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Strategy abundance in 2 × 2 games for arbitrary mutation rates
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a Program for Evolutionary Dynamics, Harvard University, Cambridge MA 02138, USA

b Max-Planck-Institute for Evolutionary Biology, 24306 Plön, Germany

Abstract
We study evolutionary game dynamics in a well-mixed populations of finite size, N. A well-mixed
population means that any two individuals are equally likely to interact. In particular we consider
the average abundances of two strategies, A and B, under mutation and selection. The game dynamical

interaction between the two strategies is given by the 2 × 2 payoff matrix . It has previously
been shown that A is more abundant than B, if a(N ! 2) + bN > cN + d(N ! 2). This result has been
derived for particular stochastic processes that operate either in the limit of asymptotically small
mutation rates or in the limit of weak selection. Here we show that this result holds in fact for a wide
class of stochastic birth-death processes for arbitrary mutation rate and for any intensity of selection.

Keywords
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1 Introduction
Evolutionary dynamics describe how successful strategies spread in a population through
genetic reproduction or cultural imitation. In mutation-selection processes where the fitness of
each individual is constant, the competition between two types A and B is straightforward. If
both fitness values are identical, then we have neutral evolution (Kimura, 1968) and the average
abundances of A and B are the same. (Throughout the paper we assume symmetric mutation
rates: the mutation probability from A to B is the same as from B to A.) If A is fitter than B,
then A is more abundant than B in the mutation selection equilibrium. Thus, for constant
selection the comparison of the abundances of the two types is trivial.

For frequency dependent selection, where fitness depends on the types and abundances of
others, the situation is more complex. One way to model these systems are evolutionary games,
where the reproductive success of individuals depends on their payoff derived from interaction
with others (Maynard Smith and Price, 1973; Maynard Smith, 1982; Weibull, 1995;
Samuelson, 1997; Hofbauer and Sigmund, 1998; Fudenberg and Tirole, 1998; Hofbauer and
Sigmund, 2003; Nowak and Sigmund, 2004; Szabó and Fáth, 2007; Sandholm, 2007). In the
simplest case, interactions are described by a 2 × 2 payoff matrix,
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Here, an A individual obtains a from other A individuals, but b from B individuals. Similarly,
B obtains c from A, and d from other B individuals.

For a > c and b > d, strategy A dominates strategy B: Regardless of the composition of the
population, strategy A has the higher payoff. Thus, evolutionary dynamics will always lead to
a population with more A individuals than B individuals. Equivalently, for a < c and b < d,
strategy B dominates. In this case, the average abundance of B will be higher than the average
abundance of A at the mutation-selection equilibrium.

For a > c and b < d, both strategies are best replies to themselves. This is a ‘coordination game’.
In a population of mostly A individual, rare B mutants have a lower payoff. In a population of
mostly B individuals, rare A mutants have a lower payoff. Therefore, in a mutation selection
process it is not a priori clear whether strategy A or strategy B will be more abundant at the
equilibrium distribution. Two concepts are important: (i) pareto efficiency and (ii) risk-
dominance. Strategy A is Pareto efficient if a > d. In this case, an all-A population has a higher
average payoff than an all-B population. Strategy A is risk-dominant if a + b > c + d (Harsanyi
and Selten, 1988). In this case, strategy A has a larger basin of attraction than strategy B. In a
game between two players, if I do not know what the other person will do, it is less risky for
me to choose the risk dominant strategy, but it would be more rewarding for both of us to
choose the Pareto efficient strategy. A coordination game is especially interesting, if the risk-
dominant strategy is not Pareto efficient.

(Kandori et al., 1993) have shown that A is chosen over B if a(N ! 2) + bN > cN + d(N ! 2).
This means a large population selects the risk dominant equilibrium in the long run. They
analyze a process which is stochastic in the generation of mutants, but deterministic in
following the gradient of selection. Their calculation assumes asymptotically small mutation
rates, but holds for a wide range of evolutionary processes, in contrast to previous approaches
that make specific assumptions on the source of noise (Foster and Young, 1990; Fudenberg
and Harris, 1992). However, since the dynamics follows the gradient of selection, the processes
can only leave a Nash equilibrium if a sufficient number of mutations occurs simultaneously.
In large populations, it is very unlikely that this happens, and the time until the population
moves from one equilibrium to another becomes exponentially large in N.

If the dynamics is stochastic, a single mutation can be sufficient to leave a Nash equilibrium.
Nowak et al. (2004) have studied the competition of two strategies A and B in a frequency
dependent Moran process (and similar processes) which model fully stochastic evolutionary
dynamics. This means that the selection steps are stochastic. They have shown that the fixation
probability of A is greater than that of B if and only if a(N ! 2)+bN > cN +d(N ! 2). This
calculation assumes weak selection in a process with selection only. The result is also valid
for stronger intensities of selection, if we use the pairwise comparison process (Szabó and
T"ke, 1998; Traulsen et al., 2007) or a slightly modified version of the Moran process for
evolutionary updating (Traulsen et al., 2008).

Here, we extend these results to both arbitrary mutation rates and arbitrary intensities of
selection. We show that A is more abundant than B in the mutation-selection distribution for a
wide range of stochastic processes for any mutation rate and any intensity of selection if and
only if a(N ! 2) + bN > cN + d(N ! 2). Higher mutation rates seem to be very relevant for social
evolution, because humans (and higher animals) tend to try new strategies fairly often. We
therefore expect that evolutionary dynamics in the cultural learning and imitation context
operate under fairly high mutation (=‘exploration’) rates. We also show that the condition holds
for any payoff matrix, not only for coordination games.
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2 Pairwise comparison process
The payoffs of A and B in a population of j individuals of type A and N ! j individuals of type
B are

!$#

Each individual interacts with N ! 1 other individuals. The payoff difference #!(j) is a linear
function of j

!%#

First, we need to specify how strategies spread in the population, depending on their payoffs.
We adopt the following process: a random (focal) individual i is selected. It compares its payoff
!i to the payoff !j of a randomly chosen role model, individual j, and takes over the strategy
of that individual with probability [1 + e"(!i!!j)]!1 (Blume, 1993; Szabó and T"ke, 1998;
Traulsen et al., 2007; Sandholm, 2007). This process occurs with probability 1!µ. With
probability µ, a mutation occurs and the focal individual produces an offspring with random
strategy, A or B. The quantity " determines the intensity of selection (0 $ " < %). Strong selection
(large ") means that the probability to adopt a better strategy approaches one, and the
probability to adopt an inferior strategy vanishes. For weak selection (small "), these two
probabilities are close to 1/2. The transition probabilities to increase or decrease the number
of A players by one, are given by

!&#

With these transition probabilities, we can determine whether A is more abundant than B or
vice versa. Before discussing the problem for general mutation rates we first consider the
special case of low mutation rates, because of its importance in previous papers (Kandori et
al., 1993; Nowak et al., 2004; Taylor et al., 2004; Imhof and Fudenberg, 2006). We will also
present a simple approximation for very high mutation rates, which illustrates the dynamics in
this extreme limit.

2.1 Low mutation rates
First, we consider low mutation rates, µ 'N!2. In this limit, a mutation reaches extinction or
fixation before a second mutation arises. Thus, the important quantity is the probability that a
single mutant takes over the population in a process without mutations (Nowak et al., 2004;
Taylor et al., 2004; Imhof and Fudenberg, 2006; Antal and Scheuring, 2006). The ratio of the
fixation probability #A of a single A player and that of a single B player can be written as
(Karlin and Taylor, 1975; Nowak, 2006)
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!(#

Without mutations, µ = 0, the ratio of the transition probabilities (4), simplifies to

 (Traulsen et al., 2006,2007). Thus, #B/#A reduces to

!)#

Therefore, #A = #B is equivalent to

!*#

From the payoff matrix (2) it is clear, that strategy A is favored whenever a or b increases, or
c or d decreases. Therefore, A is more abundant than B if

!+#

This condition has been derived previously in the low mutation limit for different evolutionary
processes (Kandori et al., 1993; Nowak, 2006; Traulsen et al., 2008). The strategy with the
higher fixation probability is the more abundant one, because more of its mutants reach fixation.
Thus for low mutation rates, A has a higher abundance than B whenever condition (8) is
fulfilled.

For weak selection, a wide range of processes fulfills the 1/3-rule, which states that the fixation
probability of a single A mutant in a coordination game is larger than 1/N if a(N ! 2) + b(2N
! 1) > c(N + 1) + d(2N ! 4) (Nowak et al., 2004; Imhof and Nowak, 2006; Lessard and Ladret,
2007; Bomze and Pawlowitsch, 2008). The fixation probability for large N can thus be written
as

!,#

where $ is a small positive number that may depend on the payoffs and on N. Writing down
the analogous equation for #B and subtracting yields

!"-#

Thus, #A > #B is equivalent to a + b > c + d, which is identical to our condition (8) for large
N. Lessard and Ladret (2007) have shown that any process within the domain of Kingman’s
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coalescent (Kingman, 1982) fulfills the 1/3-rule (for large N and weak selection and mutation).
If an evolutionary process fulfills the 1/3-rule, #A and #B can be written in the form of (9).
Hence we find again that #A > #B is equivalent to a + b > c + d. Thus, we conclude that our
result is valid for any process within the domain of Kingman’s coalescent for large N and weak
selection and mutation.

2.2 High mutation rates
For high mutation rates µ &1, mutations dominate the process, and drive the system towards
equal abundance of A and B, that is close to j = N/2. Hence the relevant transition probabilities
are  and , and it is plausible to assume that  implies that A is more abundant
than B in the stationary state. From (4) we obtain

!""#

where the payoff difference is given by

!"$#

Since #! (N/2) > 0 implies , it also implies a more abundant A, for arbitrary
intensity of selection ". Thus, we have again the same condition a(N ! 2) + bN > cN + d(N !
2) for the dominance of A.

2.3 Arbitrary mutation rates
So far we have shown that both for low and high mutation rates the same condition determines
whether A or B is more abundant, regardless of the intensity of selection. Now, we turn to
general mutation rates. Whenever equation (7) holds, the payoff difference (3) has the
following symmetry property

!"%#

This antisymmetry in the payoff differences then implies the following symmetry in our
transition probabilities (4),

!"&#

For symmetric transition probabilities, however, the stationary probabilities pj of having j
number of A players, are also symmetric, pj = pN!j. This can be shown by first writing the
stationary probability distribution explicitly (Kampen, 1997; Claussen and Traulsen, 2005)
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!"(#

where p0 follows from the normalization . For symmetric transition probabilities
(14) and for j < N ! j we can write

!")#

Hence the distribution is symmetric pj = pN!j.

For such a symmetric distribution, the number of A and B players are of course the same, since

!"*#

Hence we have demonstrated that when (7) is fulfilled, then the average abundance of A players
and B players are the same.

On the other hand, when condition (8) is fulfilled, then the average abundance of A players is
higher than the average abundance of B players. This is quite obvious by looking at the payoff
matrix (1): increasing a or b favors A, while increasing c or d favors B. More formally, we
could say that from (2), (3) and (4) it is clear that  and  are monotone increasing functions
of a and b, and decreasing functions of c and d. This implies condition (8). Interestingly, other
features of the game do not matter, e.g. whether a single A player has a larger disadvantage in
a B population than a single B player in an A population.

Condition (8) can also be written in the form

!"+#

which highlights the fact that there is a 1/N correction compared to simple risk dominance (a
+ b > c + d), which is the N & % limit. This implies that a strategy can be more abundant than
the other strategy for large N, but less abundant for small N. For example for the payoff matrix

, strategy A is more abundant in large populations (N '19), but B is more abundant
in small populations (N $17). They are equally abundant for N = 18. In general, there is a
threshold population size N*= 2(a!d)/(a!d+b!c). If N*> 2, then A is more abundant than B
either for N > N* or for N < N*.
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2.4 Including self-interactions
So far, we have adopted the usual convention that individuals cannot interact with themselves.
If instead we allow individuals to derive a payoff from self-interaction, we obtain

!",#

Hence, the payoff difference is #! (j) = (a ! b ! c + d) j/N + b ! d. Now for all mutation rates
and all intensities of selection the condition for the average abundance of A to exceed the
average abundance of B is simple risk dominance:

!$-#

We conclude that the finite N correction to risk dominance in (18) results from the exclusion
of self-interactions.

3 Frequency dependent Moran process
Although condition (8) is valid for a large class of evolutionary processes (see Sec. 4), it does
not always hold if we depart from weak selection. As an example we discuss the frequency
dependent Moran process (Nowak et al., 2004;Taylor et al., 2004;Antal and Scheuring,
2006). As we shall see, for this model our condition (8) is only valid in the limit of weak
selection.

Let the fitness be a convex combination of a background fitness (which we set to 1) and the
payoff, fA(j) = 1 ! $ + $!A(j) and fB(j) = 1 ! $ + $!B(j). Here, $ is the intensity of selection
(0 $$ $1 for payoff matrices with positive entries). An individual is selected for reproduction
at random, but proportional to fitness. The selected individual produces an offspring, which
replaces a randomly chosen individual. Mutation can occur during reproduction. This leads to
the transition probabilities

!$"#

Here F(j) = jfA(j) + (N ! j)fB(j) is the total fitness of the whole population. These transition
probabilities depend on the fitness values only through the ratio fA(j)=fB(j). Yet, there is no
simple condition for the equilibrium abundance of A players. In the weak selection limit, $ '
1, however, only the payoff differences enter into the transition probabilities (21),

!$$#

Thus, for weak selection, condition (8) again ensures the higher abundance of A.

We can also consider a variant of the frequency dependent Moran process where fitness is an
exponential function of payoff, fA(j) = exp[+$!A(j)] and fB(j) = exp[+$!B(j)] (Traulsen et al.,
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2008). In this case, the transition probabilities again only depend on the payoff differences,
because fA(j)/fB(j) = exp($#! (j)). Hence, the condition for abundance is again (8) for any
intensity of selection and any mutation rate.

4 General birth death processes
Here, we show that our finding holds for a wide range of birth-death processes. We need two
requirements to be fulfilled. The first is that the payoffs received from other players should be
additive. In this case the payoffs !A(j), !B(j), and also the payoff difference #! (j) are linear
functions of j. Consequently,

!$%#

is independent of j. Hence, when %(a, b, c, d, N) = 0 holds, we have an antisymmetric payoff
function

!$&#

The second requirement is that the difference between the two types of players should manifest
itself in the transition probabilities  and , only through the the payoff difference #! (j).
Hence, we can write , and the probability of decreasing the number of mutants
is

!$(#

That is, the only difference between the two types is the change of sign of the payoff difference
#! (j). Otherwise, the transition probabilities are the same, but with the number of the opposite
type of individuals N ! j. Now, simply setting the index to N ! j in (25), we have

!$)#

For the second equality we have used (24). These symmetric transition probabilities then imply
an equal abundance of the two types of players in any birth-death process, as it has been shown
in Section 2.3. The condition for a higher abundance of A compared to B is then % (a, b, c, d,
N) > 0. This general condition takes the form of (8) or (20) in our examples when self-interaction
are excluded or included, respectively. Note that similar arguments appear in (Claussen,
2007).

5 Discussion
In this paper, we have shown that a(N ! 2) + bN > cN + d(N ! 2) is the crucial condition for
A to be favored over B in wide range of evolutionary processes for any mutation rate, any
intensity of selection and any finite population size. By A being favored over B we mean that
A is more abundant than B in the mutation-selection equilibrium of the stochastic process.
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The relative abundance in the stationary state is a natural way of comparing two strategies. In
the low mutation limit, when the population is typically homogeneous, a strategy being more
abundant is equivalent of having a larger fixation probability. Hence, our study of abundance
can be viewed as a generalization of that concept to arbitrary mutation rates. This is of special
interest for cultural dynamics, where mutation rates are not necessarily small.

In particular, we have generalized the famous result of Kandori et al. (1993) to any mutation
rate. We have generalized the result of Nowak et al. (2004) to any intensity of selection. Our
results are valid for any mutation rate and any intensity of selection.

It turns out that for our result to hold, a birth-death process has to fulfill two requirements: (i)
additive payoffs, and (ii) that that the evolutionary dynamics depend only on the payoff
differences (the players are identical otherwise). These requirements hold, for example, for the
pairwise comparison process described by Traulsen et al. (2006) and for a frequency dependent
Moran process with exponential fitness function (Traulsen et al, 2008). For the standard
frequency dependent Moran process with linear fitness function these requirements only hold
in the limit of weak selection.

Finally, we note that in coordination games with strong selection both the fixation probability
of A and the fixation probability of B are very small. For small mutation rates, the system will
stay in one equilibrium for a very long time. Therefore, it can take a very long time for the
system to obtain a representative sample of the stationary mutation-selection distribution.
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