

Reinventing CS50

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Malan, David J. 2010. Reinventing CS50. In Proceedings of the
41st ACM Technical Symposium on Computer Science Education,
Milwaukee, Wisconsin, March 10 - 13, 2010, ed. ACM SIGCSE
Technical Symposium on Computer Science Education, Gary
Lewandowski, Steven Wolfman, Thomas J. Cortina, Ellen L.
Walker, and David R. Musicant, 152-156. New York: Association
for Computing Machinery.

Published Version doi:10.1145/1734263.1734316

Accessed February 18, 2015 10:06:14 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3720036

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28933023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/3720036&title=Reinventing+CS50
http://dx.doi.org/10.1145/1734263.1734316
http://nrs.harvard.edu/urn-3:HUL.InstRepos:3720036
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Reinventing CS50

David J. Malan
Harvard University

School of Engineering and Applied Sciences
Cambridge, Massachusetts, USA
malan@post.harvard.edu

ABSTRACT
Computer Science 50 is Harvard College’s introductory course
for majors and non-majors alike, enrollment in which both
rose and fell along with the dotcoms. Although enrollment
peaked in 1996 at 386 students, it had settled by 2002 in the
neighborhood of 100.

We set out in 2007 to combat that trend by tackling two
problems. We hypothesized that CS50 suffered from two,
one of perception and one of design. Although, per end-of-
term surveys, the course had never lacked for good teachers
or good content, the consensus on campus for years had
been to beware this particular course. And the course’s
own syllabus may very well have been dated in the eyes of
students who had begun to carry regularly modern hardware
and software in their backpacks and pockets.

Not only did we proceed to revamp every one of CS50’s
problem sets, we brought its syllabus more in line with tech-
nological trends already familiar to students. And we altered
the tone of the course to appeal to those “less comfortable”
with computing on campus. But we took care to preserve
the course’s rigor and underlying fundamentals, lest we do
our own students a disservice.

Our new approach appears to be working. Between 2006
and 2007, enrollment in CS50 more than doubled from 132
to 282 (+114%). Between 2007 and 2008, enrollment in-
creased another 17% to 330, though even more striking was
that year’s 48% increase in female enrollment. By 2009,
enrollment remained strong at 338.

We present in this work what we have done and why we
have done it.

Categories and Subject Descriptors
K.3.2 [COMPUTERS AND EDUCATION]: Computer
and Information Science Education—Computer science ed-
ucation; K.3.2 [COMPUTERS AND EDUCATION]:
Computer and Information Science Education—Curriculum

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03 ...$10.00.

General Terms
Design, Experimentation, Human Factors

Keywords
CS0, CS1, CS2, curriculum, pedagogy

1. INTRODUCTION
Computer Science 50 is Harvard College’s “introduction

to the intellectual enterprises of computer science and the
art of programming” for majors and non-majors alike, a one-
semester amalgam of courses generally known as CS1 and
CS2. Although enrollment in CS50 spiked to 386 in 1996 (on
a campus of 6500), our numbers, like most universities’, not
only rose but also fell with the dotcoms.1 In 2002, enroll-
ment dipped below 100 and, by 2006, had settled at 132. Of
course, ten years prior, our numbers were in precisely that
neighborhood too. What might, at first glance, have been a
worrisome decline may, in fact, have been mere restoration
of equilibrium.

But clearly there was an audience for computer science
out there, even though external forces may have coaxed
some members our way. And so we asked ourselves in 2007
whether we could recreate the excitement that the dotcoms
instilled in so many students and whether we could attract
similar numbers with forces more internal than external. To
be sure, some of that era’s students might have enrolled
for academically wrong reasons (e.g., dreams of getting rich
quick). So we did not necessarily want all of them back. But
among those 386 were some good computer scientists, some
of whose potential might not have ever been realized had
they not been coaxed from other departments. We wanted
to find precisely those students in 2007.

We hypothesized that CS50 suffered from two problems,
one of perception and one of design. Although the course
was highly regarded, most everyone on campus seemed to
think that it should only be taken with caution, not unlike
similar courses elsewhere. Opinions were mixed on whether
the cause for concern was the course’s workload or difficulty,
but the result was the same. The consensus was to beware.
And it probably did not help that we began each semester
from the ground up, introducing students first to assembly
language and later to C. Not only does“hello, world” tend to
underwhelm students who now carry iPhones and iPods, the
syntax of these (and most languages, for that matter, Java

1We were fortunate in 1996 to have Brian Kernighan at the
helm of CS50.

0

50

100

150

200

250

300

350

400

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

Figure 1: Enrollments in CS50 both rose and fell along with the dotcoms. But they have since risen again in
lockstep with changes we began to implement in 2007. Between 2006 and 2007, enrollment increased 114%
from 132 to 282. Between 2007 and 2008, enrollment increased another 17% to 330, though more striking
was that year’s 48% increase in female enrollment. By 2009, enrollment remained strong at 338.

included) tends to distract students from more interesting
fundamentals in an introductory course’s first weeks.

And so we set out to tackle both problems at once. Not
only did we reorganize our syllabus, we modernized our
problem sets, tying each one to a real-world domain more
familiar to today’s students. And we altered the tone of the
course, embracing in Week 0 those “less comfortable” and
“more comfortable” (with computing) alike. In a word, we
set out to make the course more “accessible,” while still pre-
serving its content and rigor. We daresay it is easy to create
a popular gut, but we had no such intention. Although CS50
is a terminal course for many non-majors, it is a gateway to
higher-level courses for majors and minors and must still,
therefore, provide no less strong a foundation. More “acces-
sible”has not meant“easier”or “less work”but, rather, more
friendly to those who might otherwise worry that they do
not belong.

Thus far, our approach appears to be working, per Fig-
ure 1. Between 2006 and 2007, enrollment in CS50 increased
114% from 132 to 282. Between 2007 and 2008, enrollment
increased another 17% to 330, though even more striking
was that year’s 48% increase in female enrollment. By 2009,
enrollment remained strong at 338. In total, CS50’s enroll-
ment has increased by 156% since 2007. To be sure, enroll-
ments in computer science programs have been on the rise
nationally since 2007, but not by nearly as much (6.2%) [7].

We present in this paper the new CS50. In the section
that follows, we offer background on the students who have
begun to take this particular course. In Section 3, we discuss
CS50’s current philosophy and motivation for the same. In
Section 4, we detail the course’s curriculum. In Section 5, we
survey the problem sets we have modernized. In Section 6,

we present our results and, in Section 7, we conclude. Al-
though we happen to spend most of CS50 in C, we suspect
the lessons we’ve learned are no less applicable to courses in
Java and other high-level languages.

2. STUDENT BODY
Although some students who take CS50 have one or more

prior courses under their belt (e.g., AP Computer Science),
most of them (72%) do not. When asked to describe their
level of comfort with computing (or the mere idea of being in
CS50), 34% of Fall 2008’s students described themselves as
among those“less comfortable,”14% described themselves as
among those “more comfortable,” and 52% described them-
selves as somewhere in between.

Although more than half of the course tends to be male,
female enrollment appears to be on the rise. Whereas female
students composed 29% of Fall 2007’s student body, they
composed 36% of Fall 2008’s thanks to an increase of 48%
in raw numbers. In fact, almost all growth in enrollment
between 2007 and 2008, from 282 to 330, was the result of
more female students in 2008.

Although students gather twice weekly for large lectures,
CS50 implements apprenticeship learning [1,2], whereby each
student is apprenticed at term’s start to a teaching fellow
(TF) who grades that student’s work and leads a weekly
“section” (i.e., recitation) for that student and a dozen or
so others. Almost all of the course’s 30 TFs are still un-
dergraduates themselves who took CS50 one or more years
prior.

Figure 2: CS50 is known for its workload. Most stu-
dents spent at least 10 hours outside of class on each
week’s problem set, with some spending as many as
20.

3. PHILOSOPHY
It is not our intention in CS50 to weed students out but,

rather, to open as many eyes as possible to a field we our-
selves love. In exchange for their time, the course promises
to get every student from Week 0 to Week 12. And the
course’s own syllabus assures them that “what ultimately
matters in this course is not so much where you end up rel-
ative to your classmates but where you, in Week 12, end
up relative to yourself in Week 0.” We provide students
with every resource they need to succeed, including lectures
and sections (and videos thereof), in-person office hours, vir-
tual office hours [4], code walkthroughs for problem sets
(i.e., programming assignments), an anonymized bulletin
board, scribe notes, and more. Not only do these resources
provide a support structure that empowers students to tackle
each week a problem set that demands upwards of 15 hours
of work outside of class, per Figure 2, they allow students
to engage with the course from any number of angles. Stu-
dents for whom lectures move quickly can review videos at
home. Students who learn best in one-on-one contexts can
find precisely that structure at office hours. And students
who fear asking the proverbial dumb question can turn to
the bulletin board and ask it anonymously. Sections, more-
over, are offered in three different flavors: some for those
“less comfortable,” some for those “more comfortable,” and
some for those somewhere in between.

But the course plays as hard as it works students. We
introduce students in lectures and problem sets not only to
computer science but also to geek culture. Lolcats [6] ex-
ist alongside linked lists. Internet memes break the ice at
classes’ start. And YouTube clips allow students to breathe
during what might otherwise be 90 intense minutes of lec-
ture.

The course takes its curriculum seriously but not itself
too much so. Of course, years from now, we may very well
grimace at our conflation of science and geekery. But we
think the rewards worth those particular risks. To date,
this course is renowned as having one of the heaviest work-
loads at Harvard. But this same course is nonetheless now
Harvard’s fifth largest. There’s much to be said for that
spoonful of sugar. We expect much of our students (cf. Fig-
ure 2) in return for the fun that we have. And we get it.

4. CURRICULUM
We discuss in this section the overall arc of the course, in-

cluding the topics (italicized) covered in lectures each week.
Omitted below are weeks with vacations or quizzes. The
course covers an unusual number of topics, some in more
detail than others. The course’s breadth is accompanied by
depth in a subset of topics. But it’s worth noting that we
rely on problem sets to reinforce, hands-on, the topics we
feel most important to students’ foundation, per Section 5.
Lectures are not the course’s sole delivery mechanism for
content.

4.1 Week 0
Introduction. Bits. Binary. ASCII. Programming. Algo-

rithms. Scratch. Statements. Boolean expressions. Condi-
tions. Loops. Variables. Threads. Events.

Though everyone’s favorite canonical program, it’s per-
haps fair to say that “hello, world” fails to excite most stu-
dents today. And converting Fahrenheit to Celsius is not
terribly interesting. But it’s hard to compete in Week 0 with
the hardware and software that students carry in backpacks
and pockets. There is only so much one can do with C’s (or
Java’s) most basic syntax before it is time to introduce more
sophisticated constructs (e.g., arrays). Implementation (and
comprehension) of GUIs is generally weeks, if not semesters,
away. And so we do not use C in CS50’s first week. We use
instead Scratch [5], a drag-and-drop programming language
developed by MIT’s Media Lab, similar in spirit to Alice [3]
et al., but whose learning curve is much lower. Although
designed for youth in after-school programs, we use Scratch
to excite our students in Week 0. With it can they im-
plement their own animations, games, and interactive art
without the frustration of semicolons and other syntactical
distractions that just aren’t interesting in the first days of
a course. And yet among Scratch’s “puzzle pieces” are pre-
cisely the constructs we want to introduce in this first week
of class: statements, Boolean expressions, conditions, loops,
and variables. Scratch even allows us to discuss threads
and events, topics generally reserved for non-introductory
courses.

But we spend just one lecture and one problem set on
Scratch, after which we immediately transition to C in Week 1.

4.2 Week 1
C. Source code. Compilers. Object code. SSH. SFTP.

GCC. Functions. Comments. Standard output. Arithmetic
operators. Precedence. Associativity. Local variables. Types.
Casting. Standard input. Libraries. Boolean expressions,
continued. Conditions, continued. Loops, continued.

In Week 1 do we dive head-first into C, but we feel com-
fortable waving our hand at certain syntactic details that
might otherwise bog down the course’s momentum. Yes,
for loops are cryptic at first glance, but, thanks to Scratch,
students already have a mental model into which they can
fit that new “piece.” We daresay the parentheses and semi-
colons intimidate them less because the underlying idea is
already familiar. And so we spend this week discussing more
interesting topics like standard input and output, functions
and libraries, and Linux itself. We take care during lecture,
though, to provide students with dozens of bite-sized exam-
ples with which to pick up C’s particular syntax.

4.3 Week 2
Functions, continued. Global variables. Parameters. Re-

turn values. Stack. Frames. Scope. Arrays. Strings. Command-
line arguments. Cryptography.

In Week 2, we continue to look at more sophisticated top-
ics, including parameters and return values, stack frames
and scope, and even arrays. But we also introduce the first
of several real-world domains, namely cryptography. That
particular topic allows us to challenge students this week to
implement a number of ciphers as well as crack passwords us-
ing heuristics of their choice. Both activities reduce to some
standard input and output, some loops, and some typecast-
ing between chars and ints, all quite accessible to students
at this point in the course. But the problem domain is in-
tellectually “sexy,” and that is what motivates.

4.4 Week 3
Linear search. Binary search. Asymptotic notation. Re-

cursion. Pseudorandomness. Bubble sort. Selection sort.
Insertion sort. Merge sort. Debugging.

In Week 3 do we transition away from syntax and details
specific to C, instead elevating the discussion to algorithms
and data structures. We discuss searching and sorting. We
discuss efficiency and measurement thereof, including O, Θ,
and Ω. Though, perhaps most importantly, we have stu-
dents act out each of the algorithms. Students remember
that bubble sort is slow after they’ve seen it acted out (not
only inefficiently but awkwardly too) by volunteers on stage.
We then reinforce those visuals with animations that con-
trast the algorithms’ run times side by side.

4.5 Week 4
Structures. Dynamic memory allocation. Stack and heap.

Pointers. Debugging, continued.
In Week 4 do we then discuss how to implement those

algorithms in memory. And we discuss memory manage-
ment in C as well as pointers, the latter of which absolutely
takes time to sink in. And so we revisit that particular topic
throughout the following weeks.

4.6 Week 5
File I/O. Forensics. Linked lists. Stacks. Queues.
We next introduce students to some file I/O so that their

problem sets can finally read from and write to actual disks.
We introduce yet another problem domain, this time digital
forensics. And we introduce a handful of new structures,
including linked lists.

4.7 Week 7
Valgrind. Bitwise operators. Hash tables. Trees. Binary

search trees. Tries. Huffman coding.
In Week 7, we introduce students to more sophisticated

data structures still, among them hash tables and tries.
And, per Section 5, we don’t have them implement those
structures for the sake of the structures themselves but,
rather, to solve more interesting problems.

4.8 Week 8
HTTP. XHTML. PHP. SQL.
In Week 8, we transition away from C altogether and begin

a brief look at Web programming. We present the basics of
XHTML and then move on to PHP, whose syntax is similar
enough to C that we spend most of our time on the features

it boasts over C. Moreover, php.net offers what may very
well be the best documentation of any language today. It
certainly facilitates students’ picking up a language as of yet
unfamiliar to them. We also familiarize students in this week
with SQL, including SELECT, INSERT, UPDATE, and DELETE,
as well as the basics of schema design, but only enough so
that they have an ability to store and retrieve data for the
week’s problem set.2

Our motivation for PHP in this week is twofold. Not only
do we want to empower students to implement, at term’s
end, final projects that just so happen to be Web-based, we
want them to realize that they are not taking a course about
C but, rather, about programming and computer science
itself. We want them to experience, with training wheels still
on, how one goes about learning new languages, lest they
assume, to their detriment, that they must wait for some
subsequent course to teach them an additional language.

Other languages might fulfill these same goals. But we
happen to like PHP, if only because php.net is such a good
teacher.

4.9 Week 9
CSS. JavaScript. Events, continued. Ajax.
In Week 9, we both continue and conclude our look at

Web programming, introducing students to DOM (yet an-
other application of data structures already covered earlier
in term) as well as to JavaScript, whose syntax is quite simi-
lar to PHP’s own. Thanks to both are yet more possibilities
for final projects accessible to students.

4.10 Week 10
Preprocessing. Compiling. Assembling. Linking. CPUs.
In Week 10 do we tease students with what’s been un-

derneath the hood all term long. We discuss what it really
means to compile, assemble, and link code. And we discuss
what “Intel inside” has meant all along.

5. PROBLEM SETS
But it is by way of the course’s problem sets that the

course’s lessons truly sink in. We present in this section the
challenges students now take on in each week.

Problem Set 0 invites students to implement most any
Scratch project of interest to them, subject only to a few
constraints. The aim of this first problem set is to get
students excited, to do with Scratch what “hello, world”
simply cannot. But the mere act of designing their own
animation, game, or interactive art exposes them to state-
ments, Boolean expressions, conditions, loops, and more, all
of which prove fairly intuitive when so easily dragged and
dropped.

Problem Set 1 next introduces students to Linux. It chal-
lenges students to implement a handful of bite-sized C pro-
grams, among them validation of ISBNs or credit cards,
greedy change-making, and Super Mario’s pyramid.

Problem Set 2 then presents that first real-world domain:
cryptography. Students must either implement a pair of old
ciphers (Caesar and Vigenère) or crack a copy of /etc/passwd.

Problem Set 3 is the first that provides students with
skeletal code (for the Game of Fifteen) that they must first
understand and whose blanks they must proceed to fill in.
2We provide each student with a MySQL database that they
manage with phpMyAdmin, whose user-friendly GUI lowers
the bar considerably to managing tables.

Problem Set 4 hands students even more skeletal code
(over 600 lines) for Sudoku, whose implementation they must
finish. This problem set also introduces students to APIs,
in this case’s ncurses’s.

Problem Set 5 then has student dabble in the domain of
forensics. We first stroll about campus with a digital camera,
taking photos of indentifiable but non-obvious locations on
campus. We then “accidentally” format the camera’s Com-
pactFlash card, at which point we make a“forensic image”of
the same (using dd) and beg students to recover as many of
its JPEGs as they can by writing C code. The problem set
then evolves into a course-wide scavenger hunt, as students
are also enticed (as via pizza) to find the photos’ locations
on campus (and photograph themselves there).

Problem Set 6 fosters a friendly competition among stu-
dents, who are handed a dictionary with 143,091 words and
challenged to implement the fastest spell-checker possible
(that uses minimal memory). Students (who opt in) are
then ranked on the course’s homepage according to their
code’s runtime. Students report spending more time on this
problem set than any other, but only because so many are
determined to out-do their friends.

Problem Set 7 has students implement, in PHP and SQL,
an E*Trade-like site for“buying”and“selling”stocks. Thanks
to freely available stock quotes from Yahoo Finance, stu-
dents integrate actual prices (via CSV feeds) into their own
sites.

Problem Set 8, finally, challenges students to implement
a “mashup” using tiles from Google Maps and RSS feeds
from Google News. Not only does this last project serve
as a stepping stone to similarly Web-based final projects, it
exposes them to yet another wonderfully documented API,
this one from Google.

6. RESULTS
Not only has CS50’s enrollment grown by 156% in three

years, so have courses downstream grown in size too. Be-
tween 2006 and 2007 did CS51 (a LISP-based follow-up
to CS50) almost double in size. Similarly did subsequent
courses in theory increase their ranks, one by 33% and an-
other by 122%. So has CS1, an optional lead-in to CS50,
nearly tripled in size, from 31 to 90 this past year. To be fair,
some of these same courses’ enrollments have since dipped,
though the department has begun offering many more next
steps for students emerging from CS50, so we actually now
“compete” with ourselves for students some terms.

Whether or not higher enrollments in CS50 and these
other courses translates to more majors remains to be seen.
Majors tend to take CS50 in their freshman or sophomore
year, so a year or two hence will we have a better sense of
any such trend.

7. CONCLUSION
In Fall 2007, we set out to reinvent CS50. Not only had

the course suffered for years from a fear factor on campus,
its problem sets were no longer consistent with topics gen-
uinely of interest to students. And so we aspired to right
both, while still preserving the course’s historical rigor and
underlying fundamentals. Two years’ of end-of-term surveys
indicate that we have indeed preserved the former, and care-
ful attention to the course’s curriculum has ensured that we
have preserved the latter as well.

As the course’s sheer size now attests, we appear to have
transformed what was once, for many students, a course
not to be taken into one that must be. Undoubtedly that
mindset will not persist forever, as enrollments do seem to
ebb and flow. But, for now, many more students do seem
excited by computer science on campus.

APPENDIX
The address of CS50’s website is:
http://www.cs50.net/

8. REFERENCES
[1] O. Astrachan and D. Reed. AAA and CS 1: The

Applied Apprenticeship Approach to CS 1. In SIGCSE
’95: Proceedings of the Twenty-Sixth SIGCSE Technical
Symposium on Computer Science Education, pages 1–5,
New York, NY, USA, 1995. ACM.

[2] O. Astrachan, R. Smith, and J. Wilkes.
Application-Based Modules Using Apprentice Learning
for CS 2. SIGCSE Bull., 29(1):233–237, 1997.

[3] S. Cooper, W. Dann, and R. Pausch. Teaching
objects-first in introductory computer science. In
SIGCSE ’03: Proceedings of the 34th SIGCSE technical
symposium on Computer science education, pages
191–195, New York, NY, USA, 2003. ACM.

[4] David J. Malan. Virtualizing Office Hours in CS 50.
SIGCSE Bull., 41(3):303–307, 2009.

[5] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and
N. Rusk. Programming by Choice: Urban Youth
Learning Programming with Scratch. In SIGCSE ’08:
Proceedings of the 39th SIGCSE technical symposium
on Computer science education, pages 367–371, New
York, NY, USA, 2008. ACM.

[6] Pet Holdings, Inc. I Can Has Cheezburger?
http://icanhascheezburger.com/.

[7] Stuart Zweben. 2007–2008 Taulbee Survey. Technical
Report 3, Computing Research News, 2009.

