,∆,Θ, µ, u) where

• N = {1, . . . , n} is a finite set of players,

• ∆ is a (possibly infinite) set of possible reference values,

• Θ = Πi∈NΘi, where Θi is a (possibly infinite) set of possible private types of player i ∈ N ,

• values (δ, θ1, . . . , θn) ∈ ∆×Θ, are chosen jointly according to the distribution µ,

• H is a (possibly infinite) set of (finite) history sequences satisfying that the empty word ε ∈ H.
The components of a history sequence h ∈ H are called public actions. A history h ∈ H is
terminal if {a : (h, a) ∈ H} = ∅. The set of terminal histories is denoted Z.

• P : (H \ Z)→ N is a function that assigns a “next” player to every non-terminal history.

• A = (A1, . . . , An), where Ai is a function that assigns for every pair (θi, h) ∈ Θi × (H \ Z) a
finite set Ai(θi, h) of public actions available to player i = P (h).

• L = (L1, . . . , Ln), where Li is a function that assigns for every pair (θi, h) ∈ Θi×Z a (possibly
infinite) set Li(θi, h) ⊆ ∆ of private actions available to player i ∈ N .

• u = (u1, . . . , un) is a vector of payoff functions ui : ∆×Θ× Z ×∆n → R.
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In cases where ∆ and H are finite, we say that Γ is finite.

An extensive form game with public actions and private outputs is interpreted as follows: the
reference value and the types of the players are selected according to the joint distribution µ. The
type θi ∈ Θi is handed to player i ∈ N and the value δ remains secret and affects the players’
utilities. This is followed by a sequence of actions that are visible by all players. After any history
h ∈ H, player i = P (h) chooses an action from the set Ai(θi, h). The empty history h0 = (ε)
is the starting point of the game. Player i1 = P (h0) chooses an action a1 ∈ Ai1(θi1 , h0), which
induces a history h1. Then player i2 = P (h1) subsequently chooses an action a2 from the set
Ai2(θi2 , h1); these choices determines the next actions of the players, and so on until a terminal
history h ∈ Z is reached. At this point, all players i ∈ N simultaneously pick an action, bi, from the
set Li(θi, h) ⊆ ∆, of available private actions. The utility (or payoff) of player i for an execution
of the game is then determined to be the value ui(δ, θ, h, b1, . . . , bn).

2.2 Strategies

The action chosen by a player for every history after which it is her turn to move, is determined
by her strategy function. As is required in extensive-form games, the strategy is defined for all
histories, even ones that would not be reached if the strategy is followed.

We refer to a pair (θ, h) ∈ Θ ×H as a state of the game. A state (θ, h) is said to be terminal
if h ∈ Z. Given our notion of extensive form games with public actions and private outputs, we
distinguish between the public strategy of a player and her private strategy. The former is applied
to (a player’s view of) non-terminal states and is what determines a player’s actions during the
execution of the public part of the game. The latter is applied to (a player’s view of) terminal
states and is what determines a player’s output. A strategy for player i ∈ N is thus a pair
si = (mi, fi), where:

• The public strategy mi is a function that takes a pair (θi, h) ∈ Θi × (H \ Z) and produces a
public ‘message’, mi(θi, h) ∈ Ai(θi, h).

• The private strategy fi is a function that takes a pair (θi, h) ∈ Θi×Z and produces a private
‘output’ fi(θi, h) ∈ Li(θi, h).

A strategy si completely defines the actions of a player for every possible history h ∈ H and
every possible private input θi ∈ Θi. We will allow the public and private strategy functions to
be mixed (i.e. randomized), where the randomization of the strategy is interpreted to be done
independently at each application of the function, if a player has multiple moves in the game.
Strategies that consist of deterministic functions are called pure, whereas strategies whose functions
have full support on Ai(θi, h) are said to be fully mixed. We achieve fairness (with high probability)
in a pure strategy equilibrium but use fully mixed strategies in defining the concept of trembling
hand equilibrium.

We let s = (s1, . . . , sn) denote the vector of players’ strategies, where si = (mi, fi). The outcome
o of the game Γ under strategy s is the random variable (δ, θ, h, b1, . . . , bn), where (δ, θ) ∈ ∆ × Θ
are sampled according to µ, h ∈ H is the terminal state that results when each player i ∈ N is
given her type θi ∈ Θi, publicly follows the actions chosen by mi, and computes her final private
output bi using fi. That is, h is a history h = (a1, . . . , a`) such that for j = 1, . . . , ` − 1 and
ij+1 = P (a1, . . . , aj), we have that aj+1 ← mij (θij , (a1, . . . , aj)), and bi ← fi(θi, h) for all i ∈ N.
The value of player i’s utility is totally determined by the outcome o. The initial distribution, µ,
of the secret and the shares, along with the strategies si = (mi, fi) induce a distribution on the
outcome o, and thus on the utilities of the players.
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2.3 Nash and Set Nash Equilibria

Let s = (m, f) be a strategy vector in Γ. Define ui(µ, s) to be the expected value of the utility
of player i ∈ N , when the types are selected according to the distribution µ and all players follow
strategy s. (We consider games with histories with bounded length, and hence the expected value
of the utility is well-defined.) We assume that rational players seek to maximize expected utility.
The notion of Nash equilibrium (NE) captures the idea that no player should have an incentive to
change her strategy, assuming that the other players play s−i.

Definition 2.2 (Nash equilibrium). A strategy profile s is said to be a (Bayesian) Nash equilibrium
for a game Γ if for all i ∈ N and all strategies s′i, ui(µ, (s−i, s

′
i)) ≤ ui(µ, s).

In game theory, the notion of Bayesian NE is typically formulated to say that for each type θi
of player i, player i maximizes her expected utility when the other players’ types are distributed
according to the conditional distribution µ|θi

. However, since a player’s strategy depends on her
type, this is equivalent to the formulation above, where we also take the expectation over θi.

The protocol that we introduce for secret reconstruction will be defined in a way that leaves
the actions that a rational agent should follow only partially specified. This keeps the protocol as
simple as possible and also minimizes the difference between the description of the behavior of an
honest player and that of a rational player.

For this, we allow each player to have a strategy that maps each information set (i.e. view of
the player) into a set of possible actions. More precisely, a set-valued strategy for player i ∈ N is a
pair Si = (Mi, Fi), where:

• The public set-valued strategy Mi is a function that takes a pair (θi, h) ∈ Θi × (H \ Z) and
defines a set of public messages, Mi(θi, h) ⊆ Ai(θi, h).

• The private set-valued strategy Fi is a function that takes a pair (θi, h) ∈ Θi × Z and defines
a set of private outputs Fi(θi, h) ⊆ Li(θi, h).

We write si = (mi, fi) ∈ Si to indicate that strategy si is consistent with Si, i.e. with mi(θi, h) ∈
Mi(θi, h) for all (θi, h) ∈ Θi × (H \ Z) and fi(θi, h) ∈ Fi(θi, h) for all (θi, h) ∈ Θi × Z (where these
inclusions should hold with probability 1 in case si is a mixed strategy).

Definition 2.3 (Set Nash equilibrium). A profile S = (S1, . . . , Sn) of set-valued strategies is a
(Bayesian) Set Nash equilibrium for a game Γ if for all i ∈ N , every (possibly mixed) s−i ∈ S−i,
there exists a strategy si ∈ Si so that for all strategies s′i, ui(µ, (s−i, s

′
i)) ≤ ui(µ, s).

Since all strategies s′i for player i are weakly dominated by a strategy si ∈ Si, when other
players are playing strategy profiles consistent with S−i, then there exists a Nash equilibrium that
is consistent with S. To see this, consider a modified game in which all players are restricted to play
consistently with S. This game has a Nash equilibrium s by Nash’s existence theorem. Now, we
argue that s must also be a Nash equilibrium even if players are not restricted to play consistently
with S. If a player could strictly improve her utility by any deviation from s, then the definition
of set-Nash guarantees that she could also do so playing consistently with S, contradicting the fact
that s is a Nash equilibrium in the modified game.

A trival set-Nash equilibrium has Si defined to include all possible strategies for all i. At another
extreme, if Si defines a singleton action set for all players at all information sets then this is a Nash
equilibrium. Our goal will be to find set-Nash equilibrium for which every profile contained in it
achieves some desirable property (namely everyone learning the secret). This allows us to avoid
specifying moves that are not important for strategic properties.
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Our definition of set-Nash equilibrium is stronger than the set-Nash equilibrium definition
introduced by Lavi and Nisan [30], who require only that for every pure s−i ∈ S−i there exists some
si ∈ Si for which ui(µ, s) ≥ ui(µ, (s−i, s′i)) for all possible strategies s′i. This earlier definition of
set-Nash is insufficient to ensure that there is a Nash equilibrium consistent with the set-valued
strategy profile S. The problem is that upon restricting the game to S the only Nash equilibrium
may be a mixed equilibrium, yet there may be some strategy s′i outside of Si that is strictly better
than all si ∈ Si given that players 6= i play a mixed strategy consistent with S−i.

On the other hand, our definition of set-Nash is weaker than the CURB (Closed Under Rational
Behavior) sets of Basu and Weibull [6]; see also a recent discussion in Benisch et al. [14]. A CURB
set requires that for every mixed strategy s−i consistent with S−i, all best-responses for player i
are consistent with set-valued strategy Si whereas we require only that there is some best-response
that is consistent with Si. Given our set-Nash construct, it is rational for a rational player to play
inside the set given that other rational payers play inside the set. The strengthening provided
by CURB allows one to further argue that rational players will not play outside of the set, and
provides the tightest set-valued approximation to Nash equilibrium in the sense of containing all
Nash equilibrium solutions.

2.4 Trembling-Hand Perfect Equilibrium

The basic notion of Nash equilibrium (or even strict Nash equilibrium) turns out to be an unsatis-
factory solution concept for extensive-form games. The reason is that a Nash equilibrium can rely
on “incredible” threats by players — ones that are needed to maintain the equilibrium but never
occur during the equilibrium play and would not be in the self-interest of the player if tested. A
more appealing solution concept is that of subgame perfect equilibrium. This is a standard strength-
ening of the notion of Nash equilibrium in that it requires that the equilibrium strategy is a Nash
equilibrium in every subgame of the original extensive form game.

In order to adapt the subgame perfect equilibrium concept to the Bayesian setting one has
to take into consideration the inherent uncertainty about player’s types (and as a result about
the actions implied by their strategies). The assumption underlying the Bayesian setting is that
individual players have beliefs about the values of other players’ types. The beliefs are in fact
distributions from which players think that the types of other players were drawn. At the beginning
of the game, the belief corresponds to the initial distribution µ conditioned on the player’s knowledge
of her own type. As this game of incomplete information progresses, players update their beliefs as
a function of other players’ actions (recall that a player’s actions may depend on her type).

At the heart of a solution concept for extensive-form games with incomplete information is a
requirement about the way in which the players update their beliefs. A straightforward approach
for a player to update her beliefs is to use Bayes rule to condition on her own view of the actions
taken in the game (as represented in her “information set”). This is the basic approach taken in the
game theory literature, and the one pursued in a previous version of this paper [39]. But such an
approach suffers from the drawback that updating is not well-defined for views that occur with zero
probability, i.e. following out of equilibrium play. See [19] for further discussion of the difficulties
related to Bayesian updating in extensive form games.

A stronger approach, also discussed in the game theory literature, is the one of trembling-hand
perfect equilibrium [45]. The idea behind trembling-hand perfect equilibrium is that updating is
not problematic if the strategies under consideration are fully mixed (since such strategies would
never incur an updating that conditions on a zero probability event). It thus becomes natural to
require that the equilibrium strategy is a best response in every subgame to some sequence of fully
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mixed strategies that converge to equilibrium, and this is indeed the definition of trembling hand
equilibria. An interpretation of trembling-hand perfect equilibrium is that it requires each player’s
strategy to be robust to beliefs that are generated by play that could be the result of small mistakes.

A trembling-hand perfect equilibrium is also a Bayesian subgame perfect equilibrium, and when
applied to normal form games has the useful property of eliminating weakly dominated strategies.3

Trembling-hand perfect equilibrium is one of the strongest solution concepts studied for exten-
sive form games, and an extensive-form trembling-hand perfect equilibrium is also a sequential
equilibrium (due to Kreps and Wilson [29]).

The trembling-hand solution concept builds on the following definition of a subgame, which
captures the way in which players update their beliefs as a result of other players’ actions.

Definition 2.4 (Subgame). Let Γ be an extensive form game with public actions and private
outputs and s = (m, f) a fully mixed strategy profile for Γ. For a history h ∈ H the subgame
Γ(s, h) = (N,H|h, P |h, A|h, L|h,∆,Θ, µ|h, u|h) and substrategy s|h are defined as follows.

• H|h is the set of sequences h′ for which: (h, h′) ∈ H; i.e., H|h = {h : (h, h′) ∈ H}.

• For every h′ ∈ H|h, the function P |h is defined by P |h(h′) = P (h, h′).

• For every i ∈ N , the function Ai|h is defined by Ai|h(θi, h′) = Ai(θi, (h, h′)).

• For every i ∈ N , the function Li|h is defined by Li|h(θi, h′) = Li(θi, (h, h′)).

• For every i ∈ N , the function ui|h is defined by ui|h(δ, θ, h′, b) = ui(δ, θ, (h, h′), b).

• The distribution µ|h is defined as µ conditioned on h given strategy s.4

• The substrategy s|h = (m|h, f |h) is defined by mi|h(θi, h′) = mi(θi, (h, h′)) and fi|h(θi, h′) =
fi(θi, (h, h′)).

Given a strategy profile s and a strategy s′i for player i, we denote by ui|h(µ|h, s−i|h, s′i|h) the
expected value of player i’s utility under strategy vector (s−i|h, s′i|h) in the game Γ(s, h). This is
interpreted as considering player i’s expected utility when all players except player i follow strategies
s−i, and assuming that until the history h has been reached player i has played according to strategy
si, and from that point on according to strategy s′i.

Definition 2.5 (Trembling-hand perfect equilibrium). Let Γ = (N,H,P,A,L,∆,Θ, µ, u) be an
extensive form game with public actions and private outputs. A strategy profile s is said to be a
trembling-hand perfect equilibrium for Γ if there exists a sequence of fully mixed strategy profiles
(sk)∞k=0 converging to s so that for every history h ∈ H, every i ∈ N , and every strategy s′i for
player i in the game Γ(sk, h) it holds that ui|h(µ|h, sk−i|h, si|h) ≥ ui|h(µ|h, sk−i|h, s′i) in the game
Γ(sk, h) for all k.

Our definition of a trembling-hand perfect equilibrium requires that player i’s strategy si defines
a best-response at every partial view/information set (because the strategies are fully mixed), where
past perturbations of its own strategy are also considered within sk in defining subgame Γ(sk, h).
This definition is slightly weaker than the standard trembling-hand definition for extensive-form
games in that it does not allow future trembles for player i (since we are replacing all of player i’s

3See Osborne and Rubinstein [40] for an extended discussion, including an example to show that trembling hand
perfect equilibria of extensive form games can still include weakly dominated strategies.

4Since s is fully mixed then every h occurs with nonzero probability, and so conditioning on h is well defined.
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future actions in sk with the non-trembling si).5 We adopt this definition because it is conceptually
simpler, but our protocol actually achieves (a set Nash analogue of) the standard definition.

We define a set-Nash analogue of trembling-hand perfect equilibrium. To the best of our knowl-
edge, such a combination has not been previously considered in the literature. Given a history
h ∈ H and a set valued strategy Si, we define Si|h in the natural way (i.e., if Si = (Mi, Fi) then
Si|h = (Mi|h, Fi|h) where Mi|h(θi, h′) = Mi(θi, (h, h′)) and Fi|h(θi, h′) = Fi(θi, (h, h′))).

Definition 2.6 (Trembling-hand perfect set equilibrium). Let Γ = (N,H,P,A,L,∆,Θ, µ, u) be an
extensive form game with public actions and private outputs. A profile S = (S1, . . . , Sn) of set-valued
strategies is said to be a trembling-hand perfect set equilibrium for Γ if for every s ∈ S1 × · · · × Sn
there exists a sequence of fully mixed strategy profiles (sk)∞k=0 converging to s so that for every
history h ∈ H and every i ∈ N , there exists a strategy s′i ∈ Si|h such that for all strategies s′′i in the
game Γ(sk, h) it holds that ui|h(µ|h, sk−i|h, s′i) ≥ ui|h(µ|h, sk−i|h, s′′i ) in the game Γ(sk, h) for all k.

There is no requirement in the definition for the sequence of perturbed strategies to be consistent
with the profile S of set-valued strategies.

Lemma 2.7 (One-deviation property trembling-hand perfect set equilibrium). Let Γ be a finite
extensive form game with public actions and private outputs and histories with bounded length.
The set-valued strategy profile S is a trembling-hand perfect set equilibrium if and only if for every
s ∈ S, there exists a fully mixed sequence (sk)∞k=0 converging to s, so that for every player i ∈ N ,
every pair (θi, h) ∈ Θi × H such that P (h) = i, and every strategy s′′i for player i in the game
Γ(sk, h) such that s′′i (θi, ε) 6∈ Si|h(θi, ε), there is a strategy s′i for player i in game Γ(sk, h) such that
s′i(θi, ε) ∈ Si|h(θi, ε) and ui|h(µ|h, sk−i|h, s′i) ≥ ui|h(µ|h, sk−i|h, s′′i ) in game Γ(sk, h) for all k

Proof. It is easy to see that this one-deviation property is necessary for a trembling-hand perfect
set equilibrium. For the sufficient direction, fix game Γ, some strategy profile s ∈ S in set-valued
strategy profile S, and consider a fully mixed sequence (sk)∞k=0 converging to s for which the one-
deviation property holds. Proceed by backwards induction on the number of rounds in the subgame
Γ(sk, h). The induction hypothesis is that for every history h ∈ H for which game Γ(sk, h) has
z ≥ 1 or less rounds, and every player i ∈ N , there exists a strategy s′i ∈ Si|h such that for all
strategies s′′i in the game Γ(sk, h) it holds that ui|h(µ|h, sk−i|h, s′i) ≥ ui|h(µ|h, sk−i|h, s′′i ) for all k.

For the base case, game Γ(sk, h) has one round. Fix player i. If P (h) 6= i then s′i ∈ Si|h
trivially satisfies ui|h(µ|h, sk−i|h, s′i) ≥ ui|h(µ|h, sk−i|h, s′′i ) for all s′′i in the subgame. If P (h) = i (the
interesting case) then by the one-deviation property, for any s′′i /∈ Si|h there exists a strategy s′i in
the subgame with at least as much utility and such that s′i(θi, ε) ∈ Si|h(θi, ε), and thus s′i ∈ Si|h
since the subgame has one round. To establish the inductive hypothesis, pick as a best-response
the strategy s′i ∈ Si|h with highest utility ui|h(µ|h, sk−i|h, s′i), when assuming that other players play
according to sk−i.

For the inductive case, consider a game Γ(sk, h) with z > 1 rounds. Fix player i. Again, the
case with P (h) 6= i can be trivially established from the inductive hypothesis on subgames with
z − 1 rounds. Consider the interesting case of P (h) = i, and fix s′′i in game Γ(sk, h) such that
s′′i (θi, ε) /∈ Si|h(θi, ε). By the one-deviation property, there exists a s′i in game Γ(sk, h) such that
s′i(θi, ε) ∈ Si|h(θi, ε) with at least as much utility as s′′i . Pick as a candidate best-response to sk−i
the strategy s′i ∈ Si|h with the highest utility ui|h(µ|h, sk−i|h, s′i): this strategy s′i will have at least
as much utility as any s′′i in the subgame. Now appeal to the inductive hypothesis and modify s′i

5The considerations that require that a player also consider its own future trembles can be modeled via the “agent
strategic form” and are relevant in the case that there are multiple public plays by a player. See Osborne and
Rubinstein [40] for an extended discussion.
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on all subsequent subgames to adopt a strategy s̃i consistent with Si, and with at least as much
utility. This modified strategy establishes the inductive hypothesis and completes the proof.

The differences between this formulation and Def 2.6 are: (1) we switch order of quantifiers,
saying for every strategy s′′i , there is something at least as good consistent with Si (rather than
requiring some s′i consistent with Si that is at least as good as every s′′i ); and (2) we do not require
that s′i is consistent with Si everywhere, but only at the history h. This is the sense in which it is
a one-deviation-like property (but note that we do allow s′′i to differ from s in many places). Later
deviations from Si are implicitly dealt with when considering longer histories. This one-deviation
property provides a useful simplification to the analysis of the secret-sharing game.

3 Secret Sharing

In this section we formally define the idea of a secret sharing scheme. We then define what is
a secret sharing reconstruction protocol, and cast it into a game-theoretic setting by defining a
corresponding reconstruction game (as induced by a given reconstruction protocol). The latter
allows us to reason about whether players have an incentive to follow the strategy specified by the
protocol, even if they are allowed arbitrary deviation from the protocol’s instructions (including a
change of their private output).

3.1 Secret-Sharing Schemes

A secret sharing scheme describes the basic requirements of secret sharing and is not game-theoretic.
In order to define a secret sharing scheme we need to specify the sets from which the secret and its
shares are drawn, as well as a joint probability distribution under which the shares of a secret are
generated by the dealer (along with the secret).

Definition 3.1 (Secret sharing). A threshold secret sharing scheme is a tuple (N, t,∆,Θ, µ, g) where

• N = {1, 2, . . . , n} is the set of players,

• t ∈ N is the threshold of the scheme,

• ∆ is the set from which the “secret” is chosen,

• Θ = Πi∈NΘi, where Θi is the set of possible shares of player i ∈ N ,

• µ is a joint probability distribution for the secret and the shares (δ, θ1, . . . , θn) ∈ ∆×Θ,

• g = {gS :
∏
i∈S Θi → ∆ ∪ {λ}}S is a collection of reconstruction functions, such that:

– for each set S ⊆ N of size strictly less than t, gS((θi)i∈S) = λ,

– for each set S ⊆ N of size at least t:

Pr[gS((θi)i∈S) = δ] = 1

where (δ, θ1, ..., θn) are drawn according to µ.

– for every S ⊆ N and (θi)i∈S such that gS((θi)i∈S 6= λ it holds that

gT ((θi)i∈T ) = gS((θi)i∈S)

for every T ⊆ S of size at least t, and
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• for every S ⊆ N of size less than t, the tuple (δ, (θi)i∈S) has the same distribution as
(U, (θi)i∈S) when δ and the θi’s are chosen according to µ and U is uniformly and inde-
pendently chosen in ∆,

A secret sharing scheme is implemented by letting a trusted dealer jointly pick the secret and
shares according to the distribution µ, and then distributing share θi ∈ Θi to player i ∈ N . The
reconstruction functions are what enables any set S of at least t players to use their shares (θi)i∈S
in order to jointly reconstruct the secret. The scheme should also guarantee secrecy against any
subset S of less than t players. This requirement is expressed in the last item of Definition 3.1.

Our analysis will require the secret sharing to satisfy some additional properties. The properties
we require are natural in the context of secret sharing, are satisfied, for example, by the Shamir
secret sharing scheme [46].

Definition 3.2 (Admissible secret sharing). A threshold secret sharing scheme (N, t,∆,Θ, µ, g) is
said to be admissible if it satisfies the following conditions:

• for every S ⊆ N of size less than t, the tuple ((θi)i∈S) is uniformly distributed in
∏
i∈S Θi

and independent from δ, when δ and the θi’s are chosen according to µ.

• for every S ⊆ N of size t, any j 6∈ S, and every θj ∈ Θj so that gS∪{j}((θi)i∈S , θj) 6= λ, there
exists a unique δ ∈ ∆ so that gS∪{j}((θi)i∈S , θj) = δ.

To prevent players from revealing shares that are different than the ones they were dealt, we
will want to work with a secret sharing scheme that is authenticated.

Definition 3.3 (Authentication Scheme). An authentication scheme with forgery probability γ ∈
[0, 1] is a tuple (M,T,K, ν,Auth,Ver) such that:

• M is a set of messages, T is a set of tags, and K is a set of keys,

• ν is a probability distribution on K,

• Auth : M ×K → T and Ver : M × T ×K → {0, 1}, are functions so that for every m ∈ M
and for κ that is chosen according to ν:

– Ver(m, τ, κ) = 1 with probability 1 where τ = Authκ(m) = Auth(m,κ),

– For every function A : M×T →M×T , the probability that Ver(A(m,Authκ(m, τ)), κ) =
1, and the first output of A(m, τ) is not equal to m is at most γ.

A standard technique for authenticating shares in a (plain) secret sharing scheme would be
the following [49, 44, 28]: the dealer chooses at random elements αi, βi ∈ F, βi 6= 0, and sets
τi = αi · θi + βi ∈ F, where θi ∈ F is player i’s share (in particular it is required that |F| > |∆|).
The value τi (the tag) is given to player i, along with the share θi. The other players each get the
pair κi = (αi, βi) (the key). (Thus, in this example K = F× (F \ {0}) and T = F.)

In order to prove that θj is her true share, player j is required to broadcast the tag τj . The
other players can then verify with high probability by checking that τj = αj ·θj+βj (the probability
of forgery can be made negligibly small by picking a sufficiently large F). Thus, in effect, the share
dealt by the dealer consists of a tuple θ̃i = (θi, τi, {κj}j 6=i), where τi = αi · θi +βi ∈ F, κj = (αj , βj)
and θi ∈ F is the original share chosen by the dealer. The distribution according to which the
dealer chooses the authenticated shares is thus µ̃ = µ× ν|N |. The above technique is applicable to
any secret sharing scheme (given an appropriate embedding of elements in ∆ into elements in F).
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3.2 Reconstruction Protocols

Once shares are distributed among the players, it is required to specify a protocol according to which
the players can jointly reconstruct the secret at a later stage (using the reconstruction function).
The reconstruction protocol prescribes a way in which the players compute their “messages”, which
are chosen from a given fixed “alphabet,” and are then broadcast to all other players. The protocol
also specifies an output function that is used by the players to compute their (private) output.

One specific way of doing so would be to let the players broadcast their private shares in some
order. However, to avoid restrictions on the way in which the protocol proceeds, we give a more
general definition that allows the exchange of arbitrary messages.

Definition 3.4 (Secret sharing reconstruction protocol). A reconstruction protocol for a secret
sharing scheme (N, t,∆, Θ̃, µ̃, g) is a tuple Π = (Σ, H, P,m∗, f∗) where

• Σ is a finite set of messages,

• H ⊆ Σ∗ is a (possibly infinite) set of protocol history sequences, satisfying that the empty
word ε ∈ H. We let M(h) = {m : (h,m) ∈ H} ⊆ Σ. A history h ∈ H is terminal if
M(h) = ∅. The set of terminal histories is denoted Z.

• P : (H \ Z)→ N assigns a set of “next” players to every non-terminal history.

• m∗ = (m∗1, . . . ,m
∗
n) is a vector of next-message functions, where the function m∗i maps a pair

(θ̃i, h) ∈ Θ̃i × (H \ Z) to a message, m∗i (θ̃i, h) ∈ Σ, for every history h such that i = P (h).

• f∗ = (f∗1 , . . . , f
∗
n) is a vector of output functions f∗i : Θ̃i × Z → ∆.

A reconstruction protocol for a given secret sharing scheme is implemented under the assumption
that the secret and shares (δ, θ1, . . . , θn) are chosen according to the distribution µ, and (τi, κi)i∈N
are chosen according to ν. Player i’s type is θ̃i = (θi, τi, {κj}j 6=i). The protocol is interpreted as
follows: player i = P (h) chooses a message m = m∗i (θ̃i, h) ∈ Σ. The empty history h0 = ε is the
starting point of the execution. Player i0 = P (ε) chooses a message m = m∗i0(θ̃i0 , ε) ∈ Σ. This
induces a history h1 = (m), where m̄ = (m1), and player P (h1) subsequently chooses a message
from the set Σ; this choice determines the next player to move, and so on until a terminal history
h ∈ Z is reached. At this point all players can determine the value of their private output functions,
f∗i (θ̃i, h). Generally, we are interested in secret-sharing protocols in which all players will compute
the secret correctly (i.e. f∗i (θ̃i, h) = δ with high probability over µ, provided all players follow the
protocol). Rather than require this as part of the definition, however, we will address explicitly
this in the statements of our positive and negative results.

3.3 Reconstruction Games

Based on the definition of a secret sharing protocol, we may now formalize an induced reconstruction
game. Loosely speaking, this is an interpretation of a reconstruction protocol as an extensive form
game with public messages and private outputs, in which arbitrary deviations from the protocol’s
instructions are allowed. The interpretation of the protocol as a game is straightforward: protocol
histories correspond to game histories, messages in the protocol correspond to actions, next message
functions correspond to strategies, and the outputs correspond to output actions.

The reconstruction game allows player i ∈ N the choice between continuing with the protocol’s
prescribed instructions (and in particular choosing an action according to m∗i ), and deviating from
Π (by sending some other message from Σ).
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Definition 3.5 (Reconstruction game for secret sharing). A reconstruction game that corresponds to
reconstruction protocol Π = (Σ, H,m∗, f∗) for authenticated secret sharing scheme (N, t,∆, Θ̃, µ̃, g)
is an extensive form game with public actions and private outputs Γ = (N,H,P,A,L,∆, Θ̃, µ̃, u)
satisfying the following conditions:

• The set of private actions available to player i ∈ N is Li = ∆.

• For every nonterminal state (θ̃i, h) ∈ Θ̃i×(H \Z), the set of available public actions to player
i = P (h), is Ai(θ̃i, h) = Σ.

• For an outcome o = (δ, θ̃, h, b1, . . . , bn), the utilities ui(o) are a function of only i and the set
S(o) = {j : bj = δ}. Moreover, we require that:

1. If i ∈ S(o) and i /∈ S(o′), then ui(o) > ui(o′),

2. If S(o) ( S(o′) and either i ∈ S(o) ∩ S(o′) or i /∈ S(o) ∪ S(o′), then ui(o) > ui(o′).

The honest strategy vector in Γ is the pair s∗ = (m∗, f∗).

A reconstruction game is interpreted as follows: a dealer selects a secret, shares and authen-
tication information from the distribution µ̃ and hands the input θ̃i ∈ Θi to player i ∈ N . This
is followed by a sequence of actions (messages) that are prescribed by the reconstruction protocol
Π, and are in particular visible by all players. At each point h ∈ H of the game, player i = P (h)
faces a decision of whether to continue according to the prescribed strategy m∗i , or to deviate from
the prescribed instruction. In case the player has chosen to follow the strategy, she broadcasts
the message m∗i (θ̃i, h). Otherwise, she may choose an arbitrary message from the set Σ. Once a
terminal state (θ̃, h) is reached, we allow each player to choose any private output from Li = ∆.

The utility function is defined so that a player first prefers to learn the secret over not learning
the secret, and secondly (all other things being equal) prefers that fewer other players learn the
secret. It will be convenient for us to restrict attention to utility functions that are linear in the
following sense:

Definition 3.6. A reconstruction game as above has linear utilities if there are real numbers
(αij)i,j∈N such that for every outcome o = (δ, θ, h, b1, . . . , bn) and player i ∈ N , we have ui(o) =∑

j∈N αij · I(bj = δ), where I denotes an indicator function. We refer to ratio ρ = mini(αii/ −∑
j 6=i αij) as the players’ preference for learning the secret.

The constraints on the utility functions in Def. 3.5 imply that αii > 0 for all i (players want to
learn the secret), αij < 0 for i 6= j (players want others not to learn the secret), and

∑
j αij > 0

for all i (players want to learn the secret more than they want others not to learn); hence ρ > 1.

4 Our Protocol

4.1 Introducing an honest minority

Our goal is to show that every authenticated secret-sharing scheme has a reconstruction protocol so
that any reconstruction game that corresponds to it has an equilibrium strategy in which all players
learn the secret. To do this, we require that a small subset of honest players in the reconstruction
game always follows the strategy prescribed by the reconstruction protocol (whether or not this is
the best response to other players’ actions). We model this scenario by assuming that the set of
honest players is selected according to some distribution that will specify to each player whether
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she is to act honestly or rationally. The set of actions of an honest player will be then restricted
to coincide with the strategy prescribed by the reconstruction protocol. The set of actions of a
rational player will remain unchanged (i.e., as in the original definition of a reconstruction game).

Definition 4.1 (Reconstruction game with honest players). Let Π = (Σ, H,m∗, f∗) be a recon-
struction protocol for an authenticated secret sharing scheme (N, t,∆, Θ̃, µ̃, g). A reconstruction
game that corresponds to Π with honest players is an extensive form game with public actions and
private outputs Γ = (N,H,P,A,L,∆, Θ̃× Ω, µ̃× ζ, u), satisfying the following conditions:

• Ω = Πi∈NΩi, where Ωi = {honest, rational} indicates whether player i ∈ N is honest or
rational, and Θ̃i × Ωi is the set of possible types for player i ∈ N ,

• ζ is a distribution on Ω, and values (δ, θ̃, ω) = (δ, θ̃1, . . . , θ̃n, ω1, . . . , ωn) ∈ ∆ × Θ̃ × Ω are
chosen according to the distribution µ̃× ζ. We refer to ζ as the honest-player distribution.

• For every nonterminal state (θ̃, h) ∈ Θ̃×H the set of available public actions to player i, is

Ai(θ̃i, ωi, h) =
{
{m∗i (θ̃i, h)} if wi = honest
Σ if wi = rational

• For every terminal state (θ̃, h) ∈ Θ̃× Z the set of available private actions to player i, is

Li(θ̃i, ωi, h) =
{
{f∗i (θ̃i, h)} if wi = honest
∆ if wi = rational

• For an outcome o = (δ, (θ̃, ω), h, b1, . . . , bn), the utilities ui(o) are a function of only i and the
set S(o) = {j : bj = δ}. Moreover, we require that:

1. If i ∈ S(o) and i /∈ S(o′), then ui(o) > ui(o′),

2. If S(o) ( S(o′) and either i ∈ S(o) ∩ S(o′) or i /∈ S(o) ∪ S(o′), then ui(o) > ui(o′).

The honest strategy vector in Γ is the pair s∗ = (m∗, f∗).

We interpret a reconstruction game with honest players as follows. The private type of player
i ∈ N consists of a pair (θ̃i, ωi) ∈ Θ̃i × Ωi that is drawn along with other player’s types and
the reference value δ according to the distribution µ̃ × ζ. The value of ωi ∈ {honest, rational}
determines whether player i is bound to follow the honest strategy (as prescribed by Π), or will be
allowed to deviate from it. The constraints on the set of actions of each player create a situation in
which rational players are indeed free to deviate from the public strategy vector m∗ (since they are
allowed to choose any action in Σ), whereas the honest players are in fact restricted to the single
action prescribed by m∗.

4.2 Our Main Result

We will show that assuming the existence of a small number of honest players, there is a recon-
struction protocol such that every corresponding reconstruction game has an equilibrium such that
with high probability all players learn the secret with certainty, provided that the set of honest
players is uniform among all sets of a sufficiently large size and every player has a nonnegligible
preference for learning the secret. Specifically, our theorem is the following:
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Theorem 4.2. Every authenticated secret-sharing scheme (N, t,∆, Θ̃, µ̃, g), with t < |N | = n, has a
reconstruction protocol Π such that the following holds. Let Γ = (N,H,P,A,L,∆, Θ̃×Ω, µ̃× ζm, u)
be a reconstruction game that corresponds to Π with honest players and linear utility functions,
where ζm is a distribution over tuples (ω1, . . . , ωn) ∈ Ω for which ωi = honest with probability m/n
independently for all i ∈ N , for some real number m ∈ [0, n]. Suppose further that the players’
preference ρ for learning the secret satisfies:

ρ >
1− 1/|∆|

1− 1/|∆| − p(n,m)− γ
(1)

where p(n,m) = (1 − m/n)n−t+1 ≤ exp(−m · (n − t)/n) and γ is the forgery probability of the
authenticated secret-sharing scheme. Then Γ has a profile S = (S1, . . . , Sn) of set-valued “rational”
strategies such that:

1. The honest strategy profile s∗ = (m∗, f∗) is consistent with S,

2. S is a trembling-hand perfect set equilibrium in Γ,

3. For any strategy vector s ∈ S, the probability that all honest players compute the secret
correctly in Γ is at least 1 − (n − t + 1)γ − p(n,m), when the players’ types are chosen
according to µ and they follow strategy vector s.

4. For any trembling-hand perfect Nash equilibrium s ∈ S, the probability that all players compute
the secret correctly in Γ is at least 1 − (n − t + 1)γ − p(n,m), when the players’ types are
chosen according to µ and they follow strategy vector s.

5. S does not depend on the particular utility functions u in Γ (provided they satisfy (1)).

In the common case that t ≤ (1 − Ω(1)) · n, observe that p(n,m) = exp(−Ω(m)) is negligible
provided that m = ω(log n), i.e. the expected number of honest players is superlogarithmic. If,
in addition, the forgery probability γ is negligible then Condition 1 simply says that a player’s
preference for learning the secret should not be negligible.

The honest-player distribution ζm models a situation in which players have no information about
which other players are honest or rational, except for some a priori belief on the probability a given
player is honest. With small modifications, the theorem should extend to other distributions ζ as
well; see Remark 5.1.

4.3 The reconstruction protocol

Let (N, t,∆, Θ̃, µ̃, g) be an authenticated secret-sharing scheme with t < |N | and |∆| > 1. We
assume that a dealer distributes shares to the players according to the distribution µ, and would
like to design a protocol Π = (Σ, H,m∗, f∗) for secret share reconstruction.

The protocol proceeds in two stages, where in the first stage a subset of t−1 players is instructed
to reveal their share to all other parties in some sequence, and in the second stage the remaining
n − t + 1 players are instructed to reveal their share in some sequence, provided that none of the
t − 1 players in the first stage has failed to reveal her share. The individual parties will reveal
their share using a synchronous broadcast channel (as modeled by our definitions of reconstruction
protocols (Def. 3.4) and extensive games with public actions and private outputs (Def. 2.1)).

The stage in which a player is instructed to broadcast is fixed in some arbitrary manner. For
the sake of concreteness, suppose that at stage 1 of the protocol, it is the turn of players 1, . . . , t−1
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to broadcast, and that at stage 2 it is the turn of players t, . . . , n. The protocol will instruct
player i to either reveal her share θi ∈ Θi or not to reveal anything (symbolized by a special action
denoted ⊥ ∈ Σ). Specifically, we will require that player i reveals θi unless she is one of the stage
2 players and one of the first t − 1 parties to speak has chosen not to reveal their share. In the
latter case player i does not reveal her share either.

In addition to revealing her share, player i is required to send along the authentication informa-
tion τi ∈ T that was provided to her by the dealer. In case that either the authentication fails, or
that the player has refused to broadcast her message,6 player i will be considered as having failed
the authentication and chosen the special ⊥ action.

After the two stages are completed, each player will locally use a reconstruction function gS ∈ g
in order to try and compute the secret given the shares that have been revealed during the protocol’s
execution. By the properties of secret sharing, it follows that a party will be able to compute the
secret (with certainty) at the end of the protocol if a set S ⊆ N of at least t− 1 other parties have
revealed their shares, and otherwise she has no information about the secret (i.e. can compute it
with probability only 1/|∆|).

Protocol 4.3 (Reconstruction protocol). Let (N, t,∆, Θ̃, µ̃, g) be an authenticated secret sharing
scheme. We specify a corresponding reconstruction protocol Π = (Σ, H, P,m∗, f∗) as follows:

• Σ =
(⋃

i∈N Θi × T
)
∪ {⊥}, where ⊥ /∈

⋃
i∈N Θi × T ,

• the set H consists of all sequences (a1, . . . , a`) ∈ Σ∗ such that ` ≤ n, aj ∈ Σ for all j.

• the set Z of terminal histories consists of all h = (a1, . . . , an) ∈ H of length n.

• for every history h ∈ H of length i− 1, the next player function is defined by P (h) = i,

• for every non-terminal history h = (a1, . . . , ai−1) ∈ H \Z, and any θ̃i = (θi, τi, {κj}j 6=i) ∈ Θ̃i,
the next-message function of player i = P (h) is defined as:

m∗i (θ̃i, h) =


(θi, τi) if i < t,

⊥ if i ≥ t and Verκj (aj) = 0 for some j < t,
(θi, τi) if i ≥ t and Verκj (aj) = 1 for all j < t.

(2)

• for every terminal history h = (a1, . . . , an) ∈ Z, and every θ̃i = (θi, τi, {κj}j 6=i) ∈ Θ̃i, the
output function of player i ∈ N is defined as

f∗i (θ̃i, h) =

{
gR((aj)j∈R−i , θi) if gR((aj)j∈R−i , θi) 6= λ and Verκj (aj) = 1 for all j < t

δ0 otherwise

where R−i = {j 6= i : Verκj (aj) = 1}, R = R−i∪{i}, the gT ’s are the reconstruction functions
from the secret-sharing scheme, and δ0 is an arbitrary element of ∆.

The protocol corresponds to the honest strategy in the secret sharing game. A crucial property
of the honest strategy is that even players that adhere to it do not necessarily reveal their share.
This will be the case when one of the first t− 1 players aborts or deviates (by broadcasting ⊥). On

6In an implementation, a player that fails to broadcast her value within some predetermined amount of time might
be considered to have refused to broadcast.
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the other hand, if none of the first t− 1 players aborts or deviates, the honest strategy instructs to
reveal, even if the history subsequent to the first t− 1 rounds does contain an abort or a deviation.

Intuitively, allowing honest players to sometimes abort ensures that players who deviate from
the protocol’s prescribed strategy in early rounds (the first t− 1) are penalized and unable to learn
the secret themselves. On the other hand, the honest players will continue to report their share
even if a deviation occurs in the tth round; this ensures that the players in the first t − 1 rounds
will learn the secret in addition to the other players, and thus provides fairness.

The protocol requires that the players in each stage reveal their shares in sequential order. As
we will argue in Section 5.1, the order in which the first t−1 players broadcast has no effect on the
strategic properties of the protocol, and similarly for the last n− t+ 1 players. Thus, the protocol
can effectively be implemented with two rounds of communication.

4.4 Rational Strategies for Corresponding Reconstruction Games

We consider reconstruction games that correspond to the reconstruction protocol Π with honest
players. By our hypothesis, an induced reconstruction game is a game with public actions and
private outputs Γ = (N,H,P,A,L,∆, Θ̃× Ω, µ̃× ζm, u).

Our goal is to describe a set-valued rational strategy for the reconstruction game. The rational
strategy instructs both honest and rational players to follow the strategy prescribed by Π, except
that it does not specify how rational players should act in cases when the honest strategy may not
be in their self interest. Specifically, we allow arbitrary action by the rational players when the first
t− 1 players have all revealed valid shares (whereas honest players must reveal in this case). The
honest strategy (equivalent to the earlier ‘protocol’) is itself consistent with the rational set-valued
strategy profile.

Definition 4.4 (Rational set-valued strategy). The rational set-valued stategy Si = (Mi, Fi) for
player i ∈ N in the game Γ is defined as follows:

• For every non-terminal history h = (a1, . . . , ai−1) ∈ H \ Z so that i = P (h) and every
θ̃i = (θi, τi, {κj}j 6=i) ∈ Θ̃i, the public set-valued strategy of player i is defined as:

Mi(θ̃i, honest, h) = {m∗i (θ̃i, h)}

Mi(θ̃i, rational, h) =


{(θi, τi)} if i < t,

{⊥} if i ≥ t and Verκj (aj) = 0 for some j < t,

Σ if i ≥ t and Verκj (aj) = 1 for all j < t.

• For every terminal history h = (a1, . . . , an) ∈ Z and every θ̃i = (θi, τi, {κj}j 6=i) ∈ Θ̃i, the
private set-valued strategy for player i ∈ N is defined as:

Fi(θ̃i, honest, h) = {f∗i (θ̃i, h)}

Fi(θ̃i, rational, h) =

{
∆ if Verκj (aj) = 1 for all j < t

{δ0} otherwise.

where δ0 is an arbitrary element of ∆.
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Note that if all players follow any strategy s that is consistent with S and there exists an
honest player i ∈ N with i ≥ t then t out of the n players eventually reveal their share. Thus,
if we can argue that: (1) it is likely to have an honest player i ∈ N with i ≥ t, and (2) rational
players are incentivized to follow strategies consistent with S, then we will have obtained a fair
solution to the secret sharing problem (since all players are likely to learn the secret following the
protocol’s execution). The way we envision an ”implementation” of our protocol working is that
players’ machines are programmed with the honest strategy. Some (rational) players may decide to
reprogram their own machines to behave differently on information sets where they have a chance
of increasing their utility, and this may occur iteratively (as rational players react to what other
rational players might do). Our set-valued equilibrium is meant to capture the idea that this process
should never leave the set-valued strategy, and hence fairness will be maintained.

We start by proving that if all players follow a rational strategy s ∈ S then everybody is likely
to compute the secret correctly. The game-theoretic analysis is then provided in the next section.

Lemma 4.5 (Computing the secret). Suppose that players’ types are chosen according to µ× ζm,
and that all players follow a strategy vector s ∈ S. Then the probability that all honest players
compute the secret correctly in Γ is at least 1 − (n − t + 1)γ − p(n,m). If moreover s is a Nash
equilibrium then the probability that all players compute the secret correctly in Γ is at least 1− (n−
t+ 1)γ − p(n,m).

Proof. Since the players follow a strategy s ∈ S, the first t− 1 players will reveal their shares. So if
there is a single honest player among the final n− t+1 players, the subsequent terminal history will
contain at least t properly authenticated shares. The probability that this is not the case is p(n,m).
By the unforgeability of the authentication, the probability that any of the other messages contains
a falsely authenticated share is at most (n− t+ 1)γ. Thus, gR((aj)j∈R−i , θi) equals the share with
probability at least 1 − (n − t + 1)γ − p(n,m). In this case, all honest players are instructed to
compute the secret, and will indeed succeed in doing so correctly.

Suppose now that the rational strategy s ∈ S is a Nash equilibrium, and let q = q(s, i) be
the probability that player i does not compute the secret correctly with some probability (since
Verκj (aj) = 1 for all j < t, we have that player i may choose to output any element in ∆ in the
private stage). Let s′i be the honest strategy. As we saw before, with probability 1− (n− t+ 1)γ−
p(n,m), the honest strategy s′i enables player i to compute the secret correctly. By linearity of the
utility function this means that, conditioned on players j 6= i following s−i, her expected utility in
case she follows s′i is larger than her expected utility in case she follows si by an additive amount
of at least

αii(q − (n− t+ 1)γ + p(n,m)).

Since αii > 0, and s is a Nash Equilibrium, we conclude that q ≤ (n− t+ 1)γ + p(n,m).

5 Trembling-Hand Perfect Set Equilibrium

We prove that the rational set-valued strategy S is a trembling-hand perfect set equilibrium in the
extensive game with public actions and private output Γ.

Lemma 5.1 (Trembling-hand perfect set equilibrium). The rational set-valued strategy vector S =
(M,F ) from Definition 4.4 is a trembling-hand perfect set equilibrium in the game Γ.

Proof: Our goal is to prove that S is a trembling-hand perfect set equilibrium for the game
Γ = (N,H,P,A,L,∆, Θ̃× Ω, µ̃× ζ, u).
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By Lemma 2.7 it suffices to prove that for every s ∈ S, there exists a fully mixed sequence
(sk)∞k=0 converging to s, so that for every player i ∈ N , every triplet (θ̃i, ωi, h) ∈ Θ̃i × Ωi × H
such that P (h) = i, and every strategy s′′i for player i in the game Γ(sk, h) such that s′′i (θ̃i, ωi, ε) 6∈
Si|h(θ̃i, ωi, ε), there is a strategy s′i for player i such that s′i(θ̃i, ωi, ε) ∈ Si|h(θ̃i, ωi, ε) and

ui|h(µ|h, sk−i|h, s′i) ≥ ui|h(µ|h, sk−i|h, s′′i ) (3)

for all k. Note that it is sufficient to prove the statement for sufficiently large k, since then we can
just start the sequence at a large enough value of k to handle all of the (finitely) many values of
i, θ̃i, ωi, h, s

′
i, s
′′
i . Observe also that if Si|h(θ̃i, ωi, ε) contains all possible actions available to player i

(i.e., Mi|h(θ̃i, ωi, ε) = Ai|h(θ̃i, ωi, ε) for h ∈ H \Z and Fi|h(θ̃i, ωi, ε) = Li|h(θ̃i, ωi, ε) for h ∈ Z), then
what we need to prove holds trivially. This is because there does not exist s′′i (θ̃i, ωi, ε) 6∈ Si(θ̃i, ωi, ε).

Given s ∈ S we define a sequence (sk)∞k=0 of strategy profiles in the following way. Fix any
sequence (εk) of positive real numbers such that εk → 0 as k →∞ (e.g. εk = 1/k). For any i ∈ N ,
any tuple (θ̃i, ωi, h) ∈ Θ̃i × Ωi × H, the strategy ski (θ̃i, ωi, h) equals si(θ̃i, ωi, h) with probability
1−εk and is uniform over the action set Ai(θ̃i, ωi, h) or Li(θ̃i, ωi, h) (i.e., which is a singleton in case
ωi = honest and is either Σ or ∆ in case ωi = rational). It can be seen that (sk)∞k=0 converges to
s as k →∞, and that for every i ∈ N and k, the strategy ski is fully mixed (because sk hits every
element in the action set with nonzero probability).

Let i ∈ N , let h ∈ H, such that P (h) = i, let (θ̃i, ωi) ∈ Θ̃i × Ωi, and let s′′i be any strategy for
player i in game Γ(sk, h) such that s′′i (θ̃i, ωi, ε) 6∈ Si|h(θ̃i, ωi, ε). We would like to show that there
exists some s′i such that s′i(θ̃i, ωi, ε) ∈ Si|h(θ̃i, ωi, ε) for which Eq. (3) holds. Let θ̃i = (θi, τi, {κj}j 6=i).
We start by considering the case of a nonterminal history h = (a1, . . . , ai−1). As noted above,
there is nothing to prove when Mi|h(θ̃i, ωi, ε) = Ai|h(θ̃i, ωi, ε). In particular, this always holds
when ωi = honest (because both sets are singletons) and it also holds when ωi = rational and
Mi(θ̃i, ωi, h) = Σ.

This leaves us with the cases in which ωi = rational and Mi|h(θ̃i, ωi, ε) = {(θi, τi)} (which
occurs when i < t) and Mi|h(θ̃i, ωi, ε) = {⊥} (which occurs when i ≥ t and Verκj (aj) = 0 for at
least one j < t). In the latter case, all actions a′, a′′ give player i the same utility, because the
reconstruction strategies (and hence utilities under sk) do not depend on the action of player i or any
subsequent player. Specifically, if h is any terminal history in which one of the first t− 1 players do
not reveal valid shares then F`|h(θ̃`, honest, ε) = F`|h(θ̃`, rational, ε) = {δ0}, so s`(θ̃`, ω`, h) = δ0,
and sk` (θ̃`, ω`, h) will equal δ0 with probability 1− εk and will be uniform on either {δ0} or ∆ with
probability εk.

We are left with the case in which ωi = rational and i < t (which is at the heart of our
argument). We need to show that outputting (θi, τi) on (θ̃i, ωi, ε) in subgame Γ(sk, h) is a better
response to sk−i than any strategy s′′i that does not do this.

Claim 5.2. Suppose that ωi = rational and i < t. Let s′i = (m′i, f
′
i) be any strategy in game

Γ(sk, h) such that m′i outputs (θi, τi) on input (θ̃i, ωi, ε) and s′i agrees with ski |h everywhere else, and
let s′′i be any strategy in game Γ(sk, h) such that s′′i (θ̃i, ωi, ε) 6= (θi, τi). Then ui|h(µ̄|h, sk−i|h, s′i) ≥
ui|h(µ̄|h, sk−i|h, s′′i ).

Proof of Claim: First suppose that Verκj (aj) = 0 for at least one j < i. Then, as
above, the reconstruction strategies (and hence utilities) do not depend on the action
of player i or any subsequent player, and thus the claim holds.

So now suppose that Verκj (aj) = 1 for all j < i. There are two ways that a previous
player j could have produced an authenticated share aj under strategy sk. It could have
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sent aj = (θj , τj) using the “un-trembled” portion of the strategy, and it could have sent
aj using the “trembled” portion of the strategy that is uniformly random on Σ. Note
that the trembled portion of the strategy is used with probability at most εk (indeed
at most (1 − m/n) · εk, since only rational players have the possibility of trembling).
Moreover, by our definition of admissible secret sharing, these trembled and untrembled
strategies for the first i− 1 players are identically distributed once we condition on the
shares being valid wrt {κj}j 6=i (by Definition 3.2, Item 1). This implies that conditioned
on history (θ̃i, h), the probability that all of the previous actions aj are equal to the
un-trembled shares θj is at least 1− εk · (i− 1).

Now, suppose that player i reveals her authenticated share (θi, τi). Then, player i can
compute the secret correctly provided that none of the previous actions are trembles,
none of the future actions are trembles, and at least one of the last n − t players is
honest. We have already argued that, conditioned on (θ̃i, h), the probability that one
of the previous actions was a tremble is at most εk · (i− 1). The probability of a future
tremble is at most εk · (n− i). The probability that there are no honest players among
the last n − t is precisely p(n,m). In all, player i computes the secret correctly with
probability at least 1− p(n,m)− εk · (n− 1). Thus her expected utility conditioned on
(θ̃j , h) is at least (1− p(n,m)− εk · (n− 1)) · αii +

∑
j 6=i αij . Here we use the fact that

strategy f ′i maximizes player i’s expected utilities amongst all strategies in Fi, including
any strategy that attempts to compute the secret.

Suppose instead that player i sends a different message a′′ 6= (θi, τi). By the un-
forgeability of the authenticated secret-sharing scheme, the probability that a′′ passes
verification is at most γ. If it is invalid, then the public actions of all future players will
be independent of their shares (they will either be ⊥ or uniformly random trembles),
and thus player i’s probability of computing the secret correctly will remain 1/|∆| (as it
is conditioned on history h). Other players will have private outputs that are either δ0
or a random tremble of this, and hence will also compute the secret correctly with prob-
ability 1/|∆|. Thus player i’s expected utility conditioned on (θ̃j , h) is (1/|∆|) ·

∑
j αij .

Player i strictly prefers to send a′ = (θi, τi) provided that

(1− p(n,m)− εk · (n− 1)) · αii +
∑
j 6=i

αij > (1/|∆|) ·
∑
j

αij .

This holds for sufficiently large k by our hypothesis (1) on the players’ preference for
learning the secret.

We now turn to consider the case of a terminal history h = (a1, . . . , an). As noted above,
there is nothing to prove in the case where Fi|h(θ̃i, ωi, ε) = Li|h(θ̃i, ωi, ε). This always holds when
ωi = rational and Fi|h(θ̃i, ωi, ε) = ∆, and when ωi = honest (since in this case Fi|h(θ̃i, ωi, ε)
and Li|h(θ̃i, ωi, ε) are both singletons). So we are left with the case in which ωi = rational and
Fi|h(θ̃i, ωi, ε) = {δ0} (which occurs if Verκj (aj) = 0 for some j < t).

Claim 5.3. Suppose that ωi = rational and Verκj (aj) = 0 for some j < t. Let s′i be a strategy in
game Γ(sk, h) that outputs δ0 ∈ ∆ on (θ̃i, ωi, ε) and agrees with ski |h everywhere else, and let s′′i be
any other strategy. Then ui|h(µ̄|h, sk−i|h, s′i) ≥ ui|h(µ̄|h, sk−i|h, s′′i ).

Proof of Claim: Since Verκj (aj) = 0 for some j < t, we have that for all ` > t, the
strategy s` instructs player ` > t to send ⊥ (whether ω` = honest or ω` = rational).
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So the only way the history h can include messages other than ⊥ for players ` ≥ t
is via the random trembles of sk` . Since the trembles are independent of the shares θ`,
they do not reveal any information about them. This remains true even if the trembles
happen to pass the authentication. In addition, by the secrecy property of the secret
sharing scheme (last item in Definition 3.1), the first t− 1 messages do not reveal any
information about the secret to any of the players. Thus, conditioned on (θ̃i, h) player
i has no information about the secret. Since sk−i instructs all other players to output
δ0 or a uniformly distributed element of ∆, and given that the secret δ is uniformly
distributed in ∆ (conditioned on (θ̃i, h)), we have that any action δ′′ ∈ ∆ will yield
player i the same expected utility as δ0, namely (1/|∆|) ·

∑
j aij .

Remark 5.1. As discussed earlier, the honest-player distribution ζm in Theorem 4.2 models the
situation where players have no a priori information about which players are honest or rational,
except the probability (m/n) with which an individual player is honest. An opposite extreme is
the case where the set of honest players is not random, but is instead an arbitrary fixed set of m
players, known to all. Our protocol can be modified to handle this case by first randomly permuting
the order in which players speak; this guarantees that there will be an honest player among t, . . . , n
with high probability. Now the rational strategy would have the first t−1 players determine whether
the permutation is ‘good’, reveal their share if it is, and send ⊥ otherwise. This analysis can be
found in the preliminary version of our paper [38], where it is also shown to be coalition-proof in
the sense of Bernheim et al. [4]. By combining these ideas, it may be possible to handle arbitrary
distributions on the set of honest players (provided there are at least roughly m honest players with
high probability).

5.1 Modeling Rushing

So far the reconstruction protocol has specified a particular sequence with which the first t − 1
players each reveal their shares, and similarly for the subsequent sequencing of the remaining
n−(t−1) players. But the protocol satisfies a robustness property: the strategy prescribed to both
rational players and honest players in both stage 1 (for the first t − 1 players) and in stage 2 (for
the remaining n− t+ 1 players) is invariant to the action selected by other players within the same
stage. This makes the equilibrium robust, also, to a simpified two round protocol in which t − 1
players are selected to send a message in the first round and the remaining n− (t−1) players in the
second round. The communication channel within each round need not provide for simultaneous
broadcast, and can be just a synchronous broadcast channel that allows for “rushing” where a
player can wait and see the message sent by another player before choosing its own message. Not
sending a message during a round is interpreted as ⊥.

Formal analysis of this rushing game could be provided as a partially-specified game in the
spirit of Kalai [25], wherein the same equilibrium survives many extensive variations of a two-
round, simultaneous-move Bayesian game-form for the protocol. This two-round simultaneous-
move secret-sharing game would ask each of a random set t− 1 of players to broadcast a message
on a synchronous communication channel. Each of the remaining n− (t− 1) players would then be
asked to broadcast a message on the synchronous communication channel. Finally, all players would
select a private action just as in our n-round protocol. The strategy described earlier remains an
equilibrium in this two-round game, and also for any sequencing of play within the two rounds. Kalai
develops a general theory of structural robustness in which equilibrium are robust to variations in
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details about a game, for the setting of large semi-anonymous games that satisfy a payoff continuity
property. We achieve similar robustness properties in our secret-sharing game.
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