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[1] We calculate the global mean atmospheric lifetime of
elemental mercury (Hg0) against oxidation by atomic
bromine (Br) in the troposphere by combining recent
kinetic data for the Hg-Br system with modeled global
concentrations of tropospheric Br. We obtain a lifetime of
0.5–1.7 years based on the range of kinetic data, implying
that oxidation of Hg0 by Br is a major, and possibly
dominant, global sink for Hg0. Most of the oxidation takes
place in the middle and upper troposphere, where Br
concentrations are high and where cold temperatures
suppress thermal decomposition of the HgBr intermediate.
This oxidation mechanism is consistent with mercury
observations, including in particular high gaseous Hg(II)
concentrations in Antarctic summer. Better free-
tropospheric measurements of bromine radicals and
further kinetic study of the Hg-Br system are essential to
more accurately assess the global importance of Br as an
oxidant of atmospheric Hg0. Citation: Holmes, C. D., D. J.

Jacob, and X. Yang (2006), Global lifetime of elemental mercury

against oxidation by atomic bromine in the free troposphere,

Geophys. Res. Lett., 33, L20808, doi:10.1029/2006GL027176.

[2] Mercury is present in the atmosphere principally in its
elemental form, Hg0, which can be transported globally, as
indicated by the uniformity of its atmospheric concentra-
tion. Hg0 is eventually oxidized to Hg(II), which may cycle
back to Hg0, partition into atmospheric water, or react with
surfaces. The latter two processes contribute to mercury
deposition and accumulation in ecosystems. Some deposited
mercury is subsequently reduced and re-emitted as Hg0.
Unlike other heavy metals, mercury transits among surface
reservoirs primarily through atmospheric fluxes [Mason
and Sheu, 2002]. Therefore, understanding the atmospheric
redox chemistry of mercury is critical to determining
source-receptor relationships of this toxic element.
[3] Current models assume that gaseous hydroxyl radi-

cals (OH) and gaseous ozone (O3) are the main global
oxidants of Hg0 [e.g., Bergan and Rodhe, 2001]. Laboratory
kinetic studies imply that the global mean lifetime of Hg0 is
120–210 days against oxidation by OH [Sommar et al.,
2001; Pal and Ariya, 2004a] and 60–1500 days against
oxidation by O3 [Hall, 1995; Pal and Ariya, 2004b].
However, in light of the expected rapid thermal dissociation
of HgOH [Goodsite et al., 2004], Calvert and Lindberg

[2005] concluded that oxidation of Hg0 by OH is much
slower than reported by the above studies and is insignif-
icant under atmospheric conditions. Atmospheric observa-
tions constrain the residence time of total atmospheric
mercury (Hg0 + Hg(II)) to 0.5–2 years [Schroeder and
Munthe, 1998], which places an upper limit on the lifetime
of Hg0 against oxidation (depending on competition be-
tween reduction and deposition of Hg(II)). Ozone alone
cannot be the main oxidant of Hg0 because it explains
neither the observed seasonal variation of Hg0 and dissolved
Hg(II) in rainwater [Bergan and Rodhe, 2001; Selin et al.,
2006], nor the observed diurnal cycle of gaseous Hg(II)
[Laurier et al., 2003; Hedgecock et al., 2005]. These
observations imply that oxidation of Hg0 must be photo-
chemically mediated.
[4] Goodsite et al. [2004] developed a homogeneous

mechanism for Hg-Br chemistry in the troposphere based
on theoretical kinetic calculations, and showed that gas-
phase oxidation of Hg0 by Br atoms could explain mercury
depletion events (MDEs) in the Arctic springtime boundary
layer. They suggested that this mechanism would be
important more generally in the marine boundary layer
and on the global scale. Lin et al. [2006] suggested that
Hg-Br chemistry is also significant in the upper troposphere.
We present here a quantitative analysis of the global lifetime
of Hg0 against oxidation by tropospheric Br by combining
the mechanism of Goodsite et al. [2004] with Br concen-
trations from a global 3-D simulation of tropospheric
bromine chemistry [Yang et al., 2005] as well as updated
kinetic data. We find that oxidation by Br in the middle and
upper troposphere could be an important sink for Hg0, and
that the mechanism yields an atmospheric lifetime of Hg0

consistent with observational constraints.
[5] Recent observations indicate that the free troposphere

contains significant BrO. Satellite instruments (GOME and
SCIAMACHY) observe BrO columns with 1 – 4 �
1013 molecules cm�2 in excess of the known stratospheric
abundance [Salawitch et al., 2005; Sinnhuber et al., 2005].
This corresponds to 0.5–2 pptv BrO distributed throughout
the tropospheric column. Balloon measurements in the
northern mid-latitudes and tropics give independent evi-
dence for 0.5–2 pptv BrO in the troposphere [Fitzenberger
et al., 2000; Pundt et al., 2002; Van Roozendael et al.,
2002]. Tropospheric sources include activation from sea
salt; oxidation and photolysis of bromocarbons; transport
from the stratosphere; and recycling from reservoir species
(Br2, HOBr, BrNO2, BrONO2, HBr) by homogeneous and
heterogeneous processes [von Glasow et al., 2002; Platt and
Honninger, 2003; Yang et al., 2005; Salawitch, 2006].
[6] Some ground-based observations have found lower

abundances of tropospheric BrO. Schofield et al. [2004]
found an upper limit of 1.2 � 1013 molecules cm�2 in the
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tropospheric column over Lauder, New Zealand. The
maximum tropospheric column observed by Leser et al.
[2003] during an Atlantic cruise was 0.6 � 1013 molecules
BrO cm�2. However, neither method was sensitive to BrO
near the tropopause and therefore both could be reconciled
with satellite observations if much of the satellites’ nominally
tropospheric BrO column were concentrated in the upper
troposphere or lowermost stratosphere [Salawitch et al.,
2005].
[7] Raofie and Ariya [2004] reported a gas-phase reaction

of BrO with Hg0, but could not exclude the possibility of
heterogeneous mechanisms in their experimental system.
Homogeneous oxidation of Hg0 by BrO is endothermic and
has a large energy barrier, making its atmospheric relevance
unlikely [Balabanov and Peterson, 2003; Tossell, 2003].
However, oxidation by Br atoms is fast [Calvert and
Lindberg, 2004; Goodsite et al., 2004]. Rapid chemical
cycling between BrO and Br through BrO photolysis, self-
reaction, and reaction with NO, balanced by Br oxidation by
O3, maintains Br:BrO molar ratios of 0.01–2 in the daytime
troposphere [Platt and Janssen, 1995; Yang et al., 2005].
[8] We estimate here the global impact of atomic bromine

on atmospheric oxidation of mercury through the two-step
recombination reactions (R1) + (R3), in competition with
thermal dissociation (R2), following Goodsite et al. [2004]:

Hgþ Br�!M HgBrðR1Þ

HgBr�!M Hgþ BrðR2Þ

HgBr þ X�!M HgBrX X ¼ Br;OHð ÞðR3Þ

Other species (e.g., X = I, O2) may also contribute to
reaction (R3) [Goodsite et al., 2004], but their effect is
probably minor and we disregard them. The local lifetime of
Hg0 against oxidation to chemically stable Hg(II) by (R1)–
(R3) is

tlocal ¼
k2 þ k3;Br Br½ 	 þ k3;OH OH½ 	

k1 Br½ 	 k3;Br Br½ 	 þ k3;OH OH½ 	
� � : ð1Þ

Table 1 compiles literature values of k1, k2, and k3. Reaction
(R2) makes tlocal extremely sensitive to temperature, as k2
doubles with every increase of 6 K (at 273K) [Goodsite et
al., 2004]. There is limited information about the tempera-
ture (T) and pressure (p) dependences of k1 and k3.
Donohoue et al. [2006] found that reaction (R1) is in the
low pressure regime for p 
 1 atm. Balabanov et al. [2005]
reported high and low pressure limits for k3,Br, while
Goodsite et al. [2004] found that the reaction is in the high
pressure regime at 1 atm.
[9] We calculate the global mean tropospheric lifetime of

Hg0 against conversion to Hg(II) by (R1)–(R3) by integrat-
ing the loss over the troposphere using global distributions
of Br, OH, and temperature, and assuming a uniform
tropospheric Hg0 mixing ratio. For the Br concentration,
we use monthly and zonally averaged values for four
months (January, April, July, and October) from the global
chemical transport model (CTM) of tropospheric bromine
described by Yang et al. [2005] (Figure 1). This model
includes budgets of the dominant bromocarbons and an
empirical parameterization of halogen release from sea salt
aerosols based on wind speed and observed bromide deple-
tion. It simulates daytime tropospheric BrO columns (0.2–
1.6 � 1013 molecules cm�2) that are at the low end of the
range of satellite observations; thus, the model provides a
conservative, process-based estimate of bromine abundance.
We use monthly mean temperatures from the NASA God-
dard Earth Observing System (GEOS-4) assimilated mete-
orology for 1999. Monthly mean OH distributions are from
a detailed simulation of tropospheric chemistry [Park et al.,
2004]. OH and Br are present only during daylight, so we
distribute the average monthly concentrations over the
daytime hours.
[10] Partitioning among inorganic bromine species

explains much of the variability of atomic Br in Figure 1
[Yang et al., 2005]. Br constitutes 10% of inorganic bromine
near the tropical tropopause, where HBr and BrONO2

photolyze rapidly, but less than 1% near the surface.
Seasonal changes in BrO photolysis increase atomic Br
concentrations in the summer hemisphere. Atomic Br is
generally more abundant in the southern hemisphere than in
the north because high wind speeds over the southern ocean
drive large emissions from sea salt aerosols.

Table 1. Rate Constants for Oxidation of Hg0 by Br Under Atmospheric Conditions

Rate Constanta Conditions Reference

k1 3.2 � 10�12 1 atm, 298K [Ariya et al., 2002]
1.0 � 10�12 exp(209/T) 1 atmb [Khalizov et al., 2003]
1.1 � 10�12 (T/298)�2.37 1 atmb [Goodsite et al., 2004]
3.0–9.7 � 10�13 1 atm, 298Kc [Donohoue et al., 2006]
1.5 � 10�32 (T/298)�1.86 [M] [Donohoue et al., 2006]

k2 1.2 � 1010 exp(�8357/T ) 1 atm [Goodsite et al., 2004]
k3,Br 2.5 � 10�10 (T/298)�0.57 1 atm, high p limit [Goodsite et al., 2004]

3.0 � 10�11 2 body, 298Kd [Balabanov et al., 2005]
1.2 � 10�10 high p limit, 298K [Balabanov et al., 2005]

k3,OH 2.5 � 10�10 (T/298)�0.57 1 atm, high p limite [Goodsite et al., 2004]
k4 3.9 � 10�11 298K [Balabanov et al., 2005]

aRate constants are in units of cm3 molecule�1 s�1, except for k2 (s
�1). T is temperature in K. [M] is the number density of air.

bWe assume in our calculations that k1 is in the low-pressure regime at 1 atm, following Donohoue et al. [2006], and thus scale k1 with [M].
cUnpublished data from Spicer et al. [2002] cited by Donohoue et al. [2006].
dRate constant in the absence of a third body, i.e., with stabilization of the activated complex solely by internal energy dissipation.
eInferred by analogy with k3,Br.
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[11] Figure 2 shows the lifetime of Hg0 against conver-
sion to Hg(II) by (R1)–(R3), computed from Equation (1)
for the months of January, April, July, and October. For this
‘base case’ estimate we use the most recent kinetic data with
T and p dependences: k1 from Donohoue et al. [2006]; k3,Br
and k3,OH from Goodsite et al. [2004]; and k2 calculated to
maintain the k1:k2 balance [Goodsite et al., 2004].
[12] From Figure 2 we see that the lifetime of Hg0 is less

than 300 days in all seasons near the tropical tropopause due
to high Br concentrations and low temperatures (suppress-
ing (R2)). This is consistent with recent aircraft observa-
tions of high concentrations of aerosol-bound mercury
(presumably Hg(II)) associated with bromine and iodine
near the tropopause [Murphy et al., 2006]. Assuming a
uniform mixing ratio of Hg0 up to the tropopause (taken as
150 hPa in the tropics and 300 hPa elsewhere), we find that
47% of Hg0 tropospheric oxidation occurs in the upper
troposphere (above 500 hPa), 32% in the middle tropo-
sphere (800–500 hPa), and 21% in the lower troposphere.
The lifetime we calculate for the northern mid-latitude
boundary layer (>500 days) is much longer than a previous
lower bound of 160 days for the marine boundary layer in
that region [Goodsite et al., 2004] mainly because our
zonal-mean lifetime accounts for the lower Br abundances
over land. The seasonal cycle in Figure 2 shows that despite
the opposing influence of temperature, the increased con-
centrations of Br and OH in summer shorten tlocal relative
to winter, in agreement with the observed seasonal cycle of
Hg0 [e.g., Ebinghaus et al., 2002; Selin et al., 2006].
[13] Mass-weighted integration of the Hg0 loss rates

(1/tlocal) from Figure 2 yields a global mean tropospheric
Hg0 lifetime, tglobal, of 510 days against conversion to
Hg(II) by (R1)–(R3). This is similar to current estimates
of the lifetime of Hg0 against oxidation by ozone [e.g.,
Selin et al., 2006] and could account for a large part of the
Hg0 loss within the 0.5–2 yr observational constraint on

the atmospheric lifetime of total mercury. We find that
�85% of the Hg(II) formed is HgBrOH. This assumes,
following Goodsite et al. [2004], that the value of k3,OH is
the same as that of k3,Br which they explicitly calculated. If
reaction (R3) with OH were insignificant (i.e., k3,OH = 0)
then the global Hg0 lifetime would be 50% greater, with
the largest changes in the lower troposphere.
[14] Our calculations predict rapid summertime oxidation

of Hg0 (tlocal = 10–100 days) at all altitudes in Antarctic
summer. Sprovieri et al. [2002] and Temme et al. [2003]
have observed high concentrations of gaseous Hg(II) on the
Antarctic coast during November through January; these
differ from springtime mercury depletion events in that they
observe positive correlations between gaseous Hg(II) and
ozone. As OH, O3 and other known oxidants of Hg0 could
not explain the observed Hg(II) concentrations, Sprovieri et
al. [2002] hypothesized a role for bromine radicals or
photochemical oxidants generated immediately above the
snowpack. S. Brooks et al. (Antarctic polar plateau snow
surface conversion of deposited oxidized mercury to gas-
eous elemental mercury with fractional long-term burial,
submitted to Geophysical Research Letters, 2006) also
observed high gaseous Hg(II) at the South Pole under
unstable atmospheric conditions, which they attributed to
halogen reactions in the upper troposphere. Our work shows
that subsiding air from any part of the troposphere could
bring to the surface gaseous Hg(II), formed by reactions
with Br, together with elevated ozone.
[15] Thus far our base case calculations have used one

combination of rate constants (k1 from Donohoue et al.
[2006]; k3,Br, k3,OH, and k1:k2 from Goodsite et al. [2004]).

Figure 1. Monthly and zonally averaged atomic Br mixing
ratios [ppqv] from the Yang et al. [2005] chemical transport
model (CTM), which includes inorganic bromine released
from sea salt and by photolysis and oxidation of
bromocarbons. 1 ppqv = 10�15 mol mol�1.

Figure 2. Lifetime [days] of atmospheric Hg0 against
oxidation to Hg(II) by two-step recombination with Br
atoms and OH (reactions (R1)–(R3) forming HgBr2 or
HgBrOH), using ‘base case’ rate constants from Donohoue
et al. [2006] and Goodsite et al. [2004] with the bromine
distribution shown in Figure 1. The corresponding global-
mean tropospheric lifetime of Hg0 is 510 days, assuming a
uniform Hg0 mixing ratio. The text describes results with
other rate constants from Table 1, all of which yield
qualitatively similar distributions of Hg0 lifetime.
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Other theoretical [Khalizov et al., 2003; Goodsite et al.,
2004] and experimental [Ariya et al., 2002] estimates of k1
are faster (see Table 1), although Donohoue et al. [2006]
argue that these values are less accurate. The fastest k1 value
with reported temperature dependence [Khalizov et al.,
2003] implies tglobal = 160 days, after recalculating k2 to
keep the k1:k2 balance [Goodsite et al., 2004].
[16] The calculated value of tglobal also depends on

competition between reactions (R2) and (R3). Balabanov
et al. [2005] studied reaction (R3) as well as several
additional reactions that could occur in the Hg-Br system.
Their high-pressure limit for k3,Br is half that of Goodsite
et al. [2004]. They also found that abstraction of Br from
HgBr by reaction (R4) decreases the rate of Hg(II)
formation.

HgBr þ Br ! Hgþ Br2 ðR4Þ

Calculating the global lifetime of Hg0 against reactions
(R1)–(R4) with the high pressure k3 and k4 values from
Balabanov et al. [2005], and other rates the same as our
base case, yields tglobal = 630 days. Additional oxidants for
HgBr in reaction (R3) suggested by Balabanov et al.
[2005], such as BrO and Br2, would decrease tglobal.
[17] The amount and distribution of tropospheric Br is a

large uncertainty in our lifetime estimates. Our calculations
show that in order to have a globally significant impact on
Hg0, atomic Br must be present in the middle and upper
troposphere, where cold temperatures suppress the thermal
dissociation of HgBr. While global models predict peak Br
concentrations in this region from bromocarbon sources
[von Glasow et al., 2004; Yang et al., 2005], observational
evidence is indirect and does not clearly resolve the upper
troposphere and lowermost stratosphere [Salawitch et al.,
2005]. Even in the lowermost stratosphere, atomic Br could
significantly shorten the lifetime of Hg0 through relatively
rapid air exchange with the troposphere.
[18] In conclusion, oxidation by atomic bromine could

result in an atmospheric lifetime of Hg0 against conversion
to Hg(II) of 1.4–1.7 years, and possibly as short as
0.5 years, with most reaction taking place in the free
troposphere. This would be an important, and possibly
dominant, global pathway for oxidation and deposition of
atmospheric mercury. It could reconcile the atmospheric
evidence that Hg0 oxidation is photochemically mediated
[Bergan and Rodhe, 2001; Selin et al., 2006] with the
evidence against a major role for oxidation by OH [Calvert
and Lindberg, 2005]. The mechanism appears qualitatively
consistent with mercury observations – the seasonal cycle
of Hg0; airborne particulate mercury measurements; and
gaseous Hg(II) in Antarctic summer – but global CTMs are
necessary for more stringent quantitative tests. Improved
atmospheric measurements of inorganic bromine and its
radicals, particularly in the middle and upper troposphere,
are needed. Uncertainties in the kinetic data, especially for
reactions involving HgBr as a reactant, need to be resolved
in order to more narrowly constrain the lifetime of Hg0 and
the Hg(II) product distribution.
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