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Receptive Field Characteristics That Allow 
Parietal Lobe Neurons to Encode Spatial 
Properties of visual ~npwt: A computational 
Analysis 

Randall C. O’Reilly, Stephen M. Kosslyn, Chad J. Marsolek, and 
Christopher F. Chabris 
Department of Psychology 
Harvard University 

Abstract 
A subset of visually sensitive neurons in the parietal lobe 

apparently can encode the locations of stimuli, whereas visually 
sensitive neurons in the inferotemporal cortex (area IT) cannot. 
This finding is puzzling because both sorts of neurons have 
large receptive fields, and yet location can be encoded in one 
case, but not in the other. The experiments reported here 
investigated the hypothesis that a crucial difference between 
the IT and parietal neurons is the spatial distribution of their 
response profiles. In particular, IT neurons typically respond 
maximally when stimuli are presented at the fovea, whereas 

INTRODUCTION 

For many years it was the fashion in neuroscience to use 
common sense to analyze the functional properties of 
neurons. For example, if a neuron responded particularly 
well to faces, some inferred that it was a “face detector.” 
But this reasoning is incomplete and misleading, in part 
because it ignores the role the neuron plays in the con- 
text of other neurons (e.g., see Van Essen 1985). In this 
article we explore an example of another way of analyz- 
ing the functional properties of neurons: Given that neu- 
rons produce specific output on receiving specific input 
from other neurons, they can be thought of as perform- 
ing computations, which are systematic mappings of in- 
put to output that transform the input or operate on it 
in some way (cf. Marr 1982). A complete analysis of the 
computations performed by a set of neurons is specific 
enough to allow one to build a system with comparable 
functions. Thus, attempting to characterize neural func- 
tion as computation leads one to ask much more detailed 
questions about neural information processing than were 
asked previously, and can produce insights into nonob- 
vious properties of the specific mappings performed by 
neural systems. 

parietal neurons do not. We found that a parallel-distributed- 
processing network could map a point in an array to a coor- 
dinate representation more easily when a greater proportion 
of its input units had response peaks off the center of the input 
array. Furthermore, this result did not depend on potentially 
implausible assumptions about the regularity of the overlap in 
receptive fields or the homogeneity of the response profiles of 
different units. Finally, the internal representations formed 
within the network had receptive fields resembling those found 
in area 7a of the parietal lobe. 

One well-established fact about neural information 
processing is that separate pathways analyze different 
properties of visual input. In particular, spatial properties 
(such as location and orientation) are processed by a 
dorsal pathway that leads up from the occipital lobe into 
the parietal lobe, whereas object properties (such as 
shape and color) are processed by a ventral pathway that 
leads down into the inferior temporal lobe (e.g., Maun- 
sell and Newsome 1987; Mishkin and Ungerleider 1982; 
Mishkin et al. 1983; Ungerleider and Mishkin 1982). 

Rueckl, Cave, and Kosslyn (1989) explored the idea 
that dividing visual processing in this way is computa- 
tionally more efficient than combining it in a single sys- 
tem that encodes both shape and location information. 
To test this hypothesis, Rueckl et al. trained a three layer 
parallel-distributed-processing network with the back- 
propagation algorithm (Rumelhart, Hinton, and Williams 
1986). The inputs were simple patterns, which could 
appear in different places in an array, and the outputs 
were classifications of the shape and location of the 
stimuli. In one set of experiments, the input units were 
fully connected to each unit in a hidden layer, and each 
of these hidden units was fully connected to the output 
units. In another set of experiments, some of the hidden 
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units were connected only to the shape output units, and 
the rest were connected only to the location output units. 
The question was whether dividing the network into two 
processing streams would make it easier to establish the 
proper input/output mappings. The results were straight- 
forward: If the hidden units were split in the right pro- 
portion, a divided system established the necessary 
mapping much more efficiently than did a single network 
that encoded both shape and location. 

Gross and Mishkin (1977) speculated that the division 
of labor into two visual pathways is the basis of certain 
functional properties of the visual system. In particular, 
they considered how a divided visual system might 
achieve “stimulus equivalence across retinal translation,” 
the ability to identify an object regardless of where it 
appears in the visual field and what part of the retina its 
image strikes. They speculated that this ability is con- 
ferred in part by the very large receptive fields of cells 
in area IT (in the inferior temporal lobe); the median 
size of these receptive fields is about 25”, but they can 
reach sizes of over 100” (Desimone and Gross 1979; 
Gross, Rocha-Miranda, and Bender 1972). For compari- 
son, neurons in area V4 with excitatory receptive fields 
that include the center of gaze have much smaller re- 
ceptive fields, frequently less than 1” in diameter (e.g., 
see Desimone, Schein, Moran, and Ungerleider 1985). IT 
cells will therefore respond to stimuli when they are 
located in a wide variety of positions, presumably allow- 
ing them to be recognized no matter where they appear. 

But at the same time one is recognizing an object, one 
needs to know exactly where it is to reach to it, track it 
as it moves through space, and note the spatial relations 
between it and other objects. These abilities are con- 
ferred by the parietal system. In short, the idea is that 
the visual system “divides and conquers,” with the tem- 
poral lobe system ignoring location over a wide range, 
which is useful for recognition, and the parietal lobe 
system encoding specific location, which is useful for 
other purposes. 

Unfortunately, the receptive field data from parietal 
lobe neurons do not, at first glance, fit this model very 
well. Gross and Mishin speculated that stimulus equiva- 
lence was achieved in part because of the large receptive 
fields of neurons in IT. But neurons in the relevant areas 
of the parietal lobe also have very large receptive fields 
(Andersen, Essick, and Siegel 1985; Motter and Mount- 
castle 1981), yet they appear to encode location. 

In this article we consider what distinctive properties 
of parietal neurons might allow them to register location 
despite their lack of fine-grained receptive fields. We will 
begin this effort by comparing and contrasting the re- 
ceptive field properties of neurons in the temporal and 
parietal systems, and will consider which properties of 
parietal lobe receptive fields might allow them to encode 
location. We then will test the computational feasibility 
of our hypotheses with network models. 

Distinctive Properties of Parietal Lobe 
Receptive Fields 

We are concerned here with delineating properties of 
neurons in the “higher level” processing areas of the 
parietal lobes that appear to be important for spatial 
location encoding. In particular, we focused on area 7a 
within the inferior parietal lobule because of the evi- 
dence linking this area specifically with visual and visual- 
motor processing (Andersen, Asanuma, Essick, and Siegel 
in press; Andersen et al. 1985). Many properties of neu- 
rons in area 7a are not distinctive, being similar to those 
of neurons in area IT. Neurons in both areas respond to 
stimuli presented in a large range of positions in both 
visual hemifields, have roughly comparable receptive 
field sizes, tend to have peak responses to contralateral 
input, and have receptive fields that are not topograph- 
ically organized (Andersen et al. in press, Andersen et 
al. 1985; Desimone et al. 1985; Desimone and Gross 1979; 
Gross et al. 1972). 

Differences in the receptive field properties of the two 
types of neurons are somewhat subtle, but two reason- 
ably clear distinctions may be drawn. First, the peak 
responses of neurons in areas 7a and IT tend to be 
distributed differently throughout their receptive fields. 
Virtually all IT neurons respond most vigorously when 
the stimulus falls on the fovea, whereas neurons in the 
parietal lobe rarely respond most vigorously to foveal 
stimuli (Andersen et al. in press; Gross et al. 1972). 
Indeed, Motter and Mountcastle (1981) reported a pat- 
tern of responses termed “foveal sparing,” in which the 
receptive fields of some area 7a cells did not include the 
fovea at all (i.e., these neurons were excited only by 
stimuli presented in peripheral regions). In one study, 
about 40% of neurons examined in area 7a exhibited 
this characteristic (Motter, Steinmetz, DufQ, and Mount- 
castle 1987). Andersen et al. (in press) also discovered 
what they termed “holes” (areas in which stimuli did not 
elicit responses) in the receptive fields of 7a neurons, 
but these areas were found to be located in the periphery 
as well as the foveal region. 

The second distinction between the two classes of 
neurons concerns the number of locations in the recep- 
tive field that can produce maximal responses: There 
typically is only a single location at which a stimulus 
produces a maximal response from a neuron in IT (Gross 
et al. 1972; Desimone and Gross 1979), but there some- 
times are several locations at which a stimulus produces 
a maximal response from a neuron in area 7a. In other 
words, some neurons in area 7a have multiple-peak re- 
ceptive fields (Andersen et al. in press; Andersen and 
Zipser 1988; Motter and Mountcastle 1981; Zipser and 
Andersen 1988). 

In addition, the responses of some neurons in area 7a 
have also been found to be sensitive to eye position and 
oculomotor activity (Andersen et al. in press; Andersen 
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et al. 1985). However, over 20% of area 7a neurons 
respond only to visual stimulation (Zipser and Andersen 
1988), and it has been argued that the inferior parietal 
system as a whole uses eye position to produce head- 
centered receptive fields, which compensate for the ef- 
fects of eye position per se (Andersen 1986; Andersen et 
al. 1985). For these reasons, we have not emphasized 
effects of oculomotor behavior in our comparisons be- 
tween IT and 7a neurons. 

Our investigations complement those of Zipser and 
Andersen (1988) and Andersen and Zipser (1988), who 
used a neural network model to examine the role of eye 
position and retinal location in encoding location in 
head-centered coordinates. Zipser and Andersen com- 
pared the types of receptive fields developed in their 
network with the receptive fields of actual neurons in 
area 7a. They focused on the way information about eye 
position and retinal location is combined, whereas we 
are focusing on differences between area 7a and IT neu- 
rons that allow location to be encoded at all. Our model 
does not examine the role of eye position in computing 
location. However, we have adopted Zipser and Ander- 
sen’s general approach to modeling computation in the 
parietal lobe, and wil1,relate our findings to theirs at the 
end of the article. 

A Coarse Coding Model 

After considering the similarities and differences be- 
tween neurons in areas 7a and IT, we suspected that IT 
neurons are impaired in their ability to encode location 
insofar as they respond maximally only to stimuli in the 
fovea. Although the common peak response location 
would serve to indicate whether a stimulus was on the 
fovea, it would not help to register other locations. Thus, 
we hypothesized that the variety of receptive field prop- 
erties of neurons in the parietal lobes enables them to 
encode location. These intuitions were grounded in re- 
search on parallel distributed processing computer sim- 
ulation models. Hinton, McClelland, and Rumelhart 
(1986) showed that units that respond coarsely to input 
can provide very precise information if their distributions 
overlap systematically. Similarly, Ballard (1986) described 
how, given a network with a limited number of process- 
ing units but with an abundance of connections, system- 
atic overlapping provides high signal resolution with 
relatively few units. A good example of the success of 
such coaoe coding processes can be found in human 
color vision: Although we have only three types of cones, 
which have relatively wide tuning functions, we see mil- 
lions of colors by using the relative mixes of the outputs 
of the three types of cones. The wide range of response 
types found for neurons in area 7a might be analogous 
to the different tuning functions of cones, providing a 
sufficient range of outputs from overlapping receptive 

fields to allow the system to converge on the location of 
the input (cf. Andersen 1986). 

At first glance, however, one might suspect that the 
presence of multiple peaks in area 7a should not en- 
hance its spatial encoding abilities in a coarse coding 
system. Receptive fields with multiple peaks exhibit sim- 
ilar responses for different stimulus locations. This am- 
biguity hinders the function of a coarse-coding algorithm, 
which employs the overlap from separate and distinct 
representations of the input (Hinton et al. 1986). How- 
ever, this intuition might be faulty, and so must be tested 
empirically. In addition, we wondered whether the neu- 
rons with multiple peaks might play a different role in 
coarse coding, not being part of the input representation. 
Perhaps these neurons do not contribute to the initial 
phases of the computation, but rather are involved in the 
later phases of combining the inputs from different sin- 
gle-peak neurons. If so, then we expected such response 
properties to develop in the internal representations of 
a network that was trained to perform the proper input! 
output mapping. And in fact, Zipser and Andersen (1988) 
and Andersen and Zipser (1988) provide computational 
results that are consistent with these ideas, as will be 
discussed in more detail later. 

Thus, we explored the ease of establishing different 
input/output mappings using backpropagation neural 
network simulations (Rumelhart et al. 1986). We tested 
the ease of mapping the location of a stimulus on a 
simulated “retinal” array to an explicit representation of 
that location when this “retinal” input has been pro- 
cessed by units with different receptive field properties. 
We reasoned that because individual neurons (in either 
IT or 7a) cannot encode location very well, because of 
their large receptive fields, the outputs from these neu- 
rons must be used together to converge on location. The 
receptive field properties, then, can be viewed as mod- 
ulating the input to a larger system that computes precise 
location. Following Rueckl et al. (1989), we used the 
amount of error after a fixed number of training trials 
as a measure of the ease of making a given input/output 
mapping. We also analyzed the networks after successful 
training to discover how the hidden units used the in- 
formation in the input to accomplish the mapping. 

EXPERIMENT 1 

In this experiment we examined how well different net- 
works could encode the spatial location of a point of 
light on a simulated retina. We first examined the effect 
of manipulating the distribution of receptive field peaks 
in the input to the network. The location of peak re- 
sponse was systematically varied within or outside the 
retina’s foveal region (defined as the center of the input 
array). We also considered the importance of tessellated 
versus random distributions of peaks outside the fovea. 
If the network shows substantial degradation when the 
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distributions are random, we would be suspicious of its 
feasibility in a biological system. Finally, we also consid- 
ered the consequences of individually randomized ver- 
sus fixed receptive field profiles. The “profile,” in this 
sense, is simply the distribution of a neuron’s activation 
over the retinal array. Again, if good performance de- 
pends on all of the receptive fields having the same drop- 
off function from the peak, we would not be confident 
that we could generalize our results to natural informa- 
tion processing. 

In Part 1 of Experiment 1 we systematically examined 
the ease of registering location when different propor- 
tions of receptive fields have peak response locations on 
the fovea. We measured the relative difficulty of mapping 
from a 7 X 7 simulated retinal array with a single illu- 
minated point to two sets of 7 output units, which in- 
dexed the horizontal and vertical coordinates of the 
stimulus on the retina. The input, in layer 1, was filtered 
through 24 “neurons,” in layer 2,  and we varied the 
number of these 24 units that had peak responses outside 
the fovea. The hidden layer of the network, layer 3, 
contained 11 units. As is illustrated in Figure 1, each of 
the hidden units was connected to each unit in both 

output sets in layer 4 ,  which specified horizontal position 
and vertical position. 

The number of peaks outside the fovea was varied in 
increments of 2, from 0 through 24. All of the receptive 
fields in this case had the same profile and the peaks 
outside the fovea were positioned at distinct random 
locations. Thus, we examined the outputs of 13 networks, 
which differed only in the proportion of peak response 
locations that were outside the fovea. We ran each net- 
work 10 times to 300 epochs; each epoch consisted of 
an input point being presented at all 49 possible loca- 
tions. 

In Part 2 of Experiment 1 we examined the effects of 
how the peak response locations are distributed and of 
individual variability within the receptive field distribu- 
tions. We orthogonally compared the ease of mapping 
input to output in networks that had tessellated versus 
random peak distributions and individually randomized 
versus fixed receptive field profiles. Thus, there were 
four experimental conditions. In this part of the experi- 
ment, peak responses occurred in four different sets of 
locations (with 24, 16, 7, and 0 peaks outside the fovea), 
with half corresponding to regular tessellations of the 

Retinal Array 

(Layer 1) 

Input Hidden 
Units Units 

(Layer 2) (Layer 3) 

n 

output 
Units 

(Layer 4) 

x-coordinates 

Figure 1. The feedforward (left to right) structure of the networks used in these experiments. The connection weights between points on the 
retinal array and the input units were fixed for each network configuration; these weights defined the properties of the receptive fields of the 
input units. Lightly shaded connections have fixed weights; darkly shaded connections have adjustable weights. The three-dimensional graph at 
the lower left illustrates how the weights to one input unit define its receptive field. Layers, 2, 3, and 4 form a standard three-layer backpropaga- 
tion network. The output units, in layer 4, specify the coordinates along horizontal and vertical dimensions. 

144 Journul of Cognitive Neuroscience Volume 2, Number 2 



7 X 7 retinal matrix. These locations are illustrated in 
the top part of Figure 2. Each of the resulting 16 networks 
was run 10 times for 300 epochs. 

Results and Discussion 

Figure 3 illustrates the results from Part 1 of the exper- 
iment, in which we varied the proportion of receptive 
fields that had peak responses outside the fovea. Error 
clearly decreases in proportion to the number of peaks 
off the fovea, a pattern of results that supports our hy- 
pothesis that the distribution of peaks has a direct effect 
on the ease of mapping retinal position onto a coordinate 
representation. We analyzed these data using analyses of 
variance, with the 10 replications of each configuration 
being used as the random effect. The average amount of 
error after 300 training sets was the dependent measure. 
In fact, error did decrease when more peak response 
locations were off the "fovea," F(12, 117) = 556.6, p < 
,001. Contrast analyses revealed that there was a linear 
decrease in error with increasing numbers of peaks off 
the fovea, F(1, 117) = 4,899, p < .001, and that this 

decrease decelerated with increasing numbers of peaks 
off the fovea, F(1, 117) = 1,401,p < .001; the linear and 
quadratic components together accounted for 94% of the 
variance. Thus, to the extent that neurons in area 7a have 
receptive fields whose peaks are distributed off the fovea, 
these results suggest one reason why the parietal lobe is 
better suited to encoding spatial location. The peak re- 
sponse locations of neurons in the inferior temporal 
lobe, on the other hand, are virtually always in the foveal 
region, which, according to our results, makes this area 
significantly less adept at encoding spatial information. 

We next asked whether there was a critical point at 
which the computation became easier. Beginning with 
the comparison between the means for 0 and 2 off-fovea 
peaks, and working across the x axis in Figure 3, t tests 
were conducted comparing all pairs of treatment means. 
The critical p value was adjusted using the Bonferroni 
technique and the tests were continued until at least two 
consecutive comparisons yielded nonsignificant differ- 
ences. We also examined the point at which the function 
no longer decreased monotonically. Both procedures 
indicated the presence of an "elbow" in the curve: After 

7 x 7 Retinal Array 

24 off-fovea 16 off-fovea 

9 x 9 Retinal Array 

7 off-fovea 

I 1.1 1.1 1.1 1.1 1 
1.1 1.1 1.1 1.1 1.1 
I 1.1 1.1 1.1 1.1 I 

41 off-fovea 24 off-fovea 12 off-fovea 

Figure 2. The regular tessellations of the 7 X 7 retinal array (above) and the 9 x 9 retinal array (below) used to derive tessellated locations of 
off-fovea receptive field peaks for input units. The center cell represents the fovea in all cases. 
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0 2 4 6 8 10 12 14 16 18 20 22 24 

Number of Off-Fovea Receptive Field Peaks 

Figure 3. Results of Part 1 of Experiment 1. Mean error per output 
unit per stimulus for different numbers of off-fovea input unit recep- 
tive field peaks (using a 7 X 7 array network configuration). 

12 of the 24 receptive field peaks were positioned off 
the fovea, the amount of error flattened out, as is evident 
in Figure 3. 

This elbow at 12 off-fovea peaks provides evidence for 
a coarse coding model of location representation. Coarse 
coding works by 'interpolating the precise location from 
the variable activation of several broad representations. 
The degree of overlap of these representations is the 
crucial variable in a coarse coding system. The presence 
of an elbow indicates that there is sufficient lack of over- 
lap after a certain point, before which the netyorks 
performance degrades with the decreasing proportion 
of off-center peaks. When the proportion of off-center 
peaks is above this critical point, the performance re- 
mains roughly the same with only minor improvement 
with decreasing overlap. 

The results from Part 2 of the experiment are illus- 
trated in Figure 4. Average error is plotted in this figure 
as a function of the number of off-fovea receptive field 
peaks at four levels: 0 and the three points that allowed 
for regular tessellations of off-fovea peaks across our 
7 x 7 input grid. The decrease in error when more 
receptive fields had peak responses away from the fovea 
replicates the findings from the first set of networks 
reported above, F(3, 132) = 2350, p < .001. Contrast 
analyses revealed that there was a linear decrease in 
error with increasing numbers of peaks off the fovea, 
F(1, 132) = 7 , 6 0 4 , ~  < .001, and that this decrease de- 
celerated with increasing numbers of peaks off the fovea, 
F(1, 132) = 1,695,p < .001. Together, these trends ac- 
counted for 99% of the variance. There was no difference 
in error when the same random receptive field pro- 
file was used versus when every profile was unique, 
F(1, 132) = 1 . 5 8 , ~  > .20. In addition, there was a trend 
for less average error overall when peaks were tessel- 
lated compared to when they were distributed randomly 
(0.0170 versus 0.0186); this difference, analyzed across 
the three levels allowing for regular tessellation, did not 
reach significance at thep < .05 level, F(1, 108) = 3.26. 
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Figure 4. Results of Part 2 of Experiment 1. Mean error per output 
unit per stimulus for different numbers of off-fovea input unit recep- 
tive field peaks (using a 7 X 7 array network configuration). Data are 
plotted for four conditions created by combining the tessellated ver- 
sus random distribution scheme with the randomized versus fixed 
receptive field profiles. 

However, the network that used tessellated locations and 
random receptive field profiles behaved slightly differ- 
ently from the others when the number of off-fovea 
receptive fields increased, as is evident in Figure 4, 
F(3,132) = 3.51,p < .05 for the interaction of proportion 
of off-peak fields and type of profile. 

In short, these results support our hypotheses that area 
7a of the parietal lobe can encode location effectively, 
whereas IT cannot, at least in part because of the distri- 
bution of receptive field peaks outside the fovea. These 
findings are consistent with the fact that lesions of IT do 
not greatly impair an animal's ability to encode location, 
whereas lesions of the parietal lobe do (e.g., see Unger- 
leider and Mishkin 1982). Furthermore, the results do 
not depend critically on biologically implausible as- 
sumptions about the shapes or distributions of receptive 
fields. 

EXPERIMENT 2 

The results of Experiment 1 demonstrated that the ease 
of encoding location depends on the proportion of re- 
ceptive fields that respond maximally when the stimulus 
is outside the fovea. Experiment 2 was designed to rep- 
licate this finding with a larger input array (a 9 X 9 
retina) and, perhaps more importantly, to examine the 
representations generated by the hidden units of the 
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model. In the model, coarse coding is possible because 
of the overlapping receptive fields of units in layer 2 ;  
these units modulate the input from layer 1 (the array). 
Unlike actual neurons in area 7a, however, all of the units 
in layer 2 had only a single location at which they re- 
spond maximally. We conjectured that multiple-peaks 
might characterize neurons that receive input from sin- 
gle-peak neurons and serve to combine inputs to con- 
verge on location. If so, then we expected similar 
receptive fields to characterize the hidden units in layer 
3 of our model, given that these units play just this role 
in the mapping of input to output. 

The retinal array in Experiment 2 was a 9 X 9 matrix, 
and the output consisted of two sets of 9 units repre- 
senting the horizontal and vertical coordinates, as in 
Experiment 1. To compensate for the increased input 
array size, we had 41 units in layer 2 and 24 units in 
layer 3. As before, we used the backpropagation algo- 
rithm to examine the ease of mapping individual loca- 
tions in an array to a coordinate representation of 
location. In this experiment we examined the amount of 
error after 500 epochs, probing all of the possible 81 
locations in each epoch. 

This experiment had two parts. In Part 1, we con- 
structed four networks, which had either 40, 24, 12, or 
0 of the input units with receptive field peaks outside 
the fovea. The peaks were arranged in tessellated loca- 
tions (see the bottom part of Figure 2 )  and the same 
field profile was used for each of the input units. Each 
network was run 10 times. In Part 2, we ran a single trial 
of each of the four networks until either an error level 
of 0.001 was reached or 5000 epochs had passed without 
the error criterion being met. We then recorded the 
receptive and projective fields of each hidden unit in the 
networks that reached the error criterion, and consid- 
ered those that went to 5000 epochs to be incapable of 
achieving the proper input/output mapping. 

Results and Discussion 

Figure 5 illustrates the primary results of Part 1 of Ex- 
periment 2,  which replicated the results of Experiment 
1 with a larger network. A one-way ANOVA (with average 
error after 500 epochs as the dependent measure) doc- 
umented the effect of varying the number of off-fovea 
peaks on recovering the location of the input dot, F(3, 
36) = 12.9, p < .001. Contrast analyses revealed that 
there was a linear decrease in error with increasing 
numbers of peaks off the fovea, F(1, 36) = 29.4, p < 
,001, and that this decrease was flat in the intermediate 
numbers of peaks off the fovea, F( 1,36) = 7.37, p < .05 
(for the cubic contrast); these two trends together ac- 
counted for 95% of the variance. 

In Part 2 of Experiment 2, the error criterion ‘was 
reached only by the network in which 40 of the receptive 
fields responded maximally to locations off the fovea. It 
took 1158 epochs for this network to achieve the 0.001 

I 0.121 

I ““‘1 
0 4 8 12 16 20 24 28 32 36 40 

Number of Off-Fovea Receptive Field Peaks 

Figure 5. Results of Part 1 of Experiment 2. Mean error per output 
unit per stimulus for different numbers of off-fovea input unit recep- 
tive field peaks (using a 9 x 9 array network configuration). 

error level; the other three networks did not attain this 
level of error within the 5000 epoch cutoff limit. Exam- 
ination of error levels over epochs for these three net- 
works indicated that they were oscillating around an 
error level of 0.020 for the last 4000 epochs, and showed 
no signs of improving their performance past this level. 

Following Lehky and Sejnowski (1988a, 1988b), we 
examined the characteristics of the receptive and projec- 
tive fields developed by the network to discover how the 
mapping was achieved. We examined each of the 24 
hidden units in layer 3 of the 40 off-fovea peaks network. 
The three-dimensional graphs presented in Figure 6 rep- 
resent the activation of each hidden unit when a single 
point was presented in the different locations on. the 
retinal array, with the height (z axis value) at each loca- 
tion indicating the degree of activation. These receptive 
fields can be categorized into four groups: Group 1 fields 
feature a single peak in the center; Group 2 fields have 
a single, off-center peak; Group 3 fields have asymme- 
trical multiple local maxima and nonmonotonic drop-off 
profiles (i.e., unlike Group 2 fields, Group 3 fields in- 
cluded locations off the peak that “bend up,” responding 
more strongly than the surrounding locations); and 
Group 4 fields have a single depression in the center 
surrounded by four similar-sized peaks (reminiscent of 
“foveal sparing”). 

These types of receptive fields are qualitatively similar 
to those found in area 7a neurons. Indeed, these results 
are similar to those obtained by Andersen and Zipser 
(1988; see also Zipser and Andersen 1988), except that 
this network recovered some types of multiple-peak pro- 
files (Group 4),  whereas their model did not. However, 
even our 9 X 9 input array is too coarse to do justice to 
the features of actual receptive fields (e.g., see Figure 2 
of Zipser and Andersen 1988), and we must be cautious 
not to overstate the qualitative patterns suggested by 
these results. 

In Figure 6, the horizontal and vertical bars represent 
the weights from each hidden unit to each of the hori- 
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Figure 6. Results of Part 2 of Experiment 2. Projective and receptive fields of the 24 hidden units from the 40 off-fovea receptive field peaks 
(9  X 9 )  network, after the criterion error level was reached. The units are categorized into four groups according to the receptive and 
projective field characteristics they share. See text for explanation. 
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zontal and vertical output units; these are the projective 
fields. Darker shades represent higher weight values; 
lighter shades represent lower weight values. For the 
Group 1 hidden units, the projective fields tend to have 
stronger weights at the periphery for both the horizontal 
and vertical indices, whereas the receptive fields have an 
opposite pattern. Group 1 hidden units seem to be per- 
forming a computation that differentiates between on- 
and off-center locations of stimuli. Group 4 hidden units, 
on the other hand, have receptive and projective fields 
complementary to those of Group 1 hidden units. The 
receptive fields of these units spare the foveal region 
and in general emphasize the periphery of the retinal 
input, whereas the projective fields tend to have lower 
values at the two extreme points on each end of both 
the horizontal and vertical indices. This complementary 
relation between Group 1 and Group 4 hidden units is 
particularly evident when one compares the values at the 
fourth horizontal projective weight, which is the strong- 
est weight in 7 of our 8 cases for the Group 4 units but 
is the lowest weight in 8 of our 8 cases for the Group 1 
units. Thus, it seems that these hidden units have orga- 
nized into a contrasting set of representations, which 
specify the location of a point by the degree to which it 
lies in the center or  the periphery. 

The theme of complementary receptive fields is also 
evident in the Group 3 hidden units. These hidden units 
can be divided into four subgroups, each of which is 
sensitive to a set of contiguous locations along an ex- 
treme end of either the horizontal or  vertical axis. Out 
of nine hidden units in this group, two responded max- 
imally to stimuli along the left end of the horizontal axis, 
two to stimuli along the right end, two to stimuli at the 
top end of the vertical axis, and three to stimuli at the 
bottom end of the vertical axis. The correlation between 
the projective fields and these receptive field categories 
is striking. For each of these units, the projective field 
for the axis in which the receptive field is relatively flat 
contains homogeneous weights that consistently have 
values in the mid-range. Thus, these units do not provide 
much differentiation along one of the axes, indicating 
that they are performing important computations for a 
single axis. It is of interest that the maximum values of 
the projective fields for the active axis correspond to the 
lower values of the receptive field profiles, just as was 
found in the hidden units in Groups 1 and 4. In addition, 
extreme projective field weights for the subgroups of 
units representing the same axis are arranged in a com- 
plementary fashion, so that the maximum and minimum 
weights from one of the two or three members of the 
subgroup do not correspond to the same positions as 
do those in the other members of the subgroup. Fur- 
thermore, the maxima and minima are distributed in 
one-half of the axis, indicating that these hidden units 
are producing representations specific to one-half of one 
axis. This specificity implies that these hidden units com- 
pute specific coordinate locations, as opposed to the 

more general on- and off-center representations created 
by the hidden units of Groups 1 and 4. 

Another interesting property found in the.Group 3 
projective fields is that the maximal weight is consistently 
located one unit from the minimal weight. This arrange- 
ment would serve to define rather sharp boundaries. 
This configuration is also evident in the projective fields 
of hidden units in Group 2, but not in Groups 1 and 4. 
As in Group 3 receptive fields, there is a complementary 
distribution of peaks in the receptive fields of the three 
hidden units in Group 2; the extremes of each axis are 
represented by a peak, the remaining hidden unit has a 
peak in the lower left-hand corner, representing the 
lower horizontal and vertical axes at the same time. 

To summarize, the hidden units of the network studied 
in Part 2 of Experiment 2 organized themselves into two 
general types of representations. One type, found in 
Groups 1 and 4, is general, differentiating the on- or off- 
center location of the stimulus. The other type, found in 
Groups 2 and 3, isolates specific subsections of the co- 
ordinate axes. 

EXPERIMENT 3 
The results from Experiments 1 and 2 are clear-cut: The 
distribution of the receptive field peaks of input units 
critically affects how well a network can encode spatial 
location. Indeed, we discovered that the peak distribu- 
tion found in area IT cannot encode location well, which 
is consistent with the empirical findings. Furthermore, 
the models were not sensitive to two biologically im- 
plausible properties, specifically whether the peaks were 
tessellated or randomly arrayed and whether all recep- 
tive fields had the same drop-off function from the peak. 
In addition, when we examined the hidden units of a 
network that could encode location, we found that they 
developed complex receptive fields like those found in 
the parietal lobe. 

The results of Experiment 2 are consistent with the 
idea that some neurons in area 7a have complex recep- 
tive field profiles because they integrate output from 
other neurons to compute location. According to the 
coarse coding hypothesis, there must be units that inte- 
grate the overlapping outputs from the input units. How- 
ever, the previous results do not rule out another 
possibility, namely that multiple-peak receptive fields are 
themselves used in coarse coding the input. 

As noted earlier, at first glance it seems implausible 
that multiple-peak receptive fields could play a useful 
role in providing input to a coarse coding system. Mul- 
tiple-peak fields produce similar activation when stimuli 
are in a number of different locations, which intuitively 
seems likely to hamper the use of relative outputs from 
overlapping fields to converge on a location: However, 
it is difficult to judge intuitively what the effect of multiple 
peaks would be in this kind of computational system, so 
we decided to investigate the issue empirically. 
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Experiment 3 was designed to examine how easily the 
location of a dot can be recovered when the input is 
filtered through units that respond maximally to stimuli 
in multiple locations. We examined three networks. The 
first networks input units had receptive fields that mim- 
icked the hidden unit receptive fields obtained in Part 2 
of Experiment 2, which had a mix of single- and multiple- 
peak recepive fields. The second network’s input units 
had approximately equal numbers of one-, two-, and 
three-peak receptive fields. And the third network’s input 
units had only two- and three-peak receptive fields. In 
the latter two networks, the multiple-peak fields were 
formed by combining single-peak off-fovea fields used 
in the previous experiments. All networks had a 9 x 9 
input array and the general structure of the networks 
used in Experiment 2; each network was run for 10 trials 
of 500 epochs each. 

Results and Discussion 

As is illustrated in Figure 7, the greater the proportion 
of single-peak receptive fields, the better the network 
performed. Indeed, the amount of error was predicted 
by the proportion of input units with single-peak recep- 
tive fields. The network that had 100% single-peak re- 
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Figure 7. Results of Experiment 3. Mean error per output unit per 
stimulus obtained from four 9 X 9 array network configurations, 
each with different input unit receptive fields: 2 and 3 Peak in- 
cluded roughly equal proportions of only two- and three-peak recep- 
tive fields, which were constructed from the same single-peak master 
field profile; 1,2, and 3 Pe& included roughly equal proportions 
of one-, two-, and three-peak receptive fields, which were con- 
structed from the same single-peak master field profile; Hiaiien Unit 
Peaks included one-, two-, and three-peak receptive fields, which 
were taken from those developed by the hidden units in the 40 off- 
fovea single-peak network of Experiment 2; All Single Peak indicates 
that the receptive fields were those used for the 40 off-fovea single- 
peak network in Experiment 2. The numbers in parentheses indicate 
the percentage of single-peak receptive fields in the input units for 
that network. 

ceptive fields was better than that with 0% single-peak 
receptive fields (i.e., with only two- and three-peaked 
receptive fields), F(1, 36) = 11.06, p C .01, and was 
better than the network with 37% single-peak receptive 
fields (i.e., with a roughly equal mix of one-, two-, and 
three-peak receptive fields), F(1, 36) = 7.47,p < .Ol;,it 
was not better, however, than the network with 67% 
single-peak receptive fields (i.e., with the receptive fields 
of the hidden units from Experiment 2 as the receptive 
fields of the input units), F(1, 36) = 1.46,p > .1 (if we 
assume that “multiple peaks” indicates nonmonotonic 
orderings of activation, in which case the bars running 
along one side of the receptive field are taken as a single 
peak). The only other significant difference in Figure 7 
is between the network with 67% single-peak receptive 
fields and that with 0% single-peak receptive fields (i.e., 
that with hidden unit receptive fields and that with only 
two- and three-peak receptive fields), F(1, 36) = 4.49, 
p C .05. Thus, we can conclude that single-peak receptive 
fields in fact provide better input to a coarse coding 
system than do multiple-peak receptive fields. 

We next attempted to train a multiple-peak network 
until an error criterion of 0.001 was achieved. Even the 
network that performed best through 500 epochs, the 
one whose input units had the receptive field profiles of 
the hidden units in Experiment 2, could not achieve the 
mapping after 5800 total epochs (the average error at 
that point was 0.018). We concluded that it is probably 
impossible to train fully a network that includes a rela- 
tively large number of multiple-peak receptive fields. 
This finding provides additional evidence that receptive 
fields with multiple peaks in the input layer are not 
computationally efficient at encoding location. 

These results, together with those from Experiment 2, 
are consistent with the idea that multiple “computational 
layers” exist within area 7a, with the layers playing dif- 
ferent roles in registering location. According to this 
view, the neurons with single-peak receptive fields pro- 
vide input to those with multiple-peak receptive fields, 
which use overlap in the input receptive fields to con- 
verge on location. The multiple-peak receptive fields, in 
turn, produce output that provides an explicit represen- 
tation of location. 

GENERAL DISCUSSION 

We reasoned that the outputs from numerous receptive 
fields must be used to represent location in the parietal 
lobe, given that the individual receptive fields are neither 
small nor precise. In particular, we hypothesized that 
overlapping receptive fields could encode spatial loca- 
tion via coarse coding, but only if the units have different 
locations of maximal response. In contrast, when the 
locations of maximal response are clustered in one area, 
as tends to be true in IT neurons, we expected that 
overlapping fields could not easily encode location via 
coarse coding. These hypotheses were clearly supported 
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by the results of both Experiments 1 and 2: When there 
was a high proportion of off-fovea receptive field peaks 
(as is characteristic of area 7a neurons), the networks 
were able to accurately map a point on a retinal array to 
an explicit coordinate representation of location. In con- 
trast, when there was a low proportion of off-fovea peaks 
(as is typical of IT neurons), this mapping was not per- 
formed accurately. 

The analyses of how the successful mapping of input 
to output was achieved also proved illuminating. We 
found many properties that are reminiscent of area 7a 
neurons in the internal, hidden unit representations de- 
veloped to perform the required mapping. For example, 
the proportion of on- and off-fovea peaks found in the 
hidden unit receptive fields was similar to the propor- 
tions found in studies of area 7a receptive fields (Ander- 
sen et al. in press). Indeed, 83% of the receptive fields 
of the hidden units had off-fovea peaks, which is further 
support for our hypothesis that this characteristic is im- 
portant in encoding spatial location efficiently. In addi- 
tion, we discovered examples reminiscent of fovea 
sparing in 33% of the receptive fields of the hidden units 
(those in Group 4) ,  suggesting that this property may be 
important in the coarse coding mapping employed by 
the model. It is intriguing that the relative proportion of 
hidden units exhibiting “foveal sparing” is similar to @at 
found in area 7a (40% according to Motter et al. 1987). 

Andersen and Zipser (1988; Zipser and Andersen 1988) 
categorized spatially tuned neurons from area 7a into 
three types, in large part on the basis of the number of 
locations of maximal response in the receptive fields. In 
their scheme, Type 1 fields have a single, smooth peak 
of activity; Type 2 fields have a single, large peak of 
activity, but also other smaller peaks or  depressions; and 
Type 3 fields have multiple, large peaks. Zipser and An- 
dersen developed a backpropagation model that took 
eye position and retinal location as inputs and produced 
an explicit representation of the location of the stimulus 
in head-centered space. They subsequently examined the 
types of receptive fields developed by the hidden units. 
These hidden units produced receptive fields of Types 1 
and 2, but did not produce the multiple-peak Type 3 
fields. Our network produced fields that were in some 
respects similar to all three of Andersen and Zipser’s 
types, but we did not recover the full complexities of 
their fields. 

Our Group 1 and 2 receptive fields have clear single 
peaks, corresponding to Andersen and Zipser’s Type 1 
neurons. Group 3 receptive fields have a large single 
peak, a noticeable depression, and smaller peaks, as do 
Andersen and Zipser’s Type 2 neurons. And our Group 
4 fields have four similarly sized peaks, corresponding 
roughly to a subclass of Andersen and Zipser’s Type 3 
multiple-peak neurons. We did not adopt their taxonomy 
for our hidden unit analysis because it does not capture 
the features of the receptive fields we found to be im- 
portant for coarse coding. They emphasized the number 

of peaks and in general the complexity of the variation 
in response across the field, but did not differentiate 
between the relative locations of the peaks. Our analysis 
indicated that the relative locations are critical for en- 
coding spatial location. Furthermore, we found impor- 
tant regularities in the number of peaks in a given 
location, which are organized in a complementary fash- 
ion. The differences between the results from Zipser and 
Andersen’s network and ours could be caused by the fact 
that they included eye position in the input, had different 
numbers of hidden units, had different types of input 
receptive fields, and various other disparities. 

The results from the hidden unit analysis of Part 2 of 
Experiment 2 indicated that the receptive fields of these 
units became organized into two general types of rep- 
resentations. Representations of broad sets of locations 
developed in Groups 1 and 4. These representations 
differentiated the on- or  off-center location of a stimulus. 
In contrast, specific coordinate locations were repre- 
sented in the receptive fields developed in Groups 2 and 
3. This division of labor suggests one particular algorithm 
that is capable of solving the spatial location encoding 
problem, and it would be of interest to discover whether 
the brain in fact uses this method. 

Moreover, the results of Experiment 3 demonstrated 
that there is a computational advantage to single-peak 
receptive field input to this type of network. The result 
suggests that there are at least two computational layers 
within area 7a, and that neurons with more complex 
fields are involved in combining input from neurons with 
simpler receptive fields. This hypothesis is consistent 
with our finding that most hidden units developed com- 
plex, multiple-peak receptive fields. To our knowledge, 
no relevant electrophysiology has yet been performed to 
test this hypothesis. 

This research, then, demonstrates that certain ideas 
about neural function are computationally plausible. It 
does not demonstrate that they are in fact correct. Given 
the expense of neurophysiological research, it seems 
worth exploring the feasibility of ideas such as these in 
detail before attempting to test them in animals. But 
more than that, research such as this helps to define 
issues more clearly, which cannot help but be useful in 
furthering our understanding of neural function. 

METHOD 

MaPPhg 
The mapping being established in the simulations was 
from a single “illuminated point in an N x N array 
(corresponding to the retina) to a set of 2iV units that 
indexed the X,Y coordinates on the retina. One set of N 
output units was a local representation of the vertical 
coordinate of the input point on the retina, and the other 
set of N similarly represented the horizontal coordinate. 
To represent the illumination of each point on the retina, 
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N‘ input patterns were required, each having a single 
unit on and the others off. 

Network Architecture 

The networks had four layers of units organized in a 
feedforward structure, as illustrated in Figure 1. The 
connection weights between layer 1 (the retinal array) 
and layer 2 were fixed to create receptive field shapes 
whose characteristics were varied to simulate properties 
of parietal and inferotemporal lobe neurons in the ex- 
periments. The units in layer 2, whose activations were 
determined by these fixed weights, served as the inputs 
for the backpropagation algorithm (Rumelhart et al. 
1986), which was used to adjust the weights between 
units in layers 2 and 3 and layers 3 and 4 (the weights 
between layers 1 and 2 remained fixed throughout the 
process). We used a learning rate (epsilon) of 0.12 and 
a momentum factor (alpha) of 0.80 for all network runs; 
all initial nonfixed weights were given random values 
between -0.5 and 0.5. 

Input Receptive Fields 
(Experiments 1 and 2) 

The fixed weights between layers 1 and 2 were deter- 
mined as follows: First a 2N-1 X 2N-1 “master” recep- 
tive field was generated, and the individual receptive 
fields for each unit in layer 2 were generated from this 
by taking an N X N section from different locations of 
this master field, depending on where the peak was to 
be located. The master receptive field had a single peak 
with a relatively large asymmetrical component and a 
small random perturbation. Figure 8 illustrates the mas- 
ter receptive field. 

This receptive field was generated in four steps. First, 
a 2N-1 X 2N-1 Gaussian surface with a u of 1.85 was 
created according to the standard formula and scaled by 
a factor of 10,000: 

e-(xz+yzy20z 
2T02 F,(x,y) = 10,000 ’ 

Second, a random perturbation modulated by the natural 
logarithm of the Gaussian field element [F,(x,y)] was 
applied by the following formula, where RND( - 1, l )  in- 
dicates a pseudorandom number in the range -1 to 1, 
and MIN(F,) represents the minimum value in the Gaus- 
sian field: 

F,(x,y) = F,(x,y) + 12.0. RND(-1,l) . {In[F,(x,y)] - 
ln[0.5 . MIN(F,)]} 

The natural logarithm of the minimum value of the 
Gaussian field was subtracted to normalize the factor to 
the positive-valued range of (0.69-15.01) for the mini- 
mum-valued element in the Gaussian field to the maxi- 
mum element, respectively. Thus, the effect of the 
randomization was 21.8 times as great for the peak value 

as it was for the smaller values, ensuring that the asym- 
metries so generated would correlate with the scale of 
the original field. The 12.0 scaling factor resulted in a 
randomization factor of 38.7% for the peak value, and 
2.6 X lo6% for the minimum value, which represent 
relatively large asymmetries in the field. 

The third step was to smooth the random field gen- 
erated in step 2 by convolution 
3 X 3 normalized Gaussian kernel, 

0.09671 0.11756 
0.11756 0.14292 [ 0.09671 0.11756 

After smoothing, another random 

with the following 
having a u of 1.6: 

1 0.09671 
0.11756 
0.09671 

factbr of +5% of the 
maximum F, was added, which was not modulated by 
the original magnitude. The factor added a small-scale 
random perturbation, resulting in the source field, F,, 
which needed only to be normalized to the range (0-1). 
The following formula was used to normalize the F,, 
where MAX@) is the peak value in F,, and MIN (F,) is 
the smallest value: 

Having generated the master receptive field, the indi- 
vidual N X N receptive fields were sampled from it 
by specifying the location of the peak in the individual 
N x N field. Depending on whether a random or tes- 
sellated peak location scheme was being used, the peak 
locations were determined in one of two ways. In the 
tessellated cases peaks were distributed within the 
square retinal matrix such that each column and row 
had the same number and spacing of peaks; using &is 
scheme avoided the problem of unbalanced peak distri- 
bution that is possible with randomly located fields. In 
these cases, the peak locations were derived from the 
regular tessellations shown in Figure 2 for both the 
7 X 7 and the 9 X 9 cases. The randomly distributed 
peaks were selected without replacement from a list of 
randomly generated peak coordinates. 

Because each receptive field for the units in layer 2 
was simply a copy of a region of the master field, all 
fields with the peak in the same location had exactly the 
same profile. This does not accurately reflect the variance 
between the receptive fields from single-cell recordings, 
so in Experiment 1 we compared the effect of the addi- 
tion of a random element to each receptive field for the 
units in layer 2 as they were sampled from the master 
field. The individual randomization was produced by 
adding an additional random factor, which was limited 
to a maximum of 25% of the maximum receptive field 
value, to each element in the resulting N X N field. Fixed 
profile receptive fields were sampled directly from the 
master receptive field without this additional random 
factor. 
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Figure 8. The selection of values from a subsection of the "master" (7 X 7) receptive field (above) to be used for individual input unit 
receptive field values (below). These are the fixed connection weights between points on the retina and a single input unit illustrated at the left 
of Figure 1 

In Experiment 3, we considered three cases of complex, 
multiple-peak input receptive fields. The first of these 
cases was generated by using the hidden unit receptive 
fields created in the 40 off-center case of Experiment 2 
after training to 0.001 error. In order to generate the 41 
receptive field patterns from the 24 hidden unit receptive 
fields, the numbers of fields from each of the four groups 
derived in the analysis of Experiment 2 were scaled up 
in roughly the correct proportions by duplicating a por- 
tion of the units as follows (units are ordered left to 
right, top to bottom in Figure 6): 7 receptive fields from 
Group 1 (the correct number should be 6.833 by pro- 

. portion), using the first three twice each and the fourth 
once; 6 from Group 2 (5.125 by proportion), using each 
twice; 15 from Group 3 (15.375 by proportion), using 
the first, second, fourth, sixth, seventh, and eighth twice 
and the others once each; 13 from Group 4 (13.666 by 
proportion), using the first five twice and the remaining 
three once each. 

The second multiple-peak training set was generated 
by using the tessellations for the 9 X 9 case (see Figure 
2) to specify the peak locations for a set of single-peak 
stimuli, which were subsequently combined to form 
multiple-peak fields (two or three peaks). For the case 
with one, two, and three peaks, we used 15 single peaks, 
12 double peaks, and 14 triple peaks. The 24 off-fovea 

tessellation was used for the 12 double peaks, and the 
41 off-fovea tessellation, plus an additional peak in the 
center, was used for the 14 triple peaks. The 15 single 
peaks were drawn from the 12 off-fovea tessellation with 
3 additional units at coordinates (-4,-2), (4,2), and 
(0,O). 

For the case with double and triple peaks, 21 double 
peaks and 20 triple peaks were used. The same 42 peaks 
that were used in triple peak receptive fields in the 
previous case were used for the 21 double peaks. The 
60 peaks necessary for the 20 triple peak receptive fields 
were derived by taking the 40 "holes" (unused locations) 
from the 41 tessellation, and adding to them 20 locations 
of the 24 tessellation [the four points located at coordi- 
nates (-2,-2), (2,-2), (-2,2), (2,2) were eliminated]. 
The peaks for the double and triple fields were selected 
so that the distance between peaks was not less than four 
grid units. The single-peak receptive field profiles were 
combined for the double-peak case using the following 
formula: 

A similar formula was used for the triple-peak case, as 
follows: 
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Procedure 

We investigated how difficult it was for the backpropa- 
gation algorithm to train a network to map a point in an 
input array to an explicit representation of its location. 
The fixed receptive fields were used to compute the 
outputs from the population of input units, which served 
as the input to a three-layer standard backpropagation 
model (Rumelhart et al. 1986). The entire set of N' layer 
2 input patterns was presented to the network in each 
epoch, and the weights were adjusted after the end of 
the epoch. The initial weights on the connections be- 
tween layers two, three, and four were different ran- 
domly generated numbers between -0.5 and 0.5. Our 
measure of the difficulty of establishing the inpuVoutput 
mapping was simply the error remaining after a fixed 
number of epochs. The error measure used throughout 
was the square of the error per output unit per stimulus, 
which ranges between about 0.250 for a completely ran- 
dom set of weights to 0.001, which was used as a final 
error cutoff. Unlike the commonly used total sum of 
squared error measure, our measure of error has the 
same range for all networWmapping combinations, al- 
lowing comparison of different networks and different 
versions of the same mapping. 

The receptive fields of hidden units in fully trained 
networks were generated by recording the activations of 
the hidden units (layer 3) that resulted when each point 
on the retina was excited. During this recording, we 
eliminated the sigmoidal activation function because it 
flattened the fine structure of the input weights that 
determined the receptive field of each hidden unit; as 
graphed, these fields were normalized in the z axis from 
0 to 1. The projective field of each hidden unit onto the 
output layer was determined by recording the weights 
from that unit to each of the output units. These weights 
were individually normalized and gray levels assigned 
by dividing the total normalized range into 10 equal 
subdivisions. 
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