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Numerical modeling of global atmospheric chemical dynamics
presents an enormous challenge, associated with simulating hun-
dreds of chemical species with time scales varying from millisec-
onds to years. Here we present an algorithm that provides a
significant reduction in computational cost. Because most of the
fast reactants and their quickly decomposing reaction products are
localized near emission sources, we use a series of reduced chem-
ical models of decreasing complexity with increasing distance from
the source. The algorithm diagnoses the chemical dynamics on-
the-run, locally and separately for every species according to its
characteristic reaction time. Unlike conventional time-scale sepa-
ration methods, the spatial reduction algorithm speeds up not only
the chemical solver but also advection–diffusion integration.
Through several examples we demonstrate that the algorithm can
reduce computational cost by at least an order of magnitude for
typical atmospheric chemical kinetic mechanisms.

atmospheric chemistry � chemical kinetics � multiscale analysis

The modeling of tropospheric oxidants (ozone and the hydroxyl
radical OH) is of central importance for addressing issues of air

quality, aerosol formation and evolution, acid formation, and global
budgets of greenhouse gases such as methane (1). Although the
chemical factors controlling tropospheric ozone and OH are fairly
well established, the computational challenge of modeling concen-
trations in relation to changes in emissions or climate is enormous.
Current photochemical mechanisms describing oxidant chemistry
include hundreds of coupled chemical species reacting on time
scales ranging from milliseconds to many years (2).

Typical chemical transport models (CTM) combine chemical
reactions with advection by a meteorologically predicted flow
velocity. The resulting system of equations is extremely stiff, non-
linear and involves a large number of chemically interacting species.
The difficulty of solving these equations imposes severe limitations
in the spatial resolution of the CTMs, as well as the timescales that
can be simulated. This difficulty represents a major obstacle for
progress in atmospheric chemistry research. Even with a simplified
chemical mechanism of �100 species, present computational re-
sources limit the number of CTM grid points to �105 to 106,
corresponding to a horizontal resolution �100 km and a vertical
resolution �1 km (3). This is not adequate for resolving the vertical
stratification of the troposphere (4), the dynamics of the planetary
boundary layer (5), convective processes (6), or sharp horizontal
gradients across fronts and coastlines (7). The push for fast,
high-resolution CTMs will be exacerbated over the next decade by
the need to interpret satellite observations of tropospheric ozone
and related species (8).

In this paper, we present a numerical algorithm that addresses
two major aspects of this problem: the large number of interacting
chemical species and extremely large stiffness of the chemical
model. Our algorithm is inspired by the observation that atmo-
spheric emissions have most of their fast reactants and their quickly
decomposing reaction products localized near the emitter, typically
near the ground. Far from the emitter, the fast reactants do not play
a significant role. There is thus the opportunity to spatially reduce
the chemical mechanism, where a full chemical mechanism is used

near emission sources and reduced mechanisms are used far from
sources.

To give an idea of the scale of the computational savings that
could result from such an algorithm, consider the chemical mech-
anism of the GEOS-Chem CTM (9), extensively used for tropo-
spheric chemistry applications (10): �65 of the 120 species describe
nonmethane hydrocarbons (NMHC) and their oxidation products.
These NMHCs are emitted by anthropogenic and natural processes
at the surface of continents. Most have short lifetimes. The most
important NMHC is biogenic isoprene, which has a lifetime of �1
h against oxidation and whose oxidation products account for 25
species in the mechanism. Although proper simulation of isoprene
and other NMHC chemistry is critical near the ground (11), in the
remote troposphere, concentrations of NMHCs and their reactive
oxidation products are in general very low and a simpler chemical
mechanism including 15 species can be sufficient (12).

The idea of reducing chemical mechanisms is quite old. Tradi-
tional methods address spatially uniform situations, and exploit the
large range of time scales between different chemical reactions, by
splitting the species ensemble into subsets that evolve over similar
time scales (13–19). This splitting speeds up computation by
reducing the size and the stiffness of the individual Jacobian
matrices to be inverted.

The spatial reduction mechanism proposed here gradually and
continuously discards the equations for fast reacting species with
distance from a pollution source. We track a series of chemical
boundary layers (CBL), which separate regions where the concen-
tration of a given species is computed with its equation of motion
from those where the concentration is determined by extrapolation
from the source. The number of domains (multiconnected in
general) can be as large as the number of chemical species. The
variable CBLs represent the region of the atmosphere affected by
fresh emissions; they include not only the meteorological boundary
layer but also possibly pollution plumes injected to high altitudes.

The Chemical Mechanism
Emissions of NMHCs and NOx are the principal drivers of com-
plexity in tropospheric oxidant chemistry. The former are emitted
by vegetation, combustion and industrial processes whereas the
latter are emitted by combustion, soils and lighting. Because the
oxidation schemes of all NMHCs follow similar schematics (20), we
use propene (C3H6) as representative NMHC for a simplified
representation of the chemistry, and include only the most impor-
tant reactions in its oxidation sequence. This greatly decreases the
number of species in the chemical mechanism while retaining the
essence of the mechanism complexity.

Table 1 lists the reactions in the reduced mechanism, and Fig. 1
illustrates the major features of the reaction scheme. Oxidation of
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propene by OH produces a suite of carbon compounds leading
eventually to CO2. The time scales of the reactions vary from
seconds (lifetime of OH) to minutes (lifetimes of PO2, MCO3,
MO2) to hours (lifetimes of other propene intermediates) to weeks
or greater (CO).

The evolution of ni(x, t), the number density of the ith chemical
species, couples chemical reactions with advection and diffusion
through the continuity equation

�ni

� t
� � ��uni � ��ni� � �̇ i � s i�x, t� i � 1· · ·N , [1]

where u is the wind velocity, � is the turbulent diffusivity, �̇i is the
production rate of the ith chemical species, and si describes local
emissions and nonchemical sinks. The local net production rate
R(i) � �̇i � si(x, t) of ith species can be separated into the local gross
production rate R�(i) and the local loss R�(i) terms, i.e., R(i) 	
R�(i) � R�(i). Emissions are in general near the ground but can
extend to all altitudes (aircraft, lightning, volcanic emissions, etc.).

Spatial Reduction Algorithm
Introduction. The spatial reduction algorithm partitions the com-
putational domain for every chemical species into a ‘‘fast region’’
where we calculate the species concentration by solving the full
system of equations, and a ‘‘slow region’’ where we calculate the
species concentration by extrapolating from the ‘‘fast region.’’
Because the analysis is done on a species-by-species basis, the spatial
reduction is gradual with fast equations being eliminated closer to
the source.

We explain our algorithm in the context of a very simple example.
Consider a three species reaction system, comprised of chemicals A,
B, and C. The reactant A decays quickly through A � B3 C. The
concentration of B is assumed fixed, and there is a (slowly changing)
flux f(t) of A at the ground. We assume that A is the fastest
reactant, so that �C,�B 

 �A, where �B, �C, and �A are the
characteristic decay times for the elements B, C, and A respectively.
Additionally, we assume that the only transport mechanism is 1�
D diffusion.

Under these conditions, the concentration of A is localized near
the ground. The dynamics of A and C are described by

�nA

�t
� �

nA

�A
� �

�2nA

�x2 [2]

�nC

�t
� �

nC

�C
� knBnA � �

�2nC

�x2 , [3]

where � is the diffusion coefficient, and the boundary conditions
are ���x nA�x 	 0 	 f(t). As long as f(t) varies more slowly in time
than �A, the solution to Eq. 2 is approximately

nA�x, t� � f �t���A

�
exp ��x / ���A� . [4]

This equation for nA(x, t) can then be used in Eq. 3, so that we now
have a single equation for nC(x, t) which is valid far from the source.
This represents a (simple) spatial reduction because we now need
to solve only one equation far from the ground. This equation is

�nC

�t
� �

nC

�C
� knB� exp ��	x� � �

�2nC

�x2 . [5]

Eq. 5 uses � and 	 as free constants, not necessarily given by � 	
f(t)��A/� and 	 	 1/���A implied by Eq. 4. This is to emphasize
that in more general situations, it is not possible to analytically solve
for the fast reactant profiles. However, � and 	 can always be
determined by using matching conditions, by requiring that both
concentrations and fluxes are continuous at the boundary between
the fast and slow region. Thus, if nA,f is the concentration of species
A as computed by the full solver in the fast region, and the boundary
between fast and slow occurs at x 	 xb, we require that � 	 nA,f(xb),
and 	 	 ��x nA,f(xb)/nA,f(xb). This method for choosing � and 	
ensures that the spatially reduction conserves mass exactly.

This one-dimensional example illustrates the basic principles of
spatial reduction: in the fast region, we solve the full chemical
mechanism, whereas in the slow region we extrapolate concentra-
tions of the fast reactants from the fast region. In the present
example the full reaction system is comprised of two coupled partial
differential equations (PDE), whereas the reduced system involves
solving only one PDE. The computational cost of solving a system

Table 1. Reduced propene ™ NOx ™ HOx™ O3 atmospheric
chemistry mechanism

Reaction* Reaction rate†

O3 � hvO¡

H2O
2OH 10�6

O3 � NO3 NO2 � O2 2. � 10�14

O3 � OH3 HO2 � O2 7.3 � 10�14

O3 � MO23 HCHO � HO2 � 2O2 10�17

HO2 � NO3 OH � NO2 8.1 � 10�12

HO2 � HO23 H2O2 � O2 2.1 � 10�12

NO2 � hvO¡
O2

NO�O3 8.8 � 10�3

NO2 � OHO¡
M

HNO3 2.5 � 10�11

HCOH � OHO¡
O2

CO�HO2�H2O 9. � 10�12

CO � OHO¡
O2

HO2�CO2 2.5 � 10�13

C3H6 � OHO¡
O2

PO2 3. � 10�11

PO2 � NOO¡
O2

NO2�HO2�HCHO�ALD2 8.7 � 10�12

ALD2 � OHO¡
O2

MCO3�H2O 1.4 � 10�11

MCO3 � NO2O¡
M

PAN 1.1 � 10�11

PANO¡
M

MCO3�NO2 1.3 � 10�3

HO2 � MCO33MAP � O2 1.3 � 10�11

OH � MAP3 0.5OH � 0.5HCHO �0.5MCO3 � H2O 7.4 � 10�12

� 0.5CO2

MO2 � NOO¡
O2

HCHO�HO2�NO2 7.7 � 10�12

MO2 � HO23MP � O2 4.6 � 10�12

MP � OH3MO2 � H2O 5.2 � 10�12

MCO3 � NO3MO2 � NO2 � Co2 2. � 10�11

HCHO � hvO¡

2O2

2HO2�CO 1. � 10�4

MP � hvO¡
O2

HCHO�HO2�OH 1. � 10�5

OH � HO23 H2O � O2 1.1 � 10�10

*Reactions and rate constants are extracted from the GEOS-Chem mechanism.
Original references are given in the GEOS-Chem chemical mechanism docu-
mentation (28). Rate constant values (in units of sec�1 or m3/molecules/sec)
are computed for a temperature of T 	 298 K and a pressure of 1 atm. The
following shorthand notation is used: PO2 � CH3G(OH)CH2O2, ALD2 �
CH3CHO, MCO3 � CH3C(O)OO, MO2 � CH3O2, PAN � CH3CO(OONO2),
MAP � CH3G(O)OOH, MP � CH3OOH.

†Reactions with species above the reaction bar are multistep processes in
which the species above the bar are not involved in rate limiting steps and
thus do not contribute to the rate calculation. Letter ‘‘M’’ above the reaction
bar indicates any inert molecule (in the atmosphere, mainly N2 and O2) that
stabilizes a reaction product (three-body reaction) or drives thermolysis.
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of PDEs using an implicit solver increases at least quadratically with
the number of dependent variables. In the present simple example,
the CPU time reduction will thus be a factor of four. We note that,
in practice, the CPU savings should be greater because by elimi-
nating the fast variables we are eliminating the primary source of
stiffness.

Domain Partitioning. How do we choose the borderline between the
fast and slow region? Let us denote the fast and slow regions as Df
and Ds, respectively, with the regions separated by a moving
boundary 
. In the above example, 
 corresponds to the point xb.
It is intuitively clear that in the fast region Df the species density n
should either be sufficiently large, or have the potential to become
large in a short period since its production rate is large. Our domain
partitioning criterion thus relies on the local magnitudes of n and
the local net R(i) or gross production R�(i) rates. Because R(i) 

R�(i), the criteria based on the local gross production rate R�(i) is
more conservative than the one based on the local net production
R(i). One definition of Df uses an absolute threshold for n(i) and
R(i): for each chemical species n(i) we require that the chemical
concentration n(i) 
 n(i)0 and the reaction rate R(i) 
 R(i)0 or
R�(i) 
 R(i)0, where n(i)0 and R(i)0 are prescribed thresholds.
Alternatively, we can define Df using relative thresholds. Here, we
first find the local maxima of n(i) and R(i) (R�(i)), and then define
Df by requiring that n(i) and R(i) are larger than some fraction � of
their values at the local maximum. The computations presented
below use a relative threshold.

Matching Conditions and Extrapolation Algorithm. We discussed
above, how we match the solution between the fast domain and the
slow domain by imposing continuity of chemical concentrations and
fluxes. In the one-dimensional example these conditions fixed the
parameters 	 and �, which allowed extrapolation of the fast species
into the slow region through exponential decay. There are two
additional complications in multidimensions.

First, our argument for the exponential decay of the fast reactants
into the slow region was in the context of a one dimensional model
with eddy viscosity. One might question whether this would still
hold in multidimensions with advection. In fact, the exponential
decay of the fast reactant is a generic feature of a chemical source
in multidimensions, with transport by either diffusion or advection.
To see this, consider an isolated chemical source of strength q
located at the origin. The air is moving with a local velocity u along
the x axis and the value of turbulent diffusion coefficient is �.
Assume that the chemical decays with characteristic reaction time
�. The concentration n satisfies the continuity equation

u
�n
�x

� ��2n �
n
�

� q��r� , [6]

which has the exact solution

n �
q

4��r
exp ��r� �u2 � 4�/� � u cos 
�� . [7]

Here, 
 is an angle between r and x. Because exponential decay
dominates over geometric decay 1/r far from the source, the
concentration decays exponentially. This derivation assumes that
the chemical source is steady; in practice this means that as long as
the source varies on a time scale much longer than the chemical
decay time �, this derivation holds.

The second major complication in multidimensions is that now
the matching conditions must be satisfied on the surface separating
the fast region and the slow region. Therefore, we need to find a
consistent method for extrapolating information on this surface into
the slow region through the expected exponential decay. Stated
mathematically, given a chemical species denoted by g defined on

, we need to extrapolate g so that it decays exponentially with
distance from 
, with the decay rate

	n � �
1
g

�g
�n
�r, [8]

determined by the rate of change of the g normal to the interface.
Note that 	n is not constant, but varies over the interface 
.

The problem of efficiently extrapolating information defined at
an interface to a full domain has been previously addressed
extensively in the context of the level set method (21). We first
define a function d, which measures distance from 
 in the region
we wish to extrapolate. As a distance metric, we require that ��d� 	
1; additionally it must vanish on the interface (d�
 	 0). Then we
define the set of curves 
 that includes the boundary interface 
 as
well as other equally distanced from 
 curve i.e., {
�d 	 const} as
well as the set 
�, which are locally perpendicular to 
 (see Fig. 2).
To extrapolate 	n from 
 to the entire region, we require that 	n

is constant along each curve of 
�, and hence that on these curves
g decays exponentially. Because the normal vector n 	 �d to 
 is
tangent to 
�, these requirements are equivalent to the equations

�d��	n � 0 [9]

�d��g � 	n g � 0. [10]

a

b

Fig. 1. Schematic of the reduced chemical mechanism in Table 1. (a) Cycling of HOx radicals, NOx radicals, and ozone. The organic peroxy radicals in the
mechanism (PO2, MCO3, MO2) perform functions similar to HO2. (b) Intermediate species in the oxidation of propene to CO2. The concentrations of all 15 species
shown in this figure (excepting CO2) are computed within the chemical mechanism.
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Eq. 9 states that the gradient of the local exponential decay rate is
orthogonal to the local normal vector n, so that 	n is constant along
each curve of 
�. Eq. 10 requires that g exponentially decays with
rate 	n along 
�. Eqs. 9 and 10 can be solved simultaneously and
explicitly by marching outwards from the separating interface 
 into
the domain Ds using the Fast Marching Method (22).

Computational Savings. How much will the spatial reduction algo-
rithm reduce computation time in the full problem? To estimate the
savings, let us assume that there are N reacting species with Ns
slow-reacting species, that the volume of the computational domain
is V and that of the fast reacting domain is Vf. An implicit solver
needs matrix inversion, which causes computational cost increase
quadratically or even faster with the number of species. Assuming
a constant mesh spacing, the reduced system has a fraction


 � Vf /V � �Ns

N � 2

�1 � Vf /V� [11]

of the number of equations of the original full system. For the
GEOS-Chem mechanism, we expect both Vf/V and Ns/N to be of
order one tenth, hence implying an order of magnitude expected
speed up in the computation time. In making this estimate we have
used the fact that the spatial reduction does not substantially
increase the CPU time; i.e., the computational cost of Eqs. 9 and
10 integration with described above explicit method is negligible
(which is indeed true), and have also neglected additional benefits
related to stiffness reduction.

Summary of Algorithm. To summarize, the numerical algorithm
consists of three stages to implemented at each timestep. First, we
construct a domain partitioning of every individual species based on
the current species density n(x) and source S(x) distributions. This
domain partitioning implies that there are different numbers of
equations (and variables) to be integrated at each grid point. In the
second stage, we integrate the fast equations at each grid point to
advance the solution to the next time step. Finally in the third stage,
we extrapolate the fast species concentration into the slow domains.
Note that the domain partitioning is recomputed at every time step,
so that the distribution of fast and slow species changes dynamically
throughout the simulation.

In the test simulations that follow, we advance Eq. 6 using
second-order Strang operator splitting for the time integration,
separating the advection–diffusion part of the calculation from the
reaction part. The advection diffusion calculation uses second order
spatial central differences and the linearized trapezoidal method for

time stepping; the reaction part of the problem is solved by using
a Bulirsch–Stoer (23) scheme.

Numerical Experiments
We now proceed to demonstrate the implementation of the algo-
rithm in both one and two spatial dimensions.

One-Dimensional. We first consider the performance of the algo-
rithm in an example with one spatial dimension. To demonstrate
the algorithm’s ability to locate and adapt to pollution sources, we
choose an example where the location of the pollution source
changes in time. The challenge here is that the algorithm must
automatically detect the regions where a new pollutant plume
occurs.

We consider an isothermal atmosphere (T 	 298 K), and have
the chemical transport take place in the altitude range 0 � x � L,
where L 	 15 km. The computational domain is uniformly resolved
with 100 points. The initial concentration of all species is taken to
be 0 except nO3 	 1012 molecules per cm3. We impose zero flux at
the edges of the domain for all species except the pollutants C3H6
and NO, where the fluxes at the ground are JC3H6 	 1011 molecules
per s cm2 and JNO 	 1011 molecules per s cm2. We take the
turbulent diffusion coefficient � 	 3 � 105 cm2 /s.

In addition to the stationary source, we also implement a simple
model of a thunderstorm partway through the simulation. Our
thunderstorm rapidly transports pollutants from the lower to the
upper troposphere. We assume that the thunderstorm starts at the
time t0 	 3 � 104 s and ends at time t1 	 5 � 104 s. The thunderstorm
is modeled by a pollutant sink that scavenges chemicals in the lower
troposphere (defined to be 0 
 x 
 x0 	 1.5 km) and instantly
transports them in a ‘‘chimney’’ upwards by a distance x1 	 9 km.
The pollutant sink of the ith species is taken to be s � i(x, t) 	 a0
ni(x, t) for 0
 x 
 x0, and the pollutant source is s�

i (x, t) 	 s�
i (x �

x1, t). The source-sink pair simulates rapid transport upward by x1.
We choose a0 	 2.5 � 10�5 s�1 so that during the thunderstorm half
of the density of the original plume is transported upward.

Fig. 3 shows the test results for this model at a time t 	 4 � 104

s, when �25% of pollutants are transferred from the lower to the
upper plume. The solid lines represent a simulation of the full
chemical kinetics and the solid dots denote the spatially reduced
model, with the relative tolerance parameter � 	 10�2. The gray

Fig. 3. Species densities versus distance at t 	 4 � 104. The computation is
done in 15 km physical domain resolved by 100 points. Solid line, full chemical
kinetics; dots, spatially reduced chemical kinetics.

Fig. 2. Schematic picture of the level set curves. The boundary interface 
 is
depicted by thick solid line and the two level set curves corresponding to
different values of d are depicted by thin solid lines. The curves 
� are shown
as dashed lines.

13878 � www.pnas.org�cgi�doi�10.1073�pnas.0705649104 Rastigejev et al.



regions in Fig. 3 denote the automatically generated domain
partitioning. The test results demonstrate that the algorithm detects
the changes in the source distribution, properly rearranges the
domain splitting and maintains accuracy throughout the simulation.

It is worth noting that in the simulation all of the chemical
concentrations are nonzero at every point in space, even in the slow
regions where their governing reaction-diffusion-advection equa-
tions are not calculated explicitly. This is a subtle but important
point for maintaining accuracy. For example, it is well known that
there are chemicals such as nitrogen oxides (e.g., NO and NO2) in
the reaction scheme that cannot be excluded from the chemical
mechanism, even if their concentrations are very low.

What is the error in the spatial reduction? If we define the error
as the norm of the discrepancy between the spatially reduced model
ni

0(x) and the full model ni(x)

ei � �ni�x� � ni
0�x���/�ni

0�x���, [12]

the largest error is obtained for PO2 density distribution ePO2 	
3.1 � 10�2. Numerical experiments demonstrate that this error
increases by a factor of five if the extrapolation algorithm in the slow
region is not used, and the fast reactants are required to vanish in

slow regions. Additionally, numerical experiments demonstrate
that the error depends linearly on the thresholds �.

Two-Dimensional. Now we turn to a two dimensional simulation,
where the extrapolation between fast and slow regions is not so
simple. Our test case assumes that the horizontal and vertical
components of the velocity field (u(x, y, t), v(x, y, t)) form a shear
layer, u(x, y) 	 u0 � (u1 � u0)y/ymax and v(x, y) 	 0, where x and y
are the horizontal and vertical coordinates and u0 	 10 m/s, u1 	
30 m/s. The simulation is carried out in a domain of dimensions
1,500 km � 15 km, with the computational domain uniformly
resolved by 80 � 80 points.

We assume the pollution source is two grid spacings wide,
occurring between 485 km 
 x 
522 km. Like the one-dimensional
simulation above, the nonzero pollutant fluxes are JC3H6 	 1011

molecules per s cm2 and JNO 	 1011 molecules per s cm2.
The molar concentrations of three selected species, PRPE,

MAP, and O3, with very different characteristic reaction times are
shown in Fig. 4a at time t 	 4 � 104. The domains separating the
fast and slow regions for these three species are shown in Fig. 4b.

Fig. 4c shows a quantitative comparison of the conventional
technique (solid lines) and the spatial reduction algorithm (dots).
The blue line shows a one dimensional slice at x 	 750 km, whereas
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Fig. 4. Comparison of spatially reduced and full calculations in two dimensions. (a) Concentrations of three selected species C3H6, MAP and O3 vs. (x, y). (b)
Moving boundary 
, which separates the computational domain into two subdomains Df and Dr, where full and reduced models are used accordingly. (c)
Comparison of these species distribution obtained by the spatial reduction algorithm (spheres and cubes) and conventional method (solid line) depicted in blue
and red colors at x 	 750 km and at y 	 0.5625 km correspondingly, at time t 	 4 � 104 for the atmosphere with linearly distributed horizontal shear layer type
flow. Vertical and horizontal spatial scales are y 	 0 � 15 km and x 	 0 � 1,500 km (not shown in the figure) correspondingly. The computation is carried out
in 1,500 km � 15 km physical domain uniformly resolved by 80 � 80 points.

Rastigejev et al. PNAS � August 28, 2007 � vol. 104 � no. 35 � 13879

A
PP

LI
ED

M
A

TH
EM

A
TI

CS



the red line depicts a slice at y 	 0.5625 km. When � 	 10�2 the
largest error is ePO2 	 3.7 � 10�2.

Conclusions
The spatial reduction algorithm described herein allows great
computational savings in the accurate simulation of chemical
dynamics in the atmosphere. The algorithm relies on the fact that
the concentration of fast reacting species decays rapidly with
distance from the pollutant source. Therefore, for each chemical
species, we partition the computational domain into two regions,
where the full and reduced models are used accordingly. We have
demonstrated the versatility of the method by applying it to a
reduced mechanism for tropospheric oxidant chemistry. The algo-
rithm works robustly and automatically in one and two spatial
dimensions, with time-dependent or independent pollution sources.

Our current goal is to implement the algorithm into actual
atmospheric solvers, while keeping the details simple enough that
it can be easily implemented by the research community as a whole.
The most difficult part of the implementation is the extrapolation
between fast and slow regions. Although computationally efficient
fast marching algorithms have been constructed for two- and
three-dimensional problems (24–27), the technical difficulties as-
sociated with complex geometries shape of the moving separating
interface could provide prohibitive for widespread implementation.
For this reason, we have instituted a major simplification of our
algorithm, in which we require that the domain boundaries sepa-

rating the fast and the slow regions have simple geometries. In our
discussion above, we required the shapes of the domain boundaries
to correspond to constant relative or absolute thresholds; however,
there is no fundamental reason to do so. Increasing the size of the
fast domain slightly can result in enormous simplification of the
domain shape with only a slight increase in computational cost.
The simplest possible shapes are rectangular patches made to be
coincident with the existing grids used in current CTMs. We have
adopted the fast marching algorithm for this geometry, and are
currently working on adaptating and implementating the algorithm
for rectangular shapes in GEOS-Chem.

As an illustration, a three-dimensional domain splitting for the
chemical PRPE (based on the PRPE density distribution produced
by GEOS-Chem) is shown in Fig. 5. The computational mesh
covering the fast subdomain is depicted by sets of dots at different
horizontal layers. In the code, the earth’s troposphere is uniformly
resolved by 91 � 144 points in horizontal x � y planes and by 20
layers of increasing thickness in vertical z direction. Fig. 5 depicts
grid cross-sections at z 	 1, 14, and 17, corresponding to the
attitudes h 	 0.17, 12.087, and 15.198 km. The multiconnected fast
subdomain is well captured although the rectangular patches; for
example, Fig. 5a shows that the fast region essentially coincides with
the locations of the continents, where the pollutant concentration
is the highest.
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Fig. 5. Domain partitioning at the attitudes h 	 0.17, 12.087, and 15.198 km.
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