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Abstract

Evolutionary game dynamics in finite populations provide a new framework for studying

selection of traits with frequency-dependent fitness. Recently, a ”one-third law” of evolu-

tionary dynamics has been described, which states that strategy A fixates in a B-population

with selective advantage if the fitness of A is greater than that of B when A has frequency

1/3. This relationship holds for all evolutionary processes examined so far, from the Moran

process to games on graphs. However, the origin of the ”number” 1/3 is not understood.

In this paper we provide an intuitive explanation by studying the underlying stochastic

processes. We find that in one invasion attempt, an individual interacts on average with B-

players twice as often as with A-players, which yields the one-third law. We also show that

the one-third law implies that the average Malthusian fitness of A is positive.
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1 Introduction

Many complex traits of organisms are inherently advantageous, but provide a se-

lective advantage only in terms of interactions between the organisms themselves.

The canonical example is the trait of cooperation, whose fitness depends on the pro-

portion of the population (or frequency) which cooperates (Nowak 2006b). Given

the importance of such interactive traits, it is of interest to understand how they

evolve in a population and when they are advantageous. Evolutionary game theory

provides the framework for studying the dynamics of frequency-dependent selec-

tion (Von Neumann and Morgenstern 1944, Weibull 1995, Hofbauer & Sigmund

1998, Gintis 2000, Cressman 2003, Nowak & Sigmund 2004, Nowak 2006a).

Unlike in infinite populations, the game dynamics in realistic finite populations are

susceptible to demographic stochasticity, hence they are described by stochastic

processes rather than by deterministic equations (Maynard Smith 1988, Schaffer

1988, Kandori et al. 1993, Ficici & Pollack 2000, Komarova & Nowak 2003,

Nowak et al. 2004, Taylor et al. 2004, 2006, Wild & Taylor 2004, Imhof et al.

2005, Fudenberg et al. 2006, Nowak 2006a, Ohtsuki & Nowak 2006, Ohtsuki et

al. 2006, Traulsen & Nowak 2006, Ohtsuki et al. 2007, Traulsen et al. 2006a,

2007a). In finite-sized populations it is possible that an advantageous mutant goes

extinct. It is also possible that a deleterious mutant by chance fixates in the pop-

ulation. Thus, even if traits with frequency-dependent fitness seems advantageous

in infinite populations, it is a priori not clear whether they can take over in finite-

sized populations, and vice-versa. In Nowak et al. (2004), a natural definition of

an advantageous mutation was introduced, which takes into account the stochastic

nature of reproduction. The fixation probability of strategy A, denoted by ρA, is

defined as the probability that the offspring lineage of a single A-mutant invading
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a population of (N − 1) many B-individuals eventually takes over the whole pop-

ulation. The fixation probability of a neutral mutant is equal to the reciprocal of the

population size, 1/N . Therefore, strategy A is deemed advantageous if the fixation

probability, ρA, is greater than 1/N .

If selection is weak, the likelihood of fixation ρA can be computed explicitely. In

this case, Nowak et al. (2004) found that strategy A is advantageous if the fitness

of an A-player is higher than the fitness of a B-player when the frequency of A is

1/3. This has been dubbed the one-third law. We do not have, however, an intuition

of why such a universal law exists, which holds for a variety of update rules and

population structure studied so far. In this paper, we provide an intuition of the

one-third law.

Let us consider a game with two strategies, A and B. The payoffs of A versus A, A

versus B, B versus A, and B versus B, are denoted by a, b, c, and d, respectively.

The payoff matrix is thus


A B

A a b

B c d

. (1)

The payoffs of players are dependent on the abundance of each strategy in the pop-

ulation. In particular, if there are i many A-players and (N−i) many B-players and

random pairwise interactions, then the expected payoffs of A and B are (excluding

self-interaction)

Fi = a
i − 1

N − 1
+ b

N − i

N − 1
,

Gi = c
i

N − 1
+ d

N − i − 1

N − 1
.

(2)

To account for the contribution of the game’s payoff to the fitness of players, Nowak

et al. (2004) introduced a ”selection intensity parameter”, 0 ≤ w ≤ 1, such that the
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fitness of A and B players are respectively given by

fi = 1 − w + wFi,

gi = 1 − w + wGi.
(3)

At zero selection intensity, the game has nothing to do with one’s fitness. At the

other extreme, w = 1, fitness equals payoff. In the replicator dynamics of infinite

populations, the selection intensity cancels out so that it has no effect on the evolu-

tionary outcome. However, it is known that it crucially matters in finite populations

(Traulsen et al. 2007b).

To address evolution in this approach, we now consider that reproduction and re-

placement occur according to some fitness-dependent rule. Nowak et al. (2004)

studied the Moran process with frequency-dependent selection (details will be ex-

plained in the following sections). In the limit of weak selection, Nw ≪ 1, they

found that A is an advantageous mutant (i.e. ρA > 1/N ) if and only if

(N − 2)a + (2N − 1)b > (N + 1)c + (2N − 4)d. (4)

For large N , this condition leads to

a + 2b > c + 2d. (5)

Suppose each strategy is the best reply to itself, which means a > c and b < d.

Here a single A mutant is initially at a disadvantage. The deterministic replicator

equation (Taylor & Jonker 1978, Hofbauer & Sigmund 1998) for infinite popula-

tions tells us that a unique unstable equilibrium exists at a frequency of strategy A

given by x∗ = (d − b)/[(d − b) + (a − c)]. We can now write the one-third law of

evolutionary dynamics in the form (Nowak et al. 2004)

x∗ < 1/3. (6)

Namely, if the basin of attraction of strategy B is less than one-third then an A-

mutant overcomes its initial disadvantage and fixates in the population with se-

lective advantage (Fig. 1). Interestingly, the one-third law (6) translates the condi-

4



tion of advantageous mutation in finite populations into a condition on frequency-

dependent fitness in infinite populations. The one-third law holds for the Moran

process (Nowak et al. 2004), for the Wright-Fisher process (Lessard 2005, Imhof

& Nowak 2006), for pairwise comparison updating (Traulsen et al. 2006b), for

Cannings exchangeable models that are in the domain of application of Kingman’s

coalescent (Lessard & Ladret 2007), and for games on graphs (Ohtsuki et al. 2006,

2007) with modified payoff matrices.

We study the Moran process (main text) and the Wright-Fisher process (Appendix

A). We calculate the mean effective sojourn time at each state of the underlying

stochastic process. We show that along the path of an invasion attempt, starting

with a single A-mutant and ending at either extinction or fixation, an individual on

average plays the game with B-players twice as often as with A-players. In other

words, the number 1/3 represents the proportion of A-players in all the opponents

that one meets. This result leads directly to inequality (5).

This paper is structured as follows. In section 2, we study the dynamics of fixation

under neutral drift and show that the neutral mutants play with resident players on

average twice as often as with other neutral mutants. In section 3 we generalize the

result for non-zero intensity of selection, leading to the one-third rule for frequency-

dependent selection. We offer a discussion in section 4.

2 Evolutionary dynamics of neutral drift

The detailed dynamics of evolutionary games depend crucially on the updating

rules which relate successive generations. We study the frequency-dependent Moran

process introduced by Nowak et al. (2004). In this section, we study the neutral case

(w = 0 in eq.(3)), where the fitness of each player is exactly equal to 1.

Consider the game (1) played in a finite population of fixed size, N . At each time
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step an individual is chosen for reproduction proportional to its fitness. Then he

replaces a randomly chosen individual (can be himself) with his clonal offspring.

This defines a stochastic process in one random variable i which represents the

number of A-players in the population. In the state space {0, · · · , N} there are two

absorbing states, i = 0 (which means A has become extinct) and i = N (which

means A has reached fixation).

An invasion of a resident population by a mutant corresponds to a path on the state

space. We want to estimate how much time is spent at each state j (1 ≤ j ≤ N−1)

along the path. This time is called the sojourn time of the process in state j. Given

all paths which start at state i, let t̄ij denote the mean sojourn time in state j before

absorption into either state 0 or state N . It is easy to see that:

t̄ij =
N∑

k=0

pik t̄kj + δij, t̄0j = t̄Nj = 0 (7)

(see, for example, Ewens 2004). Here pij represents the transition probability from

state i to state j. To solve this equation, we need to know the transition probabilities

in this Moran process of neutral drift. The probability that the number of A-players

increases by one factorizes into the probability that an A player is chosen to re-

produce and that a B player is chosen to die. Since A is a neutral mutant we have

pi,i+1 =
N − i

N
· i

N
. (8a)

Similarly, the number of A players decreases by one with probability

pi,i−1 =
i

N
· N − i

N
. (8b)

It remains unchanged with probability

pii = 1 − 2
i

N

N − i

N
. (8c)

Hence the transition matrix of the Markov chain is tri-diagonal, which is the defi-

nition of a ”birth-death” process (Karlin & Taylor 1975). From eqs.(7) and (8) we

obtain t̄ij (Ewens 2004). In particular, if we start from a single mutant, i = 1, we
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obtain

t̄1j =
N

j
. (9)

Equation (9) means that the stochastic process stays most of the time around the

absorbing barrier, state 0. However, notice, for example, that most of the sojourn

time at state 1 is spent with events where a B-player is chosen for reproduction and

another B player dies, so that the difference in payoffs of A and B players does not

matter and the population state is unchanged. These steps are irrelevant for evo-

lution, and therefore they must be excluded from our calculation. More precisely

speaking, we observe four different kinds of steps at state j:

(i) An A-player reproduces and replaces another A-player.

(ii) An A-player reproduces and replaces a B-player.

(iii) A B-player reproduces and replaces an A-player.

(iv) A B-player reproduces and replaces another B-player.

The relevant steps, where an A-player reproduces and replaces a B-player or vice

versa ((ii) and (iii) in the list above), actually occur with probability pj,j+1 + pj,j−1.

Thus, the mean effective sojourn time in state j for paths that start at state i, denoted

by τ̄ij , is given by τ̄ij = (pj,j+1 +pj,j−1)t̄ij . In particular, from (8) and (9) we obtain

τ̄1j =
2(N − j)

N
. (10)

Figure 2 compares the effective sojourn time to the mean sojourn time. We observe

that effective sojourn time, which is the mean number of visits to a given state, is

proportional to the number of B-players in that state.

Knowing the effective sojourn times, we can now count the average number of

games played by strategies A and B along a path of invasion. In state j, an A-

player meets (j − 1) A-players and (N − j) B-players, while a B-player meets j
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A-players and (N − j − 1) B-players. We summarize it in a simple form as


A → A A → B

B → A B → B



∣∣∣∣∣∣∣∣∣∣∣
state j

=


j − 1 N − j

j N − j − 1

 . (11)

The effective number of encounters is given as the weighted sum of eq.(11) by τ̄1j .

For large N we obtain

N−1∑
j=1

τ̄1j


A → A A → B

B → A B → B



∣∣∣∣∣∣∣∣∣∣∣
state j

=
N − 1

3


N − 2 2N − 1

N + 1 2N − 4



≈ N2

3


1 2

1 2

 .

(12)

Equation (12) suggests that for large N both types of players meet B-players twice

as often as A-players. In other words, one-third of the opponents that one meets

(in interactions leading to state changes) until either extinction or fixation are A-

players and two-thirds are B-players.

3 An intuition behind the one-third law

How are these results changed if the invading mutant is not neutral? Non-neutral

mutation affects our calculation via changing the transition probabilities, pij . Equa-

tion (8) changes to

pi,i+1 =
N − i

N
· ifi

ifi + (N − i)gi

,

pi,i−1 =
i

N
· (N − i)gi

ifi + (N − i)gi

,

pii = 1 − pi,i+1 − pi,i−1.

(13)
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However, since under weak selection fi and gi remain very close to 1, we can prove

that in a first order approximation the effective sojourn times are not affected. Still,

the more often state j is visited, the more the fitness difference between A and

B in state j is deemed to be important. In the previous section we saw that for

large N one meets B-players twice as often as A-players on an average path of

invasion. Therefore the average payoffs of A and B players along an invasion-path

are (a+2b)/3 and (c+2d)/3, respectively. Surprisingly, the condition (a+2b)/3 >

(c + 2d)/3 is exactly the same as eq.(5), thus it leads to ρA > 1/N . The mean

effective sojourn times elegantly explain the one-third law this way.

More formally, let us compute the average payoffs of strategies A and B along a

path of invasion, which are denoted by F̄ and Ḡ, respectively. Since the stochastic

process spends τ̄1j at state j, the relative frequency that the state j is visited is

σ̄1j = τ̄1j/
∑N−1

k=1 τ̄1k = 2(N − j)/N(N − 1). We sum up payoffs over all transient

states with each state weighted by the effective sojourn frequency, σ̄1j . From (2)

we obtain

F̄ =
N−1∑
j=1

σ̄1jFj =
(N − 2)a + (2N − 1)b

3N − 3
,

Ḡ =
N−1∑
j=1

σ̄1jGj =
(N + 1)c + (2N − 4)d

3N − 3
.

(14)

From (4) and (14) we find that

ρA > 1/N ⇐⇒ F̄ > Ḡ. (15)

holds for any N . In the limit of large N we have F̄ = (a+2b)/3 and Ḡ = (c+2d)/3.

Hence, we reproduce the verbal argument above.

In Appendix A, we study the Wright-Fisher process with frequency-dependent se-

lection by Imhof & Nowak (2006). We show that the mean effective sojourn time

explains the one-third law for the Wright-Fisher process, too.
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4 Discussion

The one-third law establishes the conditions, in the limit of weak selection and

large population size, under which one Nash strategy can be invaded by another.

This question is important in biology where different strategies with frequency-

dependent fitnesses emerge and compete. The question of equilibrium selection in

the presence of multiple Nash equilibria is also central in economics, for instance in

the context of competition between incompatible products. In this section we will

comment on possible implications of the one-third law to these subjects.

The one third-law provides an easy and universal criterion for advantageousness at

weak selection - measuring the fitness of a trait at frequency one-third at such large

population size that the dynamics around this frequency become deterministic. In

contrast, measuring the fixation probability of a trait would involve repeating evo-

lutionary experiments on numbers of the order of the population size, which is in

practice not feasible.

The deterministic population dynamics would describe our game dynamics eq.(1)

by the following equations:

ẋ = x(fA(x) − φ)

= x (1 − x)(fA(x) − fB(x))︸ ︷︷ ︸
∥

r(x)

(16)

Here x represents the frequency of strategy A, and

fA(x) = ax + b(1 − x),

fB(x) = cx + d(1 − x),
(17)

represent the average fitnesses of A and B at state x, respectively. The average

population fitness at state x is φ(x) = xfA(x) + (1 − x)fB(x). In eq.(16), the

term r(x) represents the Malthusian fitness of strategy A. It is easy to see that the
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one-third law (5) is equivalent to

r(1/3) > 0 (18)

for large population size. In other words, strategy A is an advantageous mutant if

the Malthusian fitness of A is positive when its frequency is 1/3. Again we find an

equivalence between selective advantage and average fitness:

ρA > 1/N ⇐⇒ r(1/3) > 0 ⇐⇒ 〈r(x)〉 =
∫ 1

0
r(x)dx > 0. (19)

Inequality (19) suggests that A is an advantageous mutant if the average Malthu-

sian fitness over the frequency space, [0, 1], is positive. Again, the integral can be

estimated experimentally by evaluating the fitness of a trait at different frequencies.

The inequality (19) suggests a natural generalization of the one-third law to non-

linear fitness functions, as shown in Appendix B. Non-linear fitness functions are

likely to have increasing relevance with the current boom of experimental work on

cooperativity in biological systems.

Our present results hold under weak selection limit, Nw ≪ 1. Some evolutionary

phenomena in biology, however, happen outside the scope of weak selection Nw ≪

1. We suggest that the importance of the one-third law in this larger context is that it

provides a universal lower bound on the advantageous mutant’s basin of attraction.

In fact, by generalizing the arguments of Traulsen et al (2006b) one can prove that

in the game where both strategies are strict Nash equilibria (a > c and b < d in (1)),

if the unstable coexistence equilibrium is at x∗ > 1/3 then the mutant strategy is

never advantageous for any Nw (with small w). For each Nw, there is a minimum

size of basin of attraction for a mutant strategy to have a selective advantage in

fixation. This minimum goes from 2/3 (Nw ≪ 1) to 1 (for large Nw). Therefore,

as selection pressure increases, advantageous mutants must have ever larger basins

of attraction. At the extreme of Nw → ∞ (with small w), a population of one

Nash equilibrium never reaches the other Nash equilibirum, which is in line with

the prediction from the replicator equation.
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Our results bear on the problem of equilibrium-selection in games in finite popu-

lations. Equilibrium-selection out of multiple Nash equilibria is a very important

problem in economics (Binmore 1994, Samuelson 1997). Suppose a > c and

b < d hold in the payoff matrix (1), which means that both A and B are strict Nash

equilbiria of the game. This type of game is called coordination game. An important

concept in economics is p-dominance. Strategy A is (strictly) p-dominant over B,

if A is the better response than B when one believes his opponent chooses strategy

A with probability more than p (Morris et al, 1995; Kajii and Morris, 1997). In this

terminology, the one-third law asserts that (strictly) 1/3-dominant strategies have

a selective advantage in taking over the population in the weak selection limit. In

the general case, where Nw is not necessarily small, the dominance of an invading

strategy should be smaller than 1/3.

On the other hand, 1/2-dominance, or equivalently risk-dominance (Harsanyi and

Selten 1988), is drawing wide attention in economics. In our game (1), strategy

A is risk-dominant if a + b > c + d, that is, if it has a larger basin of attraction

than its opponent. Kandori et al. (1993) and Young (1993) studied stochastic evo-

lutionary game dynamics by introducing mutations to best response dynamics, and

found that a risk-dominant strategy is chosen most of the time. We observe that

risk-dominance is closely related to the ratio of fixation probabilities. In the ap-

proximation Nw ≪ 1, Nowak et al. (2004) found that risk dominance is equivalent

to ρA > ρB, which suggests that a risk-dominant strategy dominates the population

more often than the other.

Equilibrium selection is also the focus of product economics, where decades of

theoretical work are now giving way to empirical studies of the dynamics of prod-

uct adoption, namely of incompatible technologies (Farrell & Saloner 1985, Lee

& Mendelson 2008). It would be interesting to transfer our results to this setting.

However, this requires a more detailed study of the evolutionary dynamics of mar-

kets (Lee & Mendelson 2008). We leave this for future work.
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Appendix

Appendix A The Wright-Fisher process of stochastic game dynamics

Imhof & Nowak (2006) studied the Wright-Fisher process in finite populations.

There, all individuals reproduce synchronously proportional to fitness. Remember

that in the Moran process reproduction occurs in an asynchronous fashion among
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players.

Consider a population of fixed size, N , and let i denote the number of A-players.

At each generation, N adult individuals die at the same time, and N individuals

are newly born. The number of A-players in the offspring generation follows the

binomial distribution, with the transition probability from state i to state j given by

pij =


N

j


 ifi

ifi + (N − i)gi

j (N − i)gi

ifi + (N − i)gi

N−j

. (A.1)

The two states, state 0 and state N , are absorbing while the others are transient.

Imhof & Nowak (2006) found that in weak selection and for large population size

the one-third law (eqs.(5) and (6)) holds for the Wright-Fisher process.

Here we show that the mean effective sojourn time gives an explanation to the

one-third law in the Wright-Fisher process. Both Wright (Wright 1931) and Fisher

(Fisher 1958) found that the mean sojourn time in state j, given starting from state

1, is approximately

t̄1j ≈
2

j
(generations) (A.2)

in neutral selection (see also Ewens (2004)). The equation (A.2) also gives a good

approximation to the mean sojourn time in the case of weak selection. We note that

the time unit in (A.2) is a generation, during which reproduction occurs N times.

For the sake of fair comparison with the Moran process we regard one generation

as N separate steps, thus the mean sojourn is

t̄1j ≈
2

j
× N =

2N

j
(steps). (A.3)

Because a generation consists of N simultaneous reproductive steps, calculation

of the effective mean sojourn time is not so straightforward as in the Moran pro-

cess. Below, we consider each of N reproductive steps in one generation in state j,

separately.
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In the first j steps we think that an adult A-player dies. Therefore reproduction is

deemed ”effective” if a B-player is born, which is the case with probability

(N − j)gj

jfj + (N − j)gj

≈ N − j

N
. (A.4)

Here we used the assumption of weak selection. In the last (N − j) steps, on the

other hand, we think that an adult B-player dies. Reproduction is deemed ”effec-

tive” if an A-player is born, which occurs with probability

jfj

jfj + (N − j)gj

≈ j

N
. (A.5)

Hence the average number of effective steps in one generation is

j · N − j

N
+ (N − j) · j

N
=

2j(N − j)

N
. (A.6)

Thus we obtain the mean effective sojourn time in state j starting from state 1 as

follows:

τ̄1j ≈
2

j
× 2j(N − j)

N
=

4(N − j)

N
(steps). (A.7)

Comparing eq.(A.7) with eq.(10), we see that the mean effective sojourn time in the

Wright-Fisher process is the double of that in the Moran process (it is because of

the difference in the variance in offspring distribution; see Ewens (2004) pp.121-

122). Therefore the same argument as in Sections 2 and 3 holds. We obtain the

intuition behind 1/3 in the same manner.

Appendix B Average Malthusian fitness distinguishes between advantageous

and non-advantageous mutants for general fitness functions

Consider two strategies, A and B. We study a population of fixed size of N . Let

i represent the number of A players in the population. The relative abundance of

A-players in the population is given by x = i/N . Suppose that the average payoffs

of A and B players depend only on x. These are given by FA(x) and FB(x). Under

weak selection, w ≪ 1, the average fitness of each type of players is given by
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fA(x) = (1−w)+wFA(x) and fB(x) = (1−w)+wFB(x), respectively. As in eq.

(16), the Malthusian fitness of strategy A at frequency x is r(x) = (1−x)(fA(x)−

fB(x)) = w(1 − x)(FA(x) − FB(x)).

According to Nowak et al. (2004), the fixation probability of strategy A is given by

the following formula:

ρA =

(
1 +

N−1∑
k=1

k∏
i=1

fB(i/N)

fA(i/N)

)−1

. (B.1)

Given N ≫ 1, w ≪ 1 and Nw ≪ 1, equation (B.1) is calculated as

ρA ≈
(

1 +
N−1∑
k=1

k∏
i=1

[
1 + w{FB(i/N) − FA(i/N)}

])−1

≈
(

1 +
N−1∑
k=1

[
1 + w

k∑
i=1

{FB(i/N) − FA(i/N)}
])−1

≈
(

1 + (N − 1) + w
N−1∑
k=1

k∑
i=1

{FB(i/N) − FA(i/N)}
)−1

=

(
N + w

N−1∑
i=1

(N − i){FB(i/N) − FA(i/N)}
)−1

=

(
N + Nw

N∑
i=1

(
1 − i

N

)
{FB(i/N) − FA(i/N)}

)−1

≈
(
N − N

∫ 1

0
w(1 − x){FA(x) − FB(x)}dx

)−1

=

(
N − N

∫ 1

0
r(x)dx

)−1

.

(B.2)

Thus we obtain

ρA >
1

N
⇐⇒

∫ 1

0
r(x)dx > 0. (B.3)

This ends the proof.

Figure legends

Figure 1 The one-third law. Both A and B are Nash equilibria of the game. Top: If

the location of the unstable equilibrium in the replicator equation is x∗ < 1/3 then
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the fixation probability of A is greater than 1/N in finite populations. Bottom: If

x∗ > 1/3 holds, the fixation probability, ρA, is less than 1/N . All these results hold

for weak selection such that Nw ≪ 1 is satisfied.

Figure 2 Mean sojourn time (t̄1j , open bars) and mean effective sojourn time (τ̄1j ,

filled bars) in each state, when N = 10.
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