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Speculations About the Selective Basis
for Modern Human Craniofacial Form
DANIEL E. LIEBERMAN

The last few decades have seen an explosion of knowledge about the time and
place of origin of our species, Homo sapiens. New fossils, more sites, better
dates, modern and fossil DNA, and scores of analyses have mostly disproved the
multiregional model of human evolution. By and large, the evidence generally sup-
ports some version of the out-of-Africa model, according to which humans first
evolved in Africa at least 200,000 years ago and then migrated to other parts of
the world. Remaining debates about human origins primarily address if and how
much hybridization occurred between modern humans and taxa of archaic Homo
such as H. neanderthalensis.

Ironically, despite a growing con-
sensus about when and where H.
sapiens first evolved, we know little
more today than we did 20 years ago
about why we evolved. A key unre-
solved question is: What were the
selection pressures that favored the
evolution of modern humans in
Africa around 200 Ka? We remain far
from a definitive answer to this ques-
tion, in part because of the substan-
tial challenges of testing hypotheses
about selection using archeological,
genetic, and paleontological data. Of

these sources of information, the
skull presents some especially inter-
esting problems for several reasons.
First, the skull is more derived in
modern humans than is the postcra-
nium,1 and is thus a focal point for
defining H. sapiens as a species and
testing hypotheses about phyloge-
netic relationships within the genus
Homo.2–5 Second, the skull partici-
pates in so many critical functions,
among them cognition, vocalization,
respiration, diet, and thermoregula-
tion, that it is a valuable source of in-
formation for making inferences
about behavior. And finally, the human
skull is remarkably odd. To name just
a few of our unusual craniofacial apo-
morphies, we are the only extant pri-
mate with an external nose, no snout, a
spherically shaped (globular) brain-
case, a highly flexed cranial base, a face
that is retracted almost entirely
beneath the braincase, fur on just the
top of the head, a chin, and so on.
These and other features beg the ques-
tion of what selective forces were at
work to make our skull so especially
derived in so many unique respects.

This essay is therefore an effort to
review and speculate about some of
the potential selective advantages that
may be responsible for the origin of
modern human craniofacial form. I
undertake it with some trepidation.

Although it is always difficult to test
hypotheses about natural selection
from the fossil record, this problem is
especially compounded for humans
because of the detailed nature of the
questions we ask, the complexity of
human behavior, and our limited
ability to conduct controlled experi-
ments that test relationships among
form, function, and fitness. Thus, the
hypotheses presented here are diffi-
cult or perhaps impossible to test.
Another problem is that hypotheses
about natural selection in human evo-
lution carry much emotional bag-
gage. This is particularly true for hot-
button topics such as language and
cognition, in which deeply held pre-
conceptions about what it is to be
human lead to a priori viewpoints and
strenuous objections to alternative
hypotheses. At one end of the contin-
uum are scholars who insist that
humans are special (for example, that
only humans can have language); at
the other end are scholars who
believe that all large-brained homi-
nids are essentially human (for exam-
ple, that Neanderthals are ‘‘human’’
too). Nevertheless, it is occasionally
useful to speculate on controversial
topics. What follows, then, is a review
of some previous ideas and some fur-
ther speculations about why the mod-
ern human skull may be unique. A
few caveats. First, I admit that many
of the ideas presented here really are
just speculations that will be difficult
to test definitively. Second, I have
entirely avoided the topic of sexual
selection not because it was unimpor-
tant in human evolution, but because
I have no idea how to test for its
occurrence. Finally, none of the fol-
lowing ideas are dear to my heart; I
will be happy to see them all dis-
proved.
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First, however, it will be useful to
consider a few key pitfalls in trying to
infer adaptation from morphological
features.

SOME PROBLEMS WITH
TESTING HYPOTHESES ABOUT
ADAPTATION IN THE SKULL

One resurgent problem with testing
hypotheses about possible adapta-
tions in the skeleton is the issue of
setting up and rejecting appropriate
null hypotheses. Like many biolo-
gists, students of human evolution
have tended to fall into one of two
extreme camps. At one extreme is the
‘‘adaptationist’’ perspective, critiqued
most famously by Gould and Lewon-
tin.6 This perspective typically as-
sumes a causal, adaptive relationship
between form and function. As noted
by Lauder,7 the adaptationist per-
spective is often characterized by a
kind of ‘‘reverse engineering’’ ap-
proach in which one first identifies
novel features such as chins or
rounded cranial vaults and then as-
sumes that these features might have
been adaptive—that is, a heritable
feature that has been selected
because it improves survival and/or
differential reproductive success.
According to this approach, the null
hypothesis for a feature is that it is an
adaptation unless proven otherwise.
This logic has led to many proposed
adaptations in the human skull,
including that the flexed cranial base
is an adaptation for speech8 and that
a chin is an adaptation for reducing
wishboning of the mandible.9 Since
Gould and Lewontin,6 however, there
has been a reaction against adapta-
tionism, leading to an opposite
‘‘spandrelist’’ extreme in which the
null hypothesis for a morphological
feature is that it is a spandrel unless
proven otherwise. Lauder,7 for exam-
ple, proposed a demanding set of cri-
teria with which to test such evolu-
tionary arguments from design,
namely that proposed adaptations are
derived, that they are tested experi-
mentally in terms of their effects on
performance, that alternative func-
tions are also tested, and that the fea-
tures have not been defined too
strictly to exclude other related fea-

tures that may be part of the same
morphological complex.

While laudable, the spandrelist
approach also has its problems,
because to prove rather than assume
that a feature is a spandrel, one must
first prove that it is not an adaptation.
Such tests are especially difficult
when applied to the fossil record or to
species such as humans and other
primates for which there are substan-
tial experimental constraints. In real-
ity, to assume that a feature is either
an adaptation or a spandrel should be
equally burdensome in terms of
rejecting a null hypothesis.

A second problematic issue with test-
ing functional hypotheses about hu-
man origins from the fossil record has
been the assumption of independence
among features. The H. sapiens skull,

In reality, to assume that
a feature is either an
adaptation or a spandrel
should be equally
burdensome in terms of
rejecting a null
hypothesis.

for example, is typically considered a
mosaic of many independent or par-
tially independent features, such as a
large brain, a flexed cranial base, a
canine fossa, highly curved cranial
vault bones, and so on. Many devel-
opmental studies, however, indicate
that these traits are not independent,
but instead are highly integrated.
Over-atomization of traits is a prob-
lem not only for phylogenetic analy-
ses, but also for testing hypotheses
about natural selection. Skulls are
complex, strongly integrated struc-
tures characterized by high levels of
covariation among multiple struc-
tures, even in different regions such
as the face, basicranium, and neuro-
cranium.10–14 Thus, when two or
more features covary, it is no simple
matter to determine which were tar-
gets of selection versus byproducts of
selection. Consider, for example, the
shape of the neurocranium. Many

interacting factors influence neuro-
cranial shape, including the size and
shape of the brain itself, as well as
myriad interactions between the
brain, its dural folds, the basicra-
nium, the face, and the neurocranium
(for review, see Lieberman, Ross, and
Ravosa15). Consequently, multiple
factors potentially can cause the
braincase to become more spherical.
In mice, for example, independent
mutations that shorten either the face
or the basicranium both lead to a rel-
atively wider, more spherical neuro-
cranium and a more flexed cranial
base.16 Without knowing how these
factors interrelate, it would be diffi-
cult to know which were targets of
selection and which were spandrels.

Finally, just as there is a tendency
to ‘‘atomize’’ the skull as a set of fea-
tures that are assumed to be inde-
pendent, there is also a tendency to
atomize selective hypotheses. We may
identify many bona fide adaptations in
the skull that improve performance in
different functional roles such as
speech, locomotion, cognition, and
thermoregulation. Yet these adapta-
tions may not be independent at the
level of the organism’s behavior. Thus,
the selective forces behind the evolu-
tion of the human skull need to be con-
sidered in their general behavioral and
cultural contexts: how early humans
foraged, hunted, used the landscape,
and interacted with each other. Put dif-
ferently, good hypotheses about why
humans have distinctively shaped
skulls need to consider the selective
advantages of the skull’s various
derived features in the context of a
larger behavioral and selective sce-
nario.

Given these challenges, a useful
strategy for thinking about selective
hypotheses that may have driven the
origin of modern human craniofacial
form is to consider the skull as an
integrated unit, then to work back-
ward to generate hypotheses about
particular functions and how these
functions may be related. Formalized,
this is a three-step, largely inductive
process. The first step is to determine
to what extent and how the features
that changed at a given speciation
event are integrated; in other words,
what changed with what? The second
step is to identify the functional
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effects of these shifts and consider
how they would have affected the
function of other proposed modular
shifts. The third step is to generate
testable hypotheses about how selec-
tion might have acted, trying to reject
simultaneously the alternative null
hypotheses that a given feature is an
adaptation and a spandrel.

MAJOR DERIVED FEATURES OF
THE MODERN HUMAN SKULL

As argued, in order to test hypothe-
ses about the functional implications
of modern human cranial form it is
first useful to ask what are the major
integrated units of the skull that
changed together in the transition
from archaic to modern humans.
Since various studies have already
addressed this problem in depth, I
will only briefly summarize their
results here. Most notably, Lieberman
and colleagues12,15,17,18 have shown
that many of the derived features of
the H. sapiens skull are not independ-
ent, but instead covary substantially
both within adult and cross-sectional
ontogenetic samples. Three inte-
grated shifts between archaic Homo
and modern humans account for a
large proportion of the derived fea-
tures of H. sapiens. First, the modern
human skull has an absolutely and
relatively smaller face, mostly in
terms of anteroposterior length and
superoinferior height. In Figure 1a,
note, for example, that the orbits are
relatively more rectangular in modern
than archaic humans). Second, the
modern human neurocranium, al-
though similar in volume, is more
spherical than that of archaic Homo,
leading to more rounded contours of
all the cranial vault bones. Third, the
smaller modern human face is sub-
stantially retracted relative to the
basicranium and neurocranium, con-
tributing most obviously to a reduc-
tion in browridge size.19

Geometric morphometric (GM)
analyses that compare archaic and
modern human skulls17,18,20 corrobo-
rate these results, suggesting that a
relatively small number of develop-
mental shifts may be responsible for
the integrated shape differences I
have summarized. Three structural

shifts (all evident in Figs. 1 and 2)
appear to be particularly important.
First, the modern human cranial base
is about 158 more flexed. This flexion
has several implications for skull
shape, in part because the top of the
face is the base floor of the anterior
cranial base and also because the

back of the face is always roughly per-
pendicular to the anterior cranial
base.21–23 The combined effect of these
constraints is that a more flexed cra-
nial base reorients the entire face as a
block more ventrally beneath the an-
terior cranial fossa and decreases the
length of the nasopharynx behind the

Figure 1. Comparison of modern H. sapiens and archaic Homo cranial form. A. Lateral
and anterior views of Cro Magnon I (left) and Broken Hill (right), scaled to same height.
Note the relatively longer face and orbits of the archaic human (as shown by white
bars), which generates a more square-shaped orbit; the modern human face is also
larger and more projecting, and the neurocranium is more spherical. B. graph of centroid
size versus the first principal component of cranial shape in Pleistocene modern H. sapi-
ens (stars) and archaic Homo (circles), H. erectus (squares), and H. habilis (pentagon) fol-
lowing a Procrustes superimposition of the landmarks. Note that for this component of
shape variation, which explains 32% of the variance, archaic Homo is largely a size-
scaled version of H. erectus, but that H. sapiens falls off the allometry between size and
shape. Line drawings to left and right show mean form along PC1 of modern and ar-
chaic humans, which comprises neurocranial globularity. Relative facial size and facial
projection. See Lieberman and Bar-Yosef20 for details of sample and analysis.
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palate. Cranial base flexion may also
contribute to neurocranial sphericity
by decreasing the area of the platform
on which the brain sits.24,25 A second
major structural change is that in
modern humans the anterior cranial
base is relatively longer and wider,
especially the more posterior part
comprised of the middle cranial
fossa.17,19,26 Elongation of the ante-
rior cranial base probably contributes
mostly to facial retraction by displac-
ing anteriorly the upper (superior)
part of the posterior margin of the
face, known as the posterior maxil-
lary (PM) plane. Because the PM
plane is always nearly perpendicular
to the top of the face, this displace-
ment rotates the face as a whole ven-
trally (clockwise when viewed from
the right).21,22 The third major shift is
that the modern human face is rela-
tively shorter both anteroposteriorly
and superoinferiorly, but not nar-
rower. Facial reduction, which has
occurred more gradually than cranial
base flexion and anterior cranial base
elongation, contributes primarily to
facial retraction, but may also be
implicated in cranial base flexion (for
discussion see Lieberman, Ross, and
Ravosa15).

Note also that from a developmen-
tal perspective the differences be-
tween modern and archaic Homo
skulls appear to be greater than those
between H. erectus and archaic

Homo. As Figure 1b illustrates, large-
brained taxa from the Middle Pleisto-
cene, such as H. heidelbergensis, are
in many way scaled-up versions of H.
erectus, different primarily in terms
of relatively larger brains and faces.20

In contrast, modern human skulls
have an overall different architectural
configuration. Put differently, the evo-
lutionary transformation from a H.
erectus skull into a H. heidelbergensis
skull can mostly be explained by
changes in the relative size of the
brain and face. In contrast, the evolu-
tionary transformation from an ar-
chaic Homo skull into a modern
human skull is more complex, requir-
ing a relatively longer middle cranial
fossa, a more flexed cranial base, and
a smaller face in terms of height and
length.

POTENTIAL FUNCTIONAL CONSE-
QUENCES OF MODERN HUMAN

CRANIAL APOMORPHIES

We can now speculate (and I
emphasize that what follows are spec-
ulations, not tests) about how the pre-
ceding shifts might be adaptive in
terms of their performance effects on
craniofacial function. Of the many
varied functions that a skull per-
forms, five appear to be most relevant
to neurocranial sphericity, and/or
facial shorting and retraction: cogni-

tion, chewing, locomotion, respira-
tion, and speech.

Cognition and Brain Shape

One longstanding topic of interest
is whether modern humans had any
cognitive advantages over archaic
humans, perhaps related to the ability
to create more complex technologies
such as the Upper Paleolithic, gener-
ate more sophisticated language, and
so on. However, it has been a chal-
lenge to find or test for any evidence
of such adaptations. Most of the rele-
vant archeological evidence is a re-
cord of absence (that is, the lack of
Upper Paleolithic technologies and
art made by archaic Homo) and does
not explain why the archeological res-
idues associated with modern and ar-
chaic humans are essentially identical
for more than 150,000 years. Fossil
evidence of neurological differences
has also been hard to discern. Abso-
lute and relative brain size in modern
and archaic humans is approximately
equal.27 Also, there are few, if any,
reliable endocranial features that
point to major differences in brain
structure, such as Broca’s or Wer-
nicke’s areas, between archaic and
modern humans.28 However, another
potential source of information is
whether the contrasts in overall neu-
rocranial shape reviewed earlier re-
flect some differences in the relative
size of, and hence, selection on par-
ticular regions of the brain. The basis
for such speculations is that the
braincase and basicranium grow
around the brain, largely in response
to stimuli triggered by the growth of
the brain itself.17,29,30 Thus, varia-
tions in the relative size of specific
parts of the brain could generate dif-
ferences in the shape of the cranium
as a whole.

One such hypothesis is that the
modern human brain has a relatively
larger frontal lobe.31 Despite its
appeal, this hypothesis has been dis-
proved by comparative studies in
hominoids. Measurements of the neo-
cortex and other structures in the
brain of extant primates using mag-
netic resonance imaging (MRI) have
shown that the frontal, parietal, and
occipital lobes in humans are about
the same relative size as in other

Figure 2. Midsagittal view of a, Skhul V (H. sapiens) and b, Broken Hill (archaic Homo).
Note that in this particular comparison the angle of the cranial base is approximately 188
more flexed in the modern human. The Broken Hill scan is by courtesy of the Natural His-
tory Museum.
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hominoids after scaling is taken into
consideration.32–35 In contrast, the
human cerebellum is proportionately
smaller than in apes, by approxi-
mately 20%, and the temporal lobe is
proportionately larger, by as much as
25%. Other, more fine-scale differen-
ces may also exist within lobes.
Within the occipital lobe, the primary
visual striate cortex is relatively
smaller in humans36; within the fron-
tal lobe, the prefrontal cortex is about
6% larger, possibly because of more
white matter.35,37,38

Of these differences, evidence that
the temporal lobe became relatively
larger at some point in human evolu-
tion is the most intriguing because of
the differences I have noted in cranial
shape between modern and archaic
humans. In particular, geometric
morphometric comparisons of the
cranial base (summarized in Fig. 3)
indicate that in modern versus ar-
chaic humans the middle cranial
fossa (MCF), which houses the tem-
poral lobes, is approximately 15%–
20% longer and 20% wider relative to
overall cranial size.17,18,26 If MCF size
correlates strongly with temporal lobe
volume (an untested hypothesis),
then it is possible that a proportional
increase in temporal lobe volume was

coincident with the origin of modern
humans.

Such a shift might also help explain
some of the major derived aspects of
modern human cranial shape. The
anterior portion of the MCF com-
prises part of the anterior cranial
base and, as noted earlier, the mod-
ern human anterior cranial base is
relatively longer than that of archaic
Homo, contributing to facial retrac-
tion (more of the modern human face
is tucked below the anterior cranial
fossa).19 Both GM data from fossil
crania and the comparative MRI data
from primate brains summarized ear-
lier suggest that the increases in tem-
poral lobe size are responsible for this
anterior cranial base elongation.
Another major factor that influences
both neurocranial globularity and
facial retraction is the angle of the
cranial base, which is about 158 more
flexed in modern than in archaic
Homo. This difference, in conjunction
with evidence of temporal lobe expan-
sion, raises an interesting possibility.
As Figure 3 illustrates, the temporal
lobe sits on the center of the cranial
base, just above the spheno-occipital
synchondrosis, the major site of cra-
nial base flexion. Various lines of
evidence indicate that growth of the

brain relative to cranial base length
influences cranial base flexion.15,39,40

While overall brain size cannot be the
cause of more cranial base flexion in
modern humans, a relatively larger
temporal lobe is a possible cause,
since it is the one portion of the brain
that lies directly on the site where the
cranial base actually flexes during the
first few postnatal years.41

To reiterate, the hypothesis that rel-
ative increases in the temporal lobe
were a factor in the evolution of mod-
ern humans remains speculative with-
out further evidence. As initial tests of
the hypothesis, it would be useful to
determine whether the MCF and tem-
poral lobe volume are correlated, and
whether humans with larger temporal
lobes have more flexed cranial bases.
If so, however, then the hypothesis
has intriguing implications for selec-
tion. The temporal lobe has many
complex functions, including cogni-
tive roles relevant to the organization
of sensory input. These include lan-
guage and various kinds of memory,
such as the recognition of words,
sounds, and visual images. In addi-
tion, the temporal lobe has been
shown to be important during intensely
spiritual and religious thoughts; for
example, stimulation of the temporal
lobe during surgery can induce spirit-
ual emotions even in self-described
atheists.42 It is thus interesting to
speculate that religious and spiritual
behaviors, so prevalent in all human
societies, are a derived, emergent
property of selection on other capa-
bilities such as memory and lan-
guage.

Bite Forces and Cooking

One intensely studied aspect of the
relationship between form and func-
tion in the skull is the generation and
resistance of bite forces. Thus, it is
not for lack of looking that most
researchers have found little reason
to suspect that the modern human
face has any particular derived adap-
tations for generating or withstand-
ing chewing forces. Nevertheless, the
human face presents an interesting
paradox, as shown in Figure 4, which
compares, in lateral view, the esti-
mated mechanical advantages of bite-
force production in the vertical plane

Figure 3. A. Geometric morphometric analysis of cranial shape differences between ar-
chaic and modern humans, from Lieberman, McBratney, and Krovitz.17 The red outline is
an average of two archaic Homo crania (Broken Hill, Bodo) that have been warped to
fit the same landmarks on four male modern humans (black outline). Grid deformations
indicate the thin plate spline. Key differences, indicated by arrows, are the greater
degree of cranial base flexion, the relatively longer anterior cranial base, and the rela-
tively smaller face. B. Outline of lateral view of the temporal lobes relative to the cranial
base. Note that the temporal lobes sit above the sphenoid, which is major site of cranial
base flexion. Also shown (in red) is the 908 constant angle between the back of face
(the posterior maxillary plane) and the neutral horizontal axis (NHA) of the orbits. Because
this angle is constrained to be approximately 908 and the anterior cranial base is tightly
correlated with the NHA, flexion of the cranial base causes the entire face to rotate
underneath the anterior cranial fossa.
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of the masseter and temporalis mu-
scles for a chew on the second molar
in a chimpanzee, a modern human,
and a representative archaic Homo
(Broken Hill). Although the orienta-
tions of the muscle resultants are esti-
mated and approximate, it is evident
that by retracting and shortening the
face, the human skull has a relatively
shorter load arm for both the mass-
eter and the temporalis, leading to an
approximately 20%–40% higher me-
chanical advantage in modern versus
archaic humans.

Although the human skull is more
efficiently designed for producing bite
forces, it would probably be unwise
to hypothesize that the human face
was selected to become shorter in
order to increase masticatory effi-
ciency. There is simply no corroborat-
ing evidence. Humans have small and
thinly enameled tooth crowns that
have become smaller rather than
larger in the genus Homo during the
last few hundred thousand years.43 In
addition, humans do not produce
high bite forces relative to our body
size for various reasons, including

smaller cross-sectional areas for some
muscles44 and relatively fewer fast-
twitch (Type I) muscle fibers.45 Con-
sequently, most research on this topic
has focused on how derived aspects
of midfacial projection in the Nean-
derthal skull may have been adaptive.
But the other side of the coin is to
consider not the generation of bite
force, but its resistance. As shown by
Hylander and colleagues,46–49 chew-
ing generates strains that are not only
similar in magnitude to those gener-
ated in the limbs during locomotion,
but also highly repetitive. A typical
chimpanzee spends about 50% of the
day chewing.50 Thus, a key function
of the face is to withstand mastica-
tory strains, either through adding
mass to decrease their magnitude or
through repair mechanisms.

How the human face withstands
chewing forces is incompletely under-
stood, in part because we know rela-
tively little about the nature of chew-
ing-induced strains in the uniquely
flat, short, retracted human face.
Most in-vivo experimental data on
craniofacial strain patterns comes

from nonhuman primates and other
mammals with a somewhat tubular
rostrum in which the maxillary tooth
row is positioned well in front of the
plane of the middle and upper face.
Nevertheless, finite element modeling
studies,51 as well as experimental
data from mammals with retracted
postcanine teeth, such as the rock
hyrax (Procavia capensis), suggest
that we can make at least two reason-
able predictions.52,53 First, human fa-
cial strains probably resemble those
of other mammals in following a
strong gradient, with strains highest
near the occlusal plane and regions of
muscle attachments and diminishing
away from these sites, with only tiny
magnitudes in the upper face and
browridge.48,49 In addition, unilateral
mastication probably generates some
combination of twisting around an
anteroposterior axis plus shearing in
the coronal plane.

As noted above, one of the most dis-
tinctive aspects of the Homo face is
the lack of a rostrum, which in non-
human primates and mammals such
as swine partly functions to dissipate
twisting and bending strains away
from the rest of the face.54,55 Both ar-
chaic and modern humans therefore
presumably resist such strains in an
alternative manner by having a tall,
wide, flat face in which most of the
mass of the face is distributed in the
coronal plane.52,56 If so, then one can
hypothesize that the face in archaic
Homo is larger, and especially taller
than that of modern humans in order
to withstand more and/or higher
magnitude strains from twisting and
shearing. Put differently, the modern
human face may be superoinferiorly
shorter not to generate higher occlu-
sal forces, but because it has to with-
stand less strain. Indeed, in terms of
its surface area in the coronal plane,
the face is approximately 30%–50%
smaller in modern than archaic
humans, with substantial decreases
having occurred in the last 12,000
years.57 Moreover, some proportion
of this size diminution is epigenetic
and can be attributed to the mastica-
tion of softer, more processed
foods.53,58,59,106

This hypothesis needs to be tested
but, if true, then one likely compo-
nent of the selective equation behind

Figure 4. Mechanical advantages of the masseter (top) and temporalis (bottom) in a
chimpanzee (a), H. sapiens (b), and a composite archaic Homo skull (c, a combination
of the Broken Hill cranium and the Mauer mandible). Mechanical advantage (MA), the
ratio of the lever to load arms, is calculated from the estimated average resultant of
masseter and temporalis for a chew on M2. Note that resultant is an approximate esti-
mate and will vary depending on factors such bite location, food hardness, and other
such factors. In spite of such variations, the modern human will have a higher MA for
both muscles than did the archaic Homo, largely because of facial retraction and dimi-
nution.
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facial size reduction (why big faces
were no longer adaptive) is most
likely related to cooking and/or food
preparation. As Wrangham and col-
leagues60,61 noted, cooking is not only
a universal human behavior, but also
may be a biological necessity for
humans, even modern ‘‘raw-foodists’’
who intensively soak, grind, and oth-
erwise process highly domesticated,
high-quality foods. Cooking, of course
has many advantages, including in-
creasing nutrient accessibility and
digestibility, inactivating toxins and
parasites, and prolonging storage
times.62 Cooking also makes food eas-
ier to chew. Cooking softens and ten-
derizes plants by breaking down cel-
lulose; it makes meat stiffer and less
tough, and thus easier to fracture.63

There is much debate, however, about
when cooking became prevalent in
human evolution. On the basis of
tooth size reduction, Wrangham and
coworkers60 and Lucas63 have sug-
gested that cooking first arose with
the genus Homo. However, according
to archeologists, the oldest evidence
of cooking in the form of hearths is
from the Middle Paleolithic/Middle
Stone Age, about 250,000 years ago,64–67

approximately the same time as the
evolution of H. sapiens (and the
Neanderthals).

Further evidence is needed to
resolve this problem, but one hypo-
thetical possibility is that tooth size
decreases and facial reduction consti-
tuted a two-stage process. The first
stage, which occurred with the ori-

gins of the genus Homo, almost cer-
tainly involved a change in diet, with
increased reliance on meat, which is
easily and effectively tenderized by
pounding. Thus, the regular addition
of meat to the diet, combined with
the adoption of simple food process-
ing technologies such as pounding (a
good use for Oldowan spheroids?),
may have led to the initial diminution
in tooth size, but not to smaller faces.
Later, cooking evolved in the Middle
Paleolithic, favoring further reduc-
tions in tooth size, as well as reduc-
tions in face size. In addition,
although teeth have become smaller
in both modern and archaic Homo
since the Middle Paleolithic,107 facial
size decreases may have been less in
Neanderthals for other reasons such
as their expanded internal nasal cav-
ities and their reliance on anterior
dental loading.56,68,69

Note that the invention or elabora-
tion of cooking technologies in the
Middle Paleolithic/Middle Stone Age
may help account for why there was
no longer a selective advantage to
maintaining a large face, but it pro-
vides no selective advantage for
reducing facial size. So any selective
scenario needs to consider why a
smaller, lighter face might be an ad-
aptation. The modern human face is
shorter both superoinferiorly, reduc-
ing its area in the coronal plane, and
anteroposteriorly. The combined
effect is to make the modern face
absolutely less massive in modern
versus archaic humans (assuming

that volume and mass are propor-
tional). However, as I will discuss, a
smaller face may have other func-
tional advantages related to locomo-
tion, respiration, and vocalization. So
small faces cannot be explained by
diet alone.

Locomotion

Although the role of the skull in
locomotion is not often considered,
one hypothesis to explore is that de-
creases in facial size played a unique
role in humans to improve head sta-
bilization capabilities during running.
In all mammals, there is a tendency
for the head to pitch in the sagittal
plane during locomotion from a com-
bination of vertical and horizontal
accelerations (Fig. 5). These pitching
forces need to be controlled in order
to stabilize the gaze and avoid falling.
This is not a trivial problem in inher-
ently unstable, long-legged bipeds
such as humans. Although minimal
in walking, pitching forces increase
several-fold in running gaits, espe-
cially at heel strike, when high
ground reaction forces, the heel-strike
transient (HST), travel almost instan-
taneously up the legs and the spine,
delivering an impulsive load to the
head that causes it to pitch forward
rapidly.70

Controlling head pitching forces is
much more of a challenge for bipedal
humans than for most quadrupedal
mammals, which are well adapted for
running (cursorial specialists). When
walking and running, mammals typi-
cally hold their heads with their eyes
directed forward and their horizontal
semicircular canals within 208 of earth
horizontal.71,72 Quadrupedal cursors
effectively stabilize their heads during
trotting and galloping by flexing and
extending the neck, which has some
degree of horizontal orientation.73

This simple mechanism of stabiliza-
tion, however, is not available to
large-brained bipedal hominids, whose
short vertical necks arise near the
center of the skull. In this respect,
human running is a bit like being on
a pogo stick, because we have no
mechanisms to control vertical fluctu-
ations of the head’s center of gravity
(COG) and to dissipate the HST.
Instead, hominids must stabilize the

Figure 5. Mechanical advantage (MA) of the nuchal muscles for a chimpanzee (a), H.
sapiens (b), and a composite archaic Homo skull (c, a combination of the Broken Hill
cranium and the Mauer mandible). The center of gravity of each skull (bullseye) was esti-
mated from the area centroid; the resultants of the nuchal and COG are based on
unpublished experimental data. The combination of a relatively long nuchal plane, a
centrally located foramen magnum, and a nearly balanced skull gives the nuchal
muscles a higher MA in modern humans than in the other two species.
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head against pitching forces by flex-
ing or extending the head almost
entirely at the atlanto-occipital joint
(AOJ). Yet even during running,
humans usually manage to keep
angular rotations of the head below
1008/sec following the HST, well
below the 2008 threshold at which the
vestibulo-ocular reflex, which senses
pitching movements and coordinates
them with eye movements, becomes
saturated.74,75

As Bramble and Lieberman noted,76

humans have several features that are
not present in apes and possibly are
also absent in australopithecines,
which may help stabilize the head.
These features include more sensitive
anterior and posterior semicircular
canals,77 which sense accelerations in
the pitching plane, and a nuchal liga-
ment, which may act as a passive,
elastic mechanism to stabilize the
head.78,79 To this list we should prob-
ably add a more balanced head,
because it reduces the moment arm
of the pitching forces that need to be
counteracted by head extension. Even
though more balanced heads prob-
ably arose in Homo in part because of
bigger brains, which extend more
mass behind the AOJ, a smaller face
also improves head stabilization per-
formance in bipeds with short vertical
necks, as shown in Figure 5. In mod-
ern humans, the head’s COG is
approximately 1 cm anterior to the
AOJ.80 Although it is difficult to calcu-
late precisely the location of the COG
in fossil crania, preliminary estimates
using the area centroid as an approxi-
mation suggest that facial diminution
in modern humans may be responsi-
ble for moving the COG approxi-
mately 1 cm closer to the AOJ than in
archaic Homo. As shown in Figure 4,
this small shift would halve pitching
moments and increase the mechani-
cal advantage of the head extensors
by about 50%. In other words, mod-
ern humans may have been more
effective than archaic humans at sta-
bilizing the head because of a smaller
face.

Of course the hypothesis that facial
diminution was an adaptation for
head stabilization during running is
untested. However, as Bramble and
Lieberman noted,76 humans have
spectacular endurance running (ER)

performance capabilities, better than
those of most mammals, particularly
over long distances in hot, arid envi-
ronments. These capabilities derive
from numerous features, some of
which improve running performance
but are irrelevant to walking, in
which pendular mechanics are funda-
mentally different from the mass-
spring mechanics of running. When
ER capabilities arose is difficult to
pinpoint, but they were probably
present in Homo and may have
played an important role in acquiring
meat by scavenging, hunting, or
both.76 It follows that if ER capabil-
ities improved modern human hunt-
ing performance, then morphological
changes such as smaller faces that
improved head stabilization might
have been a selective advantage.

Respiration

Having a smaller face also has
potential functional effects on the
role of the pharynx in respiration,
particularly in terms of thermoregula-
tion during vigorous activities such as
running. Superoinferior and antero-
posterior shortening of the face
decreases the length of several com-
ponents of the pharyngeal airway
(Fig. 6), including the nasal cavity
and the nasopharynx above the soft
palate, the oral cavity, and the oro-
pharynx. If we assume that neck
length has not changed much in the
genus Homo, then the modern human
pharynx is significantly shorter, possi-
bly by about (12%–15%) relative to
body mass than that in archaic
Homo. This difference has several
implications for the pharynx’s role in
thermoregulation. The epithelial lin-
ing of the nasal cavity and pharynx is
highly vascularized and covered by
hydrophilic mucosa. This lining func-
tions to humidify and warm air to
approximately 75%–80% humidity and
378 C, respectively; during expiration,
the same tissues can act to recapture
some of this heat and moisture. These
thermoregulatory functions are partic-
ularly important in the nasal cavity,
which has a much higher ratio of epi-
thelial surface area to volume.

A shorter pharynx affects these
functions by altering two interrelated
parameters: the degree of turbulence

and the rate of flow. In a circular tube
with laminar flow (characterized by
no turbulence), resistance to flow, R,
is quantified by the Hagen-Poisseuille
equation:

R ¼ 8nl=pr4

where n is the viscosity of the gas, l is
the tube’s length, and r is the tube’s
radius.81 Because air viscosity is not
species-specific, and the nasal and
oral cavities are neither wider nor
taller in modern humans (it is impos-
sible to estimate the radius of the oro-
pharynx in fossils), modern humans
probably had slightly higher airflow
resistance during conditions of lami-
nar flow. However, most airflow
through the human pharynx is not
laminar, but turbulent, characterized
by circulating vortices with no partic-
ular orientation relative to the tube’s
walls or the average direction of flow.
Turbulence increases enormously dur-
ing vigorous aerobic exercise. There
is no simple equation to estimate R in
turbulent flow, but turbulence itself is
a function of the gas (or fluid’s) Reyn-
old’s number, Re:

Re ¼ 2rvd=n

where r is the radius of the tube, v is
the average fluid velocity of the gas, d
is the density of the gas, and n is the
viscosity of the gas. As before, d and
n are determined by the environment,
and r is probably not much different
in archaic versus modern Homo.
However, the fluid velocity, v, is prob-
ably a little higher in modern humans
because oxygen needs and lung vol-
ume scale isometrically with body
mass.82 Consequently, the same vol-
ume of air per unit time (flow rate)
flows though a shorter tube, leading
to a higher average velocity. This dif-
ference in length, hence velocity, mat-
ters considerably during aerobic exer-
cise. At optimal walking speed, about
5 kph humans breathe about 2.5 L/
min. During moderate jogging, 15
kph, oxygen demands increase more
than seven-fold to about 18 L/mi-
nute,83 requiring both faster breath-
ing rates and larger volumes per
breath, from about 500 mL to 1,500
mL. Even faster flow rates are needed
at higher speeds or higher altitudes.
Consequently, turbulence in the mod-
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ern human pharnyx, already very
high during conditions of exercise,
must be higher for modern than ar-
chaic humans.

Turbulence and the resistance it
causes lead to an important trade-off
in thermoregulation. The advantage
of turbulence is that it increases air-
flow contact with the epithelium in
the pharynx, especially the nose.
Within a cross-section, there is a ve-
locity gradient in laminar flows, with
flow rates approaching zero near the
wall of the tube, creating a boundary
zone estimated to be 0.25 mm wide in

modern humans.84 Because such a
boundary decreases effective heat
and moisture exchange, it is not sur-
prising that the nose in Homo has
many adaptations to increase turbu-
lence, including an external nasal ves-
tibule, which is first evident in early
Homo,85 inferiorly directed nostrils,
and a nasal valve.86 However, the dis-
advantage of turbulence is that it gen-
erates considerable extra work for
lungs. In laminar flow, pressure is a
linear function of velocity, P = kV (k
is a constant). In turbulent flow, how-
ever, pressure increases to the power

of two relative to velocity, P = kV2,
thus generating much higher pres-
sures. One well-known effect of this
trade-off is that resistance is so high
in the human nasal cavity during vig-
orous exercise that the pressures can
be painful. Because airflow in the
mouth is much more laminar than
in the nose (r is an order of magni-
tude bigger), this may explain why
humans are the only known mammal
that is an obligate mouth breather
during vigorous exercise.

Putting together the evidence, a
shortened pharynx in humans may be

Figure 6. Midline view of the pharynx and supralaryngeal vocal tract (SVT) in a modern human (a) and two alternative reconstructions
of an archaic Homo (b,c). SVTh is shown in red and SVTv in blue. The ratio of SVTv to SVTh in the modern human is 1:1. In version b, the
archaic Homo has been reconstructed with an intranarial larynx and an intraoral tongue; in version c, the archaic Homo has been
reconstructed with a descended (nonintranarial) larynx and a rounded human tongue. In both cases, the length of the SVTv necessary
to have a 1:1 SVTv:SVTh, is indicated by the dashed line.
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an adaptation for thermoregulation
in the hot and arid environments in
which modern humans appear to
have evolved.

During normal activity levels such
as walking, a shorter pharynx would
help increase turbulent airflow in the
nasopharynx, thereby increasing the
efficiency of the respiratory epithe-
lium, especially for recovering mois-
ture. Moreover, during vigorous activ-
ity such as endurance running, when
humans uniquely switch to oral breath-
ing, a shortened oral cavity may help
to improve the efficiency with which
we dump heat.87,88 One cost of dump-
ing heat, however, is a greater reli-
ance on water.

Vocalization

A final function to consider is vocal-
ization. I do so, however, with appre-
hension because the evolution of
human speech is among the most
contentious subjects in paleoanthro-
pology. One problem is that there is
no agreement on what null hypothe-
sis to reject. To some, language and
fully modern speech is a unique
human apomorphy unless proved
otherwise; others assume that large-
brained hominids such as Neander-
thals must have possessed human-
like linguistic abilities unless proved
otherwise. Given that neither speech
nor the tissues that produce it fossil-
ize, these are tough null hypotheses
to reject.

That said, let’s throw caution to the
wind and consider how a shorter face
and/or more flexed basicranium
might influence speech production.
To do so, it may be useful to begin
with a short review of the acoustical
and anatomical bases of speech.
Speech sounds are essentially puffs of
pressurized air from the lung that
pass through the vocal folds of the
larynx, which controls the vibrations.
The frequency of the vibrations, typi-
cally between 250 and 4,000 Hz,
determines the pitch, also known as
the fundamental frequency (F0); the
amplitude of the vibrations deter-
mines the volume. The sound waves
are subsequently filtered by the air-
way, technically known as the supra-
laryngeal vocal tract (SVT), to create

harmonics, known as formant fre-
quencies. Importantly, each vowel
has a unique, stable, distinct, and
hence quantal combination of form-
ant frequencies that derive from the
shape of the SVT.89 According to the
quantal theory of speech,90,91 these
formant combinations are stable over
a range of tongue positions, requiring
less muscular coordination because
of two key properties of the SVT (Fig.
6). First, the SVT has two tubes of
similar length: the horizontal tube,
SVTh, extends from our lips to the
back of the oropharynx; the vertical
tube, SVTv, extends from the soft pal-
ate to the vocal folds. Second, move-
ments of the tongue and jaw can
modify the cross-sectional area of
each tube independently by a ratio of
approximately 10:1.92

Although other mammals vocalize,
only humans have an SVT with 1:1
proportions and in which the tongue
can modify their cross-sections inde-
pendently. In nonhuman mammals
with snouts, the SVTh is relatively
long because the lower face is long;
the SVTv is short because the hyoid is
positioned relatively high relative to
the mandible. As Negus93 noted, this
configuration permits the epiglottis,
which is suspended from the hyoid,
to contact the soft palate, forming a
‘‘tube within a tube.’’ The advantage
of this configuration is that air can
travel directly between the nasophar-
ynx and the trachea through the por-
tion of the pharynx in which food and
liquids also travel, thereby minimiz-
ing the risk of asphyxiation or aspira-
tion. But during human postnatal on-
togeny, the hyoid descends relative to
the soft palate, losing contact by
about 3 months. The SVTh/SVTv ratio
is 1.4 in a human infant, but reaches
1.1 by approximately 7–8 years.94 As
the ratio approaches 1.0, speech
becomes more quantal and percep-
tion errors decrease.95,96 Because
descent of the larynx leads to a trade-
off between intelligible speech and
risk of asphyxiation, the low human
hyoid is evidence of selection for
speech capabilities at the expense of
other fitness costs.92

Note that a 1:1 SVTh/SVTv ratio is
not necessary for articulate, intelli-
gible speech, but influences the
degree to which speech is quantal.

Thus, considerable effort has been
devoted to estimating the position of
the hyoid and larynx in fossil homi-
nids in order to make inferences
about the evolution of speech capabil-
ities. Most efforts have been dis-
proved. Originally, it was suggested
that the angle of the cranial base,
both internal and external, was
related to the position of the hyoid,
based on evidence that the larynx
descends postnatally relative to the
soft palate as the cranial base
flexes.8,97,98 This hypothesis, however,
was disproved by evidence that there
is no correlation during human on-
togeny between laryngeal descent and
cranial base angulation.41 In another
effort, Arensburg and colleagues99

suggested that, based on its human-
like anatomy, the Neanderthal hyoid
had a human-like position. This infer-
ence, however, is unjustified because
there is no evidence to link hyoid
shape with hyoid position in humans
or other species.

One possibility, however, that re-
mains untested is that an anteropos-
teriorly shorter face does improve
speech performance capabilities in
modern versus archaic humans by
reducing SVTh relative to the SVTv. In
a normal human with an SVT of
approximately 17 mm, the length of
each portion of the SVT is about 8.5
cm. In a modern human with a nor-
mally long neck, this places the hyoid
about 2–3 cm below the lower margin
of the mandible94 and the larynx
about the level of the 6th cervical ver-
tebra. If the human SVTh were about
2 cm longer, as is the case for a Nean-
derthal then the SVTv would also
have to be 2 cm longer to maintain a
1:1 SVTh/SVTv. This presents a poten-
tial anatomical problem because it
would require a correspondingly lon-
ger neck with taller cervical vertebrae
to prevent the larynx from being posi-
tioned in the chest below the 7th cer-
vical vertebra. Such a position would
prevent infrahyoid muscles such as
the sternothyroid from being depres-
sors of the hyolaryngeal complex.
While it is theoretically possible that
archaic humans had relatively longer
necks than modern humans do,
measurements of Neanderthal cervi-
cal vertebrae indicate that they had
necks that were similar or possibly
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even slightly shorter than those of
modern humans.100,101

In short, it is reasonable to
hypothesize that two derived aspects
of the modern human cranium would
have improved modern human per-
formance capabilities for producing
more quantal vowels that would be
more stable and less susceptible to
errors of perception. First, the mod-
ern human oral cavity is absolutely
shorter by at least a centimeter. Sec-
ond, the modern human cranial base
is more flexed, thereby rotating the
whole face including the back of
the palate ventrally underneath the
anterior cranial base, decreasing the
length of the pharyngeal space behind
the palate by another centimeter.22

The combined effect of these two
shifts is to shorten SVTh by approxi-
mately 2 cm. Of course a longer SVTh

and a non-1:1 SVTh/SVTv ratio does
not allow one to infer that archaic
humans couldn’t speak or even lacked
sophisticated language. But, given
constraints on larynx position in the
neck, combined with the risks of
asphyxiation that presumably increase
with greater separation of the epiglot-
tis and soft palate (a hypothesis that
needs to be tested), it is not unreason-
able to speculate that a shorter face
might have been selected for speech
performance. To test this hypothesis,
however, we need better data on neck
length in Neanderthals and other ar-
chaic humans, as well as more reli-
able indicators of the position of the
hyoid and larynx in fossil humans.
Also, estimates of SVT proportions do
not address the various other neuro-
logical bases of language and speech
that must also have been targets of
selection at some point in human evo-
lution.

FINAL SPECULATIONS

As noted, the various hypotheses I
have discussed are only speculations;
much research is necessary to test
them. The list of needed tests is long
and challenging, but a few are espe-
cially important. First, in order to test
if temporal lobe volume is relatively
larger in modern than archaic hu-
mans, data are needed on the strength
of the relationship, if any, between
temporal lobe volume and middle

cranial fossa size, as the latter is the
only way to infer temporal lobe vol-
ume from fossils. Along the same
lines, it would be useful to test if hu-
mans with relatively larger or smaller
temporal lobes have more or less
flexed cranial bases.

A second issue to test is the extent
to which decreases in facial size may
be related functionally and develop-
mentally to changes in food prepara-
tion techniques. Testing this hypothe-
sis more thoroughly will require more
information on how strains are gener-
ated in the uniquely shaped human
face and the extent to which pound-
ing versus cooking influences the bio-
mechanics of force resistance in the
face. In addition, we need more data
on the evidence of cooking versus
other forms of food preparation from
the archeological and fossil records.
Another key source of evidence lies in
teeth, the size of which may affect oc-
clusal performance differently during
the eating of cooked, pounded, and
raw food.63

A third issue that requires further
analysis is endurance running, as this
behavior may relate to both head bal-
ance and pharyngeal shortening. In
addition to understanding more
about the biophysics of airflow dur-
ing respiration and its thermoregula-
tory effects, we need to understand
more thoroughly the challenges that
the heel-strike transient poses for
head pitching during running, and
how the unique configuration of the
human head, neck, and upper body
counteract these forces. In addition,
more data are needed on the impor-
tance of running in human evolution.
This is not an easy issue to address
because, since the invention of the
bow and arrow about 20,000 years
ago, running has almost certainly
become less important in human for-
aging societies. Modern human
hunter-gatherers such as the Hadza
and the Bushmen do run occasion-
ally,76,102,103 but ER is no longer as
necessary as it once may have been.
Nonetheless, human ER perform-
ance, which is as impressive as or sur-
passes those of the best cursors, and
relies on largely different biome-
chanics than walking, demands some
explanation. We thus have to think
creatively about the roles that run-

ning may have played in past hunter-
gatherer behavior and the ways in
which aspects of modern human skel-
etal morphology would have improved
ER performance.

A fourth problem is speech, which
may be the most intractable of all
problems related to modern human
origins. The biggest immediate prob-
lem is to find some reliable way to
estimate the proportions of the SVT
using skeletal data. The preceding
analysis is not only informal and
unquantitative, but also avoided mak-
ing actual estimates of SVTv length.
Instead, it examined the effects of
possible maximum SVTv length on
SVT proportions. Moreover, such
analyses only address one aspect of
speech, quantal vowel production,
and have little to tell us about the
other cognitive aspects of language
that cannot be addressed using fossil
data. Although the archeological re-
cord is frequently used to make infer-
ences about language capabilities, it
must be emphasized that such infer-
ences are fraught with complications.
Evidence of symbolism appears to be
coincident with complex cognition,
but only up to a point. The absence of
evidence of symbolic art should never
be used as evidence of the absence of
abstract cognitive tasks such as lan-
guage. Such logic might also lead us
to conclude falsely that industrial
modern humans have more complex
cognitive capabilities than did Paleo-
lithic hunter-gatherers or Neolithic
farmers.

Finally, with regard to all the pre-
ceding hypotheses, there is the persis-
tent problem of adaptations versus
spandrels. Many of the features I have
discussed are related to more than
one function, and they have complex
developmental bases. Thus, a persis-
tent problem is to figure out ways to
distinguish between spandrels and
adaptations. As noted, one key issue
is choosing appropriate null hypothe-
ses to reject when testing whether
features are adaptations, spandrels,
or neither.

In spite of all these caveats and
problems, let us conclude by assum-
ing, blithely, that the foregoing specu-
lations are corroborated. How, then,
might they fit into a broader evolu-
tionary scenario to explain how selec-
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tion might have operated in the origin
of H. sapiens some 200,000 years ago
in Africa? Opinions on this question
are likely to be varied, but the various
major derived features of the H. sapi-
ens skull all indicate some combina-
tion of changes in three aspects of
behavior: improved running capabil-
ities, including better head balancing
and thermoregulation; increased reli-
ance or dependence on cooking; and
some suite of cognitive shifts in terms
of speech and possibly other aspects
of complex reasoning, perception,
and/or knowledge (admittedly, this is
highly speculative). To me, these
shifts all point to a way of life, still
evident in hunter-gatherer societies,
that may have differed between mod-
ern and archaic Homo. Notably, mod-
ern human foragers rarely face star-
vation because they rely on social net-
works and cooperative relationships
within a large group of nonkin that
involves considerable sharing of
meat, along with a diversity of other
foods. Interestingly, many of the fac-
tors that underlie this overall strategy
are linked, for several reasons, by
endurance running, cooking, and lan-
guage.

First, until the invention of modern
technologies such as the bow and
arrow, endurance running was prob-
ably useful in order to hunt and scav-
enge successfully with low risk of
physical harm. Second, while hunting
is critical for modern humans who
require very high-quality diets relative
to body mass, hunting is also a low-
percentage endeavor; it cannot be
accomplished without food sharing
and cooking. Without the existence of
reliable sharing, hunters who return
to camp empty-handed would suffer
reduced fitness, as would their fami-
lies. In addition, there is a good argu-
ment to be made that cooking is an
important complementary strategy to
food sharing. Recall that chimpan-
zees, like many mammals, spend at
least half their day eating, largely
because they need to fill their stom-
achs regularly (about every two
hours) with relatively high-fiber-con-
tent food. As Wrangham and Conklin-
Brittain61 noted, cooking not only
improves the nutrient content of
food, but also decreases digestion
time. Without cooked food, it is

doubtful that modern hunters could
spend a large proportion of the day
hunting and still satisfy their nutrient
needs with a chimpanzee-like diet
upon returning to camp. Cooking
thus enables modern human hunters
and their families to rely on meat,
which has a lower probability of suc-
cessful acquisition but a higher
potential yield, and still be able to eat
enough when they get back to camp
empty-handed.

the various major
derived features of the
H. sapiens skull all
indicate some
combination of changes
in three aspects of
behavior: improved
running capabilities,
including better head
balancing and
thermoregulation;
increased reliance or
dependence on
cooking; and some suite
of cognitive shifts

Finally, this sort of way of life
requires language and other cognitive
skills in order to maintain social rela-
tionships and to foster among nonkin
the cooperation necessary for food
sharing. These cognitive skills, doubt-
less, were also advantageous for
many other key tasks such as tracking
animals and monitoring resources in
complex changing habitats.

In short, although archaic humans

may have done everything that mod-

ern humans did (hunt, speak, share,

and even cook), it is interesting

to speculate that modern humans

may have invented a more intense,

socially cooperative, and technologi-

cally based way of using these skills.

This combination of hunting, shar-

ing, cooking, communicating, and

cooperating may have provided the

behavioral context for selection on

human skull form that we first see in

modern H. sapiens about 200,000

years ago,104 and which appears more

or less coincidentally in the archeo-

logical record.105 Testing this hypoth-

esis and its components will be a seri-

ous but enjoyable challenge.
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