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Abstract : We study evolutionary games on graphs. Each player is represented

by a vertex of the graph. The edges denote who meets whom. A player can

use any one of n strategies. Players obtain a payoff from interaction with all

their immediate neighbors. We consider three different update rules, called

‘birth-death’, ‘death-birth’ and ‘imitation’. A fourth update rule, ‘pairwise

comparison’, is shown to be equivalent to birth-death updating in our model.

We use pair-approximation to describe the evolutionary game dynamics on

regular graphs of degree k. In the limit of weak selection, we can derive a

differential equation which describes how the average frequency of each strat-

egy on the graph changes over time. Remarkably, this equation is a replicator

equation with a transformed payoff matrix. Therefore, moving a game from

a well-mixed population (the complete graph) onto a regular graph simply

results in a transformation of the payoff matrix. The new payoff matrix is

the sum of the original payoff matrix plus another matrix, which describes

the local competition of strategies. We discuss the application of our theory

to four particular examples, the Prisoner’s Dilemma, the Snow-Drift game, a

coordination game and the Rock-Scissors-Paper game.

Keywords: evolutionary dynamics, game theory, evolutionary graph theory, pair approx-

imation, mathematical biology
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1. Introduction

Consider an evolutionary game with n strategies, labelled i = 1, .., n. The payoff matrix, A,

is an n×n matrix, whose entries, aij , denote the payoff for strategy i versus strategy j. The

relative abundance (frequency) of each strategy is given by xi. We have
∑n

i=1 xi = 1. The

fitness of strategy i is given by fi =
∑n

j=1 xjaij . For the average fitness of the population,

we obtain φ =
∑n

i=1 xifi. The replicator equation is given by

ẋi = xi(fi − φ) i = 1, .., n (1)

This equation is one of the fundamental equations of evolutionary dynamics. It describes

evolutionary game dynamics (=frequency dependent selection) in the deterministic limit

of an infinitely large, well-mixed population. Stochasticity and spatial effects are ignored.

‘Well-mixed’ means that population structure is ignored; all individuals are equally likely

to interact with each other.

The replicator equation is defined on the simplex Sn, which is given by the set of

all points (x1, .., xn) with the property
∑n

i=1 xi = 1. The simplex Sn is invariant under

replicator dynamics: a trajectory which begins in the simplex, never leaves the simplex.

Each face of the simplex, defined by one or several startegies being absent, is invariant.

The replicator equation describes pure selection dynamics. Mutation is not considered.

Each corner point of the simplex is an equilibrium. If a strategy is evolutionarily stable

or a strict Nash equilibrium, then the corner point of the simplex corresponding to a

homogeneous population using this strategy is an asymptotically stable fixed point. There

can be at most one isolated equilibrium point in the interior of the simplex. For n ≥ 4,

if there is an interior equilibrium, there can also be a limit cycle or a chaotic attractor.

Many more properties of this system and the relationship to Lotka-Volterra equations of

ecology are descibed in the book by Hofbauer & Sigmund (1998). The replicator equation

was introduced by Taylor & Jonker (1978), followed by Hofbauer et al (1979) and Zeeman

(1980). Evolutionary game theory was invented by Maynard Smith & Price (1973) and

Maynard Smith (1982). For recent reviews see Hofbauer & Sigmund (2003) and Nowak &

Sigmund (2004). Books on game theory and evolutionary game theory include Fudenberg

& Tirole (1991), Binmore (1994), Weibull (1995), Samuelson (1997), Fudenberg & Levine

(1998), Hofbauer & Sigmund (1998), Gintis (2000), and Cressman (2003).
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In this paper, we study evolutionary game dynamics in structured populations

(Nowak & May 1992, 1993, Ellison 1993, Herz 1994, Lindgren & Nordahl 1994, Nowak

et al 1994, Killingback & Doebeli 1996, Nakamaru et al 1997, 1998, Epstein 1998, Szabó &

Tőke 1998, Van Baalen & Rand 1998, Watts & Strogatz 1998, Eshel et al 1999, Hartvigsen

et al 2000, Page et al 2000, Szabó et al 2000, Skyrms & Pemantle 2000, Abramson &

Kuperman 2001, Hauert 2001, Irwin & Taylor 2001, Ebel & Bornholdt 2002, Hauert et al

2002, Szabó & Hauert 2002, Brandt et al 2003, Le Galliard et al 2003, Hauert & Szabó

2003, Hauert & Doebeli 2004, Ifti et al 2004, Szabó & Vukov 2004, Szolnoki & Szabó 2004,

Egúıluz et al 2005, Hauert 2005, Nakamaru & Iwasa 2005, Santos & Pacheco 2005, Vukov &

Szabó 2005, Santos et al 2006ab). The individuals occupy the vertices of a graph; the edges

of the graph determine which individuals interact with each other (Lieberman et al 2005,

Ohtsuki et al 2006). We consider n strategies and the general payoff matrix A = [aij ]. Each

individual derives a payoff, P , from the interaction with all of its neighbours in the graph.

The fitness of an individual is given by 1−w+wP , where the parameter w determines the

intensity of selection. The case w → 0 represents the limit of weak selection, while w = 1

denotes strong selection, where fitness equals payoff. Strong selection is a special case,

because in general the fitness of an individual will not only depend on the particular game

that is under consideration, but on many different factors (Nowak et al 2004). Therefore,

introducing a parameter for varying the intensity of selection is an important step, which

was never taken in the traditional framework of the replicator equation, because there w

cancels out.

In games on graphs, the fitness of an individual is locally determined from interac-

tions with all adjacent individuals. The traditional replicator equation (1) describes the

special case of a ‘complete graph’, where all vertices are connected to each other and hence

all individuals are adjacent.

We consider three different update rules for the evolutionary dynamics (Fig 1a-

c), which we call ‘birth-death’ (BD), ‘death-birth’ (DB) and ‘imitation’ (IM). (i) For BD

updating, an individual is selected for reproduction from the entire population proportional

to fitness; the offspring of this individual replaces a randomly chosen neighbor. (ii) For DB

updating, a random individual from the entire population is chosen to die; the neighbors

compete for the empty site proportional to fitness. (iii) For IM updating, a random
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individual from the entire population is chosen to revise its strategy; it will either keep

its current strategy or imitate one of the neighbors’ strategies proportional to fitness.

Note that our imitation updating is different from the ‘imitation dynamics’ introduced

by Weibull (1995) and Hofbauer & Sigmund (2003), which describe deterministic game

dynamics in a well-mixed population, where random pairs of players compare their payoffs

and possibly imitate the strategy of the other.

These three update rules define three slightly different stochastic processes. In each

process, one elementary step involves two random choices, one of them is proportional to

fitness. For BD updating the first choice is proportional to fitness, for DB and IM updating

the second choice is proportional to fitness. We will find that this detail can introduce

interesting differences.

In the Appendix, we also consider a fourth update rule called ‘pairwise comparison’

(PC) (Fig 1d). Here one player is chosen at random, then one of its neighbors is chosen.

The first individual will adopt the strategy of the second indvidual with a probability that is

given by 1/[1+exp(−w∆P )] where the payoff difference is ∆P = P2−P1. Interestingly, this

update rule leads to the same behavior as BD updating in our current analysis. Therefore,

we do not need to consider it as an additional case.

Games on graphs are stochastic, while the replicator equation is deterministic. Re-

cently Traulsen et al (2005, 2006a) have found that the Moran process in a well-mixed

population lead to the deterministic equation that is called adjusted replicator dynamics.

What we want to do in this paper is to derive a system of ordinary differential equations

that describes how the expected frequency of each strategy in a game on a graph changes

over time. We will use pair-approximation (Matsuda et al 1987, 1992, Van Baalen 2000) on

regular graphs of degree k (Ohtsuki et al 2006). This means each individual is connected

to k other individuals. Strictly speaking pair-approximation is formulated for infinitely

large Bethe lattices (or Caily trees) which have no loops and no leaves. It is well known,

however, that pair-approximation gives good results for random regular graphs; as the

number of vertices, N , increases the probability of short loops becomes negligible. As we

will point out below our calculation requires k > 2. For an analysis of k = 2 see Ohtsuki

& Nowak (2006).

Let us introduce the n×n matrix B = [bij ] for the three different update mechanisms
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as follows:
BD: bij =

aii + aij − aji − ajj

k − 2

DB: bij =
(k + 1)aii + aij − aji − (k + 1)ajj

(k + 1)(k − 2)

IM: bij =
(k + 3)aii + 3aij − 3aji − (k + 3)ajj

(k + 3)(k − 2)

(2)

Let us further introduce the quantities

gi =
n∑

i=1

xjbij . (3)

If xi(t) is the expected frequency of strategy i on an infinitely large graph of degree k at

time t, then our pair-approximation calculation in the limit of weak selection leads to the

surprisingly simple equation

ẋi = xi(fi + gi − φ) i = 1, .., n (4)

We propose to call this equation the ‘replicator equation on graphs’. It describes how the

expected frequencies of strategies on a graph of degree k > 2 change over time. The sim-

plicity and symmetry of this equation is remarkable given the complexity of the underlying

stochastic process that describes games on graphs.

The term fi =
∑n

j=1 xjaij denotes the average fitness of strategy i, as in the

replicator equation, and comes from well-mixed interactions among all strategies. The

additional term, gi, characterizes the local competition among strategies. Note that the

population average of the local competition term sums to zero,

n∑
i=1

xigi = 0. (5)

Therefore the average fitness of the population, φ =
∑n

i=1 xi(fi +gi) =
∑n

i=1 xifi, remains

the same as in the replicator equation.

As seen in eqs (2), the term for local competition, bij , includes the payoff that

strategy i gets from strategy i plus the payoff that strategy i gets from strategy j minus

the payoff that j gets from i minus the payoff that j gets from j. The diagonal terms, aii
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and ajj , characterize the effect of assortativeness, while the off-diagonal terms, aij and aji,

characterize the effect of spite. Note that the matrix (bij) is antisymmetric, i.e. bij = −bji.

This makes sense, because the gain of one strategy in local competitiveness is the loss of

another. In particular the diagonal terms bii are always zero, suggesting that the payoff

for one strategy playing against others using the same strategy will always be the same

irrespective of population structure.

In a structured population, it is especially important which payoff players get when

interacting with another player who uses the same strategy (assortativeness) and also which

payoff strategies provide to others with whom they are in direct competition (spite). As

in eqs (2), for BD updating the contributions from assortativeness and spite are equally

strong, while for DB updating assortativeness is stronger than spite (the coefficients for

assortativeness in eqs (2) have relative weight k + 1). IM updating has a balance of

assortativeness and spite that is somewhere between BD and DB updating.

For a zero sum game, which can be defined by aii = 0 and aij = −aji for all

i and j, we find that bij is equal to aij times a constant. Therfore, the graph has no

consequence for the evolutionary dynamics (other than affecting the time scale). For pair

approximation and weak selection, a zero sum game on a regular graph has the same

evolutionary dynamics as in a well-mixed population.

Observe also as k increases the relative contribution of gi compared to fi decreases.

In the limit k → ∞, eq (4) leads back to eq (1), the replicator equation on a highly

connected graph converges to the normal replicator equation, which agrees with the result

by Traulsen et al (2006a) for weak selection.

Finally, we note that the replicator equation on graphs can also be written in the

form

ẋi = xi[
n∑

j=1

xj(aij + bij) − φ]. (6)

Therefore, moving evolutionary game dynamics from a well mixed population (the complete

graph) onto a regular graph of degree k is simply described by a transformation of the payoff

matrix

[aij ] → [aij + bij ]. (7)

Our results will be derived for degree homogeneous (=regular) graphs and weak

selection, but we expect that the replicator equation on graphs is also a good approximation
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for many games on non-regular graphs and for higher intensity of selection. In any case, an

exact understanding of the limiting scenario is a good point of departure for investigations

of more complicated and more specific scenarios.

The paper is structured as follows. In Sections 2,3 and 4, we will show the pair-

approximation calculations for BD, DB and IM updating, respectively. In Section 5, we will

study the Prisoner’s Dilemma, and in Section 6 the Snow-drift game, where we investigate

the effect of spatiality on the evolution of cooperation. In Section 7 we will study a

coordination game to see the possibility whether local population structure favors efficient

outcomes for groups through individual selection. In Section 8 we will study the Rock-

Scissors-Paper game to investigate spatial effect on evolutionary cycles. Section 9 contains

conclusions. There is a short Appendix showing the equivalence between PC and BD

updating.

2. Birth-death (BD) updating

For BD updating, a player is chosen for reproduction from the entire population propor-

tional to fitness. The offspring of this player replaces a random neighbor. In this section,

we will derive the replicator equation for games on graphs with BD updating, assuming

weak selection w ¿ 1.

In a well-mixed population, the probability that a player meets an i-strategist is

equal to its global frequency, xi. For games on graphs, however, this is not necessarily

true. Since dispersal is limited, those who use the same strategy tend to form clusters.

Therefore, we have to take into account the correlation in strategies of two adjacent players.

Let qi|j be the conditional probability that the focal player uses strategy i given that

an adjacent player uses strategy j. In other words, qi|j is the local frequency of strategy

i around strategy j. The local frequency qi|j is expressed by the global frequencies of

strategies as qi|j = xij/xj . Here xij denotes the global pair-frequency of i-j pairs.

Similarly one can imagine more detailed local frequencies such as qi|jl, which repre-

sents the conditional probability that the focal player uses strategy i given that an adjacent

player uses strategy j and that a two-step adjacent player uses strategy l. For analyti-

cal tractability, we will adopt the pair approximation method (Matsuda et al 1987, 1992,

Van Baalen 2000), which assumes qi|jl = qi|j . The crucial assumption is that a two-step

adjacent player does not affect the focal site directly.
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We are interested in the dynamics of global and local frequencies. Because we

consider weak selection, global frequencies change at a rate of order w, which is very slow.

Local frequencies change at a rate of order 1. Therefore, we have a separation of two time

scales.

Let us first derive local frequencies at equilibrium. While local frequencies equili-

brate, we can regard global frequencies as constant. Suppose that a player is chosen for

reproduction on average once per unit time. Then the dynamics of local frequencies are

calculated as follows

q̇i|j =
ẋij

xj
=

2
k

[
δij + (k − 1)

(∑
l

qi|lql|j

)
− kqi|j

]
+ O(w). (8)

Here δij is the Kronecker delta; δij = 1 if i = j, otherwise it is 0. From eq (8) and by

using the identity qi|jxj = qj|ixi equilibrium local frequencies are calculated as

q∗i|j =
(k − 2)xi + δij

k − 1
. (9)

We see that q∗i|i > xi > q∗i|j (j 6= i) holds. Players using strategy i have more i-neighbors

than is expected by the global frequency, while players using another strategy have less

i-neighbors than is expected.

Given these local frequencies, we can derive the dynamics of global frequencies. For

convenience we rewrite q∗i|j as qi|j . We invent the term ‘(i; k1, · · · , kn)-player’ denoting a

player using strategy i who has k1 neighbors with strategy 1, · · ·, and kn neighbors with

strategy n.

Let us now consider one elementary step of BD updating.

The number of i-strategists increases by one, when (i) an (i; k1, · · · , kn)-player is

chosen for reproduction and (ii) the offspring replaces a neighbor who does not use strategy

i. The first event occurs with probability[
xi ·

(
k!

k1! · · · kn!
qk1
1|i · · · q

kn

n|i

)
· W(i;k1,···kn)

]/
W̄ . (10)

Here W(i;k1,···kn) denotes the fitness of an (i; k1, · · · kn)-player, which is given by

W(i;k1,···kn) = 1 − w + w ·
( ∑

l

klail

)
. (11)
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W̄ is the average fitness in the population. The second event occurs with probability

1 − (ki/k).

In contrast, the number of i-strategists decreases by one when (i) an (j; k1, · · · , kn)-

player (j 6= i) is chosen for reproduction and (ii) the offspring replaces an i-player. The

first event occurs with probability[
xj ·

(
k!

k1! · · · kn!
qk1
1|j · · · q

kn

n|j

)
· W(j;k1,···kn)

]/
W̄ . (12)

The second event occurs with probability ki/k.

From these calculations we obtain the expected increment of the frequency of strat-

egy i, denoted by E[∆xi], in one elementary step of updating, which takes time ∆t. In

infinite populations stochasticity resulting from random sampling vanishes and the quantity

E[∆xi]/∆t becomes equal to ẋi. Thus we obtain the deterministic evolutionary dynamics

ẋi =
E[∆xi]

∆t

=
∑

k1+···+kn=k

[
xi ·

(
k!

k1! · · · kn!
qk1
1|i · · · q

kn

n|i

)
· W(i;k1,···kn)

]
·
(

1 − ki

k

)/
W̄

−
∑

k1+···+kn=k
j 6=i

[
xj ·

(
k!

k1! · · · kn!
qk1
1|j · · · q

kn

n|j

)
· W(j;k1,···kn)

]
· ki

k

/
W̄

≈ w
(k − 2)2

k − 1
· xi(fi + gi − φ).

(13)

We have
fi =

∑
j

xjaij

φ =
∑

i

xifi =
∑
i,j

xixjaij

gi =
∑

j

xjbij

bij =
aii + aij − aji − ajj

k − 2
.

(14)

Neglecting the constant factor, w(k − 2)2/(k − 1), which is equivalent to a change of time

scale, gives us the replicator equation on graphs,

ẋi = xi(fi + gi − φ). (15)
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3. Death-birth (DB) updating

For DB updating, a random player is chosen from the entire population to die. Then the

neighbors compete for the vacancy proportional to their fitness. Again, we will derive the

replicator equation for games on graphs using DB updating and assuming weak selection

w ¿ 1.

First we derive the steady state of the local frequencies. Direct calculation shows

that the dynamics of local frequencies are exactly the same as eq (8). Hence, the local

frequencies converge to

qi|j =
(k − 2)xi + δij

k − 1
. (16)

Next we study the dynamics of global frequencies. Let us consider one elementary

step of DB updating.

The number of i-strategists increases by one when (i) an (j; k1, · · · , kn)-player (j 6= i)

dies and (ii) one of its i-neighbors wins the competition for the vacancy. The first event

occurs with probability

xj ·
(

k!
k1! · · · kn!

qk1
1|j · · · q

kn

n|j

)
. (17)

The second event occurs with probability

kiWi|j∑
l klWl|j

. (18)

Here Wi|j represents the fitness of an i-player one of whose neighbors is j-player, given as

Wi|j = 1 − w + w ·
(
aij +

∑
l

(k − 1)ql|iail

)
. (19)

In contrast, the number of i-strategists decreases by one, when (i) an (i; k1, · · · , kn)-

player dies and (ii) one of its neighbors not using strategy i wins the competition for the

vacancy. The first event occurs with probability

xi ·
(

k!
k1! · · · kn!

qk1
1|i · · · q

kn

n|i

)
. (20)

The second event occurs with probability

1 −
kiWi|i∑
l klWl|i

. (21)
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From these calculations we obtain

ẋi =
∑

k1+···+kn=k
j 6=i

xj ·
(

k!
k1! · · · kn!

qk1
1|j · · · q

kn

n|j

)
·

kiWi|j∑
l klWl|j

−
∑

k1+···+kn=k

xi ·
(

k!
k1! · · · kn!

qk1
1|i · · · q

kn

n|i

)
·
(

1 −
kiWi|i∑
l klWl|i

)

≈ w
(k + 1)(k − 2)2

k(k − 1)
· xi(fi + gi − φ).

(22)

We have
fi =

∑
j

xjaij

φ =
∑

i

xifi =
∑
i,j

xixjaij

gi =
∑

j

xjbij

bij =
(k + 1)aii + aij − aji − (k + 1)ajj

(k + 1)(k − 2)
.

(23)

Again, neglecting the constant factor yields the replicator equation on graphs,

ẋi = xi(fi + gi − φ). (24)

4. Imitation (IM) updating

For IM updating, a random player is chosen for updating his strategy from the entire

population. Then he will either keep his current strategy or imitate one of the neighbors’

strategies proportional to fitness. As before, we assume weak selection w ¿ 1.

First we derive the steady state of local frequencies, regarding global frequencies as

constant. Direct calculation leads to

q̇i|j =
ẋij

xj
=

2
k + 1

[
δij + (k − 1)

(∑
l

qi|lql|j

)
− kqi|j

]
. (25)

From this, we obtain the steady state of local frequencies as

qi|j =
(k − 2)xi + δij

k − 1
. (26)

As before, let us derive the dynamics of xi. Consider an elementary step of IM

updating. The number of i-strategists increases by one when (i) an (j; k1, · · · , kn)-player
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(j 6= i) is chosen for updating and (ii) he imitates one of his i-neighbors. The first event

occurs with probability

xj ·
(

k!
k1! · · · kn!

qk1
1|j · · · q

kn

n|j

)
. (27)

The second event occurs with probability

kiWi|j

W(j;k1,···,kn) +
∑

l klWl|j
. (28)

The number of i-strategists decreases by one, when (i) an (i; k1, · · · , kn)-player is

chosen for updating and (ii) he imitates one of his neighbors not using strategy i. The first

event occurs with probability

xi ·
(

k!
k1! · · · kn!

qk1
1|i · · · q

kn

n|i

)
. (29)

The second event occurs with probability

1 −
W(i;k1,···,kn) + kiWi|i

W(i;k1,···,kn) +
∑

l klWl|i
. (30)

From these calculations we obtain

ẋi =
∑

k1+···+kn=k
j 6=i

xj ·
(

k!
k1! · · · kn!

qk1
1|j · · · q

kn

n|j

)
·

kiWi|j

W(j;k1,···,kn) +
∑

l klWl|j

−
∑

k1+···+kn=k

xi ·
(

k!
k1! · · · kn!

qk1
1|i · · · q

kn

n|i

)
·
(

1 −
W(i;k1,···,kn) + kiWi|i

W(i;k1,···,kn) +
∑

l klWl|i

)

≈ w
k(k + 3)(k − 2)2

(k + 1)2(k − 1)
· xi(fi + gi − φ).

(31)

We have
fi =

∑
j

xjaij

φ =
∑

i

xifi =
∑
i,j

xixjaij

gi =
∑

j

xjbij

bij =
(k + 3)aii + 3aij − 3aji − (k + 3)ajj

(k + 3)(k − 2)
.

(32)

Neglecting the constant factor yields the replicator equation for games on graphs using IM

updating,

ẋi = xi(fi + gi − φ). (33)
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5. The Prisoner’s Dilemma

Consider a Prisoner’s Dilemma game (Rapoport & Chammah 1965, Trivers 1971, Axelrod

& Hamilton 1981) . A cooperator pays a cost c for his opponent to receive a benefit b. We

assume b > c. A defector pays nothing. The payoff matrix of this game is given by


C D

C b − c −c

D b 0

 (34)

Defection, D, dominates cooperation, C. Defection is a strict Nash equilibrium. The

traditional replicator equation of a well-mixed population is given by

ẋ = x(1 − x)(−c). (35)

Here x represents the frequency (=relative abundance) of cooperators in the population.

Equation (35) has two fixed points: (i) at x = 1 there is an unstable equilibrium where

everybody cooperates; at x = 0 there is a stable equilibrium where everybody defects.

Therefore x = 0 is the global attractor of these dynamics. Hence, evolutionary game

theory predicts the victory of defectors in well-mixed populations.

The game dynamics can drastically change if we consider a structured population.

The replicator equation of the Prisoner’s Dilemma on a graph of degree k for the three

different update rules is given by

BD: ẋ = x(1 − x)
k

k − 2
(−c)

DB: ẋ = x(1 − x)
k

(k + 1)(k − 2)
(b − kc)

IM: ẋ = x(1 − x)
k

(k + 3)(k − 2)
{b − (k + 2)c}.

(36)

For BD updating, defectors always win over cooperators as in well-mixed populations.

For DB updating, however, if b/c > k, then cooperators win over defectors. Similarly,

for IM updating, cooperators win over defectors if b/c > k + 2. We note that these

conditions are identical to those derived by Ohtsuki et al. (2006), when analyzing the
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fixation probabilities of cooperators and defectors on graphs. For DB updating, natural

selection favors cooperators over defectors if the benefit-to-cost ratio of the altruistic act

exceeds the degree of the graph, k (which denotes the number of neighbors of any one

individual). Smaller connectivity, k, favors cooperators because then clustering is easier.

Interestingly, Ohtsuki et al (2006) observe that the conditions b/c > k and b/c > k+2 also

hold in numerical simulations of the Prisoner’s Dilemma on degree heterogeneous (=non-

regular graphs) such as random graphs and scale free networks. In this case, the parameter

k denotes the average number of neighbors per individual. Therefore, we conjecture that

the replicator equation on graphs (eq 4) will also extend to many non-regular graphs, but

we cannot prove this at present.

DB and IM updating can also predict a couple of interesting phenomena for the

general Prisoner’s Dilemma game given by the payoff matrix


C D

C R S

D T P

. (37)

The game is a Prisoner’s Dilemma if T > R > P > S. As a specific example, let us

consider 
C D

C 5 0

D 8 1

. (38)

If this game is played on a graph with degree k = 3, then the corresponding replicator

dynamics for DB updating is given by

ẋ = x(1 − x)(−2x + 1), (39)

There is a stable equilibrium at x∗ = 1/2. Therefore, in this example, unconditional

cooperators and defectors can coexist.

As another example consider the Prisoner’s Dilemma given by the payoff matrix


C D

C 15 0

D 16 8

. (40)
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The replicator equation of this game for DB updating and weak selection on a regular

graph with k = 3 is given by

ẋ = x(1 − x)(7x − 5). (41)

There is an unstable equilibrium at x∗ = 5/7. Hence, the system exhibits bistability

between cooperation and defection.

6. The Snow-drift game

Consider a snow-drift game. Two drivers are trapped on either side of a snowdrift in a

blizzard. Cooperation means to get out of the car and shovel. Defection means to relax,

remain in the car and let the other one do the work. If either one of them cooperates, then

both gain the benefit of getting home, b. The cost of removing the snowdrift is c. If both

drivers shovel (cooperate), then the cost for each of them is c/2. It is assumed that b > c.

The payoff matrix of this game is given by


C D

C b − c
2 b − c

D b 0

. (42)

Let x denote the frequency of cooperators. The traditional replicator equation

describing a well-mixed population leads to stable coexistence of cooperators and defectors

at x̂ = 1 − r, where r = c/(2b − c).

For DB and IM updating on a regular graph of degree k ≥ 3, we find that the

equilibrium frequency of cooperators, x∗, is always greater than x̂. Furthermore, we find

that x∗ = 1 if b/c > (k2 + 1)/(2k + 2) for DB updating and if b/c > (k2 + 2k + 3)/(2k + 6)

for IM updating. Therefore, spatial effects (graph selection) always favors cooperators for

these two update rules.

For BD updating, we find that the equilibrium frequency of cooperators is greater

than in the well-mixed case, x∗ > x̂, if b/c > 3/2. Remarkably, this condition does not

depend on the degree of the graph. (but remember that all our results are derived for

k ≥ 3). In addition, for BD updating some parameter choices lead to dominance of one

strategy over the other. If b/c > (k+1)/2 then x∗ = 1, which means that defectors become

extinct. If b/c < (2k − 1)/(2k − 2) then x∗ = 0, which means that cooperators become

extinct.
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Hauert & Doebeli (2004) have studied the effect of spatial structure on the snow-

drift game. One of their update rules is equivalent to our PC updating and therefore

similar to BD updating in our analysis (see Appendix). Based on numerical simulations,

Hauert & Doebeli (2004) make the interesting observation that spatial structure can inhibit

cooperation in the snow-drift game. This finding is in qualitative agreement with our result

for BD updating: if b/c < 3/2 then the equilibrium frequency of cooperators on a regular

graph of (small) degree k is less than the equilibrium frequency of cooperators in a well-

mixed population. A quantitative comparison is difficult, however, because Hauert &

Doebeli did not study the case of weak selection. Our prediction is that for weak selection

and DB or IM updating, spatial structure always favors cooperators in the snow-drift game.

7. Pareto-efficiency versus risk-dominance in a coordination game

Consider the payoff matrix 
A B

A a b

B c d

. (43)

If a > c and d > b then both strategies A and B are strict Nash equilibria. In this case,

the game is called a ‘coordination game’. It is best to do the same as the opponent;

hence, both players want to coordinate their actions. But should they play A or B? If

a + b < c + d, then strategy B is called risk-dominant (Harsanyi & Selten 1988). In the

standard replicator equation describing a well-mixed population, the basin of attraction

of B is then greater than 1/2. It could be, however, that a > d, in which case strategy A

is called pareto-efficient. For both players, the best outcome is that both choose strategy

A, but the risk of receiving a low payoff is minimized by choosing strategy B. This is an

interesting dilemma. How does population structure affect the evolutionary dynamics of

such a game?

Let us consider the specific coordination game given by the payoff matrix


A B

A a 0

B 1 2

. (44)

Let us assume that the parameter a satisfies 1 < a < 3. Therefore, both strategies A and

B are strict Nash equilibria, but B is always risk dominant over A. If a < 2 then B is both
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risk-dominant and Pareto efficient. If, however, a > 2 then an interesting conflict arises,

because strategy A is pareto-efficient, while strategy B is risk-dominant.

First we study the replicator dynamics of this game in a well-mixed population. Let

x denote the frequency of strategy A. There is an unstable equilibrium at x∗ = 2/(1 + a).

As illustrated in Fig 2a, the system is bistable: if the initial fraction of A is greater than

x∗, then strategy A will take over the whole population; if the initial fraction of A is less

than x∗, then strategy B will take over the whole population. As we see in Fig 2a, strategy

B always has the larger basin of attraction.

Let us now consider this coordination game on a graph. For BD updating, the basin

of attraction of strategy B is always larger than in a well-mixed population. Therefore,

BD updating favors risk dominance. For DB updating, if a > (3k + 1)/(k + 1) then

strategy A has the larger basin of attraction. For IM updating, the equivalent condition is

a > (3k + 7)/(k + 3). Since k ≥ 3 both conditions imply that a > 2, which means that A

is Pareto efficient. Therefore, DB and IM updating of game dynamics on graphs can favor

Pareto efficiency over risk dominance (Fig 2). See Ohtsuki & Nowak (2006) for similar

results on the cycle (k = 2).

8. The Rock-Scissors-Paper game

Let us consider the rock-scissors-paper game (Hofbauer & Sigmund 1998). This game has

three pure strategies, R1, R2 and R3. In a pairwise matching, R1 is defeated by R2, R2 is

defeated by R3, and R3 is defeated by R1. As an example, we study the rock-scissors-paper

game with the payoff matrix


R1 R2 R3

R1 0 1 4

R2 1 4 0

R3 −1 6 2

. (45)

Figure 3a shows the phase portrait of the replicator equation of this game in a well-

mixed population. Each vertex of the simplex is an unstable equilbrium corresponding to a

monomorphic population. There is an unstable equilibirum in the interior of the simplex.

The Jacobian matrix at this internal equilibrium has three eigenvalues, one of them is

associated with the transversal direction for the simplex S3 and is of no consequence. The

other two eigenvalues form a pair of complex conjugates and determine the stability of the
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equilibrium. For matrix (45), the real part of those two eigenvalues is given by Re[λ] =

1/28 > 0. The fact that this quantity is positive implies that the internal equilibrium is

unstable. All orbits starting from the interior of the simplex ultimately converge to the

heteroclinic cycle at the boundary, which consists of three edges, e1 → e2, e2 → e3, and

e3 → e1. There are oscillations of increasing amplitude, which will eventually result in the

extinction of two of the three strategies (see May & Leonard 1975).

Playing the rock-scissors-paper game on a graph not only changes the position of

the internal equilibrium, but can also affect its stability. Figures 3b-d show the phase

portraits of the replicator equation on a graph of degree k = 3 for BD (b), DB (c) and

IM (d) updating, respectively. The real part of the two essential eigenvalues of Jacobian

matrix at the internal equilibrium is

BD: Re[λ] =
1
30

DB: Re[λ] = − 2
39

< 0

IM: Re[λ] = − 12
475

< 0.

(46)

For DB and IM updating, this suggests that the internal equilibirum is stable and hence is

the global attractor of the dynamics. We observe that DB updating stabilizes the internal

equilbrium more than IM updating. In contrast, BD updating does not change the stability

of the internal equilibrium in this example.

9. Discussion

Evolutionary game dynamics in a well-mixed population can be described by the replicator

equation,

ẋi = xi[
n∑

j=1

xjaij − φ]. (47)

Here xi denotes the frequency of strategy i, the quantities aij denote the payoff for strategy

i versus strategy j and φ =
∑

ij aijxixj is the average payoff in the population.

Evolutionary game dynamics on a regular graph of degree k in the limit of weak

selection (w ¿ 1) can be described by the ‘replicator equation on graphs’,

ẋi = xi[
n∑

j=1

xj(aij + bij) − φ]. (48)
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For the three different update rules, birth-death (BD), death-birth (DB) and imitation

(IM), the coefficients of the B matrix are given by

BD: bij =
aii + aij − aji − ajj

k − 2

DB: bij =
(k + 1)aii + aij − aji − (k + 1)ajj

(k + 1)(k − 2)

IM: bij =
(k + 3)aii + 3aij − 3aji − (k + 3)ajj

(k + 3)(k − 2)

(49)

Therefore, moving a game from a well-mixed population onto a regular graph preserves

the structure of the replicator equation and only results in a transformation of the payoff

matrix

[aij ] → [aij + bij ]. (50)
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Appendix: Pairwise comparison (PC) updating

For PC updating, a random individual is chosen for updating its strategy. Then it chooses a

random neighbor. The first player adopts the neighbor’s strategy with probability 1/(1 +

exp[−w∆P ]) where the payoff difference is ∆P = P2 − P1. Here w works as inverse

temperature in statistical physics (Szabó & Tőke 1998, Hauert & Szabó 2005, Traulsen et

al 2006bc). Unlike the three updating rules in the main text, w can be any non-negative

real number here. As w → ∞, PC updating becomes deterministic: an updating player

always imitates the neighbor with a higher payoff but never imitates the neighbor with a

lower score. This is called imitate the better rule (Hofbauer & Sigmund 2003). In contrast,

here we assume weak selection w ¿ 1.

First we derive the steady state of local frequencies, regarding global frequencies as

constant. We obtain

q̇i|j =
ẋij

xj
=

1
k

[
δij + (k − 1)

( ∑
l

qi|lql|j

)
− kqi|j

]
. (A.1)

From this, we obtain

qi|j =
(k − 2)xi + δij

k − 1
. (A.2)

Let us derive the dynamics of xi. Consider one elementary step of PC updating.

The number of i-strategists increases by one, when a j-player is chosen for adopting the

strategy of an i-neighbor (where j 6= i). This event occurs with probability

xj · qi|j ·
(

1 + exp
[
− (Wi|j − Wj|i)

])−1

. (A.3)

On the other hand, the number of i-strategists decreases by one, when an i-player is chosen

to adopt the strategy of a j neighbor (where j 6= i). This event occurs with probability

xi · qj|i ·
(

1 + exp
[
− (Wj|i − Wi|j)

])−1

. (A.4)
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From these calculations we obtain

ẋi =
∑
j 6=i

xj · qi|j ·
(

1 + exp
[
− (Wi|j − Wj|i)

])−1

−
∑
j 6=i

xi · qj|i ·
(

1 + exp
[
− (Wj|i − Wi|j)

])−1

≈ w
(k − 2)2

2(k − 1)
· xi(fi + gi − φ).

(A.5)

We have
fi =

∑
j

xjaij

φ =
∑

i

xifi =
∑
i,j

xixjaij

gi =
∑

j

xjbij

bij =
aii + aij − aji − ajj

k − 2
.

(A.6)

Neglecting the constant factor yields the replicator equation for games on graphs,

ẋi = xi(fi + gi − φ). (A.7)

Note that this equation is exactly the same as for BD updating.

Figure Legends

Figure 1 : Four different update rules are studied in this paper. (a) Birth-death (BD)

updating. A player is chosen for reproduction from the entire population proportional

to fitness. The offspring replaces a randomly chosen neighbor. (b) Death-birth (DB)

updating. A random player is chosen to die. The neighbors compete for the empty site

proportional to their fitness. (c) Imitation (IM) updating. A random player is chosen

for updating his strategy. The player keeps his current strategy or imitates one of the

neighbors’ strategies proportional to fitness. (d) Pairwise comparison (PC) updating.

A random player is chosen for updating his strategy. One of the neighbors is chosen at

random. The first player either keeps his current strategy or adopts the neighbor’s strategy

with a probability that depends on the payoff difference. Random choices are shown in

dark blue. Choices that are proportional to fitness are shown in red. BD and PC updating
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(yellow background) lead to identical evolutionary dynamics in our present analysis. DB

and IM updating (light blue background) have similar behavior.

Figure 2 : Replicator dynamics of a coordination game in a well-mixed population (a) or

on a regular graph of degree k = 3, 4 or 5 for three different update rules (b-d). The payoff

matrix for the two strategies A and B is given by eq (44). Both strategies are strict Nash

equilibria. The horizontal axes represent the parameter a. For 1 < a < 2, strategy B is

both risk-dominant and Pareto efficient. For 2 < a < 3, strategy A is Pareto efficient, while

strategy B is still risk-dominant. The solid line in each figure shows the boundary between

the two basins of attraction. The broken line indicates the point where both basins are

equally large (1/2). (a) In a well-mixed population, strategy B always has the larger basin

of attraction. (b) For BD updating, the basin of attraction of strategy B is even larger

than in a well-mixed population. BD updating favors risk-dominance. (c,d) For DB and

IM updating, if a is close to 3, then strategy A has the larger basin of attraction. Hence,

DB and IM updating can favor pareto-efficiency over risk dominance.

Figure 3 : The replicator dynamics of the rock-scissors-paper game (eq 45) for a well-

mixed population (a), or played on graphs with degree k = 3 for BD, DB and IM up-

dating (b-d). Each panel shows the simplex S3. Each corner point, ei, corresponds to

the monomorphic population where only strategy Ri is present. Open and solid circles in

figures represent unstable and stable equilibria respectively. For the well-mixed population

(a) and for BD updating (b), the internal equilibrium is unstable; all orbits converge to

the heteroclinic cycle at the boundary. But for DB updating (c) and IM updating (d), the

internal equilibrium is stable and becomes the global attractor of the dynamics.
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a. Birth-death (BD)

d. Pairwise comparison (PC)c. Imitation (IM)

b. Death-birth (DB)
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