

A Market-Based Approach to Software Evolution

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Bacon, David F., Yiling Chen, David C. Parkes, and Malvika Rao.
2009. A market-based approach to software evolution. In
Proceedings of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and
applications: October 25–29, 2009, Orlando, Florida, USA, 973-
980. New York: ACM Press.

Published Version doi:10.1145/1639950.1640066

Accessed February 18, 2015 12:19:10 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4340769

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28933174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/4340769&title=A+Market-Based+Approach+to+Software+Evolution
http://dx.doi.org/10.1145/1639950.1640066
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4340769
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

A Market-Based Approach to Software Evolution

David F. Bacon
IBM Research and Harvard University

dfb@watson.ibm.com

Yiling Chen
Harvard University

yiling@eecs.harvard.edu

David Parkes
Harvard University

parkes@eecs.harvard.edu

Malvika Rao
Harvard University

malvika@eecs.harvard.edu

ABSTRACT
Software correctness has bedeviled the field of computer science
since its inception. Software complexity has increased far more
quickly than our ability to control it, reaching sizes that are many
orders of magnitude beyond the reach of formal or automated veri-
fication techniques.

We propose a new paradigm for evaluating “correctness” based
on a rich market ecosystem in which coalitions of users bid for
features and fixes. Developers, testers, bug reporters, and analysts
share in the rewards for responding to those bids. In fact, we sug-
gest that the entire software development process can be driven by
a disintermediated market-based mechanism driven by the desires
of users and the capabilities of developers.

The abstract, unspecifiable, and unknowable notion of absolute
correctness is then replaced by quantifiable notions of correctness
demand (the sum of bids for bugs) and correctness potential (the
sum of the available profit for fixing those bugs). We then sketch
the components of a market design intended to identify bugs, elicit
demand for fixing bugs, and source workers for fixing bugs. The
ultimate goal is to achieve a more appropriate notion of correct-
ness, in which market forces drive software towards a correctness
equilibrium in which all bugs for which there is enough value, and
with low enough cost to fix, are fixed.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Reliability; D.2.10 [Design]:
Methodologies; J.4 [Social and Behavioral Sciences]: Economics;
K.6.3 [Software Management]: Software development
General Terms
Design, Economics, Reliability, Verification

1. INTRODUCTION
Specification. Implementation. Verification. Testing. Correctness.
These are the concepts upon which rests the human enterprise of
software creation, and the discipline of software engineering. And
at their intellectual core, even if rarely obtained in practice: Proof
— the notion that we can, in principle, create a specification for a
software artifact, implement it, and prove it correct.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
Copyright 2009 ACM 978-1-60558-768-4/09/10 ...$5.00.

This intellectual foundation for software engineering, the Pla-
tonic ideal of the bug-free program, has dominated both practical
methodology and theoretical study in computer science.

One of the progenitors of this idealized approach, Edsger Dijk-
stra, suggested in his 1972 Turing Award lecture that

well before the seventies have run to completion, we
shall be able to design and implement the kind of sys-
tems that are now straining our programming ability,
at the expense of only a few percent in man-years of
what they cost us now, and that besides that, these sys-
tems will be virtually free of bugs.

Today this suggestion seems remarkably naïve, and if anything the
situation has gotten worse rather than better.

Various approaches to correctness have been used: formal proofs
(with significant progress in recent years using mechanical systems
like the Coq proof assistant) and model checking are both severely
limited in the scale of software artifact to which they can be applied.
Some researchers have acknowledged that absolute correctness is
inachievable and suggested alternate approaches, notably Rinard’s
work in “failure oblivious” computing [13].

Our belief is that we need a fundamental change in our approach
to large-scale software systems which relies on organic, self-regulating
mechanisms rather than attempting to achieve some absolute, cen-
tralized notion of correctness.

In this paper, we explore the possibility of using a market mech-
anism to drive the evolution of software. The goal is not to be bug
free, but rather to be free of bugs that people care about, and that
can be fixed economically. We begin by summarizing some ap-
proaches to using market systems in various parts of the software
development process, and then describe our proposed approach.

2. CROWD-SOURCING APPROACHES
Unlike traditional approaches that seek technical advancements

to ensure the correctness of software, many recent systems are “crowd-
sourcing" various software development and improvement tasks to
the participants of the software ecosystem. Crowd-sourcing is a
process that involves the use of a competitive process (though pay-
ments, prizes or other forms of reward) for the sourcing of work or
information, usually involving problem decomposition into small,
modular chunks. In this section we review existing bug tracking
systems, vulnerability markets, and online marketplaces that take
a crowd-sourcing approach. As we will see, these systems, some
of which are market-based, typically only focus on one particular
aspect of the software ecosystem.

In their paper "The principles of distributed innovation," Lakhani
and Panetta describe three different industries where distributed in-
novation systems have been implemented successfully [7]. The au-

thors discuss the motivation for people to participate in such sys-
tems and the organizing principles of production. The paper con-
siders the Linux operating system as an example that highlights
the benefits of work that is organized such that many individuals
can self-select and lead elements of development without much ex-
ante guidance and control. In fact Linus Torvalds, the founder of
Linux, is quoted as follows: "I would much rather have Brownian
motion where a lot of microscopic directed improvements end up
pushing the system slowly in a direction that none of the individual
developers really had the vision to see on their own." The paper
also points out that there is a relatively high failure rate in these
systems. Moreover distributed innovation systems do not seem to
be efficient in milestone-based innovation development which re-
quires strict planning and delivery on demand.

2.1 Bug and Vulnerability Reporting
It is natural to engage and incentivize users and free-market testers

to report bugs and identify vulnerability of software. Voting-based
approaches have been used to allow users to express their prefer-
ences over the importance of the bugs. Market-based approaches
have been proposed to provide incentives for reporting critical se-
curity or vulnerability issues.

2.1.1 Voting-Based Bug Reporting Systems
Bug reporting systems often try to get users’ preferences over

different reported bugs. One way for users to express such prefer-
ences is to allow them to vote on bugs or related issues that they
care about. For example, Sun uses Bug Parade to track bugs in the
Java Virtual Machine. In Bug Parade, every unique email address
is given some tokens that could be used to vote on the importance
of particular bugs.

Similarly, the Adobe Flex bug and issue management system
uses a system called JIRA to report and track bugs for the Flex
Builder/SDK and ActionScript Compiler projects. JIRA allows a
user to cast votes for various issues that may be of relevance to
the user. It also allows a user to track a particular issue and be
notified of any updates regarding that issue [6]. The aggregated
votes allocated to bugs are thought to reflect the level of interest
from the user community. As each user is allocated a limited num-
ber of votes, users must consider how to cast their votes carefully.
Users could also unvote on issues that no longer interest them– this
ensures that more important issues are dealt with first [1]. While
voting-based systems offer expressiveness in order to understand
user preferences they do not provide direct incentives for reporting,
other than indirectly through the potential to infuence which bugs
receive attention.

2.1.2 Market-Based Vulnerability Reporting Systems
For security-related issues, bug reports are essential to ensure the

integrity of the software. Hence, several market-based vulnerability
reporting systems have been introduced with the goal of incentiviz-
ing users to report bugs and vulnerabilities. We review two such
systems below. The first one is currently used in practice, while the
second one is a proposed theoretical framework.

Mozilla Security Bug Bounty. The Mozilla Foundation offers a
cash award of $500 and a Mozilla T-shirt to anyone who reports a
valid, critical, security bug [8]. The bug must meet certain crite-
ria including the following: the bug must be new, it must exist in
the latest supported version of Firefox or Thunderbird released by
Mozilla, and the bug finder must not have written the buggy code
or reviewed that code or contributed in any way towards that code.

Bug reporters are encouraged to work with Mozilla engineers in
resolving the bug. Security vulnerabilities are treated in a special

way because the consequences of a vulnerability being exploited
can be extremely serious. Security bug reports may be kept private
for a limited amount of time to enable Mozilla engineers to fix the
bug before it is made public. However the bug reporter is allowed
to decide when to disclose the bug to the public. The bug reporter
may choose to disclose earlier if the bug is being ignored, for ex-
ample. By not publicizing information about the bug immediately
upon discovery and instead reporting it to Mozilla, the bug reporter
acts in the interests of the Mozilla project and is compensated ac-
cordingly.

Vulnerability Markets. Schechter [14] proposes to use a vulner-
ability market to incentivize testers to identify vulnerabilities in
software. In a vulnerability market, software producers offer time-
variant rewards to the first testers who identify vulnerabilities in the
software. A minimum reward value R0 is initially offered, which
then grows over time at a rate decided by the producer. When a
new vulnerability is reported it is first verified to be genuine. On
passing verification, the tester responsible for the report is awarded
some portion of the reward. The reward amount is then reset to
the minimum amount R0. Only the first reporter receives the re-
ward. Hence a tester that waits to report a vulnerability increases
the amount of the reward but also increases the likelihood that an-
other tester may report the vulnerability first thereby cutting him
out of the reward. Clearly in such a scheme the most frequently
occurring vulnerabilities will be found first. If the reward remains
unclaimed the product is considered to be safe enough to protect
information whose total value is at most the amount of the reward.
Firms have an incentive to cooperate with the vulnerability market
as it provides a measure of the quality of their products and hence
their reputation.

Ozment [10] explains that the vulnerability market is essentially
an auction– in the style of an open first-price ascending auction, or
reverse Dutch auction. There is one buyer of vulnerability in the
auction, the producer, and potentially unlimited number of sellers,
the testers. The initial price is set to be relatively low and the price
rises continuously until accepted by a seller. The valuations of the
sellers or testers are private because they depend on the amount of
work or cost incurred in locating a vulnerability. The minimum
reward value R0 is the auction’s reserve price.

Interestingly it appears that the quality of software and the soft-
ware producer’s investment in patching technology are strategic
substitutes. If it is possible to release a patch then software produc-
ers enter the market sooner and with software containing a greater
number of bugs [9]. It has also been shown that software produc-
ers tend to issue patches later than is socially optimal [9]. We note
that while both the Mozilla Bug Bounty and the vulnerability mar-
ket provide incentives for reporting vulnerabilities, the valuation of
users for a patch for a particular vulnerability is not captured.

2.2 Online Freelance Marketplaces
Whereas bug and vulnerability reporting systems are used to

identify issues in software, they often do not couple this identifica-
tion of issues with a sourcing process to perform work in addressing
these issues. This gap is filled with online freelance marketplaces,
which are platforms that connect individuals, small-business own-
ers, and even Fortune 500 companies with freelance technology
specialists to satisfy their technological needs. The sites provide
vivid details about workers’ histories and qualifications, and some
even feature tools that let the businesses monitor the work they are
paying for [4]. Web developers, software programmers and other
IT specialists from different countries are readily available and of-
ten charge a fraction of the price of local workers. We will exam-
ine two such online companies, RentACoder and TopCoder, below.

While tasks typically are independent projects in RentACoder, in-
dividual tasks often are components of a larger project in TopCoder.
We will also briefly review the iTune App Store, which is a market
place for software applications for the iPhone.

2.2.1 TopCoder
TopCoder Inc. uses programming competitions to build profes-

sional grade software outsourced by clients ranging from individ-
ual entrepreneurs to global Fortune 1000 companies. For every
task, participants compete against each other for cash award. The
top one or two contestants win the award. TopCoder members can
work for a variety of outsourced software projects including the
"Bug Races," which is a competition for fixing bugs. Members
can fix posted bugs and the first submission that is verified to be
fully functional (according to tests and design criteria) is awarded
a prize. Other types of software developement projects (software
design, software architecture, etc.) use a similar competition for-
mat. Boudreau et al. [3] argue that the competition platform of
TopCoder can increase the quality of the best solution by broad-
ening the search for innovation. We note that TopCoder seems to
be used mainly for de novo design rather than for improvements or
fixes to existing software systems.

Central to TopCoder’s methodology appears to be the modular-
ization of software development work [5]. Each project is broken
down to the most granular level possible. As a result most pieces
of work can be completed in a few hours [2]. In addition the mod-
ularization of projects allows for simple evaluation criteria when
determining if a submitted software solution or bug fix is indeed
complete. It also reduces the likelihood that newly submitted code
may exert unintended effects on the existing code base. Hence the
winning programmer may be rewarded for his work as soon as it
is validated. This has the benefit of reducing uncertainty for Top-
Coder as well as for the programmers. Interestingly, this modular-
ization (and architecting, more broadly) is itself performed within
the same competition platform.

While TopCoder provides some monetary incentives for its par-
ticipants, its fixed pricing for tasks may not be efficient in identi-
fying the best participants to perform a task. Moreover, TopCoder
is also more than a software crowd-sourcing platform, in that it
also provides value in establishing a community of talented coders
and helping companies to identify talent. TopCoder is also an eas-
ily accessible practicing ground for programmers looking to hone
their skills. All submissions to a task receive feedback from a peer
review process involving multiple metrics on a scorecard, which
provides valuable information on how a submission could have
been improved [2]. Firms like Google and Microsoft often sponsor
screening contests [3], and seem to hire talented participants.

2.2.2 Rent-a-Coder
Rent-a-Coder is another online marketplace that connects buy-

ers to coders. All projects are protected by escrow and through
arbitration. Buyers post new projects on the site. Sellers (coders)
post questions and submit bids on the projects. The buyer then se-
lects the seller that he or she wants to award the project to and puts
the funds into escrow as a payment guarantee. When the work is
completed, the buyer releases funds from the escrow account to the
seller. If the seller completes the work but the buyer withholds the
funds, an arbitrator will step in, test the software if necessary, and
release the funds to the seller as appropriate [2].

Different auction types are alllowed within Rent-a-Coder. In an
open auction all members of Rent-a-Coder can bid for a project. In
a private auction only those coders that the buyer invites may partic-
ipate. Other arrangements are also possible such as "Pay for Time"

where the buyer pays a coder for the time spent on a project rather
than for an end result. Rent-a-Coder charges coders a fee ranging
from 7.5% to 15% on the profit from work done [12]. Once the
work is completed the buyers and sellers may rate each other. This
is different from TopCoder, where most of the reputation informa-
tion is aggregated from directly measurable performance metrics
such as the fraction of tests passed by developed code.

2.2.3 iTunes App Store
Another system that provides a market-based approach to a dif-

ferent part of the application development ecosystem is the iTunes
App Store for the iPhone. The App Store has a built-in micropay-
ment system where developers can make significant profits even
with applications priced at $0.99. There is also a rating system.
Popular applications have thousands of ratings, and it is interest-
ing that a large proportion of which include comments from users
about outstanding bugs and desired features. Developers often ad-
dress these issues explicitly in their comments when releasing up-
dates. In this way, the App Store is effective in better connecting
end users and developers.

The App Store shows that a micropayment-based model for soft-
ware delivery is eminently practical and well-received by con-
sumers, but lacks a way for multiple programmers to contribute
to a project or for users to vote or bid for features and fixes in an
organized fashion.

3. MARKET-DRIVEN SOFTWARE
We now describe our proposal for using a market-based mecha-

nism to drive the evolution of software to increase its correctness
and its functionality. We unify many of the previous partial market-
based mechanisms, incorporating bug reporters (as in vulnerability
markets), bug voters (as in Bug Parade) and developers and valida-
tors (as in TopCoder and Rent-a-Coder).

This proposal is not yet completely fleshed out (or at all imple-
mented). To get some intuitive sense of what we have in mind,
imagine a combination of the iTunes App Store and Bugzilla where
users can bid micropayments for the fixing of bugs or implementa-
tion of new features, and any qualified developer can obtain access
to the code and perform the requested work. Users could offer as
little as a penny for a fix or feature, and aggregate demand could
still be sufficient to make it worthwhile for a developer to satisfy
them. Furthermore, the demand can be used by the developer to de-
cide how to concentrate effort to increase quality and attract more
users.

One missing element of existing voting-based systems such as
Bug Parade is that they do not directly elicit additional work in
fixing bugs in released software. Rather, they are used to focus
existing programmer resources on problems identified as important
by a user community. Our approach is designed to allow users to
elicit additional work (and encourage new developers to work with
the software) by offering rewards for the work.

More specifically, we consider a market ecosystem around a par-
ticular piece of software. The evolution of software is a dynamic
process. However we will first present a static snapshot of the soft-
ware market ecosystem. The ecosystem comprises the following
basic entities:

U Users of the software. Users might be individuals, corpora-
tions, or other entities.

J Jobs which the users would like to have performed on the soft-
ware.

W Workers who may perform jobs. Note that workers may also
be users and vice versa.

K Kinds which are (optionally) used to categorize jobs. Examples
are correctness, feature, security, mac, etc.

Label Lk j is 1 if job j has kind k, 0 otherwise.

Reward Rt
u j offered by user u for job j at time t. If user u does

not offer a reward for job j at time t, then Rt
u j = 0.

Cost Ct
w j to worker w for performing job j at time t. If worker w

is incapable of or uninterested in performing job j at time t,
then we consider Ct

w j = ∞.1

The labels exist for categorization and to allow the calculation of
aggregate statistics about different categories of work items. The
market is agnostic as to these categories. However, users may ex-
press preferences by offering rewards for particular kinds of jobs;
we will expand on this below.

We assume that rewards are in an actual currency (denoted “$”)
and consider for the most part an open market in which the only
barrier to entry for a particular worker is their ability to complete a
particular job (as opposed to the availability of the source code). A
key feature of our market is that it incorporates both the aggrega-
tion of user bids (like bug voting systems) and multiple competing
workers (like TopCoder). This exchange structure, with informa-
tion and preferences (e.g., costs for different kinds of work, values
for different kinds of fixes) on both sides, is designed to provide for
a more efficient market place.

For the time being, we make a number of simplifying assump-
tions: that users’ bids are correctly aggregated (that is, we can de-
termine when two users offer a reward for fixing the “same” bug)
and that a single worker can perform a job in its entirety (which
requires jobs to be modularized appropriately, as is the case in Top-
Coder for example). In Section 4.4 we discuss how to use market
mechanisms to handle a more realistic scenario.

3.1 User Demand
Given the ecosystem described above, the total reward for a job

j at time t is

Rt
j = ∑

u∈U
Rt

u j, (1)

and we define the user demand on a piece of software as the aggre-
gate of the available rewards:

R t = ∑
j∈J

Rt
j (2)

When R = 0, there is no demand for changes or additions to the
software. Note that this does not imply that users are satisfied: the
demand might be 0 because users don’t like the software and no
one is using it. We denote the demand for a particular kind k of job
at time t as

R t [k] = ∑
j∈J

Rt
j ·Lk j (3)

As discussed in the introduction, software has traditionally been
considered to have some ideal “correct” state in which there are
1Note that we can allow for workers that are capacity constrained
by allowing the cost for a worker to adjust to ∞ when already work-
ing on another job. Moreover, cost can be considered to already fac-
tor in a worker’s profit margin so that cost Ct

w j indicates the reward
that a worker requires for job j at time t to be willing to perform
the work.

“no more bugs." Henceforth we will refer to this notion as absolute
correctness. While it is a laudable goal, for anything but small
modules absolute correctness is unachievable, and in many large
systems, can not even be completely specified.

However, in our market, we can express the correctness demand
in period t as simply R t [correctness]. If the correctness demand
is 0, it does not mean that there are no bugs in the software – but
it does mean that there are no bugs to which any users attach value
for fixing. Analogously, we can quantify the demand for security,
new features, support for a particular platform, and so on.

3.2 Market Potential and Equilibrium
Intuitively, the jobs that are “worth doing” for workers are those

where the cost of performing the work is less than the expected
reward. More specifically, we can define the potential value of a
job j at time t as

Pt
j = max

w∈W
(Rt

j −Ct
w j,0) (4)

That is, the potential value of a job is the reward net cost that
can be obtained by the worker who can perform it for the lowest
cost (provided that the reward is at least their cost). We define the
potential value of the entire job market as:

P t = ∑
j∈J

Pt
j (5)

The correctness potential of a system in period t is
then P t [correctness]. Note that P t [correctness] ≤
R t [correctness], so that if there is no correctness demand
then there is necessarily no correctness potential.

The user demand Rt
j can be thought as the price at which users

demand for the work on job j (or the bid price). Ct
w j then represents

the price at which worker w is willing to supply the work for job j
(or the ask price). Ideally, whenever the bid price is greater than or
equal to the ask price, the market should drive the work to happen.
Hence, we define that a system is in correctness equilibrium when
P t [correctness] = 0. A system in correctness equilibrium is one
where all of the bugs that are “worth fixing” have been fixed. There
may still be plenty of latent bugs, or even significant correctness
demand, but there are no longer any bugs which a worker can fix
without losing money.

3.3 Dynamics in the Market
The notions of correctness demand, potentia and equilibrium

have so far been discussed in the context of an (implicitly) static
system, where a group of users bid rewards for a job to be per-
formed, and workers decide whether to perform the jobs based on
their costs and the economic rewards.

However, a real system is dynamic: the reward for a job may
fluctuate (up when users post additional rewards for the job or down
if the user has specified an “expiration date” for the reward). Fur-
thermore, workers may decide to attack a problem at different times
depending on how profitable a job is and whether the reward for a
job might increase further, as well as considerations about the level
of competition with other works and other opportunities. Thus a
piece of software with a large and vibrant user community may
have a user demand and a market potential that remain high: as
some jobs are resolved, others are submitted.

A perfect equilibrium, for example with P t [correctness] = 0
for correctness, may never be reached in reality. Instead the system
will tend to constantly move towards equilibrium, pushed forwards
by market pressure to perform jobs that comes from the potential
value associated with a job. We should expect that jobs with high
correctness potential to be prioritized ahead of jobs with lower cor-

rectness potential; e.g, because there exists a worker who can per-
form the job at low cost and extract a large fraction of the reward
available for completing the job.

A low correctness potential in steady state could indicate either
that the system is well-written with little to fix, or easy-to-make
fixes, or that it has a large or wealthy user base that values im-
provements, even if they are costly to implement.

3.4 Inability to Measure Cost
We have defined market potential (e.g., correctness potential) in

terms of the costs to each worker of performing each job and the
demand for a job. However, it should be noted that these costs
may not be known a priori, even by the worker considering the
job (and we all know how inaccurate programmers’ development
time estimates can be). Furthermore, while an individual worker
can probably evaluate their cost effectively once they have com-
pleted a job, such a worker may not wish to share this information
with the marketplace. Nevertheless, the definitions of market po-
tential are useful to provide a framework within which to discuss
the behavior of the system. And in fact, the inability of users in the
marketplace to know the cost functions is important for stimulating
rewards (otherwise users would stop offering rewards as soon as
the value potential of the job exceeded 0). A rich market economy
could include market analysts who estimate the cost function, and
sell the information to participants in the system.

3.5 Efficiency
Another important factor not captured so far is market efficiency.

Given a set of jobs, generally speaking we would like each job
to be performed by the the worker that provides the best tradeoff
between solution quality and cost of performing the work, rather
than simpler the cheapest work. But the model as proposed does not
differentiate between different qualities of work; rather, whether
or not the reward is available is a binary determination. Another
criteria to consider is the number of jobs completed. This could be
important, for example, if solving a larger number of jobs provides
a positive externality on the overall user experience, or helps to
have ripple effects in making other jobs easier to complete.

Thus we would like to be able to quantify the efficiency of a
particular work allocation, really a work allocation policy in the
context of a dynamic system, and to design a market mechanism
in such a way that it maximizes efficiency. Quantifying efficiency
within a formal model of this dynamic system will be an important
direction for future work.

3.6 Bundled Rewards
So far we have discussed individual rewards posted by users.

However, some users may wish to influence the broader direction
of the software rather than fund particular jobs. Other users may
simply not have the time or expertise to offer rewards for particular
jobs. Bundled rewards provide an approach for handling both of
these issues. A user could offer a reward to be split across a set
of jobs, and in particular over all of the jobs of a specific kind.
A user who was primarily interested in the stability of the system
could offer a reward to be split across all of the correctness jobs;
another user might favor security; another might allocate funds
to encourage development on the mac platform. This is analogous
to investors who invest in the Dow Jones Industrial Average instead
of in particular stocks.

Funds could be divided evenly across all the jobs in the bundle,
or proportionately to the existing rewards (“matching funds”) in
order to leverage the information extant in the current reward offers.
Another question is whether the allocation should be made across

the jobs extant when the bundled reward is offered, or whether it
should adaptively allocate funds as new jobs are posted. In the latter
case, it seems that some amount of hysteresis will be desirable so
that workers are not subject to excessive price fluctuations.

4. MARKET DESIGN: COMPONENTS
AND CHALLENGES

In the previous section we made two major simplifying assump-
tions: that an individual worker can complete a job, and that work-
ers always perform quality work that adequately addresses an issue.
In particular, there is no quality control in the system. Quality con-
trol implies multiple agents with checks and balances. We now
present the elements of a market design for a realistic market sys-
tem that removes these assumptions.

There are four fundamental principles that underly our design:

• Autonomy. All of the actions necessary to bring jobs to
completion should be driven by market forces; the process
is never gated by an entity outside of the market.

• Inclusiveness. Everyone who provides information or per-
forms work that leads to improvements should share in the
rewards.

• Transparency. The system should be transparent with re-
spect to both the flow of money in the market and the tasks
performed by workers in the market.

• Reliability. The system should be immune to manipula-
tion, robust against attack, and prevent “shallow” work which
would have to be re-done later.

There are two fundamental problems that the system must sup-
port. First, information aggregation from the user base, through an
expressive, non-manipulable and easy-to-use process. Specifically
the system must capture user valuations for various jobs. It must
also elicit certain types of information (for example, the steps to re-
produce a bug) that would be useful in performing the job. Finally
the system must aggregate all users’ preferences and information
regarding particular jobs.

Second, work allocation: the system must support the efficient
allocation of sub-tasks within the software producer organization
and across “outside” programmers in the case of open software de-
velopment. In providing this functionality, it will be important to
identify the right people to perform a task and to provide incentives
so that an appropriate effort level and technical solution is provided.
Jobs also need to be prioritized, factoring both the value to the user
base and the cost to perform them.

The components of our market design seek to integrate these two
fundamental subproblems into a comprehensive solution.

4.1 Funding
The first question we must answer is how the market is funded.

This depends on what kind of business model is being used for the
software. However, the market is designed in such a manner that
whether the system is open- or closed-source, there are no “down-
stream dependencies” by other parts of the market that must differ-
entiate where the funding originated.

A general feature of the proposed market-based system is that
bids are placed in escrow and have an expiration date; if the bid
expires (no one has performed the work by the “deadline”), then
the money is returned to the bidder (or they can choose to “let it
ride”). A number of methods are possible, which can all co-exist if
desired:

Direct Bidding. A user can directly offer a cash reward.

Escrow from Sale. When a user purchases a piece of software, a
fraction of the sale price is placed in escrow for the market.
The user can then use this capital to bid. If the user does
not bid after some period of time, the money can be returned
to the seller or placed into a “general fund” that tracks the
market as a whole.

Escrow from Contribution. For a shareware model, since the
contribution is voluntary the user can choose the fraction of
the shareware contribution to place in the market, and can
also choose to withdraw the money when it expires (rather
than having it returned to the seller, as above).

Escrow from Registration. Even if the software is free, there
may still be capital available. Many large open-source
projects have significant sources of corporate support (for in-
stance, Mozilla’s largest source of income is from sales of
placements in the Firefox search bar). Some of this money
can then be placed in the “general fund” and have portions
allocated to users upon registration. If the users do not bid,
the capital in escrow expires and reverts to the general fund.

Note that in all of these cases, regardless of business model, the
proposed market is funded with real money, which can be earned
by those contributing to the software. The only differences are the
degree to which the money in the market is fungible to the bidders.
The money in escrow is handled by a trusted third party (not by the
seller of the software), which we designate as the “bank."

4.2 Reputation System
Autonomy is the key property in making the market work. To the

greatest extent possible we wish to use decentralized market mech-
anisms rather than centralized control to achieve our goals. For
example, rather than having a centralized authority that validates a
bug fix, we propose a market mechanism (similar to that adopted in
TopCoder) in which other workers are rewarded for providing test
cases, and competing developers can challenge the correctness of a
solution and possibly “steal” the win from their competitor.

We do acknowledge that there always needs to be some form of
centralized control for most software systems, in particular when
making large-scale architectural decisions, or choosing among
competing sets of features. Open source projects (for example,
Linux, Firefox, and Jikes RVM) all have a “core” group which
exerts this centralized control, even as they accept work from a
wide range of contributors. Thus, simply having a bazaar [11] is
untenable– we at least need a small church next to it.

However, centralized control suffers from lack of scaling, is
often unncessarily rigid, and can lead to a lack of responsive-
ness. In order to address this issue, we propose to design a hy-
brid reputation-based system: every contributor has a rating, and
every kind of task has a minimal rating prerequisite. Ratings can
be seeded (or adjusted) by the central authority, so it can directly
give its members privileges to perform various operations, or de-
authorize external contributors who it decides are acting against
the interest of the user base.

As contributors perform work, when they are paid their reputa-
tion increases. The idea is that ratings will naturally flow from the
initial “core” group designated by the central authority out to an
organically growing base of contributors. If the contributor com-
munity reaches critical mass the rating system can become self-
regulating, without requiring direct intervention by the central au-
thority. Nevertheless, the central authority can retain the right to
intervene when needed.

4.3 Payments
Each job will have a set of workers who contributed to various

portions of the workflow; e.g., the reporter of a problem, the devel-
oper of a test, and the developer of a fix. Generally speaking, we
propose that all contributors share in the reward for the job when
it is delivered, although some (partial) payments may be made ear-
lier in order to encourage certain kinds of activities. Payments can
also be made over time to ensure that contributions are robust; if a
contribution is discovered to be flawed after it is delivered, the re-
maining payments can be halted, and the funds diverted to workers
who fix the problem.

The exact way in which the reward is to be divided among the
contributors is still open to design, but we see this being modulated
by a number of factors: the type of task performed, the rating of
the contributor, and the “shape” of the demand trajectory (see Sec-
tion 4.5). It also seems desirable for the system to be self-adapting.
If a job “stalls” at a particular point in its workflow, the fraction of
the reward for performing the next task can be made to grow over
time. This can also be used to feed into the global default fraction
for that type of task. For instance, if many workflows stall in the
testing phase, the fraction of the reward allocated for testing will
go up over time.

4.3.1 Applicability to Closed Source Systems
A major question is whether the kind of market system we are

proposing will work for closed-source software, where the pro-
ducer maintains some form of monopoly control over the code.

While closed source reduces the opportunities for contributions,
it does not preclude using the market. First of all, some tasks, like
reporting bugs, creating test cases, and writing documentation can
be handled by users with no access to source code.

Secondly, the market may be used to drive allocation of develop-
ment resources within the company. This could range from direct
control by managers who merely use the market data as useful in-
put about what issues are important to the user base, and collect
the payments on behalf of the company, to a system where devel-
opers receive a base salary and must earn the rest of their pay from
the software market. In the latter case, the producer can seed the
market with money that is intended primarily to flow back to its
employees as incentive-driven compensation.

Finally, the if there is demand for work in the market which only
the producer can perform (due to its monopoly status), the producer
can hire contractors to perform the work, funding them out of the
accumulated rewards in the market. In effect, the market provides a
way for the demand to “tunnel through” the organizational bound-
ary created by the producer’s closed-source monopoly, and allow
it to repond with a higher degree of elsasticity to the demand for
work on the software.

4.4 Workflows
Different kinds of work have different work flows that require

various types of contributors in order to complete.

4.4.1 Bug Workflow
We begin by describing the workflow associated with reporting

and fixing a bug:

Report. Filing a report of a bug. This can be as simple as clicking
a button on a popup box (“Send Report to Provider”) when
the application crashes, or filing an explicit report of a prob-
lem in a bug database. The former can be made available to
anyone (except perhaps “spammers” with negative reputation
ratings); the latter would typically require some non-zero rat-
ing.

Bid. Bidding an amount to contribute to the reward R j for fixing
the bug.

Organize. Determining when two reports are instances of the
same bug, or when what appears to be one bug is in fact
two different bugs, or that a bug has already been resolved,
is sometimes a difficult task. Therefore it is explicitly recog-
nized as an independent part of the workflow, and requires a
relatively high rating. Organization can also include catego-
rization of a bug, for instance as a security exposure.

Reproduce. Creating and filing a way of reproducing the bug, so
that fixers can begin to work on it.

Fix. Develop a fix for the bug. This can be open to contributors
with a wide range of ratings, but a bug fix submitted by a
low-rated contributor will have to be committed by someone
with a proportionately higher rating.

Test. Test the fix, either by providing an executable test case or by
exercising the system. Since the latter requires a large degree
of trust, it would typically require a high rating. A test that is
failed by a fix receives a higher reward than one that passes.

Commit. Commit the fix to the canonical code repository. This
will typically require a high rating.

Distribute Patch. In some systems, it may be desirable to make
either source- or object-code patches available before the bug
fix can be incorporated into a full release. Bidders could be
allowed to specify whether they would pay for a patch, or
would rather wait for a new release.

Some tasks in the workflow may be designated as being antag-
onistic (for instance fixing and testing). Antagonistic tasks will
either be prevented from being performed by the same contibutor,
or will require a relatively high rating to allow it.

4.4.2 Other Workflows
Various other kinds of workflows would address other parts of

the overall software lifecycle. For the development of new features,
TopCoder provides a good model. Their process includes Concep-
tualization, Specification, Architecture, Component Design, Com-
ponent Development, and Assembly. Depending on their scope (mi-
nor localized features versus large-scale changes across the appli-
cation) the workflow might be condensed or extended. Documen-
tation could also be a workflow in which tasks might be Outlining,
Terminology, Section Writing, Integration, and Proofreading.

4.5 Using the Demand Trajectory
An interesting aspect of the system is that the demand trajec-

tory, that is how the demand (i.e. aggregate bid value) varies over
time, can be used to extract information about how the market val-
ues bugs and how the rewards should be divided between various
contributors to the workflow for a job.

Figure 1 tracks the aggregare reward for four different hypothet-
ical bugs. A critical security bug due to a buffer over-run would be
high priority (its reward would rise drammatically as soon as it was
discovered), a fix would be submitted and validated quickly, and
the fix would then be delivered immediately to the field. Thus the
payouts would be made rapidly. On the other hand, a low priority
bug that takes a lot of time to fix may never get fixed at all, and
have a very slowly growing (or even shrinking) reward.

In Section 4.4 we described realistic scenario involving different
players in a bug workflow: a developer would fix the bug and then
testers would test the fix. Moreover the fix might only be accepted
if some other worker of high reputation validates the final solution.

Time

Bi
ds

 -
Pa

yo
ut

s

High Priority, Easy to Fix
High Priority, Hard to Fix
Low Priority, Easy to Fix
Low Priority, Hard to Fix

t0

Figure 1: Characteristic Demand Trajectories of Various Types
of Bugs

In the case of security vulnerabilities the mechanism must also in-
centivize users to report defects.

The dynamics of our proposed market mechanism function as
follows: At time T0 user U reports a bug B. The software producer
(company or organization or open source community) pertinent in-
formation regarding B in a public database. Now users start to con-
tribute money on B reflecting their value for a fix. At some time
T1 the reward riding on the bug has grown to an amount RT1

B . A
developer, who decides that enough money has been contributed to
make correcting B profitable, jumps in and begins work on B. Later
at time T2 the developer has completed his work and other users or
testers test the software to see if the fix is indeed robust. If at some
time T3 flaws are found in the solution submitted by the developer
then the persons responsible for the detection of the flaws share in
the reward money RT3

B .
We can consider a payment scheme that distributes the reward

money RB among the bug finder, the bug fixer, and the bug tester in
different proportions reflecting the strength of their relative con-
tribution to the resolution of the bug. For example, the ratio
RB/(T1 − T0) is computed when ascertaining the significance of
the intial discovery of the bug. If this ratio is reltively high then it
implies that the discovery was very useful as a large sum of money
was accumulated in a very short time. Clearly some portion of
the user base would derive significant utility from a fix for the bug.
Similarly if the time taken to fix T2−T1 is long then it tends to indi-
cate that the fix was non-trivial and the bug fixer expended consid-
erable effort (recall that there is a competitive process here, so it is
not easy for one developer to artificially delay this window). Like-
wise the longer the period T3−T2 the more robust the fix. Therefore
the sooner testers can find a flaw the greater their share in the pie.
The discoverer of the bug is determined to be the first person to
find a particular bug that is verified to be genuine. Many people
may work on fixing the bug; however only the first person to sub-
mit a working solution (including fixing any flaws) is paid. Any
tester who either detects a new and valid flaw in the fix or devises
a thorough acceptance test can share in the reward.

4.6 Design Challenges
A market structure seems better suited to address the problem

of efficiently resolving neglected bugs than existing non-market

systems. However bug management is a nontrivial problem with
complex interdependencies and side-effects and there remain some
interesting challenges, that point to the richness of the problem and
are intrinsic to the problem. For example, the unintended side-
effect of introducing new bugs while fixing an existing bug is a
common occurrence in software development. Under current bug
management systems these new bugs are simply discovered and
then logged in the bug database for future examination. However
with a market-based approach where a payment is made conditional
on a fix, we can no longer afford to ignore these side-effects and a
market-based approach will need to develop techniques to promote
“good" fixes that don’t lead to lots of new unintended side-effects.
Challenge 1: Certifying fixes. A fundamental challenge is how
to determine whether a fix has in fact thoroughly fixed the bug in
question. This is important in order to ensure that the payment for a
fix is fair and robust against manipulations. For example, users may
initially be unable to reproduce the bug for the workflows typically
used by these users. However some time later some user executing
a different workflow may reproduce the “fixed” bug. If the pay-
ment for that bug has already been made there is little incentive for
developers to prioritize a fix. Or else if the bug is treated as a "new"
bug (thereby requiring that a further reward be provided for its fix)
then the system’s efficiency deteriorates. Just allowing users time
to validate a fix is unlikely to be enough. One idea is to incentivize
testers to either provide a certificate of fix or show that the bug has
not been properly fixed.
Challenge 2: Deep versus shallow fixes. A natural question that
arises out of examining Challenge 1 is how to design incentives in
order to obtain robust bug fixes and to preempt any strategizing on
the part of the fixers. The system must incentivize “deep" fixes over
“shallow" fixes. A discounted payment scheme might be one way
of addressing this, so that follow-on fixes to augment an earlier
fix are assigned rewards in a way that ensures that the aggregate
payment is greater if a good, deep fix is completed initially.
Challenge 3: Externalities caused by bug fixes. One or more
bug fixes may unintentionally fix a number of other reported bugs.
Likewise one or more bug fixes may unintentionally introduce new
bugs. Let us consider the following scenario: users have logged
several bugs in the bug database. In response 3 developers decide
to tackle bugs X , Y , and Z. They simultaneously submit fixes to
their respective bugs. As a result several other bugs D,F,G,M, and
Q appear to be resolved as well. Now we are left with the question
of which of the original 3 bug fixes resolved the other bugs and
how should the payment be determined. A preliminary solution
might be to permit only one bug fix at a time to be entered into the
software. Verification of the effects of a bug fix may require time
and effort from testers who can certify that the bug fix is indeed
correct, that other bugs were (not) fixed, and that new bugs were
(not) introduced. However leaving a time gap between two fixes
slows down the process and could cause bottlenecks. Alternatively
could there be some kind of automatic market-driven method to
verify the effects of a bug fix? For example, would it be possible to
generate a bug dependency graph that could allow propagation of
credit?
Challenge 4: Eliciting expressive bug reports. The system must
elicit and aggregate expressive bug reports needed for robust fixes.
We may want to examine the tradeoffs between private versus
public disclosure of bugs. Publicly sharing information on bugs
would help users to coordinate their efforts and exchange valu-
able information regarding the bug and potential workarounds. One
way to accomplish this would be to set up a Bug Information Ex-
change. This would increase the quality of the bug reports and
reduce the number of duplicate bugs. In the event that a reasonable

workaround is found users would then have a better sense of how
much they value an immediate fix for that bug.
Challenge 5: The public goods problem. A user who chooses not
to invest money or effort on a bug which is fixed by others nonethe-
less benefits from the fix. As the user base grows the public goods
or free-riding problem appears to be unavoidable. Peer-production
systems also face similar issues. Some funding models, such as
“escrow from sale" already address this problem. But the problem
will likely still remain in most such systems in some form or other.
Future work should explore this challenge; e.g., how can its effect
can be minimized, or can bounds be established on its impact on
social welfare?

5. ACKNOWLEDGEMENTS
We thank Karim Lakhani, Ben Lubin, Rob O’Callahan, and the

Harvard EconCS group for valuable feedback and discussions.

6. REFERENCES
[1] Adobe bug and issue management system.

http://bugs.adobe.com/flex/.
[2] BENNETT, A. Itworld: Finding freelance jobs: 6 sites for

talented techies.
http://www.itworld.com/career/65739/finding-freelance-jobs-
6-sites-talented-techies, April
2009.

[3] BOUDREAU, K. J., LACETERA, N., AND LAKHANI, K. R.
Parallel search, incentives and problem type: Revisiting the
competition and innovation link. working paper, no. 09-041.
Tech. rep., Harvard Business School, September 2008.

[4] FLANDEZ, R. The wall street journal: Help wanted – and
found.
http://online.wsj.com/article/SB122347721312915407.html,
October 2008.

[5] HOWE, J. Wired magazine’s jeff howe talks about
crowdsourcing and topcoder.
http://www.topcoder.com/direct/blogs/?p=174, February
2009.

[6] Jira bug and issue tracker.
http://www.atlassian.com/software/jira/.

[7] LAKHANI, K. R., AND PANETTA, J. A. The principles of
distributed innovation. Innovations: Technology,
Governance, Globalization 2, 3 (2007), 97–112.

[8] Mozilla website.
https://www.mozilla.org/security/bug-bounty.html.

[9] NIZOVTSEV, D., AND THURSBY, M. Economic analysis of
incentives to disclose software vulnerabilities. In In Fourth
Workshop on the Economics of Information Security (2005).

[10] OZMENT, A. Bug auctions: Vulnerability markets
reconsidered. In In Third Workshop on the Economics of
Information Security (2004).

[11] RAYMOND, E. S. The Cathedral and the Bazaar, 2nd ed.
O’Reilly & Associates, 2001.

[12] Rentacoder inc. website. http://www.rentacoder.com.
[13] RINARD, M. Acceptability-oriented computing. In

Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications (Anaheim, CA, USA, 2003), pp. 221–239.

[14] SCHECHTER, S. E. How to buy better testing: using
competition to get the most security and robustness for your
dollar. In In Infrastructure Security Conference (2002).

