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Verbal Autopsy Methods with Multiple
Causes of Death
Gary King and Ying Lu

Abstract. Verbal autopsy procedures are widely used for estimating cause-
specific mortality in areas without medical death certification. Data on symp-
toms reported by caregivers along with the cause of death are collected from
a medical facility, and the cause-of-death distribution is estimated in the pop-
ulation where only symptom data are available. Current approaches analyze
only one cause at a time, involve assumptions judged difficult or impossible
to satisfy, and require expensive, time-consuming, or unreliable physician re-
views, expert algorithms, or parametric statistical models. By generalizing
current approaches to analyze multiple causes, we show how most of the dif-
ficult assumptions underlying existing methods can be dropped. These gen-
eralizations also make physician review, expert algorithms and parametric
statistical assumptions unnecessary. With theoretical results, and empirical
analyses in data from China and Tanzania, we illustrate the accuracy of this
approach. While no method of analyzing verbal autopsy data, including the
more computationally intensive approach offered here, can give accurate es-
timates in all circumstances, the procedure offered is conceptually simpler,
less expensive, more general, as or more replicable, and easier to use in prac-
tice than existing approaches. We also show how our focus on estimating
aggregate proportions, which are the quantities of primary interest in verbal
autopsy studies, may also greatly reduce the assumptions necessary for, and
thus improve the performance of, many individual classifiers in this and other
areas. As a companion to this paper, we also offer easy-to-use software that
implements the methods discussed herein.

Key words and phrases: Verbal autopsy, cause-specific mortality, cause of
death, survey research, classification, sensitivity, specificity.

1. INTRODUCTION

National and international policymakers, public
health officials, and medical personnel need informa-
tion about the global distribution of deaths by cause
in order to set research goals, budgetary priorities and
ameliorative policies. Yet, only 23 of the world’s 192
countries have high-quality death registration data, and
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75 have no cause-specific mortality data at all (Mathers
et al., 2005). Even if we include data of dubious qual-
ity, less than a third of the deaths that occur worldwide
each year have a cause certified by medical personnel
(Lopez et al., 2000).

Verbal autopsy is a technique “growing in impor-
tance” (Sibai et al., 2001) for estimating the cause-of-
death distribution in populations without vital
registration or other medical death certification. It in-
volves collecting information about symptoms (includ-
ing signs and other indicators) from the caretakers of
each of a randomly selected set of deceased in some
population of interest, and inferring the cause of death.
Inferences in these data are extrapolated either by
physicians from their prior experiences or by statis-
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tical analysis of a second data set from a nearby hospi-
tal where information on symptoms from caretakers as
well as validated causes of death are available.

Verbal autopsy studies are now widely used through-
out the developing world to estimate cause-specific
mortality, and are increasingly being used for dis-
ease surveillance and sample registration (Setel et al.,
2005). Verbal autopsy is used on an ongoing basis and
on a large scale in India and China, and in 36 demo-
graphic surveillance sites around the world (Soleman,
Chandramohan and Shibuya, 2005). The technique has
also proven useful in studying risk factors for specific
diseases, infectious disease outbreaks, and the effects
of public health interventions (Anker, 2003; Pacque-
Margolis et al., 1990; Soleman, Chandramohan and
Shibuya, 2006).

Until now, the most commonly used method has
been physician review of symptoms with no additional
validation sample. This approach can be expensive as
it involves approximately three physicians, each taking
20–30 minutes to review symptoms and classify each
death. To reduce the total time necessary, more physi-
cians can be hired and work in parallel. Because judg-
ments by these doctors are highly sensitive to their pri-
ors (when a Kansas doctor hears “fever and vomiting,”
malaria would not be her first thought), physicians need
to come from local areas. This can pose difficult lo-
gistical problems because physicians in these areas are
typically in very short supply, as well as serious ethi-
cal dilemmas since doctors are needed in the field for
treating patients. Physician review also poses scientific
problems since, although scholars have worked hard
at increasing inter-physician reliability for individual
studies, the cross-study reliability of this technique has
remained low. Attempts to formalize physician reviews
via expert-created deterministic algorithms are reliable
by design, but appear to have lower levels of validity, in
part because many diseases are not modeled explicitly
and too many decisions need to be made.

Inferences from verbal autopsy data would thus
seem ripe for adding to the growing list of areas where
radically empirical approaches imbued with the power
of modern statistics dominate human judgments by lo-
cal experts (Dawes, Faust and Meehl, 1989). Unfor-
tunately, the parametric statistical modeling that has
been used in this area (known in the field as “data-
derived techniques”) has suffered from low levels of
agreement with verified causes of death and is com-
plicated for large numbers of causes. In practice, the
choice of model has varied with almost every applica-
tion. We attempt to rectify this situation.

In this article, we describe the current verbal autopsy
approaches and the not always fully appreciated as-
sumptions underlying them. We show that a key prob-
lem researchers have in satisfying most of the assump-
tions in real applications can be traced to the constraint
existing methods impose by requiring the analysis of
only one cause of death at a time. We generalize cur-
rent methods to allow many causes of death to be ana-
lyzed simultaneously. This simple generalization turns
out to have some considerable advantages for practice,
such as making it unnecessary to conduct expensive
physician reviews, specify parametric statistical mod-
els that predict the cause of death, or build elaborate ex-
pert algorithms. Although the missing (cause of death)
information guarantees that verbal autopsy estimates
always have an important element of uncertainty, the
new approach offered here greatly reduces the unver-
ified assumptions necessary to draw valid inferences.
As a companion to this article, we are making available
easy-to-use, free and open source software that imple-
ments all our procedures.

The structure of the inferential problem we study
can also be found in application areas fairly distant
from our verbal autopsy applications. Some version of
the methods we discuss may be of use in these areas
as well. For example, a goal of paleodemography is
to estimate the age distribution in a large sample of
skeletons from measurements of their physical features
by using a small independent reference group where
validated ages are available and skeletal features are
also measured (Hoppa and Vaupel, 2002). Our meth-
ods seem to have already proven useful for estimat-
ing the proportion of text documents in each of a set
of given categories, using a smaller reference set of
text documents hand coded into the same categories
(Hopkins and King, 2007). Also, as we show in Sec-
tion 8, the methods introduced here imply that individ-
ual level classifiers can greatly reduce the assumptions
necessary for accurate generalization to test sets with
different distributional characteristics.

2. DATA DEFINITIONS AND INFERENTIAL GOALS

Denote the cause of death j (for possible causes
j = 1, . . . , J ) of individual i as Di = j . Bereaved rel-
atives or caretakers are asked about each of a set of
symptoms (possibly including signs or other indica-
tors) experienced by the deceased before death. Each
symptom k (for possible symptoms k = 1, . . . ,K) is
reported by bereaved relatives to have been present,
which we denote for individual i as Sik = 1, or absent,
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Sik = 0. We summarize the set of symptoms reported
about an individual death, {Si1, . . . , SiK}, as the vec-
tor Si . Thus, the cause of death Di is one variable with
many possible values, whereas the symptoms Si con-
stitute a set of dichotomous variables.

Data come from two sources. The first is a hospital
or other validation site, where both Si and Di are avail-
able for each individual i (i = 1, . . . , n). The second
is the community or some population about which we
wish to make an inference, where we observe S� (but
not D�) for each individual � (� = 1, . . . ,L). Ideally,
the second source of data constitutes a random sam-
ple from a large population of interest, but it could also
represent any other relevant target group.

The quantity of interest for our analysis is P(D), the
distribution of cause-specific mortality in the popula-
tion. Public health scholars are not normally interested
in the cause of death D� of any particular individual
in the population [although some current methods re-
quire estimates of these as intermediate values to com-
pute P(D)]. They are sometimes also interested in the
cause-of-death distribution for subgroups, such as age,
sex, region or condition. We return to the implications
of our approach for individual level classifiers in Sec-
tion 8.

The difficulty of verbal autopsy analyses is that the
population cause-of-death distribution is not necessar-
ily the same in the hospital where D is observed. In
addition, researchers often do not sample from the hos-
pital randomly, and instead oversample deaths due to
causes that may be rare in the hospital. Thus, in gen-
eral, the cause-of-death distribution in our two samples
cannot be assumed to be the same: P(D) �= P h(D).

Since symptoms are consequences of the cause of
death, the data generation process has a clear ordering:
Each disease or injury D = j produces some symptom
profiles (sometimes called “syndromes” or values of S)
with higher probability than others. We represent these
conditional probability distributions as P h(S|D) for
data generated in the hospital and P(S|D) in the pop-
ulation. Thus, since the distribution of symptom pro-
files equals the distribution of symptoms given deaths
weighted by the distribution of deaths, the symptom
distribution will not normally be observed to be the
same in the two samples: P(S) �= P h(S).

Whereas P(D) is a multinomial distribution with J

outcomes, P(S) may be thought of as either a mul-
tivariate distribution of K binary variables or equiva-
lently as a univariate multinomial distribution with 2K

possible outcomes, each of which is a possible symp-
tom profile. We will usually use the 2K representation.

3. CURRENT ESTIMATION APPROACHES

The most widely used current method for estimat-
ing cause-of-eath distributions in verbal autopsy data is
physician review. What appears to be the best practice
among the current statistical approaches used in the lit-
erature is the following multistage estimation strategy.

1. Choose a cause of death, which we here refer to as
cause of death D = 1, apply the remaining steps to
estimate P(D = 1), and then repeat for each ad-
ditional cause of interest (changing 1 to 2, then 3,
etc.).

2. Using hospital data, develop a method of using a
set of symptoms S to create a prediction for D,
which we label D̂ (and which takes on the value
1 or not 1). Some do this directly using informal,
qualitative or deterministic prediction procedures,
such as physician review or expert algorithms. Oth-
ers use formal statistical prediction methods (called
“data-derived algorithms” in the verbal autopsy lit-
erature), such as logistic regression or neural net-
works, which involve fitting P h(D|S) to the data
and then turning it into a 0/1 prediction for an indi-
vidual. Typically this means that if the estimate of
P h(D = 1|S) is greater than 0.5, set the prediction
as D̂ = 1 and otherwise set D̂ �= 1. Of course, physi-
cians and those who create expert algorithms im-
plicitly calculate P h(D = 1|S), even if they never
do so formally.

3. Using data on the set of symptoms for each indi-
vidual in the community, S�, and the same predic-
tion method fit to hospital data, P h(D� = 1|S�), cre-
ate a prediction D̂� for all individuals sampled in
the community (� = 1, . . . ,L) and average them to
produce a preliminary or “crude” estimate of the
prevalence of the disease of interest, P(D̂ = 1) =∑L

�=1 ID̂�=1/L.
4. Finally, estimate the sensitivity, P h(D̂ = 1|D = 1),

and specificity, P h(D̂ �= 1|D �= 1), of the prediction
method in hospital data via cross-validation and use
it to “correct” the crude estimate and produce the
final estimate:

P(D = 1)
(1)

= P(D̂ = 1) − [1 − P h(D̂ �= 1|D �= 1)]
P h(D̂ = 1|D = 1) − [1 − P h(D̂ �= 1|D �= 1)] .

This correction, sometimes known as “back calcu-
lation,” was first described in the verbal autopsy
literature by Kalter (1992, Table 1) and originally
developed for other purposes by Levy and Kass
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(1970). The correction is useful because the crude
prediction, P(D̂ = 1), can be inaccurate if sensitiv-
ity and specificity are not 100%.

A variety of creative modifications of this proce-
dure have also been tried (Chandramohan, Maude,
Rodrigues and Hayes, 1994). These include meta-
analyses of collections of studies (Morris, Black and
Tomaskovic, 2003), different methods of estimating D̂,
many applications with different sets of symptoms and
different survey instruments (Soleman, Chandramohan
and Shibuya, 2006), and other ways of combining the
separate analyses from different diseases (Quigley et
al., 2000; Boulle, Chandramohan and Weller, 2001).
[See also work in statistics (Gelman, King and Liu,
1999) and political science (Franklin, 1989) that uses
different approaches to methodologically related but
substantively different problems.]

4. ASSUMPTIONS UNDERLYING CURRENT
PRACTICE

The method described in Section 3 makes three key
assumptions that we now describe. Then in the follow-
ing section, we develop a generalized approach that re-
duces our reliance on the first assumption and renders
the remaining two unnecessary.

The first assumption is that the sensitivity and speci-
ficity of D̂ estimated from the hospital data are the
same as those in the population:

P(D̂ = 1|D = 1) = P h(D̂ = 1|D = 1),
(2)

P(D̂ �= 1|D �= 1) = P h(D̂ �= 1|D �= 1).

The literature contains much discussion of this as-
sumption, the variability of estimates of sensitivity and
specificity across sites, and good advice about control-
ling their variability (Kalter, 1992).

A less well-known but worrisome aspect of this first
assumption arises from the choice of analyzing the
J -category death variable as if it were a dichotomy.
Because of the composite nature of the aggregated
D �= 1 category of death, we must assume that what
makes up this composite is the same in the hospital
and population. If it is not, then the required assump-
tion about specificity (i.e., about the accuracy of es-
timation of this composite category) cannot hold in
the hospital and population, even if sensitivity is the
same. In fact, satisfying this assumption is more dif-
ficult than may be generally understood. To make this
point, we begin with the decomposition of specificity,
offered by Chandramohan, Setel and Quigley (2001)

(see also Maude and Ross, 1997), as one minus the sum
of the probability of different misclassifications times
their respective prevalences:

P(D̂ �= 1|D �= 1)
(3)

= 1 −
J∑

j=2

P(D̂ = 1|D = j)
P (D = j)

P (D �= 1)
,

which emphasizes the composite nature of the D �= 1
category. Then we ask: under what conditions can
specificity in the hospital equal that in the population
if the distribution of cause of death differs? The mathe-
matical condition can be easily derived by substituting
(3) into each side of the second equation of (2) (and
simplifying by dropping the “1−” on both sides):

J∑
j=2

P(D̂ = 1|D = j)
P (D = j)

P (D �= j)

(4)

=
J∑

j=2

P h(D̂ = 1|D = j)
P h(D = j)

P h(D �= j)
.

If this equation holds, then this first assumption holds.
And if J = 2, this equation reduces to the first line of
(2) and so, in that situation, the assumption is unprob-
lematic.

However, for more than two diseases specificity in-
volves a composite cause of death category. We know
that the distribution of causes-of-death [the last factor
on each side of (4)] differs in the hospital and popula-
tion by design, and so the equation can hold only if a
miraculous mathematical coincidence holds, whereby
the probability of misclassifying each cause of death
as the first cause occurs in a pattern that happens to
cancel out differences in the prevalence of causes be-
tween the two samples. For example, this would not
occur according to any theory or observation of mor-
tality patterns offered in the literature. Verbal autopsy
scholars recognize that some values of sensitivity and
specificity are impossible when (1) produces estimates
of P(D = 1) greater than 1. They then use information
to question the values of, or modify, estimates of sensi-
tivity and specificity, but the problem is not necessarily
due to incorrect estimates of these quantities and could
merely be due to the fact that the procedure requires
assumptions that are impossible to meet. In fact, as
the number of causes of death increases, the required
assumption can only hold if sensitivity and specificity
are each 100%, which we know does not describe real
data. [The text describes how this first assumption can
be met by discussing specificity only with respect to
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cause of death 1. In the general case, (4) for all causes
requires satisfying

∑
j P (D̂ �= j |D �= j) − (J − 2) =∑

j [P(D̂ �= j |D �= j) + P(D̂ = j |D = j)]P(D = j).
For small J > 2, this will hold only if a highly unlikely
mathematical coincidence occurs; for large J , this con-
dition is not met in general unless sensitivity and speci-
ficity are 1 for all j .]

The second assumption is that the (explicit or im-
plicit) model underlying the prediction method used
in the hospital must also hold in the population:
P(D|S) = P h(D|S). For example, if logistic regres-
sion is the prediction method, we make this assumption
by taking the coefficients estimated in hospital data and
using them to multiply by symptoms collected in the
population to predict the cause of death in the popula-
tion. This is an important assumption, but not a natural
one since the data generation process is the reverse:
P(S|D). And most importantly, even if the identical
data generation process held in the population and hos-
pital, P(S|D) = P h(S|D), we would still have no rea-
son to believe that P(D|S) = P h(D|S) holds. The as-
sumption might hold by luck, but coming up with a
good reason why we should believe it holds in any real
case seems unlikely.

This problem is easy to see by generating data from
a regression model with D as the explanatory variable
and S as the simple dependent variable, and then re-
gressing S on D: Unless the regression fits perfectly,
the coefficients from the first regression do not de-
termine those in the second. Similarly, when Spring
comes, we are much more likely to see many green
leaves; but visiting the vegetable section of the super-
market in the middle of the winter seems unlikely to
cause the earth’s axis to tilt toward the sun. Of course,
it just may be that we can find a prediction method
for which P(D|S) = P h(D|S) holds, but knowing
whether it does or even having a theory about it seems
unlikely. It is also possible, with a small number of
causes of death, that the sensitivity and specificity for
the wrong model fit to hospital data could by chance
be correct when applied to the population, but it is hard
to conceive of a situation when we would know this ex
ante. This is especially true given the issues with the
first assumption: the fact that the composite D �= 1 cat-
egory is by definition different in the population and
hospital implies that different symptoms will be re-
quired predictors for the two models, hence invalidat-
ing this assumption.

A final problem with the current approach is that
the multistage procedure estimates P(D = j) for each
j separately, but for the ultimate results to make any

sense the probability of a death occurring due to some
cause must be 100%:

∑J
j=1 P(D = j) = 1. This can

happen if the standard estimation method is used, but
it will hold only by chance.

5. AN ALTERNATIVE APPROACH

The key problem underlying the veracity of each
of the assumptions in Section 4 can be traced to the
practice of sequentially dichotomizing the J -category
cause-of-death variable. In analyzing the first assump-
tion, we learn that specificity cannot be equal in hos-
pital and population data as the number of causes that
make up the composite residual category gets large. In
the second assumption, the practice of collapsing the
relationship between S and D into a dichotomous pre-
diction, D̂, requires making assumptions opposite to
the data generation process and either a sophisticated
statistical model, or an expensive physician review or
set of expert algorithms, to summarize P(D|S). And fi-
nally, the estimated cause-of-death probabilities do not
necessarily sum to 1 in the existing approach precisely
because D is dichotomized in multiple ways and each
dichotomy is analyzed separately.

Dichotomization has been used in each case to sim-
plify the problem. However, we show in this section
that most aspects of the assumptions with the existing
approach are unnecessary once we treat the J -category
cause-of-death variable as having J categories. More-
over, it is simpler conceptually than the current ap-
proach. We begin by reformulating the current ap-
proach so it is more amenable to further analysis and
then generalizing it to the J -category case.

Reformulation. Under the current method’s assump-
tion that sensitivity and specificity are the same in the
hospital and population, we can rearrange the back-
calculation formula in (1) as

P(D̂ = 1) = P(D̂ = 1|D = 1)P (D = 1)
(5)

+ P(D̂ = 1|D �= 1)P (D �= 1),

and rewrite (5) in equivalent matrix terms as

P(D̂)
2×1

= P(D̂|D)
2×2

P(D)
2×1

(6)

where the extra notation indicates the dimension of the
matrix or vector. So P(D̂) and P(D) are now both
2 × 1 vectors, and have elements [P(D̂ = 1),P (D̂ �=
1)]′ and [P(D = 1),P (D �= 1)]′, respectively; and
P(D̂|D) is a 2 × 2 matrix where

P(D̂|D)
2×2

=
(

P(D̂ = 1|D = 1) P (D̂ = 1|D �= 1)

P (D̂ �= 1|D = 1) P (D̂ �= 1|D �= 1)

)
.
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Whereas (1) is solved for P(D = 1) by plugging
in values for each term on the right-hand side, (6) is
solved for P(D) by linear algebra. Fortunately, the lin-
ear algebra required is simple and well known from
the least squares solution in linear regression. We thus
recognize P(D̂) as taking the role of a “dependent
variable,” P(D̂|D) as two “explanatory variables,” and
P(D) as the coefficient vector to be solved for. Ap-
plying least squares yields an estimate of P(D), the
first element of which, P(D = 1), is exactly the same
as that in (1). Thus far, only the mathematical repre-
sentation has changed; the assumptions, intuitions and
estimator remain identical to the existing method de-
scribed in Section 3.

Generalization. The advantage of switching to ma-
trix representations is that they can be readily general-
ized, which we do now in two important ways. First,
we drop the modeling necessary to produce the cause-
of-death for each individual D̂, and use S in its place
directly. And second, we do not dichotomize D and
instead treat it as a full J -category variable. We imple-
ment both generalizations via a matrix expression that
is the direct analogue of (6):

P(S)
2K×1

= P(S|D)
2K×J

P (D)
J×1

.(7)

The quantity of interest in this expression remains
P(D). Although we use the better nonparametric esti-
mation methods (described in the Appendix), we could
in principle estimate P(S) by direct tabulation, by sim-
ply counting the fraction of people in the population
who have each symptom profile. Since we do not ob-
serve and cannot directly estimate P(S|D) in the com-
munity (because D is unobserved), we estimate it from
the hospital data via (nonparametric) tabulation and as-
sume P(S|D) = P h(S|D). We estimate P h(S|D = j)

for each cause-of-death j the same way as we do for
P(S).

The only assumption required for connecting the two
samples is P(S|D) = P h(S|D), which is natural as
it directly corresponds to the data generation process.
We do not assume that P(S) and P h(S) are equal,
P(D) and P h(D) are equal, or P(D|S) and P h(D|S)

are equal. In fact, prediction methods for estimating
P(D|S) or D̂ are entirely unnecessary here, and so un-
like the current approach, we do not require parametric
statistical modeling, physician review or expert algo-
rithms.

We solve (7) for P(D) directly. This can be done
conceptually using least squares. That is, P(S) takes
the role of a “dependent variable,” P(S|D) takes the

role of a matrix of J “explanatory variables,” each col-
umn corresponding to a different cause-of-death, and
P(D) is the “coefficient vector” with J elements for
which we wish to solve. We also modify this proce-
dure to ensure that the estimates of P(D) are each be-
tween zero and 1 and together sum to 1 by changing
least squares to constrained least squares (see the Ap-
pendix).

Although producing estimates from this expression
involves some computational complexities, which we
describe in Section 7 and the Appendix, this is a sin-
gle equation procedure that is conceptually far simpler
than current practice. As described in Section 3, the
existing approach requires four steps, applied sequen-
tially to each cause-of-death. In contrast, estimates
from our proposed alternative only require understand-
ing each term in (7) and solving for P(D).

6. ILLUSTRATIONS IN DATA FROM CHINA AND
TANZANIA

Since deaths are not observed in populations for
which verbal autopsy methods are used, realistic val-
idation of any method is, by definition, difficult or im-
possible (Gajalakshmi and Peto, 2004). We attempt to
validate our method in two separate ways in data from
China and Tanzania.

China. We begin with an analysis of 2822 registered
deaths from hospitals in urban China collected and an-
alyzed by Alan Lopez and colleagues (see, most re-
cently, Yang et al., 2005). Thirteen causes of death
were coded, and 56 (yes or no) symptoms were elicited
from caretakers. We conducted three separate analyses
with these data. We designed the first test to meet the
assumptions of our method by randomly splitting these
data into halves. Although all these data were collected
in hospitals, where we observe both S and D, we label
the first random set “hospital data,” for which we use
both S and D, and the second “population data,” for
which we only use S during estimation. We emulate
an actual verbal autopsy analysis by using these data
to estimate the death frequency distribution, P(D), in
the “population data.” Finally, for validation, we unveil
the actual cause-of-death variable for the “population
data” that were set aside during the analysis and com-
pare it to our estimates.

The estimates appear in the top panel of the left
graph of Figure 1, which plots on the horizontal axis
a direct sample estimate—the proportion of the sample
from the population dying from each of 13 causes—
and on the vertical axis an estimate from our verbal
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FIG. 1. Validation in China. For validation, we break data with known causes of death into randomly split halves (left graph) and arbitrarily
by groups of hospitals in different cities (the two right graphs). The top panel in each graph plots a direct estimate of cause-specific mortality
horizontally by the estimate from our method vertically. The bottom panel of each graph contains 95% confidence intervals of the difference
between our estimator and the direct estimate, both of which are measured with error; almost all of these vertical lines cross the zero
difference point marked by a horizontal line.

autopsy method. (This direct estimator is not normally
feasible in verbal autopsy studies because of the impos-
sibility of obtaining medically verified cause-of-death
data in the community.) Since both are sample-based
estimates, and thus both are measured with error, if
our method predicted perfectly, all points would fall
approximately on the 45◦ line. Clearly, the fit of our
estimates to the direct estimates of the truth is fairly
close, with no clear pattern in deviations from the line.
The bottom panel of this graph portrays the differ-
ence between our estimates and the direct sample es-
timates, along with a 95% confidence interval for the
difference. Almost all confidence intervals of the errors
cover no difference (portrayed as a horizontal line),
which indicates approximately accurate coverage.

For a more stringent test of our approach, we split
the same sample into 1409 observations from hospi-
tals in three cities (Beijing, Chengdu and Wuhan) and
1413 observations from hospitals in another three cities
(Haierbin, Guangzhou and Shanghai). We then let each
group take a turn playing the role of the “popula-
tion” sample (with known cause-of-death that we use
only for validation) and the other as the actual hospi-
tal sample. These are more difficult tests of our method
than would be necessary in practice, since researchers
would normally collect hospital data from a facility
physically closer to, part of, and more similar to the
population to which they wish to infer.

The right two graphs in Figure 1 give results from
this test in the same format as for the random split

on the left. The middle graph estimates the cause-of-
death distribution of our first group of sample cities
from the second group, whereas the right graph does
the reverse. The fit between the directly estimated true
death proportions and our estimates in both is slightly
worse than for the left graph, where our assumptions
were true by construction, but predictions in both are
still excellent. Again, almost all of the 95% confidence
intervals for the difference between our estimator and
the direct sample estimate cross the zero line (see the
bottom of each graph).

Tanzania. We also analyze cause-specific adult mor-
tality from a verbal autopsy study in Tanzania (see Se-
tel et al., 2006). The data include 1261 hospital deaths
and 282 deaths from the general population, about
which 51 symptoms questions and 13 causes of death
were collected. The unusual feature of these data is
that all the population deaths have medically certified
causes, and so we can set aside that information and
use it to validate our approach. We again use S and
D from the hospital and S from the population and
attempt to estimate P(D) in the population, using D

from the population only for validation after the esti-
mation is complete.

The results appear in Figure 2 in the same format
as the China data. We constructed randomly split data
on the left and an actual prediction to the commu-
nity for the graph on the right. The results are simi-
lar to those in China, where the point estimates appear
roughly spread around the 45◦ line, indicating, in this
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FIG. 2. Validation in Tanzania. Each graph plots the (normally unknown) direct estimate of cause-specific mortality horizontally and
estimates from our method vertically. This is done for data based on a random split, where our assumptions are true by construction, on
the left and for predictions of the community sample based on hospital sample on the right. The bottom panel of each graph gives the 95%
confidence interval of the difference between the direct estimate and our estimate, both of which are measured with error.

very different context, that the fit is approximately as
good—and again better for the random split than the
actual forecast. The confidence intervals of the differ-
ences between the direct estimate and our estimate, in
the bottom panel, are larger than for the China data due
to the smaller target population used to estimate P(S),
but almost all the intervals cross zero.

The variance of the direct sampling estimator, D̄j ,
is approximately D̄j (1 − D̄j )/n, and thus varies with
category size. Uncertainty estimates from our approach
are computed by bootstrapping, and of course also
vary by category size. The 95% confidence interval
from our estimator is on average across categories 50%
wider than the direct sampling estimator in the China
data and 25% wider in the Tanzania data. Obviously,
the reason verbal autopsy procedures are necessary is
that direct sampling estimates of the cause-of-death in
the population are unobtainable, and so these numbers
summarize the necessary costs incurred for this lack of
information. Of course, compared to the huge costs of
complete national vital registration systems, this is a
trivial difference.

7. INTERPRETATION

We offer five interpretations of our approach. First,
since S contains K dichotomous variables and thus 2K

symptom profiles, P(S) and P(S|D) have 2K rows,
which take the role of “observations” in the linear ex-
pression in (7). By analogy to linear regression, where

more observations make for more efficient estimates
(i.e., with lower variances), we can see clearly here that
having additional symptoms that meet the assumptions
of verbal autopsy studies will decrease the variance, but
not affect the bias, of our estimates of cause-specific
mortality.

Second, when the number of symptoms is large, di-
rect tabulation can produce an extremely sparse ma-
trix for P(S) and P(S|D). For example, our data from
China introduced in Section 6 have 56 symptoms,
and so we would need to sort the n = 1411 observa-
tions collected from the population into 256 categories,
which number more than 72 quadrillion. Reliable es-
timation by direct tabulation in this case is obviously
infeasible. In practice, we only need to keep the symp-
tom profiles that actually appear in both the hospital
and population data sets, but even this can be sparsely
populated and so will leave few nonzero rows available
in both. We thus develop an easy computational solu-
tion to this problem in the Appendix based on a vari-
ant of discrete kernel smoothing, which involves using
random subsets of symptoms, solving (7) for each, and
averaging. The difference here is that unlike the usual
applications of kernel smoothing, which reduce vari-
ance at the expense of some bias, our procedure would
appear to reduce both bias and variance here.

Third, the key statistical assumption of the method
connecting the two samples is that P(S|D) =
P h(S|D). If this expression holds in sample, then
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our method (and indeed every subset calculation) will
yield the true P(D) population proportions exactly, re-
gardless of the degree of sparseness. If the assump-
tion instead holds only in the population from which
the observed data are drawn, then our approach will
yield statistically consistent estimates of the population
density P(D). If, in addition, subset sizes are small
enough, then we find through simulation that our esti-
mates are approximately unbiased.

Substantively, this key assumption would fail, for ex-
ample, for symptoms that doctors make relatives more
aware of in the hospital; following standard advice for
writing survey questions simply and concretely can
eliminate many of these issues. Another way this as-
sumption can be violated would be if hospitals keep pa-
tients alive for certain diseases longer than they would
be kept alive in the community, and as a result they ex-
perience different symptoms. In these examples, and
others, an advantage of our approach, compared to
approaches which model P(D|S), is that researchers
have the freedom to drop symptoms that would seem
to severely violate the assumption.

Fourth, a reasonable question is whether expert
knowledge from physicians or others could somehow
be used to improve our estimation technique. This is
indeed possible, via a Bayesian extension of our ap-
proach that we have also implemented. However, in
experimenting with our methods with verbal autopsy
researchers, we found few sufficiently confident of the
information available to them from physicians and oth-
ers that they would be willing to add Bayesian priors to
the method described here. We thus do not develop our
full Bayesian method here, but we note that if accurate
prior information does exist in some application and
were used, it would improve our estimates (see also
Sibai et al. 2001).

Finally, the new approach represents a major change
in perspective in the verbal autopsy field. The essen-
tial goal of the existing approach is to marshal the best
methods to use S to predict D. The thought is that if
we can only nail down the “correct” symptoms, and
use them to generate predictions with high sensitivity
and specificity, we can get the right answer. There are
corrections for when this fails, of course, but the con-
ceptual perspective involves developing a proxy for D.
That proxy can be well-chosen symptoms or symptom
profiles, or a particular aggregation of profiles as D̂.
The existing literature does not seem to offer methods
for highly accurate predictions of D, even before we
account for the difficulties in ascertaining the success
of classifiers (Hand, 2006). Our alternative approach

would also work well if symptoms or symptom profiles
are chosen well enough to provide accurate predictions
of D, but accurate predictions are unnecessary. In fact,
choosing symptoms with higher sensitivity and speci-
ficity would not reduce bias in our approach, but in the
existing approach they are required for unbiasedness
except for lucky mathematical coincidences.

Instead of serving as proxies, symptoms in the new
approach are only meant to be observable implications
of D, and any subset of implications is fine. They need
not be biological assays or in some way fundamental
to the definition of the disease or injury or an exhaus-
tive list. Symptoms need to occur with particular pat-
terns more for some causes of death than others, but
bigger differences do not help reduce bias (although
they may reduce the variance). The key assumption of
our approach is P(S|D) = P h(S|D). Since S is en-
tirely separable into individual binary variables, we are
at liberty to choose symptoms in order to make this as-
sumption more likely to hold. The only other criteria
for choosing symptoms, then, are the usual rules for
reducing measurement error in surveys, such as relia-
bility, question-ordering effects, question wording, and
ensuring that different types of respondents interpret
the same symptom questions in similar ways. Other
previously used criteria, such as sensitivity, specificity,
false positive or negative rates, or other measures of
predictability, are not of as much relevance as criteria
for choosing symptom questions.

8. IMPLICATIONS FOR INDIVIDUAL CLASSIFIERS

We now briefly discuss the implications of our work
for classification of the cause of each individual death.
As the same results would seem to have broader im-
plications for the general problem of individual classi-
fication in a variety of applications, we generalize the
discussion here but retain our notation with S referring
to what is called in the classifier literature features or
covariates and D denoting category labels.

As Hand (2006, page 7) emphasizes, “Intrinsic to the
classical supervised classification paradigm is the as-
sumption that the data in the design set are randomly
drawn from the same distribution as the points to be
classified in the future.” In other words, individual clas-
sifiers make the assumption that the joint distribution
of the data is the same in the unlabeled (community) set
as in the labeled (hospital) set, P(S,D) = P h(S,D),
a highly restrictive and often unrealistic condition. If
P(D|S) fits exceptionally well (i.e., with near 100%
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sensitivity and specificity), then this common joint dis-
tribution assumption is not necessary, but classifiers
rarely fit that well.

In verbal autopsy applications, assuming common
joint distributions or nearly perfect predictors is almost
always wrong. Hand (2006) gives many reasons why
these assumptions are wrong as well in many other
types of classification problems. We add to his list a
revealing fact suggested by our results above: Because
P(S) and P h(S) are directly estimable from the unla-
beled and labeled sets, respectively, these features of
the joint distribution can be directly compared and this
one aspect of the common joint distribution assump-
tion can be tested directly. Of course, the fact that this
assumption can be tested also implies that this aspect
of the common joint distribution assumption need not
be made in the first place. In particular, we have shown
above that we need not assume that P(S) = P h(S) or
P(D) = P h(D) when trying to estimate the aggregate
proportions. We show here that these assumptions are
also unnecessary in individual classifications.

Thus, instead of assuming a common joint distribu-
tion between the labeled and unlabeled sets, we make
the considerably less restrictive assumption that only
the conditional distributions are the same: P(S|D) =
P h(S|D). (As above, we get the needed joint distribu-
tion in the unlabeled set by multiplying this conditional
distribution estimated from the labeled set by the mar-
ginal distribution P(S) estimated directly from the un-
labeled set.) Thus, to generalize our results to apply to
individual classification, which requires an estimate of
P(D� = j |S� = s�), we use Bayes theorem:

P(D� = j |S� = s�)
(8)

= P(S� = s�|D� = j)P (D� = j)

P (S� = s�)
.

We propose to use this by taking P(S� = s�|D� = j)

from the labeled set, the estimated value of P(D� = j)

from the procedure described in Section 5, and P(S� =
s�) directly estimated nonparametrically from the un-
labeled set, also as in Section 5. As with our proce-
dure, we use subsets of S and average different esti-
mates of P(D�|Si = si ), although this time the averag-
ing is via committee methods since each subset implies
a different model [with the result constrained so that
the individual classifications aggregate to the P̂ (D) es-
timate]. Each of these lower-dimensional subsets (la-
beled “sub”) also imply easier-to-satisfy assumptions
than the full conditional relationship, P(Ssub|D) =
P h(Ssub|D). The key advantage of this approach is that

it uses more information from the unlabeled set—that
is, P(S)—than existing classifiers. If the unlabeled set
was generated from the population such that the distri-
bution of the values of the features is informative, then
this alternative approach can greatly improve estima-
tion accuracy.

We illustrate the power of these results with a sim-
ple simulation. For simplicity, we assume that fea-
tures are independent conditional on the category la-
bels in the labeled set, P h(S = s|D) = ∏K

k=1 P(Sk =
sk|D), which is empirically reasonable except for het-
erogeneous residual categories. We then simulate data,
with 5 (disease) categories, 20 (symptom) features, and
3000 observations in the labeled (hospital) and unla-
beled (community) sets. We generate the data so they
have very different marginal distributions for P(S)

and P(D). Figure 3 gives these marginal distributions,
plotting the unlabeled set values horizontally and la-
beled set vertically; note that few points are near the
45◦ line. These data are generated to violate the com-
mon joint distribution assumptions of all existing stan-
dard classifiers, but still meet the less restrictive condi-
tional distribution assumption.

We then run a standard support vector machine clas-
sifier (Chang and Lin, 2001) on the simulated data,
which classifies only 40.5% of the observations cor-
rectly. In contrast, our simple nonparametric alternative
classifies 59.8% of the same observations correctly.
The key advantage here is coming from the adjustment
of the marginals to fit P̂ (D) in the “unlabeled” set. We
can see this by viewing the aggregate results. These
appear in Figure 4, with the truth plotted horizontally
and estimates vertically. Note that our estimates (plot-
ted with black disks) are much closer to the 45◦ line for
every true value than the SVM estimates (plotted with
open circles).

This section illustrates only the general implications
of our strategy for individual classification. It should be
straightforward to extend these results to provide a sim-
ple but powerful correction to any existing classifier, as
well as a more complete nonparametric classifier.

9. CONCLUDING REMARKS

By reducing the assumptions necessary for valid in-
ference and making it possible to model all diseases
simultaneously, the methods introduced here make it
possible to extract considerably more information from
verbal autopsy data, and as a result can produce more
accurate estimates of cause-specific mortality rates.
Since our approach makes physician reviews, expert
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FIG. 3. Simulated data. For both the proportion of observations in each category (in the left panel) and the proportion with each feature
present (in the right panel), the labeled set is very different from the unlabeled target population of interest. These data would violate the
assumptions underlying most existing classifiers.

FIG. 4. Individual-level classification by support vector machine
(open circles) and our improved nonparametric alternative (closed
disks). Despite the differences between the labeled and unlabeled
sets in Figure 3, our approach generates better aggregate results
than the standard support vector machine classifier.

algorithms and parametric statistical models unneces-
sary, it costs considerably less to implement and is eas-
ier to replicate in different settings and by different
researchers. The resulting increased accuracy of our
relatively automated statistical approach, compared to
existing methods which require many more ad hoc hu-
man judgments, is consistent with a wide array of re-
search in other fields (Dawes, Faust and Meehl, 1989).

Even with the approach offered here, many issues
remain. For example, to estimate the distribution of
death by age, sex or condition with our methods re-
quires separate samples for each group. To save money
and time, the methods developed here could also be ex-
tended to allow covariates, which would enable these
group-specific effects to be estimated simultaneously
from the same sample. A Bayesian approach could
also be applied to borrow strength across these areas.
A formal approach to choosing the smoothing parame-
ter (the number of symptoms per subset) would be use-
ful as well. In addition, scholars still need to work on
reducing errors in eliciting symptom data from care-
givers and validating the cause-of-death. Progress is
needed on procedures for classifying causes of death
and statistical procedures to correct for the remain-
ing misclassifications, and on question wording, recall
bias, question-ordering effects, respondent selection,
and interviewer training for symptom data. Crucial is-
sues also remain in choosing a source of validation data
for each study similar enough to the target population
so that the necessary assumptions hold, and in devel-
oping procedures that can more effectively extrapolate
assumptions from hospital to population via appropri-
ate hospital subpopulations, data collection from com-
munity hospitals, or medical records for a sample of
deaths in the target population.
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APPENDIX: ESTIMATION METHODS

We now describe the details of our estimation strat-
egy. Instead of trying to use all 2K symptoms simulta-
neously, which will typically be infeasible given com-
monly used sample sizes, we recognize that only full
rank subsets larger than J with sufficient data are re-
quired. We thus sample many subsets of symptoms,
estimate P(D) in each, and average the results (or if
prior information is available we use a weighted aver-
age). To choose subsets, we could draw directly from
the 2K symptom profiles, but instead use the conve-
nient approach of randomly drawing B (B < K) symp-
toms, which we index as I (B), and use the resulting
symptom subprofile. This procedure is mathematically
equivalent to imposing a version of kernel smoothing
on an otherwise highly sparse estimation task. (More
advanced versions of kernel smoothing might improve
these estimates further.)

We estimate P(SI (B)) using the population data,
and P(SI (B)|D) using the hospital data. Denote Y =
P(SI (B)) and X = P(SI (B)|D), where Y is of length
n, X is n × J , and n is the subset of the 2B symp-
tom profiles that we observe. We obtain P(D) ≡ β̂ by
regressing Y on X under the constraint that elements
of β̂ fall on the simplex. The subset size B should be
chosen to be large enough to reduce estimation vari-
ance (and so that the number of observed symptom pro-
files among the 2B possible profiles is larger than J )
and small enough to avoid the bias that would be in-
curred from sparse counts used to estimate elements
of P(SI (B)|D). We handle missing data by deleting in-
complete observations within each subset (another pos-
sibility would be model-based imputation). Although
cross-validation can generate optimal choices for B ,
we find estimates of P(D) to be relatively robust to
choices of B within a reasonable range. [When choos-
ing B via cross-validation from the hospital data, we
use random subsets to separate this decision from the
assumption that P(S|D) = P h(S|D).] We have exper-
imented with nonlinear optimization procedures to es-
timate P(D) directly, but it tends to be sensitive to
starting values when J is large. As an alternative, we
developed the following estimation procedure, which
tends to be much faster, more reliable, and accurate in
practice.

We repeat the following two steps for each differ-
ent subset of symptoms and then average the results.
The two steps involve reparameterization, to ensure∑

βj = 1, and stepwise deletion, to ensure βj > 0.

1. To reparameterize, we follow this algorithm:

(a) To impose a fixed value for some cause-of-
death,

∑
βj = c, rewrite the constraint as Cβ =

1, where C is a J -row vector of 1
c
. When none

of the elements of β are known a priori, c = 1.
When we know some elements βi , such as from
another data source, the constraint on the rest of
β changes to

∑
j �=i βj = c = 1 − βi .

(b) Construct a J − 1 × J matrix A of rank J − 1
whose rows are mutually orthogonal and also
orthogonal to C, and so CA� = 0 and AA� =
IJ−1. A Gram–Schmidt orthogonalization gives
us a row-orthogonal matrix G whose first row is
C, and the rest is A.

(c) Rewrite the regressor as X = ZA+WC, where
Z is n × J − 1, W is n × 1 and (W,Z)G =
X. Under the constraint Cβ = 1, we have Y =
Xβ = ZAβ+WCβ = Zγ +W , where γ = Aβ ,
and γ is a J − 1 vector.

(d) Obtain the least square estimate γ̂ = (Z�
Z)−1Z�(Y − W).

(e) The equality-constrained β is then β̂ = G−1γ ∗,
where G = (C,A), a J × J row-orthogonal
matrix derived above, and γ ∗ = (1, γ̂ ). This
ensures that Cβ̂ = 1. Moreover, Cov(β̂) =
G−1 Cov(γ ∗)(G�)−1 (Thisted, 1988).

2. Then for stepwise deletion:
(a) To impose nonnegativity, find the β̂j < 0 whose

associated t-value is the biggest in absolute
value among all β̂ < 0.

(b) Remove the j th column of the regressor X, and
go to the reparameterization step again to ob-
tain β̂ with the j th element coerced to zero.

Alternatively, we can view the estimation of β to
be a constrained optimization problem and use the
dual method to solve the strictly convex quadratic pro-
grams. Finally, our estimate of P(D) can be obtained
by averaging over the estimates based on each sub-
set of symptoms. The associated standard error can
be estimated by bootstrapping over the entire algo-
rithm. Subsetting is required because of the size of
the problem, but because S can be subdivided and
our existing assumption P(S|D) = Ph(S|D) implies
P(SI (B)|D) = P h(SI (B)|D) in each subset, no bias is
introduced. In addition, although the procedure is sta-
tistically consistent (i.e., as n → ∞ with K fixed), the
procedure is approximately unbiased only when the el-
ements of P(S|D) are reasonably well estimated; sub-
setting (serving as a version of kernel smoothing) has
the advantage of increasing the density of information
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about the cells of this matrix, thus making the estima-
tor approximately unbiased for a much smaller and rea-
sonably sized sample. We find through extensive sim-
ulations that this procedure is approximately unbiased,
and robust except in very small sample sizes.
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