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The Essential Role of Pair Matching in
Cluster-Randomized Experiments, with
Application to the Mexican Universal
Health Insurance Evaluation
Kosuke Imai, Gary King and Clayton Nall

Abstract. A basic feature of many field experiments is that investigators are
only able to randomize clusters of individuals—such as households, com-
munities, firms, medical practices, schools or classrooms—even when the
individual is the unit of interest. To recoup the resulting efficiency loss, some
studies pair similar clusters and randomize treatment within pairs. However,
many other studies avoid pairing, in part because of claims in the litera-
ture, echoed by clinical trials standards organizations, that this matched-pair,
cluster-randomization design has serious problems. We argue that all such
claims are unfounded. We also prove that the estimator recommended for
this design in the literature is unbiased only in situations when matching
is unnecessary; its standard error is also invalid. To overcome this problem
without modeling assumptions, we develop a simple design-based estimator
with much improved statistical properties. We also propose a model-based
approach that includes some of the benefits of our design-based estimator as
well as the estimator in the literature. Our methods also address individual-
level noncompliance, which is common in applications but not allowed for in
most existing methods. We show that from the perspective of bias, efficiency,
power, robustness or research costs, and in large or small samples, pairing
should be used in cluster-randomized experiments whenever feasible; failing
to do so is equivalent to discarding a considerable fraction of one’s data. We
develop these techniques in the context of a randomized evaluation we are
conducting of the Mexican Universal Health Insurance Program.

Key words and phrases: Causal inference, community intervention trials,
field experiments, group-randomized trials, place-randomized trials, health
policy, matched-pair design, noncompliance, power.
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1. INTRODUCTION

For political, ethical or administrative reasons, re-
searchers conducting field experiments are often un-
able to randomize treatment assignment to individuals
and so instead randomize treatments to clusters of indi-
viduals (Murray, 1998; Donner and Klar, 2000a; Rau-
denbush, Martinez and Spybrook, 2007). For example,
19 (68%) of the 28 field experiments we found pub-
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lished in major political science journals since 2000
randomized households, precincts, city-blocks or vil-
lages even though individual voters were the inferen-
tial target (e.g., Arceneaux, 2005); in public health and
medicine, where “the number of trials reporting a clus-
ter design has risen exponentially since 1997” (Camp-
bell, 2004), randomization occurs at the level of health
clinics, physicians or other administrative and geo-
graphical units even though individuals are the units
of interest (e.g., Sommer et al., 1986; Varnell et al.,
2004); and numerous education researchers random-
ize schools, classrooms or teachers instead of students
(e.g., Angrist and Lavy, 2002).

Since efficiency drops when randomizing clusters of
individuals instead of individuals themselves (Corn-
field, 1978), many scholars attempt to recoup some of
this lost efficiency by pairing clusters, based on the
similarity of available background characteristics, be-
fore randomly assigning one cluster within each pair
to receive the treatment assignment (e.g., Ball and Bo-
gatz, 1972; Gail et al., 1992; Hill, Rubin and Thomas,
1999). Since matching prior to random treatment as-
signment can greatly improve the efficiency of causal
effect estimation (Bloom, 1978; Greevy et al., 2004),
and matching in pairs can be substantially more ef-
ficient than matching in larger blocks, matched-pair,
cluster-randomization (MPCR) would appear to be an
attractive design for field experiments (Imai, King and
Stuart, 2008). [See also Moulton (2004).] The design is
especially useful for public policy experiments since,
when used properly, it can be robust to interventions
by politicians and others that have ruined many policy
evaluations, such as when office-holders arrange pro-
gram benefits for constituents who live in control group
clusters (King et al., 2007).

Unfortunately, despite its apparent benefits and com-
mon usage, this experimental design has an uncertain
scientific status. Researchers in this area and formal
statements from clinical trial standards organizations
(e.g., Donner and Klar, 2004; Feng et al., 2001; Med-
ical Research Council, 2002) claim that certain “ana-
lytic limitations” make MPCR, or at least the existing
methods available to analyze data from this design, in-
appropriate. These claimed limitations include “the re-
striction of prediction models to cluster-level baseline
risk factors (e.g., cluster size), the inability to test for
homogeneity of . . . [causal effects across clusters], and
difficulties in estimating the intracluster correlation co-
efficient, a measure of similarity among cluster mem-
bers” (Klar and Donner, 1997, page 1754). In addition,

in a widely cited article, Martin et al. (1993) claim that
in small samples, pairing can reduce statistical power.

We show that each of the claims regarding analyti-
cal limitations of MPCR is incorrect. We also demon-
strate that the power calculations leading Martin et al.
(1993) to recommend against MPCR in small samples
is dependent on an assumption of equal cluster sizes
that vitiates one major advantage of pair matching; we
show in real data that the assumption does not apply
and without it pair matching on cluster sizes and pre-
treatment variables that affect the outcome improves
both efficiency and power a great deal, even in samples
as small as three pairs. In fact, because the efficiency
gain of MPCR depends on the correlation of cluster
means weighted by cluster size, the advantage can be
much larger than the unweighted correlations that have
been studied seem to indicate, even when cluster sizes
are independent of the outcome.

Finally, there exists no published formal evaluation
of the statistical properties of the estimator for MPCR
data most commonly recommended in the methodolog-
ical literature. By defining the quantities of interest
separately from the methods used to estimate them,
and identifying a model that gives rise to the most
commonly used estimator, we show that this approach
depends on assumptions, such as the homogeneity of
treatment effects across all clusters, that apply best
when matching is not needed to begin with. The com-
monly used variance estimator is also biased. We then
offer new simple design-based estimators and their
variances. We also propose an alternative model-based
approach that includes the benefits of our design-based
estimator, which has little or no bias, and the estima-
tor in the literature, which under certain circumstances
has lower variance. Finally, we extend our methods to
situations with individual-level noncompliance, which
is a basic feature of many MPCR experiments but for
which most prior methods have not been adapted. With
the results and new methods offered here, ambiguity
about what to do in cluster randomized experiments
vanishes: pair matching should be used whenever fea-
sible.

2. EVALUATION OF THE MEXICAN UNIVERSAL
HEALTH INSURANCE PROGRAM

As a running example of MPCR, we introduce a
randomized evaluation we are conducting of Seguro
Popular de Salud (SPS) in Mexico. A major domestic
initiative of the Vicente Fox presidency, the program
seeks “to provide social protection in health to the 50
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million uninsured Mexicans” (Frenk et al., 2003, page
1667), constituting about half the population (King et
al., 2007). The government intends to spend an addi-
tional one percent of GDP on health compared to 2002
once the program is fully introduced.

SPS permitted a cluster randomized (CR) study to be
built into the program rollout. Under national legisla-
tion, Mexican states must apply to the federal govern-
ment for funds both to publicize the program and fund
its operations. The federal government approves these
requests only when local health clinics are brought up
to federal standards. When an area is approved to be-
gin program enrollment, families who affiliate are ex-
pected to receive free preventative and regular medical
care, pharmaceuticals and medical procedures. How-
ever, because local health clinics and hospitals may
take years to meet federal standards, and also because
of budget restrictions, a staged rollout was necessary
and also allowed us the chance to run this randomized
study. Finally, since SPS allows individuals to decide
for themselves whether to enroll (if necessary, by trav-
eling from unenrolled to enrolled areas), it was possi-
ble to adopt a clustered encouragement design (Fran-
gakis et al., 2002), thereby permitting estimation of
individual-level program effects. (We focus on the ITT
effect until Section 6.)

The MPCR design was implemented in geographic
areas created for the project which we call “health clus-
ters,” defined as the geographic catchment area of a lo-
cal hospital or clinic. The country is tiled by 12,824
such clusters, and negotiations with the Mexican gov-
ernment produced more than 100 for which random
assignment was acceptable. The chosen clusters were
paired based on census demographics, poverty, educa-
tion, and health infrastructure. Within each pair, one
“treatment” cluster was randomly chosen for early pro-
gram rollout, receiving funds to upgrade their health
clinics and encourage individual enrollment. The “con-
trol” cluster in each pair had its rollout set for some fu-
ture time. (Individuals could still obtain SPS benefits
by traveling to SPS-approved clusters, but did not re-
ceive encouragement or resources to do so.) For design
details, see King et al. (2007).

The primary outcome of interest at this stage was the
level of out-of-pocket health expenditures, while sec-
ondary outcomes of interest included medical utiliza-
tion, health self-assessment and self-reported health
behaviors. Outcomes were measured in a baseline and
followup panel survey of more than 32,000 house-
holds. Our examples draw upon 67 of these variables
measured at the 10-month followup.

3. MATCHED-PAIR, CLUSTER-RANDOMIZED
EXPERIMENTS

We now introduce MPCR experiments, including the
theories of inference commonly applied (Section 3.1),
the formal definitions, notation and assumptions used
in (Section 3.2), and the quantities of interest typically
sought (Section 3.3).

3.1 Theories of Inference

We describe the model-based and permutation-based
theories of statistical inference that have been applied
to MPCR data and then the design-based theory from
which our work is derived.

First, model-based inference applied to MPCR typ-
ically uses generalized mixed-effects models, general-
ized estimating equations or multi-level models (Feng
et al., 2001). Most of these work only if the modeling
assumptions are correct; they also rely on asymptotic
approximations. Model-based and model-assisted ap-
proaches have proved to be powerful in other areas, es-
pecially in survey research and missing data where it is
often necessary, but they violate the purpose and spirit
of experimental work which goes to great lengths and
expense to avoid these types of assumptions.

Fisher’s (1935) permutation-based theory of infer-
ence, which constructs exact nonparametric hypothe-
sis tests based only on the random treatment assign-
ment, has also been applied to MPCR. Although per-
mutation inference in principle requires no models or
approximations, in practice applications typically have
required additional assumptions such as constant treat-
ment effects across clusters or some kind of (e.g.,
Monte Carlo, large sample) approximations. The exist-
ing applications include Gail et al. (1996) and Braun
and Feng (2001), which combine permutation infer-
ence with parametric modeling, and Small, Ten Have
and Rosenbaum (2008) which considers quantile ef-
fects using different and more modest assumptions.

In contrast, we use Neyman’s (1923) theory of in-
ference, which is well known but has not before been
attempted for MPCR. Like Fisher’s permutation-based
theory, Neyman’s approach is also design (or “ran-
domization”) based and nonparametric, but it naturally
avoids the constant treatment effect assumption and
can provide valid inferences about both sample and
population average treatment effects without modeling
assumptions (Rubin, 1991). The estimators we derive
are also simple to understand and easier to compute
(requiring only weighted means and no numerical op-
timization, or simulation).
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3.2 Formal Design Definition, Notation and
Assumptions

Consider a MPCR experiment where 2m clusters
are paired, based on a known function of the cluster
characteristics, prior to the randomization of a binary
treatment. We assume the j th cluster in the kth pair
contains njk units, where j = 1,2 and k = 1, . . . ,m,
and thus the total number of units is equal to n =∑m

k=1(n1k + n2k).
Under MPCR, simple randomization of an indicator

variable, Zk for k = 1,2, . . . ,m, is conducted indepen-
dently across the m pairs. For a pair with Zk = 1, the
first cluster within pair k is treated (in our case, as-
signed encouragement to affiliate with SPS), and the
second cluster is assigned control. In contrast, for a pair
with Zk = 0, the first cluster is the control whereas the
second is treated. Thus, using Tjk for the treatment in-
dicator for the j th cluster in the kth pair, then T1k = Zk

and T2k = 1−Zk . In the context of the SPS evaluation,
we consider an intention-to-treat (ITT) analysis to es-
timate the causal effects of encouragement to affiliate
with the program (see Section 6 on the estimation of
causal effects of the actual affiliation).

We denote Yijk(Tjk) as the potential outcomes under
the treatment (Tjk = 1) and control (Tjk = 0) condi-
tions for the ith unit in the j th cluster of the kth pair
(Holland, 1986; Maldonado and Greenland, 2002). The
observed outcome variable is Yijk = TjkYijk(1) + (1 −
Tjk)Yijk(0). Finally, the order of clusters within each
pair is randomized so that the population distribution
of (Yi1k(1), Yi1k(0)) equals (Yi2k(1), Yi2k(0)) (though
this equality may not hold in sample).

A defining feature of CR experiments is that the po-
tential outcomes for the ith unit in the j th cluster of
the kth pair are a function of the cluster-level random-
ized treatment variable, Tjk , rather than its unit-level
treatment counterpart. Similarly, the unit-level causal
effect, Yijk(1) − Yijk(0), is the difference between two
unit-level potential outcomes that are the functions of
the cluster-level treatment variable. Thus, in CR exper-
iments, the usual assumption of no interference (Cox,
1958; Rubin, 1990) applies only at the cluster level.
Moreover, in MPCR, assuming no interference only
between pairs of clusters is sufficient. This advantage
of MPCR designs can be substantial if contagion or so-
cial influence is present at the individual level, where,
for example, individuals may affect the behavior of
neighbors or friends, but such interference does not ex-
ist across clusters or pairs of clusters. Thus, we only
assume:

ASSUMPTION 1 (No interference between matched-
pairs). Let Yijk(T) be the potential outcomes for the
ith unit in the j th cluster of the kth matched-pair where
T is a (m × 2) matrix whose (j, k) element is Tjk . We
assume that if Tjk = T ′

jk , then Yijk(T) = Yijk(T′).

The assumption allows us to write Yijk(Tjk) rather
than Yijk(T). Since T1k = Zk and T2k = 1 − Zk ,
Yijk(Tjk) only depends on Zk . Given that the as-
sumption of no interference among individuals is of-
ten highly unrealistic (Sobel, 2006), MPCR offers an
attractive alternative. In the Mexico experiment, As-
sumption 1 is reasonable because most of the clusters
in our experiment are noncontiguous and the travel
times between them are substantial. However, espe-
cially in small villages, individual-level no interference
assumptions would have been implausible.

Finally, we formalize the cluster-level randomized
treatment assignment as follows.

ASSUMPTION 2 (Cluster randomization under
matched-pair design). The potential outcomes are
independent of the randomization indicator variable:
(Yijk(1), Yijk(0)) ⊥⊥ Zk , for all i, j and k. Also, Zk is
independent across matched-pairs, and Pr(Zk) = 1/2
for all k.

The assumption also implies (Yijk(1), Yijk(0)) ⊥⊥
Tjk since Tjk is a function of Zk .

3.3 Quantities of Interest

We now offer the definitions of the causal effects of
interest under MPCR (or CR in general) which have
not been formally defined in the literature. At least
two types of each of four distinct quantities may be of
interest in these experiments. We begin with the four
quantities, which define the target population, and then
discuss the two types, which clarify the role of interfer-
ence. Section 6 introduces additional quantities of in-
terest when individual-level noncompliance exists. (All
the quantities below are based on causal effects de-
fined as grouped individual-level phenomena; we dis-
cuss cluster-level causal quantities in Section 4.6.)

3.3.1 Target population quantities. Table 1 offers
an overview of the four target population causal effects.
All four quantities represent the causal treatment effect
(the potential outcome under treatment minus the po-
tential outcome under control) averaged over different
sets of units.

First is the sample average treatment effect (SATE
or ψS ), which is an average over the set of all units in
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TABLE 1
Quantities of Interest: For each causal effect, this table lists

whether clusters and units within clusters are treated as observed
and fixed or instead as a sample from a larger population. The

resulting inferential target is also given

Units
within

Quantities Clusters clusters Inferential target

ψS SATE Observed Observed Observed sample
ψC CATE Observed Sampled Population within

observed clusters
ψU UATE Sampled Observed Observable units

within the population
of clusters

ψP PATE Sampled Sampled Population

the observed sample (which we denote as S):

ψS ≡ ES
(
Y(1) − Y(0)

)
(1)

= 1

n

m∑
k=1

2∑
j=1

njk∑
i=1

(
Yijk(1) − Yijk(0)

)
,

where the sums go over pairs, the two clusters within
each pair and the units within each cluster.

The second quantity treats observed clusters as fixed
(and not necessarily representative of some population)
and the units within clusters as randomly sampled from
the finite population of units within each cluster. This
gives the cluster average treatment effect (CATE or
ψC):

ψC ≡ EC
(
Y(1) − (0)

)
(2)

= 1

N

m∑
k=1

2∑
j=1

Njk∑
i=1

(
Yijk(1) − Yijk(0)

)
,

where the expectation is taken over the set C which
contains all observed units within the sample clusters,
Njk is the known (and finite) population cluster size,
and N ≡ ∑m

k=1(N1k + N2k). Throughout, we assume
simple random sampling within each cluster for sim-
plicity, but other random sampling procedures can eas-
ily be accommodated via unit-level weights. Thus, the
only difference between SATE and CATE is whether
each unit within clusters is treated as fixed or randomly
drawn based on a known sampling mechanism.

A third quantity treats the clusters as randomly sam-
pled from a larger population, but the units within the
sampled clusters are treated as fixed. The inferential
target is the set U, which includes all units in the pop-
ulation of clusters that would be observed if its cluster

were in the observed sample. This is what we call the
unit average treatment effect (UATE or ψU ) and is de-
fined as ψU ≡ EU(Y (1) − Y(0)).

The final quantity of interest is the population aver-
age treatment effect (PATE or ψP ), which is defined as
ψP ≡ EP (Y (1)−Y(0)), where the expectation is taken
over the entire population P —that is, the population of
units within the population of clusters. For simplicity
throughout, we assume an infinite population of clus-
ters, but this is easily extended to finite populations at
some cost in additional notation.

Researchers should design their experiments to make
inferences to their desired quantity of interest, though
in practice they may choose to estimate other quanti-
ties of interest when they face design limitations. In
the SPS evaluation, for example, we would like to in-
fer PATE for all of Mexico, but our health clusters were
not (and due to political and administrative constraints
could not be) randomly selected. This means that, like
most medical experiments, any method applied to our
data to estimate PATE will be dependent on assump-
tions about the selection process. An alternative ap-
proach would be to try to estimate one of the other
quantities. CATE or SATE are straightforward possi-
bilities, and CATE is probably most apt in this case,
since individuals within clusters were randomly se-
lected, and both quantities condition on the clusters we
observe. Of course, even when inferences are made to
restricted populations, readers may still extrapolate to
a different population of interest, and so the researcher
needs to decide on the appropriate presentation strat-
egy. From a public policy perspective, UATE may be
a reasonable target quantity, where we try to infer to
the individuals who would be sampled in all the health
clusters in Mexico that are similar to our observed clus-
ters, and from which our clusters could plausibly have
been randomly drawn.

3.3.2 Interference. Inference in CR experiments
may be affected by three different types of interference,
each of which may require different assumptions. First,
when interference exists among individuals within a
cluster, the potential outcomes of one person (or unit)
within a cluster may be different depending on other
units’ treatment assignment. This type of interference
is expected and no assumptions are required for the
four causal quantities of interest. In CR experiments,
within-cluster interference is part of the outcome, and
researchers can estimate the causal effects of cluster-
level treatment on unit-level outcome. Understanding
the effect of individuals independent of and isolated
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from other individuals in the same cluster is best left to
studies where individual randomization is possible.

Second, interference between clusters in different
pairs may affect outcomes. Assumption 1 requires the
absence of such interference between clusters in dif-
ferent pairs. We continue to maintain this assumption,
as Sobel (2006) demonstrates that without it even the
definition of a causal effect is complicated (see also
Rosenbaum, 2007).

Third, interference between treatment and control
clusters in the same pair requires us to redefine causal
effects to account for interference. For example, if one
cluster is assigned SPS, individuals in the other (con-
trol) cluster within the pair may become envious or
depressed as a consequence. This type of interference
within a pair can be dealt with in two ways. In the first,
which we call no-interference, we define the causal ef-
fect (SATE, CATE, UATE or PATE) so that the treat-
ment in one cluster has no effect on the potential out-
comes of units in the control cluster. In the second,
which we call the with-interference, the causal effect
is defined so that it includes interference between clus-
ters within pairs as well as interference between units
within each cluster. (For our Mexico experiment, we
do not expect much direct interference within or across
pairs, although nearby clusters outside our experiment
might exert some influence over those we observe, in
which case the definition of UATE or PATE might
change).

Estimating the no-interference version of SATE,
CATE, UATE or PATE in the presence of inter-
ference is feasible only with assumption-laden esti-
mators. In contrast, estimating the with-interference
version is easier since it accepts whatever level of non-
interference one’s data happens to present. Of course,
having a quantity that is easy to estimate is not a satis-
factory substitute for having an estimate of the quantity
of interest. The best way to avoid this problem is to use
these facts to design better experiments. For example,
we can select noncontiguous clusters to pair, and pairs
that are not contiguous to other pairs. Following rules
like this whenever feasible reduces the difference be-
tween the no-interference and with-interference quan-
tities.

4. ESTIMATORS

We now define our estimators and derive their sta-
tistical properties. Our strategy throughout is to make
as few assumptions as feasible beyond the experimen-
tal design. We also briefly discuss an approach that has
been offered in the literature. Since our approach has

little or no bias, and the existing estimator is biased but
may have low variance in some circumstances, we also
offer a model-based method that combines some of the
benefits of both approaches.

4.1 Definitions

The point estimators for the with-interference ver-
sion of the four quantities of interest are each weighted
averages of within-pair mean differences between the
treated and control clusters, but with different weights.
We thus define

ψ̂(wk)

≡ 1∑m
k=1 wk

·
m∑

k=1

wk

{
Zk

(∑n1k

i=1 Yi1k

n1k

−
∑n2k

i=1 Yi2k

n2k

)
(3)

+ (1 − Zk)

·
(∑n2k

i=1 Yi2k

n2k

−
∑n1k

i=1 Yi1k

n1k

)}
,

where the weight for the kth pair of clusters, denoted
by wk , defines a specific estimator.

The estimator most commonly recommended in the
methodological literature is based on a weight using
the harmonic mean of sample cluster sizes, which can
be written as ψ̂(n1kn2k/(n1k + n2k)) (see, e.g., Don-
ner, 1987; Donner and Donald, 1987; Donner and Klar,
1993; Hayes and Bennett, 1999; Bloom, 2006; Rau-
denbush, 1997; Turner, White and Croudace, 2007).
This estimator, and its variance estimator, are in gen-
eral biased (see Appendix A.4), but may have low vari-
ance in some situations, an issue we return to in Sec-
tion 4.5.

As shown in Table 2, ψ̂(n1k + n2k) is our point es-
timator for both SATE and UATE, whereas ψ̂(N1k +
N2k) applies to both CATE and PATE. This is intuitive,
as SATE and UATE are based on those units (which
would be) sampled in a cluster whereas CATE and
PATE are based on the population of units within clus-
ters. Our estimator for SATE and UATE differs from
the existing estimator based on harmonic mean weights
unless the sample cluster sizes within each matched
pair are equal (n1k = n2k for all k = 1, . . . ,m), which
rarely occurs at least in field experiments.

Table 2 also summarizes the variances and their esti-
mators. Under our design-based inference, UATE and
PATE have identifiable variances, the exact expres-
sion for which we give below. SATE and CATE have
unidentifiable variances, and so we offer their upper
bound, leading to a conservative confidence interval.
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TABLE 2
Point estimators and variances for the four causal quantities of interest. “Identified” refers to design-based identification of estimated

causal effects without modeling assumptions

SATE CATE UATE PATE

Point estimator ψ̂(n1k + n2k) ψ̂(N1k + N2k) ψ̂(n1k + n2k) ψ̂(N1k + N2k)

Variance Vara(ψ̂) Varau(ψ̂) Varap(ψ̂) Varaup(ψ̂)

Identified no no YES YES

Our variance estimators differ from the existing estima-
tor even when sample cluster sizes are matched exactly.
Our variance estimator is approximately unbiased for
any weights. Estimates from UATE and PATE (or
equivalently SATE and CATE) will differ depending on
how sample and population sizes vary across clusters.

4.2 Bias

We first focus on SATE. This allows us, follow-
ing Neyman (1923), to use the randomized treatment
assignment mechanism as the sole basis for statistical
inference (see also Imai, 2008). Here, the potential out-
comes are assumed fixed, but possibly unknown, quan-
tities. We begin by rewriting ψ̂(n1k + n2k) using po-
tential outcome notation:

ψ̂(n1k + n2k)

= 1

n

m∑
k=1

(n1k + n2k)

·
{
Zk

(∑n1k

i=1 Yi1k(1)

n1k

−
∑n2k

i=1 Yi2k(0)

n2k

)
+ (1 − Zk)

·
(∑n2k

i=1 Yi2k(1)

n2k

−
∑n1k

i=1 Yi1k(0)

n1k

)}
.

Then, taking the expectation with respect to Zk yields

Ea{ψ̂(n1k + n2k)} − ψS

= 1

n

m∑
k=1

2∑
j=1

{(
n1k + n2k

2
− njk

)
(4)

·
njk∑
i=1

Yijk(1) − Yijk(0)

njk

}
,

where the expectation is taken with respect to the ran-
domization of treatment assignment which we indicate
by the subscript “a.”

Although the bias does not generally equal zero,
either of two common conditions can eliminate it.

These two conditions motivate our choice of weights
(wk = n1k + n2k). First, when cluster sizes are equal
within each matched-pair (i.e., n1k = n2k for all k),
the bias is always zero. This implies that researchers
may wish to form pairs of clusters, at least partially,
based on their sample cluster size if SATE is the esti-
mand. Second, ψ̂(n1k +n2k) is also unbiased if match-
ing is effective, so that the within-cluster SATEs are
identical for each matched-pair (i.e.,

∑n1k

i=1(Yi1k(1) −
Yi1k(0))/n1k = ∑n2k

i=1(Yi2k(1)−Yi2k(0))/n2k for all k).
In contrast, bias may remain if cluster sizes are poorly
matched and within each pair cluster sizes are strongly
associated with the cluster-specific SATEs. However,
the bounds on the bias can be found by applying
the Cauchy–Schwarz inequality to equation (4) and
they can be consistently estimated from the observed
data. In sum, roughly speaking, if cluster sizes and
important confounders are matched well so that pre-
randomization matching accomplishes the purpose for
which it was designed, this estimator will be approxi-
mately unbiased.

A similar bias expression can be derived for our
CATE estimator, ψ̂(N1k + N2k), where the weights
are now based on the arithmetic mean of the popula-
tion cluster sizes rather than their sample counterparts.
A calculation analogous to the one above yields the fol-
lowing bias expression:

Eau
(
ψ̂(N1k + N2k)

) − ψC

= 1

N

m∑
k=1

2∑
j=1

{(
N1k + N2k

2
− Njk

)
(5)

· Eu

(
Yijk(1) − Yijk(0)

)}
,

where subscript “au” means that the expectation is
taken with respect to random treatment assignment and
the simple random sampling of units within each clus-
ter. The conditions under which this bias disappears are
analogous to the ones for SATE: If matching is effec-
tive so that the cluster-specific average causal effects,
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that is, Eu[Yijk(1) − Yijk(0)], are constant across clus-
ters within each pair, then the bias is zero. The bias
also vanishes if the population cluster sizes are identi-
cal within each pair, that is, N1k = N2k for all k. Again,
the bounds on the bias can be obtained in the manner
similar to the case of SATE above.

Finally, the bias for UATE and PATE can be ob-
tained by taking the expectation of the bias for SATE
and CATE, respectively, with the expectation defined
with based on random sampling of cluster pairs. If the
within-cluster sample (population) average treatment
effects are uncorrelated with cluster sizes within each
matched-pair, then the bias for the estimation of UATE
(PATE) is zero, regardless of whether one can match
exactly on cluster sizes. In general, however, cluster
sizes may be correlated with the size of average treat-
ment effects. In such cases, the matching strategies to
reduce the bias for the estimation of SATE (CATE) also
work for the estimation of UATE (PATE). That is, pairs
of clusters should be constructed such that within each
pair, cluster sizes and important pre-treatment covari-
ates are similar. (We also derived an unbiased estimator
and its variance, but we do not present it here because
they are not invariant to a constant shift of the outcome
variable when cluster sizes vary within each pair.)

4.3 Variance

In a critical comment about Klar and Donner (1997),
Thompson (1998) shows how to obtain valid variance
estimates under the linear mixed effects model and the
“common effect assumption.” In their reply, Klar and
Donner (1998) criticize the common effect assumption
and, as a result, maintain their claim of analytical diffi-
culties with MPCRs. We show here how to obtain valid
variance estimates without the common treatment ef-
fect assumption or other modeling assumptions.

Rather than focusing on each of our proposed esti-
mators, ψ̂(n1k +n2k) and ψ̂(N1k +N2k), separately we
consider the variance of the general estimator, ψ̂(wk)

in equation (3), so that the analytical results we develop
apply to any choice of weights including the harmonic
mean weights. For notational simplicity, we use nor-
malized weights, that is, w̃k ≡ nwk/

∑m
k=1 wk (so that

the weights sum up to n as in our estimator of SATE
and UATE), and consider the variances of ψ̂(w̃k). First,
we use potential outcomes notation and write ψ̂(w̃k) =∑m

k=1 w̃k{ZkDk(1) + (1 − Zk)Dk(0)}/n. Then, our
variance estimator is

σ̂ (w̃k)

≡ m

(m − 1)n2

·
m∑

k=1

[
w̃k

{
Zk

(∑n1k

i=1 Yi1k

n1k

−
∑n2k

i=1 Yi2k

n2k

)
+ (1 − Zk)(6)

·
(∑n2k

i=1 Yi2k

n2k

−
∑n1k

i=1 Yi1k

n1k

)}

− nψ̂(w̃k)

m

]2

.

SATE. We first consider the variance of ψ̂(w̃k) for
SATE. Taking the expectation of ψ̂(w̃k) with respect
to Zk , the true variance of ψ̂(w̃k) is given by

Vara(ψ̂(w̃k)) = 1

4n2

m∑
k=1

w̃2
k

(
Dk(1) − Dk(0)

)2
.(7)

This variance is not identified since we do not jointly
observe Dk(1) and Dk(0) for each k. Thus, we identify
an upper bound of this variance, making no additional
assumptions, and estimate it from the observed data.

The next proposition establishes that the true vari-
ance, Vara(ψ̂(w̃k)), is not identifiable, and shows that
our proposed variance estimator, σ̂ (w̃k), is conserva-
tive.

PROPOSITION 1 (SATE variance identification).
Suppose that SATE is the estimand. Then, the true vari-
ance of ψ̂(w̃k) is not identifiable. The bias of σ̂ (w̃k) is
given by

Ea(σ̂ (w̃k)) − Vara(ψ̂(w̃k))

= m

4n2 var
{
w̃k

(
Dk(1) + Dk(0)

)}
,

where var(·) represents the sample variance with de-
nominator m − 1.

See Appendix A.1 for a proof. This proposition im-
plies that on average σ̂ (w̃k) overestimates the true
variance Vara(ψ̂(w̃k)) unless the sample variance of
weighted within-cluster SATEs across pairs is zero.
For example, if SATE is constant across pairs, and
the cluster sizes are equal, σ̂ (w̃k) estimates the true
variance without bias. However, such a scenario is
highly unlikely under MPCR, and thus σ̂ (w̃k) should
be seen as a conservative estimator of the variance. It
is also possible to obtain a less conservative variance
estimate than σ̂ (w̃k). For example, researchers may
use a consistent estimator of {(∑m

k=1 w̃2
kDk(1)2)1/2 +

(
∑m

k=1 w̃2
kDk(1)2)−1/2}2/4n2, which is obtained by

applying the Cauchy–Schwarz inequality to equa-
tion (7). Another approach to obtain a tighter bound
would be to apply the covariance inequality to the bias
expression given in Proposition 1.
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CATE. Next, we study variance for CATE, ψ̂(w̃k),
which we write as

Varau(ψ̂(w̃k))

= Eu{Vara(ψ̂(w̃k))}
+ Varu{Ea(ψ̂(w̃k))}(8)

= 1

4n2

m∑
k=1

w̃2
k

{
Eu

(
Dk(1) − Dk(0)

)2

+ Varu
(
Dk(1) + Dk(0)

)}
,

where the second equality holds because sampling of
units is independent within clusters. Similar to the
SATE variance, this is not identified since we do not
jointly observe Dk(1) and Dk(0) for each k. The next
proposition shows that σ̂ (w̃k) is again conservative.

PROPOSITION 2 (CATE variance identification).
Suppose that CATE is the estimand. The true variance
of ψ̂(w̃k), Varau(ψ̂(w̃k)), is not identifiable. The bias
of σ̂ (w̃k) is given by

Ea(σ̂ (w̃k)) − Vara(ψ̂(w̃k))

= m

4n2 var
{
w̃kEu

(
Dk(1) + Dk(0)

)}
.

See Appendix A.2 for a proof. The proposition im-
plies that our proposed variance estimator, σ̂ (w̃k), is an
upper bound of the true variance. As in the case of the
SATE, this upper bound can be improved. For example,
rewrite the variance in equation (8) as

Varau(ψ̂(w̃k))

= 1

2n2

m∑
k=1

w̃2
k

[
Varu(Dk(1)) + Varu(Dk(0))(9)

+ 1

2

{
Eu

(
Dk(1) − Dk(0)

)}2
]
.

Then, apply the Cauchy–Schwarz inequality to the
third term in the bracket of equation (9). Alternatively,
applying the covariance inequality to the bias expres-
sion in Proposition 2 yields a tighter bound.

UATE and PATE. Unlike in the case of the SATE
and the CATE, the variance of ψ̂ is identified and can
estimated approximately without bias when UATE or
PATE is the estimand. We establish this result as the
following proposition:

PROPOSITION 3. Conditional on w̄ = ∑m
k=1 wk/

m, the variances of ψ̂(w̃k) for estimating the UATE and

PATE are given by:

Varap(ψ̂(w̃k)) = 1

mw̄2 Varp(wkDk),

Varapu(ψ̂(w̃k)) = 1

mw̄2 [Ep{w2
k Varu(Dk)}

+ Varp{w̃kEu(Dk)}],
respectively, where Dk = ZkDk(1) + (1 − Zk)Dk(0)

and “p” represents the expectation with respect to
simple random sampling of matched-pairs of clusters.
Conditional on w̄, both variances can be estimated by
σ̂ (w̃k) without bias under their corresponding sam-
pling schemes.

See Appendix A.3 for a proof. The proposition
shows that when estimating PATE, the variance of
ψ̂(w̃k) is proportional to the sum of two elements: the
mean of within-cluster variances and the variance of
within-cluster means. If all units are included in each
cluster, then the first term will be zero because the
within-cluster means are observed without sampling
uncertainty, that is, Varu(Dk) = 0 for all k. In either
case, however, our proposed variance estimator σ̂ (w̃k)

is unbiased, conditional on the mean weight, w̄.

Inference. Given our proposed estimators and vari-
ances, we make statistical inferences by assuming that
ψ̂(w̃k) is approximately unbiased. We consider three
situations:

1. Many pairs. When the number of pairs is large (re-
gardless of the number of units within each clus-
ter), no additional assumption is necessary due to
the central limit theorem. For PATE and UATE, the
level α confidence intervals are given by [ψ̂(w̃k) −
zα/2

√
σ̂ (w̃k), ψ̂(w̃k) + zα/2

√
σ̂ (w̃k)] where zα/2

represents the critical value of two-sided level α

normal test. For the SATE and CATE, the confi-
dence level of this interval will be greater than or
equal to α.

2. Few pairs, many units. For CATE (and PATE),
the central limit theorem implies that Dk follows
the normal distribution. Since the weights are as-
sumed to be fixed for CATE, w̃kDk is also nor-
mally distributed. For the other three quantities,
we assume w̃kDk is normally distributed. In ei-
ther case, the level α confidence intervals are
given by [ψ̂(w̃k) − tm−1,α/2

√
σ̂ (w̃k), ψ̂(w̃k) +

tm−1,α/2
√

σ̂ (w̃k)], where tm−1,α/2 represents the
critical value of the one-sample, two-sided level α t-
test with (m− 1) degrees of freedom. For the SATE
and CATE, the confidence level of this interval will
be greater than or equal to α.
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3. Few pairs, few units. When little information is
available, a distributional assumption is required for
the inferences about all four quantities. We may
assume w̃kDk follows the normal distribution as
above and construct the confidence intervals and
conduct hypothesis tests based on t-distribution.

Finally, although it was once thought that the need
for, and inability to estimate, the intracluster corre-
lation coefficient (ICC) was a major disadvantage of
MPCR designs (Campbell, Mollison and Grimshaw,
2001; Klar and Donner, 1997; Donner, 1998), esti-
mates of the ICC are in fact not needed for our esti-
mators or their variances. Below, we also show that ef-
ficiency analysis, power comparisons and sample size
calculations can also be conducted without the ICC es-
timation.

4.4 Performance in Practice

We now study how our estimator and the harmonic
mean estimator work in practice. The results here also
motivate a combined approach to estimation we offer
in Section 4.5.

Confidence interval coverage. To construct realis-
tic simulations, we begin with the observed cluster-
specific mean for two out-of-pocket health expendi-
tures from the SPS evaluation data (measured in pesos)
and use this to set the potential outcomes’ true popu-
lation for the simulation. Finally, we generate the out-
come variables via independent normal draws for units
within clusters using a set of heterogeneous variances.
Thus, the existing harmonic mean estimator’s mean
and variance constancy assumptions are violated, as
is common in real data, although its normality and in-
dependence assumptions are maintained. (Replication
data are available in Imai, King and Nall, 2009.)

We study the properties of the proposed and existing
variance estimators with PATE or UATE as the esti-
mand. (As shown in Proposition 2, the CATE variance
is not identified and the expectation of our variance es-
timator equals a upper bound.) We generate a popula-
tion of clusters by bootstrapping the observed pairs of
SPS clusters along with their observed means and a set
of heterogeneous variances. We then compute cover-
age probabilities under both estimators where the arith-
metic and harmonic mean weights are used for the pro-
posed and existing estimators, respectively. We draw
from the discrete empirical distribution, which is far
from a Gaussian distribution, yielding a hard case for
both estimators. The left panels of Figure 1 summarize

the results. As expected due to the central limit theo-
rem, both sets of our 90% confidence intervals (solid
disks) approach their corresponding nominal cover-
age probabilities as the number of pairs increase. In
contrast, the confidence intervals based on the har-
monic mean variance estimator (open diamonds) are
biased—too wide in the top graph and too narrow in
the bottom—and the magnitude of bias does not de-
crease even as the number of pairs grows.

Standard error comparisons. We begin by comput-
ing the standard error (the square root of the estimated
variance) based on the general variance formula pro-
posed in Donner (1987), Donner and Donald (1987)
and Donner and Klar (1993), as well as the one based
on our approximately unbiased alternative. For compa-
rability, we use the arithmetic mean weights for both
standard error calculations. We make these computa-
tions for a large number of outcome variables from
the SPS evaluation survey conducted 10 months after
randomization. The outcome variables include some
which were binary (e.g., did the respondent suffer
catastrophic medical expenditures? Does our blood
test indicate that the respondent has high cholesterol?
Has the respondent been diagnosed with asthma?) and
others denominated in Mexican pesos (e.g., out-of-
pocket expenditures for health care, for drugs, etc.).
We then divided this standard error by our alternative
for each variable. The top right graph in Figure 1 gives
a smoothed histogram of these ratios (plotted on the
log scale but labeled in original units, with 1 the point
of equality). In these real data, the biased standard er-
rors range from about two times too small to two times
too large. Note that the central tendency of this his-
togram has no particular meaning, as it is constructed
from whatever questions happened to be asked on the
survey. The key point is that in real data the deviation
from the approximately unbiased estimator for any one
such standard error can be large in either direction.

Bias-variance tradeoff. Using data from an expendi-
ture outcome in the SPS sample, we simulate an in-
stance in which the variance of the existing estimator
outperforms our estimator. To distinguish between the
harmonic and arithmetic mean, we begin by setting all
within-pair cluster sizes equal to the size of the treat-
ment cluster in the SPS evaluation. Then, keeping the
total pair size constant, we increase the difference in
within pair cluster size such that the added difference in
cluster sizes is proportional to the within-pair treatment
effect. This leaves the average treatment effect constant
while demonstrating differences in the two weighting
schemes. The bottom right graph in Figure 1 presents
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FIG. 1. Inference Accuracy. Simulations in the left panels demonstrate how our estimator’s coverage is approximately correct and in-
creasingly so for larger sample sizes, while the existing estimator can yield confidence intervals that are either too large (top left) or too
small (bottom left). The top right panel uses real data to give the ratios of the harmonic mean standard error to our approximately unbiased
alternative on the horizontal axis (on the log scale, but labeled as ratios). The bottom right figure gives squared bias, MSE, and variance
comparisons as a function of the average cluster size ratio; a vertical line marks the observed heterogeneity in the SPS data.

the absolute difference between the two estimators in
mean square error, squared bias and variance, with the
observed SPS value marked with a vertical line.

The overall picture from these results indicates that
the arithmetic estimator would be preferred because it
has lower mean square error than the harmonic mean
estimator. However, at the expense of introducing bias
when treatment effect is both variable across pairs and
correlated with the cluster size, the harmonic mean es-
timator can have substantially lower variance. These
results suggest the possibility of an improved estimator
based on the combination of both approaches, a subject
to which we now turn.

4.5 An Encompassing, Model-Based Approach

The standard harmonic mean estimator is unbiased
when applied to data where the between-cluster ho-
mogeneity assumption holds. In this situation, the har-
monic mean weights also have the attractive property
of downweighting observations with worse matches
and larger variances, thereby reducing variance. If the
homogeneity assumption is violated, however, then one
cannot afford to downweight pairs, no matter how

badly matched or imprecisely measured, because doing
so could result in arbitrarily large biases. In contrast,
the arithmetic mean estimator avoids bias by making
no assumptions about the nature of how treatment ef-
fects vary over the pairs. However, a consequence of it
imposing no structure on treatment effect heterogene-
ity is that mismatched pairs are not downweighted and
so some inefficiency may result if in fact the treatment
effects are similar across pairs.

We now combine the insights of these two ap-
proaches and propose a single encompassing model
that provides some of the advantages of each, at the
cost of somewhat more stringent assumptions than
with our design-based approach. Consider data with
m∗ groups of clusters, where the homogeneity assump-
tion holds within each group. Assume that the clusters
within any one pair are never split between groups.
Let g(k) = l denote the group to which pair k belongs,
l = 1,2, . . . ,m∗ with m∗ ≤ m. Then, make the model-

ing assumption that Yijk(t)
i.i.d.∼ N (μ

(g(k))
t , σ̃ (g(k))) for

t = 0,1 where μ
(l)
t and σ̃ (l) are not necessarily equal

to μ
(l′)
t and σ̃ (l′) for l �= l′. Under this model, CATE
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equals,

ψC = 1

N

m∑
k=1

(N1k + N2k)
(
μ

(g(k))
1 − μ

(g(k))
0

)
.(10)

When the group membership is known ex ante, an
unbiased and efficient estimator of CATE is given by
replacing μ

(l)
k ≡ μ

(l)
1 −μ

(l)
0 with its harmonic mean es-

timate

μ̂
(l)
k =

m∑
k=1

1{g(k) = l}wkDk

/[
m∑

k′=1

1{g(k′) = l}wk′

]
,

where wk = n1kn2k/(n1k + n2k) and 1{·} represents
the indicator function. Thus, this mixture model esti-
mator is an arithmetic mean of within (homogeneous)
group harmonic mean estimators. A special case is the
harmonic mean estimator in the literature, where the
homogeneity assumption is made across all clusters,
that is, m∗ = 1. When every pair belongs to a differ-
ent group, that is, m∗ = m, this estimator approximates
our proposed design-based estimator. In many applica-
tions, the group membership as well as the number of
groups may be unknown. In this case, CATE may be
estimated via standard methods for fitting finite mix-
ture models (e.g., McLaughlan and Peel, 2000).

4.6 Cluster-Level Quantities of Interest

The eight quantities of interest defined in Sec-
tion 3.3—SATE, CATE, PATE and UATE, both with
and without interference—are all defined as aggrega-
tions of unit-level causal effects. For some purposes,
however, analogous quantities of interest can be de-
fined at the cluster level. For example, quantities of
interest in the SPS evaluation include the health clinic-
level variables. Some of these effects, such as the sup-
ply of drugs and doctors, are defined and measured at
the health clinic, and so are effectively unit-level vari-
ables amenable to cluster-level analyses.

However, for other variables, individual-level sur-
vey responses are required to measure the aggregate
variables. Examples include the success health clinics
in our experiment have in protecting privacy, reduce
waiting times, etc. If these latter variables are used to
judge the causal effect of SPS on the clinics, we have a
CR experiment, but a quantity of interest at the cluster
level. In this situation, our estimator is a special case
of equation (3), with a constant weight, ψ̂(1). Sim-
ilarly, the variance of this estimator is a special case
of our general formulation in equation (6), σ̂ (1). This
estimator for aggregate quantities is unbiased and in-
variant for all quantities of interest. In the case of unit-
level variables amenable to cluster-level analysis (such

as collected via survey), there will likely be sampling
error and so may result in a larger variance.

5. COMPARING MATCHED-PAIR AND OTHER
DESIGNS

We now study the relative efficiency and power
of the MPCR and unmatched cluster randomization
(UMCR) designs, and give sample size calculations for
MPCR. We also briefly compare MPCR with the strat-
ified design and discuss the consequences of loss of
clusters under each.

5.1 Unmatched Cluster Randomized Design

The UMCR design is defined as follows. Consider a
random sample of 2m clusters from a population. We
observe a total of nj units within the j th cluster in the
sample, and use n to denote the total number of units
in the sample, n = ∑2m

j=1 nj . Under this design, m ran-
domly selected clusters are assigned to the treatment
group with equal probability while the remaining m

clusters are assigned to the control group.
We construct an estimator analogous to that pro-

posed for the UMCR as

τ̂ (w̃j ) ≡ 2

n

2m∑
j=1

nj∑
i=1

w̃j

nj

{ZjYij − (1 − Zj)Yij }
(11)

= 2

n

2m∑
j=1

nj∑
i=1

w̃j

nj

{ZjYij (1) − (1 − Zj)Yij (0)},

where Zj is the randomized binary treatment variable,
Yij (t) is the potential outcome for the ith unit in the j th
cluster under the treatment value t for t = 0,1, and w̃j

is the known normalized weight with
∑2m

j=1 w̃j = n.
For SATE and UATE, we use w̃j = nj . For CATE and
PATE, we use w̃j ∝ Nj where Nj is the population
size of the j th cluster. Analysis similar to the one in
Section 4.2 shows that this estimator is unbiased for all
four quantities in UMCR experiments.

The commonly used estimator in the literature for
this design takes a form slightly different from equa-
tion (11): κ̂ ≡ ∑2m

j=1 Zj

∑nj

i=1 Yij /
∑2m

j=1 Zjnj +∑2m
j=1(1 − Zj)

∑nj

i=1 Yij /(n − ∑2m
j=1 Zjnj ). This es-

timator is applicable to SATE and UATE but not
CATE and PATE because it ignores cluster population
weights. The estimator is also biased for SATE and
UATE, and the magnitude of bias can be derived using
the Taylor series. Without modeling assumptions, the
exact variance calculation is difficult within the design-
based framework because the denominator as well as
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the numerator is a function of the randomized treat-
ment variable. In addition, the usual approximate vari-
ance calculations for such a ratio estimator yield either
the same variance as τ̂ (nj ) or the variance estimator
that is not invariant to a constant shift. Thus, for the
sake of simplicity, we focus on τ̂ (w̃j ) in this section
although κ̂ and its approximate variance estimator may
perform reasonably well in practice.

For the rest of this section, we assume that the esti-
mand is UATE. However, the same calculations apply
when the estimand is PATE since the variance estima-
tor is the same for both. For SATE and CATE, we can
interpret these results as conservative estimates of effi-
ciency, power and sample sizes.

5.2 Efficiency

When the estimand is UATE, the variance of τ̂ (w̃j )

is approximately (conditional on n = ∑2m
j=1 w̃j ) equal

to Varac(τ̂ (w̃j )) = 4m
n2 {Varc(w̃jYj (1)) + Varc(w̃j ·

Yj (0))}, where Yj (t) ≡ ∑nj

i=1 Yij (t)/nj for t = 0,1,
and the subscript “c” represents the simple random
sampling of clusters. To facilitate comparison, as-
sume that under MPCR one is able to match on clus-
ter sizes so that n1k = n2k for all k. Proposition 3
implies that under the same condition the variance
of ψ̂(w̃k) can be approximated by Varap(ψ̂(w̃k)) =
mVarp{w̃k(Yjk(1) − Yj ′k(0))}/n2, where Yjk(t) ≡∑njk

i=1 Yijk(t)/njk and j �= j ′. Since the assumption
of n1k = n2k means w̃jk = 2w̃j , we have
Varp(w̃kYjk(t)) = 4 Varc(w̃jYj (t)) for t = 0,1. Thus,
the relative efficiency of MPCR over UMCR is

Varac(τ̂ (w̃j ))

Varap(ψ̂(w̃k))

≈
{

1 − 2 Covp(w̃kYjk(1), w̃kYj ′k(0))∑1
t=0 Varp(w̃kYjk(t))

}−1

.

This implies that the relative efficiency of MPCR de-
pends on the correlation of the observed within-pair
cluster mean outcomes weighted by cluster sizes. If
matching induces a positive correlation, as is its pur-
pose and will normally occur in practice, then MPCR
is more efficient. (In the worst case scenario where
matching is implemented in a manner opposite to the
way it was designed, and thus induces a negative cor-
relation, MPCR can be less efficient.) Under MPCR,
we can estimate Covp(w̃kYjk(1), w̃kYj ′k(0)) without
bias using the sample covariance between w̃kYjk(1)

and w̃kYj ′k(0), which are jointly observed for each k.
And thus, under MPCR, the variance one would obtain
under UMCR can also be estimated without bias (see

also Imai, 2008). This is another advantage of MPCR
since the converse is not true. (If cluster sizes are equal,
one can also estimate the ICC nonparametrically and
separately for the treated and control groups—there is
no reason to assume the ICC is the same for two po-
tential outcomes as done in the literature. Note that the
ICC is not required for efficiency, power or sample size
calculations.)

Empirical evidence. Although the MPCR design
have other advantages in public policy evaluations
(King et al., 2007), their advantage in statistical effi-
ciency can be considerable. We estimate the efficiency
of MPCR as used in the SPS evaluation over the effi-
ciency that our experiment would have achieved, if we
had used complete randomization without matching.
Figure 2 plots the relative efficiency of our estimator
for MPCR over UMCR for UATE and for PATE. We do
this for our 14 outcome variables denominated in pe-
sos. For UATE, the estimator based on the MPCR is be-
tween 1.13 and 2.92 times more efficient, which means
that our standard errors would have been as much as√

2.92 = 1.7 times larger if we had neglected to pair
clusters first. The result is even more dramatic for esti-
mating PATE, for which the MPCR design for different
variables is between 1.8 and 38.3 times more efficient.
In this situation, our standard errors would have been as
much as six times larger if we had neglected to match
first.

5.3 Power

We now use the variance results in Section 4.3 to
calculate statistical power, that is, the probability of

FIG. 2. Relative efficiency of matched-pair over unmatched clus-
ter randomized designs in the SPS evaluation.
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rejecting the null if it is indeed false, for UATE and
PATE, which also represent the minimum power for
SATE and CATE, respectively.

5.3.1 Power calculations under the matched-pair
design. We begin with power calculation for UATE
given a null hypothesis of H0 :ψU = 0, the alterna-
tive hypothesis of HA :ψU = ψ , and the level α t-test.
In this setting, Proposition 3 implies the power func-

tion, 1 + Tm−1(−tm−1,α/2 | nψ/
√

mVarp{w̃kDk) −
Tm−1(tm−1,α/2 | nψ/

√
mVarp{w̃kDk}), where Tm−1(· |

ζ ) is the distribution function of the noncentral t dis-
tribution with (m − 1) degrees of freedom and the
noncentrality parameter ζ , and w̃k = n1k + n2k . For
UATE, we sample cluster pairs but not units within
each cluster. Thus, a simpler expression for the power
function results if we assume equal cluster sizes. In
that case, a researcher may reparameterize the power
function by normalizing ψ in terms of the standard de-
viation of within-pair mean differences, that is, dU ≡
ψ/

√
Var(Dk). Then, we write the power function as

1 + Tm−1
(−tm−1,α/2 | dU

√
m

)
(12)

− Tm−1
(
tm−1,α/2 | dU

√
m

)
.

Next, for PATE, we sample units within each cluster
as well as pairs of clusters. The null hypothesis is given
by H0 :ψP = 0 and the alternative is Ha :ψP = ψ .
Again, for simplicity, we assume n̄ = njk = n/(2m)

for all j and k. Then, Proposition 3 implies the power
function is of the same form as equation (12) except
that the noncentrality parameter is given by

ψ
√

m
/√√√√√ 2∑

j=1

Ep{w̃2
k Varu(Yijk)}

n̄
+ Varp(w̃kEu(Dk)),

where w̃k ∝ N1k + N2k . Similar to UATE, if popula-
tion clusters sizes are equal, we obtain a simpler power
function

1 + Tm−1

(
−tm−1,α/2

∣∣∣ dP

√
m√

1 + π/n̄

)
(13)

− Tm−1

(
tm−1,α/2

∣∣∣ dP

√
m√

1 + π/n̄

)
,

where, for UATE, ψ is normalized by the standard
deviation of the within-pair mean difference, dP ≡
ψ/

√
Varp{Eu(Dk)}, and π is the ratio of the mean

variances of the potential outcomes and the variance
of within-pair differences-in-means by the mean vari-
ances of the potential outcomes, π ≡ ∑2

j=1 Ep{Varu ·
(Yijk)}/Varp(Eu(Dk)).

5.3.2 Sample size calculations. We use the above
results to estimate the sample size required to achieve
a given precision in a future experiment under MPCR.
Suppose an investigator wishes to specify the desired
degree of precision in terms of Type I and Type II error
rates in hypothesis testing, denoted by α and β , respec-
tively. In particular, the goal is to calculate the sam-
ple size required to achieve a given degree of power,
1 − β , against a particular alternative (Snedecor and
Cochran, 1989, Section 6.14), using the power func-
tions just derived. For example, for UATE under equal
cluster sizes, and using equation (12), the desired num-
ber of cluster pairs is the smallest value of m such
that 1 + Tm−1(−tm−1,α/2 | dU

√
m) − Tm−1(tm−1,α/2 |

dU

√
m) ≥ 1 − β where dU ≡ ψ/

√
Var(Dk), α, and β

are specified by the researcher. Similarly, for PATE,
equation (13) is used to determine the number of pairs
and units within each cluster.

Empirical evidence. To illustrate, we use SPS eval-
uation data on the annualized out-of-pocket health care
expenditure that a household spent in the most recent
month. Using estimates of π and Varp{Eu(Dk)} from
the SPS data and equation (13), we calculate the mini-
mal absolute effect size for PATE that can be detected
using a two-sided t-test with size 0.95 and power 0.8,
for any given cluster size and number of cluster pairs.
Since the household is the unit of interest in this ex-
ample, our population count involves the number of
households per cluster, instead of the number of indi-
viduals.

In the left panel of Figure 3, horizontal axis is the
number of pairs and the vertical axis indicates the num-
ber of units within each cluster. The contour lines rep-
resent the minimum detectable size in pesos. The graph
shows that MPCR with 30 pairs and 100 units within
each cluster can detect the true absolute effect size of
approximately 450 pesos with the given precision. The
figure displays the obvious result that experiments with
more pairs or clusters, can detect smaller sized effects
(contour lines are labeled with smaller numbers as we
move to the top right of the figure). More importantly,
the nearly vertical contour lines (above 50 or so units
within each cluster) indicates that adding more pairs of
clusters adds more statistical power than adding more
units within each pair. However, adding one more pair
means that many more units will be added, and in some
situations sampling units within new clusters is more
expensive than within existing clusters. As such, the
exact tradeoff depends on the specifics of each appli-
cation, and it would be incorrect to conclude that more
clusters always dominates more units. (We discuss the
right panel of the figure next.)
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FIG. 3. Sample size calculations for PATE under MPCR. The left panel plots the smallest detectable absolute effect size of SPS on annual-
ized out-of-pocket expenditures (in pesos) using a 0.05 level two-sided test with power 0.95, with π estimated from SPS data. The horizontal
and vertical axes plot m and n̄, respectively. The right panel compares correlations with and without population weights between treatment
and control group cluster-specific means in SPS data. All but one variable has higher correlation when incorporating weights, as seen by a
dot below the 45◦ line. The graph also presents “break-even” correlations (indicated by dashed and dotted lines with and without weights,
respectively), which are the smallest possible correlations matching must induce in order for MPCR to detect smaller effect size than the
UMCR, given fixed power (0.8) and size (0.95). The graph suggests, when weights are appropriately taken into consideration, that MPCR
should be preferred (for all but possibly one variable) even when the number of pairs is as small as three.

5.3.3 Power comparison. Although MPCR is typ-
ically more efficient than UMCR regardless of sam-
ple size, Martin et al. [(1993), page 330] point out
that when the number of pairs is small (fewer than
about 10), “the matched design will probably have less
power than the unmatched design” due to the loss of
degrees of freedom. Here, we show that this conclu-
sion critically hinges on Martin et al.’s assumption of
equal cluster population sizes as well as their partic-
ular assumed parametric model relating the matching
and outcome variables. Modeling assumptions are al-
ways worrisome, but the equal cluster size assumption
is especially problematic because varying cluster sizes
is in fact a fundamental feature of numerous CR exper-
iments.

When cluster sizes are unequal, the efficiency gain
of matching in CR trials depends on the correlations of
weighted cluster means between the treatment and con-
trol clusters across pairs (with weights based on sam-
ple or population cluster sizes depending on the quan-
tity of interest), not the unweighted correlations used
in Martin et al.’s calculations. Since population cluster
sizes are typically observed prior to the treatment ran-
domization, researchers can incorporate this variable
into their matching procedure. As a result, correlations
of weighted outcomes (constructed from clusters with
matched weights) will usually be substantially higher

than those of unweighted outcomes; this is true even
when cluster sizes are independent of outcomes. Thus,
in CR trials with unequal cluster sizes, the efficiency
gain due to pre-randomization matching is likely to be
considerably greater than the equal cluster size case
considered by Martin et al. (1993). Any power compar-
ison must take this factor into consideration, and along
with the bias reduction, this is another reason to incor-
porate cluster sizes into one’s matching procedure.

Empirical evidence. The right panel of Figure 3 il-
lustrates the argument above using the SPS evalua-
tion data, by calculating the across-pair correlations be-
tween treatment and control cluster means of 67 out-
come variables (ranging from health related variables
to household health care expenditure variables), both
with and without weights. We use population cluster
sizes as weights, which were observed prior to the
randomization of the treatment and incorporated into
the matching procedure used (King et al., 2007). The
graph shows that all but one variable has consider-
ably higher correlations when weights are incorporated
(which does not make the equal cluster size assump-
tion) than when they are ignored (which assumes con-
stant cluster size); this can be seen by all but one of the
dots falling below the solid 45◦ line. In fact, the me-
dian of the correlations is more than three times larger
with (0.68) than without (0.20) weights. In their con-
clusion, Martin et al. [(1993), page 336] recommend
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that if the number of pairs is 10 or fewer, then match-
ing should be used only if researchers are confident that
the correlation due to matching is at least 0.2. Indeed,
all variables in SPS meet this criteria if the weights are
appropriately taken into account, the minimum corre-
lation with weights being 0.22. (If the correlations are
calculated incorrectly as they did without weights, then
only about half of the variables meet their criteria.)

To illustrate the above result in terms of power
and sample size calculations, the graph also presents
the “break-even” matching correlations (indicated by
dashed and dotted lines for correlations with and with-
out weights, respectively) that are used by Martin et
al. (1993), Section 7. As in the original article, we set
the power and size of the test to be 0.8 and 0.95, re-
spectively, and derive the smallest correlation matching
must induce in order for the matched-pair design to be
able to detect smaller effect sizes than the UMCR de-
sign. The result indicates that even with as few as three
pairs, more than 85% of the variables had a correlation
higher than the break-even point, which is 0.56. With
five pairs, all but one variable exceeds the threshold.

In contrast, if one ignores the weights, by incorrectly
assuming that the clusters are equally sized, as in Mar-
tin et al., then only 4% and 34% of the variables have
the correlations higher than the break-even correlations
of three and five pairs, respectively. Martin et al. (1993)
described the correlation of 0.25 as “difficult to achieve
by matching” (page 335). However, as the data from
SPS evaluation show, since one can match on cluster
sizes, the level of weighted correlations is much higher
when cluster sizes are different.

For another example, Donner and Klar [(2000b),
page 37] give the unweighted correlations from seven
different studies, only one of which is negative (0.49,
0.41, 0.13, 0.63, −0.32, 0.94 and 0.21). The correct
weighted correlations are not reported, but in all cases
would be higher, and in all likelihood all seven would
be positive.

Thus, by dropping the assumption that all clusters
are equally sized we have shown here that, for practi-
cal purposes, the matched pair design may well have
more statistical power than the UMCR design, even
for small samples. Of course, if one has fewer than
three matched pairs, it’s probably time to stop worrying
about the properties of statistical estimators and head to
the field to gather more data.

5.4 Lost Clusters, Stratified Designs and Causal
Heterogeneity

We now clarify four additional issues about MPCR
that have arisen. First, some recommend a stratified de-

sign, where units are matched in blocks of larger than
two. However, a stratified design is merely a UMCR
design operating within each stratum. If all units within
a stratum have identical values on important back-
ground covariates, then it is effectively equivalent to
MPCR. But if any heterogeneity on these covariates
or cluster sizes remain within strata, then the stratified
design may leave some efficiency on the table. Thus,
when feasible, switching from a stratified to an MPCR
design has the potential to greatly increase efficiency
and power.

Second, Donner and Klar [(2000a), page 40] explain
that a “disadvantage of the matched-pair design is that
the loss to follow-up of a single cluster in a pair implies
that both clusters in that pair must effectively be dis-
carded from the trial, at least with respect to testing the
effect of the intervention. This problem. . . clearly does
not arise if there is some replication of clusters within
each combination of intervention and stratum.” Indeed,
the loss of a single cluster from a stratum with more
than two clusters may make it possible to estimate the
causal effect within that stratum, but the missingness
process must be ascertained or assumed and some type
of imputation strategy (or other procedure; e.g., Wei,
1982) must be used, risking model dependence. These
are issues for both MPCR and stratified designs. Al-
ternatively, if a cluster is lost in an MPCR study, then
dropping the other member of the pair makes it pos-
sible to retain the benefits of randomization for SATE
or CATE defined in the remaining pairs—without los-
ing other observations, without imputation and possi-
ble model dependence, and regardless of the missing
data mechanism (King et al., 2007). In contrast, the
loss of a cluster in a UMCR design turns an experi-
mental study into an observational study requiring the
addition of ignorability assumptions which experimen-
talists normally try to avoid. The loss of a single cluster
within a stratum larger than two units means that more
than one cluster will need to be dropped in order to re-
tain the benefits of randomization, which may lead to
unnecessary efficiency losses.

Third is the claim that MPCR restricts “prediction
models to cluster-level baseline risk factors (for exam-
ple, cluster size)” (Donner and Klar, 2004). This sen-
tence has been widely interpreted to mean that pre-
diction models under MPCR cannot include baseline
risk factors, but Donner and Klar clearly intended it
to indicate (and confirmed to us that they meant) the
more straightforward point that cluster-level fixed ef-
fects cannot be included in regression models under
MPCR. Of course, results can be analyzed within strata
defined by any individual or cluster level variable, so
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long as it is pre-treatment. For example, the bottom two
rows of Table 3 repeat the same analysis as the top two
rows but only for male-headed households, a variable
measured only at the unit-level and used to separate
the sample at that level. (The results for each quantity
of interest in this case appear only slightly larger than
for the entire sample.) Regression models with fixed
effects for clusters are unidentified under MPCR, al-
though substituting in random effects is unproblematic,
at least for identification purposes.

Finally, Donner and Klar (2004) explain that MPCR
is to be faulted because of its “inability to test for ho-
mogeneity” of causal effects within a pair. And hy-
pothesis tests cannot be conducted for the difference
between two pairs. However, the causal effect is easy
to measure without bias or model dependence under
MPCR (but not under UMCR) at the pair level with-
out bias merely by taking the difference in means be-
tween the two clusters. This may be a noisy estimate
if matching quality is poor, but it serves as a useful
unbiased dependent variable for subsequent analyses.
We can see how it varies as a function of any vari-
able measured at the unit level and then aggregated to
the cluster-pair level, or measured directly at the aggre-
gate level from existing data, such as from census data.
Even hypothesis tests are possible if we pool pairs. For
example, since the point of SPS was to help poor fam-
ilies, we could examine whether the causal effect of
rolling out SPS on various outcome variables increases
as the wealth of an area drops. This can be done by a
simple plot of the pair-level causal effect by wealth, or
fitting a regression model.

6. METHODS FOR UNIT-LEVEL NONCOMPLIANCE

CR trials typically have imperfect treatment compli-
ance at the unit level. Some individuals in treatment
clusters refuse treatment while others in the control
cluster receive the treatment. Since most CR social ex-
periments, including the SPS evaluation, allow non-
compliance, analyses, in addition to ITT estimates,
may account for noncompliance and estimate the effect
of the program only for individuals who would adhere
to the experimental protocol. Thus, we now extend our
approach to CR trials under the MPCR encouragement
design, where the encouragement to receive a treat-
ment, rather than the receipt of the treatment itself, is
randomized at the cluster-level.

Angrist, Imbens and Rubin (1996) show how an in-
strumental variable method can be used to analyze
unit-randomized experiments with noncompliance un-
der individually randomized designs. We extend their

approach to MPCR experiments with unit-level non-
compliance. To complement the parametric Bayesian
approach to this problem (under the unmatched clus-
ter randomized design) by Frangakis, Rubin and Zhou
(2002), we consider a design-based analysis applying
the approach introduced in Section 4.

6.1 Causal Quantities of Interest

We consider the two types of causal quantities of
interest under MPCR encouragement designs—the
intention-to-treat (ITT) effect and the complier aver-
age causal effect (CACE) (Angrist, Imbens and Rubin,
1996). The ITT effect is the average causal effect of en-
couragement (rather than treatment) and is equivalent
to the various versions of the average treatment effect
in Section 3.3 (i.e., SATE, CATE, UATE and PATE,
with or without interference).

In contrast, the CACE estimand is the average treat-
ment effect (for SATE, CATE, UATE or PATE, with or
without interference) among compliers only. Compli-
ers are neither those merely observed to affiliate among
those in encouragement clusters nor those observed not
to affiliate in clusters not encouraged since the former
includes always-takers and the latter includes never-
takers. Note that always-takers (never-takers) are those
who always (never) take the treatment regardless of
whether or not they are encouraged. In addition, these
groups are defined as a consequence of the treatment.
Compliers are those who would affiliate only if they
were encouraged and would not affiliate only if they
were not encouraged, and so this group is defined prior
to the encouragement but its members are not com-
pletely observed. We propose a method that can be
used to estimate CACE.

6.2 Design and Notation

The setup is the same as Section 3.2 except that
Tjk represents whether the units in the j th cluster in
the kth pair are encouraged to receive the treatment
rather than whether it received the treatment. Recall
that T1k = Zk and T2k = 1 − Zk . Now, let Rijk(Tjk)

be the potential treatment receipt indicator variables
for the ith unit in the j th cluster of the kth pair un-
der the encouragement (Tjk = 1) and control (Tjk = 0)
conditions. The observed treatment variable is, then,
Rijk ≡ TjkRijk(1) + (1 − Tjk)Rijk(0). Similar to the
potential outcomes, these potential treatment variables
depend on cluster-level encouragement variable rather
than the unit-level encouragement variable, requiring
a different interpretation of the resulting causal ef-
fects. Finally, we write the potential outcomes as func-
tions of (cluster-level) randomized encouragement and
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actual receipt of treatment (at the unit-level),that is,
Yijk(Rijk, Tjk). This formulation makes the following
assumption, which an extension of Assumption 1:

ASSUMPTION 3 (No interference between units).
Let Rijk(T) be the potential outcomes for the ith unit
in the j th cluster of the kth matched-pair where T is
an (m × 2) matrix whose (j, k) element is Tjk . Fur-
thermore, let Yijk(R,T) be the potential outcomes for
the ith unit in the j th cluster of the kth matched-pair
where R is an (njk × m × 2) ragged array whose
(i, j, k) element is Rijk . Then:

1. If Tjk = T ′
jk , then Rijk(T) = Rijk(T′).

2. If Tjk = T ′
jk and Rijk = R′

ijk , then Yijk(R,T) =
Yijk(R′,T′).

In other words, this assumption requires that one per-
son’s decision to affiliate has no effect on any other
person’s outcomes within the same cluster; as such,
the requirements are more demanding than for the ITT
effects above. This assumption might be violated for
certain health outcomes in the SPS evaluation: if all
of one’s neighbors affiliate with SPS, the health care
they receive may reduce the prevalence of infectious
diseases and so might thereby improve that person’s
health outcomes (an example of “herd immunity”).
Relaxing this assumption thus remains an important
methodological issue that seems worthy of future re-
search.

The no interference assumption allows us to write
Rijk(T) = Rijk(Tjk) and Yijk(R,T) = Yijk(Rijk, Tjk).
Since T1k = Zk and T2k = 1 − Zk , both Rijk(Tjk) and
Yijk(Tjk) depend on Zk alone.

Extending the framework of Angrist, Imbens and
Rubin (1996) to CR trials, we make an exclusion re-
striction so that cluster-level encouragement affects the
unit-level outcome only through the unit-level receipt
of the treatment:

ASSUMPTION 4 (Exclusion restriction). Yijk(r,

0) = Yijk(r,1) for r = 0,1 and all i, j , and k.

These assumptions together simplify the problem by
enabling us to write the potential outcomes as func-
tions of Tjk (or Zk) alone, that is, Yijk(Rjk, Tjk) =
Yijk(Tjk).

Finally, following Angrist, Imbens and Rubin
(1996), we call the units with Rijk(Tjk) = Tjk com-
pliers (and denote them by Cijk = c), those with
Rijk(Tjk) = 1 always-takers (Cijk = a), those with
Rijk(Tjk) = 0 never-takers (Cijk = n), and the units
with Rijk(Tjk) = 1 − Tjk defiers (Cijk = d). The

monotonicity assumption excludes the existence of de-
fiers.

ASSUMPTION 5 (Monotonicity). There exists no
defier. That is, Rijk(1) ≥ Rijk(0) holds for all i, j, k.

In our Mexico evaluation, never-takers are those who
would not affiliate with SPS regardless of whether the
government encourages them to do so or not. Since
SPS was designed for the poor, many wealthy citizens
with their own preexisting health care arrangements
may be never-takers. We expected a substantial propor-
tion of the population to qualify as never-takers, and
in fact estimate them at 56%. Always-takers are those
who would affiliate with SPS regardless of assignment.
These are more uncommon, and would likely be the
poor without access to health care who nevertheless
have the information and financial resources neces-
sary to travel to the place to sign up for SPS and to
travel back to receive care. (The estimated proportion
of always-takers is only 7%.) The last type is defiers, or
people who would affiliate with SPS if not encouraged
to do so but would not affiliate if encouraged. Assum-
ing the absence of defiers seems reasonable.

6.3 Estimation

If we assume sampling of both pairs of clusters and
units within each cluster, then the ITT causal effect can
be defined as ψP . Thus, ψ̂(N1k + N2k) can be used
to estimate this ITT effect, and the approximately un-
biased estimation of its variance is possible using the
results given in Section 4.3.

Next, we consider population CACE. Under the as-
sumption of simple random sampling of both clus-
ters and units within each cluster, this estimand is de-
fined as γ ≡ EP (Y (1) − Y(0)|C = c) = EP (Y (1) −
Y(0))/EP (R(1) − R(0)), where the equality follows
from the direct application Angrist, Imbens and Rubin
(1996) to CR trials under the assumptions stated above.
If we only assume simple random sampling of clusters
as in UATE, then the expectation in γ is taken with
respect to the set U rather than P .

Thus, the instrumental variable estimator based on
the general weighted estimator in equation (3) is
γ̂ (wk) ≡ ψ̂(wk)/τ̂ (wk), where τ̂ (wk) is the estimator
of the ITT effect on the receipt of the treatment

τ̂ (wk) ≡ 1∑m
k=1 wk

·
m∑

k=1

wk

{
Zk

(∑n1k

i=1 Ri1k

n1k

−
∑n2k

i=1 Ri2k

n2k

)
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+ (1 − Zk)

·
(∑n2k

i=1 Ri2k

n2k

−
∑n1k

i=1 Ri1k

n1k

)}
.

When matching is effective or when cluster sizes are
equal within each matched-pair, this estimator is con-
sistent and approximately unbiased. Using a Taylor se-
ries expansion, the variance of this estimator can be
approximated by

Varapu(γ̂ (wk))

≈ 1

{Eapu(τ̂ (wk))}4

· [{Eapu(τ̂ (wk))}2 Varapu(ψ̂(wk))
(14)

+ {Eapu(ψ̂(wk))}2 Varapu(τ̂ (wk))

− 2Eapu(ψ̂(wk))Eapu(τ̂ (wk))

· Covapu(ψ̂(wk), τ̂ (wk))],
where if simple random sampling of pairs of clusters
alone is assumed, then the subscript “apu” (for assign-
ment, pairs, and units) is replaced with “ap.” Further-
more, the argument given in Section 4.3 implies, for
example, that the variance of γ̂ (w̃k) for estimating the
sample CACE is on average less than the variance for
the population CACE given in equation (14).

Finally, Proposition 3 shows how to estimate
Varapu(ψ̂(wk)), Varapu(τ̂ (wk)) (or Varap(ψ̂(wk)) and
Varap(τ̂ (wk))) approximately without bias. Thus, we
only need an estimate of the covariance between of
ψ̂(wk) and τ̂ (wk) from the observed data. Using the
normalized weights w̃k , Appendix A.5 proves that the
following estimator is approximately unbiased for both
Covapu(ψ̂(wk), τ̂ (wk)) and Covpu(ψ̂(wk), τ̂ (wk)) un-
der their respective sampling assumptions:

ν̂(w̃k)

≡ m

(m − 1)n2

·
m∑

k=1

[
w̃k

{
Zk

(∑n1k

i=1 Yi1k

n1k

−
∑n2k

i=1 Yi2k

n2k

)
+ (1 − Zk)

·
(∑n2k

i=1 Yi2k

n2k

−
∑n1k

i=1 Yi1k

n1k

)}

− nψ̂(w̃k)

m

]

·
[
w̃k

{
Zk

(∑n1k

i=1 Ri1k

n1k

−
∑n2k

i=1 Ri2k

n2k

)

+ (1 − Zk)

(∑n2k

i=1 Ri2k

n2k

−
∑n1k

i=1 Ri1k

n1k

)}

− nτ̂ (w̃k)

m

]
.

7. SEGURO POPULAR EVALUATION

We now estimate the causal effect of SPS on the
probability of a household suffering catastrophic health
expenditures (out-of-pocket health care expenditures
totaling more than 30% of a household’s annual post-
subsistence or disposable income). As nearly 10% of
households suffer catastrophic health expenditures in a
year, it is easy to see why this would be a major pri-
ority. We estimate all four target population quantities
of interest (SATE, CATE, UATE, and PATE) both for
the intention to treat (ITT) effect of encouragement to
affiliate an the average causal effect among compliers
(CACE). Although in most applications, substantive
interest would narrow this list to one or a few of these
quantities, for our methodological purposes we present
all eight estimates (and standard errors) in Table 3.

A table like this will always have some of the same
features, no matter what variable is analyzed. Recall,
for example, that point estimates of SATE and UATE
are the same, as they are for CATE and PATE. In addi-
tion, standard errors of UATE and PATE are the upper
bounds of the standard errors for SATE and CATE, re-
spectively. CACE estimates of course are never smaller
than those for ITT.

For the specific estimates, consider first the two top
lines of Table 3 corresponding to all households. For
these data, the CACE estimates are about 2.7 times
larger than that for ITT. The large difference is be-
cause of all those who had preexisting health care and
so were largely never-takers. Overall, these results in-
dicate that SPS was clearly successful in reducing the
most devastating type of medical expenditures. The
differences among the columns indicate that the aver-
age causal effect of encouragement to affiliate to SPS
(the ITT effect) is somewhat larger in the population of
individuals represented by our sample (−0.023) than
among the individuals we directly observe (−0.014).
The same is also true among compliers, but at a higher
level (−0.038 vs. −0.064).

Substantively, these numbers are quite large. Since
those who suffer from catastrophic health expenditures
are mostly the poor without access to health insurance,
they are likely to be disproportionately represented
among compliers as compared to the wealthy with pre-
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TABLE 3
Estimates of eight causal effect of SPS on the probability of catastrophic health expenditures for all households and male-headed

households (standard errors in parentheses)

SATE CATE UATE PATE

All ITT −0.014 (≤ 0.007) −0.023 (≤ 0.015) −0.014 (0.007) −0.023 (0.015)
CACE −0.038 (≤ 0.018) −0.064 (≤ 0.024) −0.038 (0.018) −0.064 (0.024)

Male-headed ITT −0.016 (≤ 0.008) −0.025 (≤ 0.018) −0.016 (0.008) −0.025 (0.018)
CACE −0.042 (≤ 0.020) −0.070 (≤ 0.031) −0.042 (0.020) −0.070 (0.031)

existing health care arrangements. As such, this analy-
sis indicates that the causal effect of rolling out the
policy reduces by about 23% the proportion of those
who experience catastrophic expenditures (i.e., −0.023
of the 10% with catastrophic expenditures). (Detailed
analyses of these and other substantive results from the
SPS evaluation appear in King et al., 2009.)

8. CONCLUDING REMARKS

The methods developed here are designed for re-
searchers lucky enough to be able to randomize treat-
ment assignment, but stuck because of political or
other constraints with having to randomize clusters
of individuals rather than the individuals themselves.
Field experiments in particular frequently require clus-
ter randomization. Individual-level randomization was
impossible in our evaluation of the Mexican SPS pro-
gram; in fact, negotiations with the Mexican govern-
ment began with the presumption that no type of ran-
domization would be politically feasible, but it eventu-
ally concluded by allowing cluster-level randomization
to be implemented.

When clusters of individuals are randomized rather
than the individuals themselves, the best practice
should involve three steps. First, researchers should
choose their causal quantity of interest, as defined
in Section 3.3. They should then identify available
pre-treatment covariates likely to affect the outcome
variable, and, if possible, pair clusters based on the
similarity of these covariates and cluster sizes; this
step is severely underutilized and, when feasible, will
translate into considerable research resources saved
and numerous observations gained. Finally, researchers
should randomly choose one treated and one control
cluster within each pair. Claims in the literature about
problems with matched-pair cluster randomization de-
signs are misguided: clusters should be paired prior to
randomization when considered from the perspective
of efficiency, power, bias or robustness.

Of course, administrative, political, ethical and other
issues will sometimes constrain the ability of re-
searchers to pair clusters prior to randomization. With
the results and new estimators offered here, the effort
in the design of cluster-randomized experiments can
now shift from debates about when pairing is useful to
practical discussions of how best to marshal creative
arguments and procedures to ensure that clusters can
more often be paired prior to randomization.

Cornfield [(1978), pages 101–102] concludes his
now classic study by writing that “Randomization
by cluster accompanied by an analysis appropriate
to randomization by individual is an exercise in self-
deception, . . . and should be avoided,” and an enor-
mous literature has grown in many fields echoing this
warning. We can now add that randomization by cluster
without prior construction of matched pairs, when pair-
ing is feasible, is an exercise in self-destruction. Failing
to match can greatly reduce efficiency, power and ro-
bustness, and is equivalent to discarding a large portion
of experimental data or wasting grant money and inves-
tigator effort. This result should affect practice, espe-
cially in literatures like political science where exper-
imental analyses routinely use cluster-randomization
but examples of matched-pair designs have almost
never been used, as well as community consensus
recommendations for best practices in the conduct
and analysis of cluster-randomized experiments, which
closely follow prior methodological literature. These
include the extension to the “CONSORT” agreement
among the major biomedical journals (Campbell, El-
bourne and Altman, 2004), the Cochrane Collabora-
tion requirements for reviewing research (Higgins and
Green, 2006, Section 8.11.2), the prominent Medical
Research Council (2002) guidelines, and the educa-
tion research What Works Clearinghouse (2006). Each
would seem to require crucial modifications in light of
the results given here.
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APPENDIX A: MATHEMATICAL APPENDIX

A.1 Proof of Proposition 1

This proof uses a strategy similar to that of Proposi-
tion 1 of Imai (2008). First, rewrite σ̂ (w̃k) as

(m − 1)n2

m
σ̂(w̃k)

=
m∑

k=1

[
w̃k{ZkDk(1) + (1 − Zk)Dk(0)}

− 1

m

m∑
k′=1

w̃k′ {Zk′Dk′(1)

+ (1 − Zk′)Dk′(0)}
]2

= m − 1

m

m∑
k=1

w̃2
k{ZkDk(1)2 + (1 − Zk)Dk(0)2}

− 1

m

m∑
k=1

∑
k′ �=k

w̃kw̃k′ {ZkZk′Dk(1)Dk′(1)

+ Zk(1 − Zk′)Dk(1)Dk′(0)

+ (1 − Zk)Zk′Dk(0)Dk′(1)

+ (1 − Zk)(1 − Zk′)Dk(0)

· Dk′(0)}.
Assumption 2 implies Ea(Zk) = 1/2 and Ea(ZkZk′) =
1/4 for k �= k′. Thus, taking expectations over Zk and
rearranging, gives

Ea(σ̂ (w̃k))

= 1

2n2

{
m∑

k=1

w̃2
k

(
Dk(1)2 + Dk(0)2)

− 1

2(m − 1)

m∑
k=1

∑
k′ �=k

w̃kw̃k′(15)

· (
Dk(1) + Dk(0)

)
· (

Dk′(1) + Dk′(0)
)}

.

Finally, we compare this with the true variance expres-
sion in (7): Ea(σ̂ (w̃k)) − Vara(ψ̂(w̃k)), which equals

1

4n2

{
m∑

k=1

w̃2
k{Dk(1) + Dk(0)}2

− 1

m − 1

m∑
k=1

∑
k′ �=k

w̃kw̃k′
(
Dk(1) + Dk(0)

)

· (
Dk′(1) + Dk′(0)

)}

= m

4n2 var
{
w̃k

(
Dk(1) + Dk(0)

)}
.

This bias term is not identifiable because Dk(1) and
Dk(0) are not jointly observed for any k, implying that
the variance is not identifiable either.

A.2 Proof of Proposition 2

Applying the law of iterated expectations to equa-
tion (15), we have

Eau(σ̂ (w̃k))

= 1

2n2

[
m∑

k=1

w̃2
kEu{Dk(1)2 + Dk(0)2}

− 1

2(m − 1)
(16)

·
m∑

k=1

∑
k′ �=k

w̃kw̃k′Eu

(
Dk(1) + Dk(0)

)

· Eu

(
Dk′(1) + Dk′(0)

)]
,

where the equality follows from the assumption that
sampling of units is independent across clusters. To-
gether with the definition of Varau(ψ̂(w̃k)) given
above, we have

Eau(σ̂ (w̃k)) − Varau(ψ̂(w̃k))

= 1

4n2

[
m∑

k=1

w̃2
k

{
Eu

(
Dk(1)2 + Dk(0)2)

− Varu(Dk(1)) − Varu(Dk(0))

+ 2Eu(Dk(1))Eu(Dk(0))
}

− 1

m − 1

·
m∑

k=1

∑
k′ �=k

w̃kw̃k′Eu

(
Dk(1) + Dk(0)

)

· Eu

(
Dk′(1) + Dk′(0)

)]

= m

4n2 var
{
w̃kEu

(
Dk(1) + Dk(0)

)}
.

Since we do not observe Dk(1) and Dk(0) jointly, this
variance is not identified.
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A.3 Proof of Proposition 3

Since UATE is a special case of PATE where all
units within each cluster are observed (njk = Njk),
we first derive the variance of ψ̂(w̃k) for PATE. Let
D̃k(t) = wkDk(t), μ̃k(t) = Eu(D̃k(t)), and η̃k(t) =
Varu(D̃k(t)) for t = 0,1. Then, randomizing the or-
der of clusters within each pair implies Ec(η̃k) =
Ec(η̃k(1)) = Ec(η̃k(0)) and Varc(μ̃k) = Varc(μ̃k(1)) =
Varc(μ̃k(0)). Then, the variance is

Varapu(ψ̂(w̃k))

= 1

2mw̄2 Ep

[
Varu(D̃k(1)) + Varu(D̃k(0))

+ 1

2

{
Eu

(
D̃k(1) − D̃k(0)

)}2
]

+ 1

4mw̄2 Varp
(
Eu

(
D̃k(1) + D̃k(0)

))
= 1

mw̄2 {Ep(η̃k) + Varp(μ̃k)}.

When the estimand is UATE, η̃k = 0 for all k since
within-cluster means are observed without sampling
variability. Thus, Varapu(ψ̂(w̃k)) = Varp(μ̃k)/(mw̄2).

Next, we show that σ̂ (w̃k) is approximately unbiased
by applying the law of iterated expectations to Equa-
tion (16):

Eapu(σ̂ (w̃k))

= 1

2mw̄2

[
Ep

{
w2

kEu

(
Dk(1)2 + Dk(0)2)}

− 1

2

[
Ep

{
wkEu

(
Dk(1) + Dk(0)

)}]2
]

= 1

mw̄2 [Ep{Varu(D̃k)} + Varp(μ̃k)],

where Eu(D
2
k ) = Eu(Dk(0)2) = Eu(Dk(1)2) holds be-

cause the order of clusters within each pair is random-
ized. For PATE, Varu(Dk) = 0 for all k since within-
cluster means are observed without sampling uncer-
tainty. Thus, Eap(σ̂ (w̃k)) = Varp(μ̃k)/(mw̄2).

A.4 Properties of the Harmonic Mean Estimator
and Standard Error

Modeling assumptions. The harmonic mean esti-
mator, with weights based on the harmonic mean of
sample cluster sizes wk = n1kn2k/(n1k + n2k), stems
from the weighted one-sample t-test for the differ-

ence in means: Dk
indep.∼ N (μ, (wk/

∑m
k′=1 wk′)−1σ)

for k = 1,2, . . . ,m where wk is the known harmonic
mean weight. In our context, Dk is the observed
within-pair mean difference, that is, Dk ≡ ZkDk(1) +
(1 − Zk)Dk(0) where Dk(1) ≡ ∑n1k

i=1 Yi1k(1)/n1k −∑n2k

i=1 Yi2k(0)/n2k and Dk(0) ≡ ∑n2k

i=1 Yi2k(1)/n2k −∑n1k

i=1 Yi1k(0)/n1k . It is well known that under this
model,

∑m
k=1 wkDk/

∑m
k′=1 wk′ is the uniformly mini-

mum variance unbiased estimator.
Although the derivation of this model is not dis-

cussed in the cluster randomization literature, a model
commonly used in the statistics literature for other pur-
poses gives rise to these weights (see e.g., Kalton,

1968): Yijk(t)
i.i.d.∼ N (μt , σ̃ ) for t = 0,1 where σ̃ =

σ
∑m

k=1 wk and
∑m

k=1 wk is a known constant since wk

is assumed fixed. The normality assumption is not nec-
essary for some inferential purposes, but this model
does require (1) independent and identical distributions
across units within each cluster as well as (2) across
clusters and pairs (which of course implies constant
means and variances within and across clusters and
pairs) and (3) equal variances for the two potential out-
comes. In sum, the model assumes homogeneity within
and across matched-pairs. [Although we focus on the
t-test here, for binary outcomes the suggested approach
in the literature is also based on a homogeneity as-
sumption where the odds ratio is assumed constant
across clusters; see, e.g., Donner and Donald (1987);
Donner and Hauck, (1989).]

Bias conditions. The harmonic mean weight differs
from our proposed weight in three ways. First, it gives
more weight to pairs with well-matched cluster sizes
than to pairs whose cluster sizes are unbalanced. That
is, if we assume the sum n1k + n2k is fixed, the har-
monic mean is the largest when n1k = n2k and becomes
smaller as n1k − n2k increases. Second, and most im-
portantly, this weight does not remove the bias when
within-cluster average treatment effects are identical
within pairs (so long as heterogeneity across matched-
pairs remains), meaning that bias may remain even
when matching is effective. (The direction of the bias
depends on the data.) One condition under which it is
unbiased is with exact matching on sample cluster sizes
(i.e., n1k = n2k for all k), in which case this estimator
coincides with our proposed estimator. Finally, since
the weight is based on sample cluster sizes, this esti-
mator is not valid for estimating CATE or PATE. When
its assumptions hold, the harmonic mean estimator is
uniformly minimum variance unbiased, and is clearly
useful in those circumstances.
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Bias in the variance estimator. We show here that
the variance estimator proposed in the literature (see,
e.g., Donner, 1987; Donner and Donald, 1987; Don-
ner and Klar, 1993) may be biased regardless of choice
of weights and the direction of bias is indeterminate.
A condition under which this variance estimator is un-
biased (and approximately equal to ours) is when m is
large and the weights are identical across pairs, which
is uncommon in practice. We first write this estimator
using our notation:

δ̂(w̃k) ≡
∑m

k=1 w̃2
k

n3

·
m∑

k=1

w̃k

{
Zk

(∑n1k

i=1 Yi1k

n1k

−
∑n2k

i=1 Yi2k

n2k

)
+ (1 − Zk)(17)

·
(∑n2k

i=1 Yi2k

n2k

−
∑n1k

i=1 Yi1k

n1k

)

− ψ̂(w̃k)

}2

.

Next, we rewrite δ̂(w̃k) as

n3∑m
k=1 w̃2

k

δ̂(w̃k)

=
m∑

k=1

w̃k

[
ZkDk(1) + (1 − Zk)Dk(0)

− 1

n

m∑
k′=1

w̃k′ {Zk′Dk′(1)

+ (1 − Zk′)Dk′(0)}
]2

=
m∑

k=1

w̃k

[
ZkDk(1)2 + (1 − Zk)Dk(0)2

− 2

n

m∑
k′=1

w̃k′ {ZkDk(1)

+ (1 − Zk)Dk(0)}
· {Zk′Dk′(1)

+ (1 − Zk′)Dk′(0)}

+ 1

n2

m∑
k′=1

m∑
k′′=1

w̃2
k′w̃2

k′′

· {Zk′Dk′(1)

+ (1 − Zk′)Dk′(0)}

· {Zk′′Dk′′(1)

+ (1 − Zk′′)Dk′′(0)}
]
.

Taking the expectation with respect to Zk , Ea(δ̂(w̃k)),
gives∑m

k=1 w̃2
k

2n3

m∑
k=1

{(
1 − w̃k

n

)
w̃k

(
Dk(1)2 + Dk(0)2)

− 1

2n

m∑
k=1

∑
k′ �=k

w̃kw̃k′
(
Dk(1) + Dk(0)

)

· (
Dk′(1) + Dk′(0)

)}
.

Comparing this expression with Ea(σ̂ (w̃k)) in equa-
tion (15) shows a difference which remains even after
taking the expectation with respect to simple random
sampling of pairs of clusters or units within clusters.
Since σ̂ (w̃k) is an approximately unbiased estimate of
the variance for UATE and PATE, δ̂(w̃k) may be bi-
ased.

A.5 Covariance Estimation

This Appendix derives unbiased estimates of
Covauc(ψ̂(w̃k), τ̂ (w̃k)) and Covac(ψ̂(w̃k), τ̂ (w̃k)) us-
ing the proofs in Propositions 1–3. First, we derive
the true covariance between ψ̂(w̃k) and τ̂ (w̃k). De-
fine Gk(1) = ∑n1k

i=1 Ri1k(1)/n1k − ∑n2k

i=1 Ri2k(0)/n2k

and Gk(0) = ∑n2k

i=1 Ri2k(1)/n2k − ∑n1k

i=1 Ri1k(0)/n1k .
Taking the expectation of with respect to Zk yields:
Cova(ψ̂(w̃k), τ̂ (w̃k)) = 1

n2

∑m
k=1 w̃2

k(Dk(1) − Dk(0)) ·
(Gk(1) − Gk(0)). Then, we have

Covap(ψ̂(w̃k), τ̂ (w̃k))

= Ep{Cova(ψ̂(w̃k), τ̂ (w̃k))}
+ Covp{Ea(ψ̂(w̃k)),Ea(τ̂ (w̃k))}

= 1

mw̄2 Covp(D̃k, G̃k),

where G̃k(t) = wkGk(t) for t = 0,1, and the last
equality follows from the fact that Ep(D̃k) =
Ep(D̃k(t)), Ep(G̃k) = Ep(G̃k(t)) and Ep(D̃kG̃k) =
Ep(D̃k(t)G̃k(t)) for t = 0,1. Similarly,

Covau(ψ̂(w̃k), τ̂ (w̃k))

= Eu{Cova(ψ̂(w̃k), τ̂ (w̃k))}
+ Covu{Ea(ψ̂(w̃k)),Ea(τ̂ (w̃k))}
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= 1

2w̄2

m∑
k=1

[
Covu(D̃k(1), G̃(1))

+ Covu(D̃k(0), G̃k(0))

+ 1

2
{Eu(D̃k(1)) − Eu(D̃k(0))}

· {Eu(G̃k(1)) − Eu(G̃k(0))}
]
.

And thus,
Covapu(ψ̂(w̃k), τ̂ (w̃k))

= 1

mw̄2

[
Covu(D̃k, G̃k)

+ 1

4
Ep{Eu(D̃k(1)) − Eu(D̃k(0))}

· {Eu(G̃k(1)) − Eu(G̃k(0))}
+ 1

4
Covp{Eu(D̃k(1) + D̃k(0)),

Eu(G̃k(1) + G̃k(0))}
]

= 1

mw̄2

[
Ep{Covu(D̃k, G̃k)}

+ Covp{Eu(D̃k),Eu(G̃k)}
]
.

Then, calculations analogous to the ones above shows
that Eap(ν̂(w̃k)) = Covap(ψ̂(w̃k), τ̂ (w̃k)) and
Eapu(ν̂(w̃k)) = Covapu(ψ̂(w̃k), τ̂ (w̃k)).
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