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[1] We apply the adjoint of an atmospheric chemical transport model (GEOS-Chem
CTM) to constrain Asian sources of carbon monoxide (CO) with 2� � 2.5� spatial
resolution using Measurement of Pollution in the Troposphere (MOPITT) satellite
observations of CO columns in February–April 2001. Results are compared to the more
common analytical method for solving the same Bayesian inverse problem and applied to
the same data set. The analytical method is more exact but because of computational
limitations it can only constrain emissions over coarse regions. We find that the correction
factors to the a priori CO emission inventory from the adjoint inversion are generally
consistent with those of the analytical inversion when averaged over the large regions of
the latter. The adjoint solution reveals fine-scale variability (cities, political boundaries)
that the analytical inversion cannot resolve, for example, in the Indian subcontinent or
between Korea and Japan, and some of that variability is of opposite sign which points to
large aggregation errors in the analytical solution. Upward correction factors to Chinese
emissions from the prior inventory are largest in central and eastern China, consistent
with a recent bottom-up revision of that inventory, although the revised inventory also sees
the need for upward corrections in southern China where the adjoint and analytical
inversions call for downward correction. Correction factors for biomass burning emissions
derived from the adjoint and analytical inversions are consistent with a recent bottom-up
inventory on the basis of MODIS satellite fire data.

Citation: Kopacz, M., D. J. Jacob, D. K. Henze, C. L. Heald, D. G. Streets, and Q. Zhang (2009), Comparison of adjoint and

analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of

CO columns, J. Geophys. Res., 114, D04305, doi:10.1029/2007JD009264.

1. Introduction

[2] Inverse modeling is a standard tool for combining
observations of atmospheric composition with knowledge
of atmospheric processes (transport, chemistry) to derive
quantitative constraints on emissions to the atmosphere. A
chemical transport model (CTM), known as the forward
model for the inversion, solves the continuity equation to
predict concentrations as a function of emissions. The inverse
model then optimizes the emission estimates by fitting the
CTM to the observed concentrations, subject to error weight-
ing and a priori information on the emissions. We compare
here analytical and adjoint methods for the inverse problem

as applied to optimization of Asian emissions of carbon
monoxide (CO) using Measurement of Pollution in the
Troposphere (MOPITT) satellite observations of CO atmo-
spheric columns [Deeter et al., 2002]. We demonstrate the
ability of the adjoint approach to constrain emissions with
high resolution when using a large satellite data set, revealing
aggregation errors in the analytical method.
[3] Consider the general problem of estimating a set of

emissions (assembled in a state vector x), given a set of
observed atmospheric concentrations (observation vector y)
and a CTM forward model y = F(x). One can define an
optimal value of x as that which minimizes an error-weighted
least squares (chi-square) scalar cost function J(x), derived
from Bayes’ theorem with the assumption of Gaussian errors
[Rodgers, 2000]. The cost function describes the error-
weighted mismatch between the observed concentrations,
y, and those simulated with the forward model, F(x), as well
as the error-weighted mismatch between the true state and the
a priori estimate xa. The solution for min(J(x)) with respect to
x such that rxJ(x) = 0 defines the Maximum A Posteriori
(MAP) solution of the inverse problem [Rodgers, 2000].
[4] Most of the inverse modeling literature for atmospheric

composition has used an analytical solution for rxJ(x) = 0,
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and we refer to this here as the ‘‘analytical method.’’ It has
been applied extensively for example for inverse modeling of
CO2 surface fluxes and CO emissions using observations
from surface sites [Bousquet et al., 1999; Bergamaschi et al.,
2000;Kasibhatla et al., 2002;Pétron et al., 2002] and aircraft
[Palmer et al., 2003; Palmer et al., 2006]. Computing this
analytical solution involves construction of the CTM Jacobian
matrix (K = @y/@x) and subsequent multiplication and
inversion of matrices with dimensions of dim(x) and dim(y).
This limits the practical size of x, i.e., the number of emission
regions that can be optimized (limitations in the size of y can
be overcome by partitioning the observations into indepen-
dent packets assimilated by the inversion, i.e., ‘‘sequential
updating’’ [Rodgers, 2000]). However, a large state vector x
is desirable in applying the inverse method to satellite obser-
vations, where one would like to exploit the richness of the
data to constrain emissions with high spatial and temporal
resolution, limited only by the resolution of the CTM used as
the forward model.
[5] An alternative to the analytical method is to seek a

numerical solution torxJ(x) = 0 by using the CTM adjoint to
efficiently compute rxJ(x) from successive estimates of x
starting with the a priori, and applying an iterative optimiza-
tion algorithm to converge to the solution. We refer to this
here as the ‘‘adjoint method.’’ Pioneering studies applying
the adjoint method to optimize emissions include the work of
Elbern et al. [1997], Eibern and Schmidt [1999], and
Kaminski et al. [1999]. Recent studies have applied the
method to constrain aerosol emissions [Hakami et al.,
2005; Dubovik et al., 2008], global CO and NOx emissions
using surface measurements of CO from the NOAA/CMDL
network and NO2 columns from the GOME satellite instru-
ment [Müller and Stavrakou, 2005], global CO emissions
using MOPITT columns [Stavrakou and Müller, 2006], and
East Asian CO sources using measurements from ground
stations [Yumimoto and Uno, 2006].
[6] Inversion of CO sources is an attractive application of

the adjoint method because of the availability of dense and
high-quality satellite observations. The MOPITT instrument
is a nadir viewing pressure modulator radiometer that meas-
ures broadband infrared radiation in thermal emission, from
which CO column and profile concentrations are retrieved. It
was launched onboard NASA’s EOS Terra in 1999 in a sun-
synchronous polar orbit [Deeter et al., 2002], provides
measurements with 1–2 pieces of information in the vertical
and global coverage every 3 days. CO is emitted by incom-
plete combustion and is also produced in the atmosphere by
oxidation of volatile organic compounds (VOCs). Its sink is
oxidation byOHwith a lifetime of about twomonths. Several
recent inverse studies have used MOPITT CO data to
constrain CO sources [Arellano et al., 2004; Heald et al.,
2004; Pétron et al., 2004; Arellano et al., 2006; Stavrakou
andMüller, 2006;Arellano et al., 2007].All, except Stavrakou
andMüller [2006], used the analytical method.Arellano et al.
[2006] constrained a state vector of emissions including over
100 elements, much larger than previous studies, but still not
commensurate to the density of data provided by MOPITT.
[7] Stavrakou andMüller [2006] applied an adjointmethod

to 2000–2001 MOPITT CO columns to constrain global CO
sources, and compared ‘‘large region’’ and ‘‘grid-based’’
approaches to the inversion. This corresponded to CO source
inversion at low (18 regions) versus high (5�� 5�) resolution,

in both cases using an adjoint of the IMAGESCTMdriven by
monthly mean wind fields. They found that the grid-based
inversion yielded better agreement with the observed CO
columns and allowed for greater exploitation of the data. Here
we also constrain CO sources at the native resolution of our
CTM (2� � 2.5�), but rather than assess the impact of the
resolution alone, we compare the adjoint to the analytical
inversion method. Adjoint and analytical methods yield
theoretically the same MAP solution but practically we
may expect differences from the numerical approximation
involved in the adjoint method. In addition, the analytical
method provides exact covariance information on the solu-
tion which the adjoint method does not.
[8] We focus our analysis on Asian CO sources using

MOPITT observations for the March–April 2001 period of
the NASA/TRACE-P aircraft mission over the NW Pacific.
This mission focused on characterizing the chemical outflow
from the Asian continent and provided validation data for
MOPITT [Jacob et al., 2003]. Palmer et al. [2003] andWang
et al. [2004] previously used the TRACE-P aircraft observa-
tions to invert for Asian CO sources, using as a priori a
detailed Asian emissions inventory for 2000 [Streets et al.,
2003]. Heald et al. [2004] compared the information content
from the TRACE-P aircraft and MOPITT satellite observa-
tions as constraints on Asian CO sources and concluded that
the satellite observations were far richer. All these studies
used the analytical method for the inversion. Additional
studies for the TRACE-P period used simpler methods to
constrain Asian CO sources from the aircraft and MOPITT
observations [Carmichael et al., 2003; Allen et al., 2004], all
with consistent results. March–April 2001 thus represents a
well-studied period for Asian CO sources, and the study of
Heald et al. [2004] is of particular value to us as a reference
for the analytical solution to the inverse problem.

2. Analytical Versus Adjoint Solutions
to the Inverse Problem

[9] We address the inverse problem of determining emis-
sions x given observed atmospheric concentrations y and a
CTM forward model:

y ¼ FðxÞ þ """"" ð1Þ

where e is the ‘‘observation error’’ including contributions
from the measurements and from imperfection in the forward
model (e.g., transport error). We apply an a priori constraint
xa on the emissions subject to error """""a. Application of Bayes’
theorem with assumption of Gaussian errors leads to a MAP
solution for x given y as the minimum of the cost function
J(x) [Rodgers, 2000]:

J ðxÞ ¼ ðFðxÞ � yÞTS�1
S ðFðxÞ � yÞ þ gðx� xaÞTS�1

a ðx� xaÞ
ð2Þ

Here SS and Sa are the observational and a priori error
covariance matrices representing the error statistics of e and
"""""a, respectively. The regularization parameter g controls the
relative constraints applied by the observational and a priori
parts of the cost function [Hakami et al., 2005; Müller and
Stavrakou, 2005; Yumimoto and Uno, 2006; Henze et al.,
2007]. Bayes’ theorem would have g = 1, but this assumes
that SS and Sa are adequately characterized, which is difficult
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to achieve in practice. To our knowledge, all inverse studies
in the literature employing the analytical method have used
g = 1, and since in those studies dim(x) � dim(y) there is
little influence of the a priori on the solution. Studies using
the adjoint method have determined g by analyzing its
influence on the minimum of J(x) [Hakami et al., 2005;
Yumimoto and Uno, 2006; Henze et al., 2007].
[10] Minimization of J(x) is the objective of both the

analytical and adjoint methods; this corresponds to solving

rxJðxÞ ¼ 2ðrxFÞTS�1
S ðFðxÞ � yÞ þ 2gS�1

a ðx� xaÞ ¼ 0 ð3Þ

where rxF is the Jacobian matrix of the forward model.
Analytical solution to the Bayesian optimization problem as
described by (3) yields the following expression for the
MAP estimate x̂ and its error covariance matrix Ŝ [Rodgers,
2000]:

x̂¼xaþððrxFÞTS�1
S rxFþgS�1

a Þ�1ðrxFÞTS�1
S ðy� FðxaÞÞ ð4Þ

Ŝ
�1 ¼ ðrxFÞTS�1

S rxFþ gS�1
a ð5Þ

[11] Computation of x̂ and Ŝ from (4) and (5) requires
explicit construction of the Jacobian matrix and multiplica-
tion and inversion of matrices of dimensions dim(x) and
dim(y). Nonlinear forward models may require multiple
iterations involving recalculation of the Jacobian at each
iteration. Observation subsets are often sufficiently uncor-
related to be ingested sequentially in the inversion, thus
reducing the y dimension of the matrices. However, this
sequential updating [Rodgers, 2000] cannot be used to
reduce the x dimension.
[12] The adjoint method overcomes this obstacle through

numerical solution torxJ(x) = 0. The adjoint of the forward
model, (rxF)

T, is the transpose of its Jacobian matrix. In
equation (3), the adjoint is applied to the vector of error-
weighted differences 2SS

�1(F(x) � y) between observations
and the forward model. This enables rapid computation of
rxJ(x) and avoids explicit construction of the Jacobian rxF
[Giering and Kaminski, 1998; Kaminski et al., 1999], which
is a major disadvantage of the analytical method. Applica-
tion of the adjoint method to observations over a forward
time period [to, tf] begins by computing (2 SS

�1 (F(xa) � y))
from the observations at time tf, using the a priori xa as
initial guess, and then applying the adjoint model back in
time over [tf, to], assimilating additional observations along
the way. Computational cost is mainly determined by the
length of the simulation time period [tf, to], i.e., by the time
horizon over which the state vector is to be optimized. The
resulting value of rxJ(xa) is used with an optimization
algorithm to obtain an improved estimate x1 of x. We then
rerun the forward model with this improved estimate to
obtain concentrations F(x1) for use in the subsequent adjoint
run, calculate rxJ(x1), and iterate.
[13] Unlike the analytical method, the adjoint method

does not systematically provide an a posteriori error covari-
ance matrix Ŝ by equation (5) since the Jacobian matrix is
not calculated. Some optimization algorithms compute an
approximation of the error covariance as part of the inver-
sion [Müller and Stavrakou, 2005; Baker et al., 2006]. We
do not do so here, as the assumption of unbiased Gaussian
observational errors produces Bayesian a posteriori errors
that tend to be unrealistically small in any case. Past inverse
modeling studies using the analytical method have pointed
out that a better estimate of inverse model error can be
obtained with an ensemble of calculations varying forward
model parameters and error covariance specifications over
their expected ranges of uncertainty [Peylin et al., 2002;
Heald et al., 2004].

3. MOPITT Observations and a Priori Sources

[14] We use here the same MOPITT observations, for-
ward model (GEOS-Chem CTM), a priori emissions, and
error covariance matrices as in the inverse analysis of Heald
et al. [2004]. The MOPITT data are daytime CO columns
(1030 local time overpass) during the TRACE-P period
(21 February to 10 April 2001) over the Asian domain
(10�S–55�N, 50�E–180�E), and averaged over the 2� �
2.5�GEOS-Chem grid. This amounts to 21,569 observations
(Figure 1). The ‘‘best case’’ MAP solution reported by
Heald et al. [2004] used a slightly narrower latitudinal
domain (0�–55�N) and included chi-square filtering of
outliers, reducing the total number of observations to

Figure 1. Mean atmospheric CO columns over eastern
Asia and downwind for the TRACE-P period (21 February
to 10 April 2001). (top) MOPITT satellite observations and
GEOS-Chem model values using (middle) a priori and
(bottom) a posteriori CO sources (Table 1). The GEOS-
Chem values are smoothed with the local MOPITT
averaging kernels.
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18,295 (Table 1). For the purposes of our comparison we
repeated the Heald et al. [2004] analytical solution for our
extended data set with no data filters (see Table 1), and
results will be discussed in section 5. Although we do not
correct MOPITT observations by the known 6% high bias
[Emmons et al., 2007], Heald et al. [2004] showed that the
effect of the correction on the a posteriori solution was
minimal. The observation error covariance matrix SS for use
in the inversion is dominated by the forward model error
with a spatial covariance structure found by Heald et al.
[2004] to decay over a second-order autoregressive length
scale of 150 km. Since this length scale is less than our grid
resolution we treat SS as diagonal. Observational errors are
derived with the relative residual error (RRE) method of
Palmer et al. [2003] and are in the range 5–26%, as shown
by Heald et al. [2004, Figure 4].
[15] Our a priori CO sources, following Heald et al.

[2004], include monthly Asian anthropogenic emissions
(fossil fuel and biofuel combustion) from Streets et al.
[2003] and daily biomass burning emissions from Heald
et al. [2003b], based on the climatology of Duncan et al.
[2003]. Following Duncan et al. [2006], we augment these
emissions by 19% (anthropogenic) and 16% (biomass
burning) to account for rapid oxidation to CO of coemitted
nonmethane volatile organic compounds (NMVOCs).
Figure 2 shows the a priori emissions for our simulation
period (1 February to 10 April 2001), featuring maxima in
the biomass burning regions of India and southeastern Asia

as well as high values from fuel use in eastern China. Also
following Heald et al. [2004], we include in the state vector
a separate chemical source of CO lumping production from
methane and from biogenic NMVOCs including isoprene,

Table 1. Optimization of CO Sources by Analytical and Adjoint Inverse Methodsa

Source Regionb

Source (Tg a�1) A Posteriori to A Priori Source Ratio

A Posteriori
Source
(Tg a�1)A Priori

Streets et al.
[2006]

Analytical Inversion

Adjoint
Inversionh

Best
Estimatec

Ensemble
Ranged Case 1e Case 2f Case 3g

Japan 7.7 2.67 (0.47–1.83) 1.69 1.87 1.88 1.11 8.5
Korea 6.3 2.67 (0.47–1.83) 1.69 1.87 1.88 0.94 5.9
N. China 9.6 10.1 0.32 (0.47–1.83) 0.87 0.72 0.76 1.13 10.8
C. China 52.9 66.9 1.48 (1.29–1.75) 1.56 1.59 1.83 1.34 70.9
W. China 33.0 34.1 2.12 (1.29–1.75) 2.30 2.13 2.38 1.10 36.3
S. China 25.0 41.8 0.87 (0.63–1.37) 0.42 0.50 0.31 0.94 23.5
SE Asia 69.2 0.61 (0.37–0.90) 0.64 0.68 0.63 0.78 54.0
Philippines 5.6 0.48 (0.48–1.11) 0.62 0.87 0.89 0.90 5.0
Indonesia 55.6 1.41 (1.01–1.14) 1.44 0.94 0.96 0.97 54.0
India 89.9 0.51 (1.01–1.14) 0.56 0.61 0.50 0.37 33.3
Europe 145 0.73 (1.01–1.14) 0.77 0.80 0.75 1.07 155
Rest of world 596 1.15 (1.01–1.14) 1.15 1.14 1.16 1.16 691
Methane and biogenic NMVOCs 1205 1.15 (1.01–1.14) 1.15 1.14 1.16 0.99 1193
Number of MOPITT observations 18,295 18,295 18,295 20,542 21,569 21,569

aSources for the TRACE-P period (February–April 2001), converted to equivalent Tg a�1 assuming no seasonal variation in fuel sources and a seasonal
variation in biomass burning as described by Duncan et al. [2003]. The regional sources include direct emissions from fossil fuel, biofuel, and biomass
burning, as well as chemical production from anthropogenic nonmethane volatile organic compounds (NMVOCs) coemitted with CO [Duncan et al.,
2006].

bSource regions are those of Heald et al. [2004] and follow the same numbering as in that paper. See Figure 3a for region boundaries. Japan and Korea
were treated as one single source region in the Heald et al. [2004] analytical inversion, and so were the sources from oxidation of methane, biogenic
NMVOCs, and emissions outside Eurasia (rest of world).

cBest case inverse solution from Heald et al. [2004] constraining an 11-element state vector using the analytical method. Relative to this best case from
Heald et al. [2004], our adjoint solution presented here assumes uncorrelated observational error (no off-diagonal terms in the observational covariance
matrix), uses an extended latitudinal domain (10�S–55�N versus 0�–55�N), and does not remove outliers in the MOPITT data (c2 filter). The effects of
these successive modifications on the Heald et al. [2004] analytical inversion are shown in the Table as Cases 1–3.

dRange of source constraints obtained by Heald et al. [2004] in an ensemble of inversions with varying inversion parameters, corresponds to Heald et al.
[2004, Figure 10].

eNo observational error covariance.
fNo observational error covariance, extended domain.
gNo observational error covariance, extended domain, no c2 filter. These conditions reproduce exactly those used in the adjoint inversion (results in the

next column).
hThe adjoint inversion optimizes the CO source on the 2� � 2.5� grid of the GEOS-Chem CTM, and the solution is averaged here over the 11 regions of

the analytical inversion for purpose of comparison. See Figure 5 for the fine structure of the adjoint solution.

Figure 2. A priori CO source from fossil fuel, biofuel, and
biomass burning during the TRACE-P period (1 February to
10 April 2001). The sources are in units of kilograms per
2� � 2.5� grid square.
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monoterpenes, acetone, and methanol. This chemical source
is as described by Duncan et al. [2006].
[16] Following Heald et al. [2004], errors on the a priori

fuel CO sources are taken from Streets et al. [2003] and
capped at 100%. Errors on the biomass burning sources are
assumed to be 50%, and these two errors are added in
quadrature and again capped at 100% to obtain the regional
source error, which ranges from 17% in Japan to 100% in
southeastern Asia, India, Philippines, and Indonesia. We
assume errors to be spatially uncorrelated so that Sa is
diagonal.

4. GEOS-Chem Forward Model and Its Adjoint

[17] The GEOS-Chem CTM used as forward model in the
inversion is driven here by assimilated meteorological data
from the Goddard Earth Observing System (GEOS-3) of the
NASA Global Modeling and Assimilation Office (GMAO).
We use a linear CO simulation (GEOS-Chem version 6-02-05;
http://www-as.harvard.edu/chemistry/trop/geos) with stored
monthly mean OH concentration fields from a previous
O3-NOx-NMVOC simulation [Fiore et al., 2003]. Our global
annual mean pressure-weighted OH concentration below
200 hPa is 1.00 � 106 cm�3. The resolution is 2� � 2.5� in
the horizontal, with 30 vertical levels and 15 min transport
time steps. We apply local MOPITT averaging kernels
[Deeter et al., 2002] to the GEOS-Chem vertical profiles
of CO and obtain column values for comparison to
MOPITT (Figure 1). The MOPITT averaging kernels have
greatest sensitivity in the middle troposphere. Our linear CO
simulation is the same as that used in previous applications
of GEOS-Chem to interpret CO observations from the
TRACE-P period [Heald et al., 2003a; Jones et al., 2003;
Palmer et al., 2003; Heald et al., 2004; Wang et al., 2004].
[18] Our forward and adjoint model simulations cover the

February–April 2001 period, starting from observed fields
on 1 February. This initialization is done by spinning up
GEOS-Chem from January 2000 to February 2001 and then
adjusting the 1 February 2001, model CO concentrations by
the ratio of mean model CO columns in each 2� zonal band
to the corresponding MOPITT observations on that day. The
adjustment factors range from +20% in the tropics to +4–8%
at northern midlatitudes and �2% in the Arctic. Such an
adjustment was not done in the work by Heald et al. [2004],
where instead the inversion optimized for year-round emis-
sions assuming known temporal variability. This would
cause some difference with our results if the correction
factors for the emissions after 1 February are different from
those before, although there is no particular reason why that
should be so. The 1 February adjustment in our work also
corrects the latitudinal background so that our observational
error derived from the RRE method is slightly lower (by up
to 3%) than in the work by Heald et al. [2004]. We did not
implement MOPITT scaling and 1 February start date in
order to preserve as much of the analytical inversion setup
as possible.
[19] The construction and theoretical validation of the

GEOS-Chem adjoint is presented by Henze et al. [2007] in
the context of an aerosol source inversion. The adjoint code
was derived from the forward code using a (discrete) adjoint
of algorithms approach [Giering and Kaminski, 1998]. The
exception was the adjoint of the advection operator, for

which the continuous approach was adopted, wherein the
adjoint model equations are solved using the same Lin and
Rood [1996] advection scheme as in the forward model but
with reverse winds. Although the advective component of
the adjoint leads to sensitivities (gradients) that differ from
forward model sensitivities, these discrepancies are not
inaccuracies in either discrete or continuous approach, as
has been discussed extensively in previous work [e.g.,
Sirkes and Tziperman, 1997; Thuburn and Haine, 2001;
Vukicevic et al., 2001; Hakami et al., 2007; Henze et al.,
2007]. In fact, a continuous approach to an adjoint of
advective component has been shown to successfully con-
strain even a point source [Davoine and Bocquet, 2007]. We
added here self-adjoint modules for CO emissions and
chemical loss (these operator matrices are diagonal and
thus are not modified by transposition), as well as the
adjoint (transpose) of the MOPITT averaging kernel matri-
ces. The cost function gradient computed by the adjoint
model is used with a bounded quasi-Newtonian limited-
memory BFGS optimization [Liu and Nocedal, 1989] to
obtain the MAP solution for CO sources. In addition to
testing of the adjoint model conducted and previously
reported by Henze et al. [2007], we performed a series of
Observation System Simulation Experiments (OSSEs),
wherein we ascertained the ability of the optimization
system to successfully constrain CO sources given a varied
density of data.

5. Implementation of the Adjoint Method

[20] Our adjoint solution optimizes the combustion sour-
ces of CO (treated as surface fluxes) at the global 2� � 2.5�
horizontal resolution of the forward model. The state vector
consists of time-invariant correction factors with a zero
lower bound imposed by the optimization algorithm, applied
to the a priori inventory for the model grid squares where
these emissions are nonzero (3013 out of 13,104 surface
grid squares). Temporal variability of emissions is assumed
to be adequately constrained by the a priori emission
inventories of Streets et al. [2003] and Heald et al.
[2003b] (monthly for fuel, daily for biomass burning) and
so is not optimized here. We add a correction factor to
optimize the background source from oxidation of methane
and biogenic NMVOCs, so that the state vector has 3014
elements. The inversion is conducted for the TRACE-P
period (1 February to 10 April or 69 days).
[21] We initialized the GEOS-ChemCO field on 1 February

with MOPITT observations as described in section 4. As a
result, the sensitivity of the cost function to emissions
before 1 February is negligibly small; the norm of the
corresponding cost function gradient (0.01) is much smaller
than the norms of the a priori (7.20) and a posteriori (0.35)
cost function gradients. We determined an optimal value g =
0.01 for the regularization parameter as that which yields
the lowest a posteriori value of the cost function (Figure 3),
however all values of g that are smaller than 1 yield an a
posteriori cost function within 1%, essentially eliminating
the influence of a priori constraint. When g > 1, influence of
the a priori limits the optimization of the solution. A likely
reason for our need to reduce the weight of the a priori
information through g is that we did not account for spatial
correlation of a priori sources, whereas, in fact, CO source
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errors within a given geopolitical region are expected to be
correlated [Stavrakou and Müller, 2006].
[22] With g = 0.01, the a posteriori cost function is 22,575

(starting from an a priori value of 29,191). This is compa-
rable to the number of observations used in the inversion
(21,569). Figure 4 shows the evolution of the cost function
as a function of the iteration number in the inversion. The
analytical method using the same data set as the adjoint
method has a higher a priori cost function (37,686, see case
3 of Table 1), reflecting the GEOS-Chem initialization in
the adjoint method withMOPITTobservations on 1 February.
The a posteriori cost function from the analytical method
(28,762) is higher than from the adjoint method, indicating
that the adjoint method provides a better fit to the observa-
tions. The a priori source constraint does not contribute
significantly to the a posteriori cost function in either the
adjoint or the analytical solution.

6. Comparison of Adjoint and Analytical
Solutions

[23] Figure 5 shows the a posteriori emission correction
factors for the adjoint and analytical solutions. The correc-
tion factors for the adjoint solution range from the lower

bound of zero (a few grid squares in biomass burning
dominated regions in India), to 2.85 (northern China).
Average model bias relative to the MOPITT observations
decreases from a mean of +2.9% with a priori emissions to
�2.0% with a posteriori emissions; however, on a regional
scale, the a posteriori model bias is negligible in India,
southeastern Asia and southern China, indicating vast
improvement. The global source from oxidation of methane
and biogenic NMVOCs decreases by only 1%, which
provides some confidence in the model concentrations of
OH. This confidence justifies in turn focusing the optimi-
zation on CO sources, rather than on the sink from oxidation
by OH.
[24] The analytical solution in Figure 5 is for case 3 in

Table 1, which has exactly the same setup as the adjoint
solution. It departs from the best case analytical solution by
Heald et al. [2004] in that it includes only diagonal terms of
the observational error covariance, it uses an expanded data

Figure 3. A posteriori cost function J(x) as a function of the
regularization parameter g (equation (2)). The top dotted line
is the a priori cost function value, and the bottom dashed line
gives the number of MOPITT observations (21,569).

Figure 4. Cost function J(xn) for the adjoint solution as a
function of iteration number.

Figure 5. Correction factors to a priori Asian CO sources
for February–April 2001 as optimized by (top) the
analytical inversion (case 3 of Table 1) and (bottom) the
adjoint inversion. Boxes in the top refer to the individual
regions (state vector elements) used by Heald et al. [2004],
as listed in Table 1. The adjoint correction factors are
applied individually to all 2� � 2.5� continental grid
squares. The color scale saturates at 0.50 and 1.50;
correction factors in the adjoint solution range from a lower
limit of zero (a few grid squares in biomass burning
dominated regions in India), to 2.85 (northern China). The
analytical solution is as indicated in Table 1.
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domain, and it does not filter outliers. The effects of these
successive changes in the analytical solution relative to the
Heald et al. [2004] best case are shown as cases 1–3 in
Table 1. Also shown in Table 1 are the ranges of results
from the ensemble of analytical solutions presented by
Heald et al. [2004] with varying choices of inversion
parameters and MOPITT data processing, representing
estimated uncertainty ranges in the inverse analysis. The
correction factors obtained from our adjoint solution gen-
erally fall well within these ranges but tend to be smaller
than for the analytical solution. Error in the adjoint solution
would need to be estimated with a similar ensemble
approach as in the work by Heald et al. [2004], and is
likely narrower owing to reduction in the aggregation error.
[25] The fine structure of the adjoint solution is discussed

in section 7. Here we compare the adjoint solution averaged
over the nine Asian regions of Heald et al. [2004] to the
corresponding analytical solution for case 3 matching the
setup of the adjoint inversion. The analytical solution (case
3 in Table 1) finds large underestimates of emissions in
fossil fuel dominated central and western China (by 83%
and 138% respectively) and an overestimate in regions with
mostly biomass burning emissions (37% in southeastern
Asia and 50% in India). The adjoint solution also finds an
underestimate of fossil fuel emissions in central and western
China (by 34 and 10% respectively) and an overestimate of
emissions in southeastern Asia and India (by 22% and 63%,
respectively).
[26] A large discrepancy between the two solutions is

apparent for Korea and Japan. Heald et al. [2004] find an
88% underestimate in Korea-Japan (they were not able to
separate constraints on these two regions). The adjoint
solution finds only weak corrections with Japan under-
estimated (11%) but Korea overestimated (6%).

[27] Aircraft observations from the TRACE-P campaign
over the NW Pacific in spring 2001 [Jacob et al., 2003]
offer an independent evaluation of our adjoint solution.
Figure 6 shows the latitudinal gradients of CO concentrations
measured by the aircraft in two altitude ranges (0–3 and
3–12 km) and simulated by the model using a priori and a
posteriori sources. The observations are averaged over the
model grid squares, and the model is sampled at the location
and time of the measurements. Palmer et al. [2003] previ-
ously pointed out that the model with a priori sources
overestimates the TRACE-P observations in the free tropo-
sphere south of 25�N (excessive biomass burning emissions
in SE Asia) and underestimates observations north of 30�N
(insufficient Chinese anthropogenic emissions). Our a pos-
teriori solution from the adjoint method affords significant
improvement in the simulation of the TRACE-P data, as
shown in Figure 6.

7. Fine Structure of the Adjoint Solution
and Interpretation

[28] The high-resolution adjoint inversion provides
source constraints that distinguish individual cities, for
example Tokyo and Mumbai in Figure 5. The adjoint
inversion takes advantage of MOPITT’s ability to detect
urban centers [Clerbaux et al., 2008]. It also distinguishes
political boundaries as between China, Korea, and Japan,
although these are not implemented as a priori constraints. It
reveals compensating patterns of underestimate and over-
estimate within the same previously aggregated region of
the analytical solution. This is most manifested in previ-
ously aggregated regions of India and Indonesia. In the
Indian region from Heald et al. [2004], we find an under-
estimate of emissions in Mumbai, Sri Lanka and northern
India, and an overestimate in the rest of India where

Figure 6. Latitudinal gradient of measured and modeled CO concentrations over TRACE-P domain on
a GEOS-Chem 2� � 2.5� grid, averaged over 5� latitude bins. The model CO was sampled along the
TRACE-P flight tracks for the flight days and is shown for the simulations with a priori and a posteriori
sources in the 0–3 km (solid lines) and >3 km altitude range (dotted lines).
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biomass burning emissions dominate. In the Indonesia
region from Heald et al. [2004], emissions from Singapore
and northern Indonesia are underestimated, but this is
compensated on the regional scale by an overestimate of
mostly biofuel emissions from Java (including Jakarta and
other major cities. This points to the danger of aggregating
large regions to afford analytical solution to the inverse
problem.
[29] Streets et al. [2006] recently revisited their previous

Chinese CO emissions inventory for the TRACE-P period
[Streets et al., 2003] in light of evidence from inverse analyses
of the TRACE-P and MOPITT data that their anthropogenic
emission estimates from China (116 Tg CO a�1) were too
low by 40–55% [Palmer et al., 2003; Heald et al., 2004;
Wang et al., 2004]. We find the Chinese CO emissions
underestimate to be only 15% (Table 1). The updated Streets
et al. [2006] inventory for China in 2001 is 157 Tg CO a�1,
36% higher than that of Streets et al. [2003] due to inclusion
of previously neglected sources (e.g., power plants, small
coke ovens, synthetic ammonia production, unregistered
rural vehicles, and coal mine fires), an update with 2001
data on activity rates, and corrections to emission factors
(e.g., cement kilns, iron and steel industries, and vehicles).
[30] Figure 7 compares the geographical distribution of

the corrections to the Streets et al. [2003] inventory from
our adjoint inversion and from the revised bottom-up
inventory of Streets et al. [2006]. Both show large and
consistent upward corrections in central and eastern China.
They agree on upward correction in northern China (where
the ‘‘best estimate’’ Heald et al. [2004] inversion pointed to
a downward correction) and in western China. There are
however large discrepancies in southern China, where both
the adjoint and analytical inversions find the need for
downward correction but Streets et al. [2006] only find
decreases in the southern edge of the country near the
Myanmar border (where emissions are mostly from biomass
burning). Streets et al. [2006] find large upward corrections
in coastal southern China that are not seen in the adjoint
inversion.

[31] A recent biomass burning inventory for 2001 by van
der Werf et al. [2006] using MODIS satellite fire counts
finds much smaller CO emissions than the Heald et al.
[2003b] inventory for India and southeastern Asia used here
as a priori. They find biomass burning CO emissions to be
largely absent in India and about 36% below Heald et al.
[2003b] in southeastern Asia, which agrees closely with the
adjoint solution (Table 1 and Figure 5).

8. Conclusions

[32] We presented a comparison of adjoint and analytical
methods for inverting Asian CO sources on the basis of
MOPITT satellite observations of CO columns over Asia
and the North Pacific during the TRACE-P aircraft cam-
paign (February–April 2001).The adjoint method provides
a powerful tool for exploiting high-density observations of
atmospheric composition from space to constrain emissions
with high resolution. The standard analytical method, requir-
ing construction and operations of the Jacobian matrix of
the forward model, is severely limited in terms of the source
information that it can resolve. Our motivation was to
illustrate the capability of the adjoint method through
comparison to the analytical method. Several previous
studies had applied the analytical method to invert Asian
CO sources on the basis of MOPITT and TRACE-P data for
the same period.
[33] We started from the previous analytical inversion by

Heald et al. [2004] which used MOPITT CO column
observations for the TRACE-P period, and the GEOS-Chem
chemical transport model (CTM) as forward model, to
constrain CO sources from 9 Asian regions. We used the
same MOPITT observations, forward model, a priori source
information, and error characterization as Heald et al.
[2004], but optimized the Asian CO sources at the 2� �
2.5� horizontal grid resolution of the CTM rather than for
the 9 coarse regions of Heald et al. [2004]. The resulting a
posteriori cost function is lower in the adjoint solution than
in the analytical solution, indicating a better fit to the
observations.

Figure 7. Spatial distribution of the absolute emissions corrections to the Streets et al. [2003] CO
emission inventory as obtained by the (left) adjoint inversion and by the (right) Streets et al. [2006]
revised bottom-up inventory. Results are shown on the GEOS-Chem 2� � 2.5� grid for the 1 February to
10 April 2001 period.
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[34] We compared the results from the adjoint and ana-
lytical inversions by averaging over the 9 coarse Asian
regions of the latter. The large-scale features of the a
posteriori source constraints are very similar in both sol-
utions; a priori Chinese fossil fuel and biofuel emissions are
underestimated in the Streets et al. [2003] inventory, and
emissions from biomass burning regions in India and
southeastern Asia are overestimated in the Heald et al.
[2003b] inventory. However, correction factors in the adjoint
solution tend to be smaller than in the analytical solution.
Also, the analytical solution finds the need for large
increases in emissions in Korea-Japan, whereas the adjoint
solution finds only a small increase in Japan and a decrease
in Korea.
[35] The high resolution of the adjoint solution provides

constraints on emissions are the scale of individual cities,
and reveals particularly large underestimation of CO emis-
sions from Tokyo and Mumbai. The adjoint solution can
also resolve geographical boundaries between China,
Korea, and Japan even though these are not in the a priori
constraints. Comparison of the adjoint and analytical sol-
utions warns of large aggregation errors when optimizing
sources averaged over coarse regions in the analytical
solution. For example, in the Indian subcontinent, the
adjoint solution is able to separate increases in Mumbai,
northern India, and Sri Lanka from decreases in the rest of
the region where the seasonal source is mostly from
biomass burning.
[36] Streets et al. [2006] recently revised their prior 2001

anthropogenic emission inventory for China [Streets et al.,
2003] to address the underestimates found in previous
inverse model analyses. They added previously neglected
sources, updated information on activity rates, and corrected
emission factors. Their updated inventory finds a 36%
increase over the prior, as compared to 41–55% found in
previous inverse studies and 15% in our work. Our adjoint
solution agrees with Streets et al. [2006] in attributing most
of the increase to central and eastern China where emissions
are highest. However, there are inconsistencies in the fine
structure, and Streets et al. [2006] find the need for
significant upward corrections in southern China that are
not apparent in our adjoint or analytical inversions. The
recent biomass burning inventory of van der Werf et al.
[2006] yields estimates for eastern India and southeastern
Asia that are much lower than Heald et al. [2003b] and
consistent with our results. Independent comparison with in
situ aircraft CO data from TRACE-P campaign shows
improved model-data agreement when a posteriori sources
instead of a priori sources are used.
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