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Weak localization and mobility in ZnO nanostructures

Edward M. Likovich,* Kasey J. Russell, Eric W. Petersen, and Venkatesh Narayanamurti
School of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138
(Dated: December 22, 2009)

Abstract

We conduct a comprehensive investigation into the electronic and magneto-transport proper-
ties of ZnO nanoplates grown concurrently with ZnO nanowires by the vapor-liquid-solid (VLS)
method. We present magnetoresistance data showing weak localization in our nanoplates and
probe its dependence on temperature and carrier concentration. We measure phase coherence
lengths of 50-100 nm at 1.9 K, and, because we do not observe spin-orbit scattering through anti-
localization, suggest that ZnO nanostructures may be promising for further spintronic study. We
then proceed to study the effect of weak localization on electron mobility using 4-terminal van der
Pauw resistivity and Hall measurements versus temperature and carrier concentration. We report

cm?
Vs

an electron mobility of ~100 at 275 K, comparable to what is observed in ZnO thin films.
We compare Hall mobility to field-effect mobility, which is more commonly reported in studies on
Zn0O nanowires, and find that field-effect mobility tends to overestimate Hall mobility by a factor
of 2 in our devices. Finally, we comment on temperature-dependent hysteresis observed during

transconductance measurements and its relationship to mobile, positively-charged Zn interstitial

impurities.

PACS numbers:



I. INTRODUCTION

Zn0O has been extensively studied due to its favorable optoelectronic properties which
include a wide bandgap (3.37 eV), strong exciton binding energy (60 meV), and potential
use as a transparent conductor in light-emitting and -collecting devices.!™ P-type doping

45 and nanowires,® opening the

of ZnO has recently been demonstrated in both bulk films
door for a variety of devices based on p-n junctions. Additionally, ZnO nanowires have
shown promise in applications that include gas sensors, which take advantage of their high
surface area to volume ratio,” and room-temperature spintronics, as the incorporation of
transition metals has been shown to induce ferromagnetism in both bulk ZnO® and ZnO
nanowires.”!? ZnO nanowires have also demonstrated amplified spontaneous emission'! and
room temperature UV lasing due to their high exciton binding energy.'? For a review of ZnO
device applications, see Ref. 13.

Much recent research has focused on spin injection and transport in semiconductors,
potentially leading the way to a new paradigm of electronics based on spin.'* ¢ The interest
of spin-dependent transport has extended to ZnO thin films doped with Mn, which have
shown interesting spin-orbit and s-d exchange interactions.!” However, there has not been a
significant investigation of magneto-transport in ZnO nanostructures, despite a wide interest
in nanostructure devices.

In this paper we report on the electronic and magneto-transport properties of ZnO
nanoplates, structures as thin as typical ZnO nanowires (~100 nm) but several microns
long and wide, that are grown simultaneously alongside nanowires by the vapor-liquid-solid
(VLS) method. The nanoplate geometry, in contrast to that of a nanowire, allows us to make
4-wire Hall and van der Pauw resistivity measurements. We believe our results generally
apply to ZnO nanowires as well, since they are also expected to exhibit three-dimensional
electron transport properties, as the diameters of typical ZnO nanowires (30-100 nm) are
insufficiently small to establish quantum confinement in the radial direction.!®

We present data that represent the first observation of weak localization in ZnO nanos-
tructures and probe its dependence on temperature and carrier concentration. From this we
are able to determine the inelastic scattering lifetime of electrons, and, due to an absence

of anti-localization, believe that the spin-orbit scattering lifetime is significantly longer than

the inelastic scattering lifetime. We then consider how weak localization affects mobility and



carrier transport by conducting Hall measurements for different temperatures and carrier
concentrations. We compare these values with the 2-terminal field-effect approximation com-
monly reported in the literature but which suffer from parasitic contact resistance and rely
on assumptions about the geometric extent of the nanowire conduction channel.'®?? Recent
work suggests that there may be independent core and surface conduction mechanisms,?
which would need to be taken into consideration to accurately determine the field-effect or ef-
fective mobility. Finally, we comment on temperature-dependent hysteresis observed during

transconductance measurements and its possible relationship to mobile, charged impurities.

II. FABRICATION AND EXPERIMENTAL SETUP

We fabricated ZnO nanoplates using the Vapor-Liquid-Solid (VLS) growth mechanism,
first demonstrated by Wagner and Ellis.?* The growth apparatus used for this experiment
consisted of a single-zone tube furnace (from Lindberg/Blue) through which we passed a
metered flow of Ar and Oy in a 1000:1 ratio. A quartz sample holder, containing both the
Si (111) substrate (with 5 nm diameter Au catalyst nanoparticles dispersed onto it) and a
mixture of ZnO powder and graphite (1:1 ratio by volume), was used to move the substrate in
and out of the hot zone of the furnace, thereby initiating and terminating nanowire growth.
After a growth of 45 minutes at 975 °C, ZnO nanowires and nanoplates were present on
the substrate. The nanoplates had gold catalyst particles at their tip (characteristic of
VLS growth) and were single-crystalline, as shown in Figure la. Atomic force (AFM) and
scanning electron microscopy (SEM) analysis indicated that the nanoplates were roughly
the same thickness as typical nanowires (~100 nm) but extended several microns laterally,
as shown in Figure 1b. The growth of similar nanoplates has been reported in the literature
for both VLS? and solution synthesis?®® methods. We offer the additional observation that
Zn0O nanoplates tend to preferentially grow on substrates that form a native oxide layer; we
observed them on both Si (111) and Ti foil substrates, but not on Mo foil .27

To experimentally probe the nanoplates, we first removed them from the substrate by
sonication in isopropanol for short bursts of several seconds. This created an isopropanol
solution containing suspended nanoplates. We then used a pipet to deposit droplets of the
solution onto a p++ Si wafer with a 300 nm thermally grown oxide layer. We allowed

the droplet to air dry, recorded the positions of the deposited nanostructures, and used



FIG. 1: (Color online) (a) Transmission electron microscopy (TEM) atomic-resolution image show-
ing the crystalline nature of our nanoplates. (Inset) TEM image taken at lower magnification
showing the Au catalyst at the end of the nanoplate, which is characteristic of vapor-liquid-solid
growth. (b) Scanning electron microscopy image of a ZnO nanoplate device. The four contacts are
labeled C1, C2, C3, and C4. A 300 nm SiO, layer serves as the gate barrier with the gate contact

to the backside of the heavily-doped Si substrate.

electron-beam lithography to define 4 contacts (sputtered 20 nm Ti, followed by 80 nm Au)
to each nanoplate, as shown in Figure 1b. These contact metals resulted in ohmic behavior
at the biases measured and are commonly used in the literature.?®? An In back contact
was cold-pressed to the Si substrate to control carrier concentration through gating. The
devices were then placed in a variable temperature cryostat capable of applying a magnetic
field perpendicular to the surface of the device, which was identified as the [112] direction
by transmission electron microscopy (TEM) diffraction patterns. A total of 8 devices were

measured, all of which exhibited similar behavior.



ITI1I. RESISTIVITY

As the devices were cooled, we measured resistivity as a function of temperature using
the van der Pauw formulation, which enables the resistivity of a planar sample of arbitrary
shape to be determined with corrections for contact anisotropy.*3! To do so, we sourced
a sinusoidal A.C. current of 30 nA RMS between contacts C1 and C2 (see Figure 1) and
concurrently measured voltage between contacts C3 and C4 with a lock-in amplifier. Im-
mediately following this, contacts C1 and C4 were swapped and a second measurement was
taken such that current was sourced between contacts C2 and C3 and voltage was concur-
rently measured between contacts C4 and C1.

As shown in Figure 2, resistivity increases linearly with T at high temperatures (200-
300 K), as expected for phonon-dominated scattering. For low temperatures (below 150
K), resistivity scales exponentially in 1/T, characteristic of a lightly-doped semiconductor.3?
We observed a minimum resistivity around 180 K, which has been reported in the ZnO
literature and likely represents the point at which the additive resistive contributions of
phonon scattering and electron weak localization are at a minimum.3?3* A discussion of
electron weak localization, which opposes diffusive transport at low temperatures, is covered
extensively in the next section.

We observed a distinct activation energy characterized by the linear region in the semi-log
plot of resistivity shown in Figure 2. The activation energy was obtained by fitting the data
to an exponential functional form in the limit of no compensation, exp(-E,/2kT), where
E, is the activation energy; k is the Boltzmann constant; and T is the temperature. From
this analysis, we calculate E, = 32 meV. This 32 meV activation energy is consistent with

reports in the literature for Zn interstitials, which act as electron donors.3?

IV. WEAK LOCALIZATION

Electron weak localization originates from the constructive interference of backscattered
electronic wavefunctions which increases the probability of localizing an electron. This
phenomenon manifests itself by a positive correction to resistivity at zero magnetic field,
which is easily broken by applying a magnetic field to destroy coherent superposition. For

a more thorough review of weak localization, see Refs. 36,37.
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FIG. 2: (Color online) Semi-log plot of van der Pauw resistivity versus 1/T. The resistivity exhibits
an exponential dependence in 1/T, and we observe a distinct activation energy of 32 meV that cor-
responds to Zn interstitials. The red, dashed line is meant to guide the eye to the linear region from
which activation energy is extracted. (Inset) High temperature van der Pauw resistivity showing
an absolute minimum near 180 K, above which resistivity scales linearly with T, characteristic of

electron-phonon scattering.

We observed weak localization as a positive correction to van der Pauw resistivity at
zero magnetic field for a variety of carrier concentrations and temperatures as presented in
Figure 3 (see Figure 1b for experimental setup). As expected, the effect was temperature-
dependent and was strongest at low temperatures (10 K and below), with a very small
effect at 16 K and no effect at 33 K. The effect dies out for higher temperatures because
the inelastic scattering lifetime, 7, becomes comparable to the elastic scattering lifetime,
at which point the phase coherence necessary for weak localization is destroyed. We also
found the effect to be dependent on carrier concentration, with higher carrier concentrations
yielding larger corrections to resistivity. We attribute this to the larger fractional change
in resistivity, Ap/p, caused by the reduction in absolute resistivity, p, accompanying higher
carrier concentrations. The observed increase in 7 with carrier density agrees with reports
of weak localization in Si MOSFETs.3®

The observation of weak localization has been reported in the literature for ZnO thin
films doped with Al B, and transition metals,*! but not yet in ZnO nanostructures.

Contrary to Refs. 39,41, we observe no evidence of anti-localization (a negative correction
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FIG. 3: (Color online) Magnetoresistance measurements of weak localization. (a) A series of
gate biases (and thus carrier densities) at constant temperature (1.9 K). Experimental data are
plotted as colored circles, with solid lines corresponding to fits to Eq. (1). The corresponding
carrier concentrations range from 1.1x10'7 e¢m™3 for Vg=0 V to 7.4x10'7 e¢m™3 for V=430 V.
(b) A series of temperatures at constant gate bias (V=430 V). The effect is destroyed for high

temperatures due to loss of phase coherence from increased inelastic scattering.

to resistivity at zero magnetic field caused by spin-orbit scattering) for temperatures as low
as 1.9 K. This suggests that the spin-orbit scattering lifetime is significantly longer than the
inelastic scattering lifetime in natively-doped ZnO nanostructures.

The theory behind weak localization is readily found in the literature for both two-
dimensional*? and three-dimensional**** systems. Because of their size, we expect our

nanoplates to exhibit three-dimensional transport, and as we will show, the theory of weak



localization in three dimensions provides an excellent description of the transport that we
observe. For three-dimensional systems, the correction to resistivity, Ap/p, scales as B? for

small magnetic fields and as BY/2 for large magnetic fields, according to:

Ap e? eB
—_— = —F 1
where % is the fractional change in resistivity due to applied magnetic field; « is a coefficient

between 0 and 1 that is thought to represent Coulomb screening; p is the resistivity; e is
the electronic charge; h is Planck’s constant; B is the applied magnetic field; and F(z) is a
Hurwitz zeta function given by:

F(z) = i[Q(n—i-l-l—l/I)l/Q—2(n—|—1/x)1/2 o
n=0 9

—(n+1/2+1/2)7",

where z is a dimensionless quantity defined by @ = 4eD7B/h; D is the electron diffusion
constant; and 7 is the electron inelastic scattering lifetime. We analyzed our data in a
similar manner to that of Ref. 45 and used a nonlinear least squares method to fit the data
using two free parameters, o and 7. For high magnetic fields, a positive dependence on B2
was observed and is characteristic of the usual quadratic magnetoresistance observed in bulk
semiconductors.*® We accounted for this by including a temperature independent quadratic
term, obtained by fitting to high-temperature data. Error bars in Figure 4 indicate the 95%
confidence intervals of the fits.

As shown in Figure 4a, calculated inelastic scattering lifetimes scale with temperature
as T73, characteristic of inelastic scattering by electron-phonon processes.*® There was only
a slight observed dependence on carrier concentration (gate bias); the inelastic scattering
lifetime was 5.740.4 ns at a carrier concentration of 7.4x10'" ecm™ at 1.9 K compared to
3.040.8 ns at a carrier concentration of 1.3x10'7 ecm™ at 1.9 K. Additionally, we calculate
the phase coherence length, ¢, = VD7, which is plotted versus temperature in Figure 4b.
Here, we see temperature dependence that scales as T~%/%, the same behavior that was re-
ported for doped ZnO thin films in Ref. 39. Although our material is not degenerately doped,
we must still use the generalized form of the Einstein relation to analyze the temperature
dependence of D at the low temperatures reported in Figure 4.47 This is because the carrier

density in our sample is controlled by the gate bias and does not vary with temperature in



this temperature range. The temperature dependence of D is therefore simply proportional
to that of p, which should scale as T%? in the impurity-dominated regime.*® We therefore
expect £y ~ T-3/4, consistent with the observed behavior.

Measured phase coherence lengths range from 27+5 nm at 10 K to 93£13 nm at 1.9 K
for Vo=+30 V. These values are roughly an order of magnitude lower than the report on
heavily-doped ZnO thin films in Ref. 39; we believe this to be a result of their significantly

3 in our device) that effectively

larger carrier concentration (10*°cm™3 compared to 10'7cm™
screens charged impurities. Our results suggest that ZnO may be useful for spintronic
studies, given that we observe coherence lengths of 10-100 nm and no evidence of spin-orbit

scattering through anti-localization.

V. HALL MOBILITY MEASUREMENTS

Hall mobility measurements were conducted as a function of both temperature and carrier
concentration. Devices were measured in a typical Hall configuration: a sinusoidal A.C.
current of 30 nA RMS was sourced between contacts C2 and C4, and the Hall voltage was
concurrently measured between contacts C1 and C3 (see Figure 1b) while sweeping the
perpendicular magnetic field. Temperature was varied from 1.9 K to 275 K and carrier
concentration was modulated by applying a gate bias to the p++ Si substrate relative to
the current sink, C4. Gate bias was applied in 5 V steps from 0 V to +30 V, corresponding
to carrier densities between 1.1x10'7 and 7.4x10'" ecm™2 at 1.9 K and between 8.6x10%7
and 1.5x10™ cm™3 at 275 K. We infer that our devices are n-type doped by observing an
increase in conductivity for a positive applied gate bias.

Using the change in Hall voltage versus magnetic field, we calculate Hall mobility3! and
plot it as a function of both temperature and carrier concentration in Figure 5. We report

a Hall mobility of 10345 C"}f for 0 V gate bias at 275 K. By increasing gate bias to +30 V

at 275 K, the mobility increases to 131 C"Zf. These values are comparable to those reported

50,51
E,

in the literature for ZnO thin films grown on sapphire by PLD*’ and MB but are an

21,34

order of magnitude larger than those reported on ZnO nanowires, with the exception of

nanowires with surface passivation treatments that have field-effect mobilities above 1000

cm? 22

Vs

As temperature decreases, electron mobility first increases due to reduced electron-phonon



’n?
N

10¢ T
— F []
2
g [
k3
o TF 3
£ ;
8
g
(2]
o
2
© 01F o Vg=+30V f 1
o 3
- = Vg =+5V :
2 2 2 2 2 2 2 2 1
2 3 4 6 8 10
Temperature [K]
(b)
L)
200 }
€
=
£ 100 7
()] L
[ L
o [
o 50
Q I
o
[0)
=
8 20t
?
£ qof * VoTr30V ! ]
E = VG=+5V
[ " " " " " " " " 1
2 3 4 6 8 10

Temperature [K]

FIG. 4: (Color online) (a) Electron inelastic scattering lifetime versus temperature for Vo=+30 V
(red circles) and V=0 V (blue squares). The line is meant to guide the eye to a T3 dependence,
characteristic of electron-phonon scattering. (b) Electron phase coherence length versus tempera-
ture plotted for Vg=+30 V (red circles) and Vo=0 V (blue squares). The line is meant to guide

the eye to a T—3/4 dependence, which has also been observed in ZnO thin films.

scattering, reaches a peak, and then decreases to the lowest temperature we measured, 1.9

at 0 V gate bias and 9242 22" at +30 V

cm?
Vs

K, where we report a mobility of 31410
gate bias. The effect of carrier concentration on mobility is significantly increased at lower
temperatures; this may be the result of increased electron screening which reduces the effect
of charged impurity scattering.’? Similar behavior is also reported for ZnO thin-films in the
literature, with a mobility peak occurring near 110 K.5® The temperature dependence of

mobility appears to scale more slowly than the T%/2 expected for impurity scattering in ZnO

10
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FIG. 5: (Color online) (a) Hall mobility versus gate bias for temperatures ranging from 1.9 K to 275
K. Mobility exhibits a larger dependence on carrier concentration at low temperature, where higher
carrier density increases mobility. (b) Hall mobility versus carrier concentration. Mobility increases
roughly linearly with carrier concentration and appears to saturate at higher carrier densities. (c)
Hall mobility versus temperature. Mobility increases with temperature, reaches a maximum, and

then decreases, consistent with previous reports on ZnO thin films.
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bulk crystals at low temperature.’* % This scaling difference may be the result of a few
factors, including weak localization suppressing mobility, a significant dependence on carrier
density that affects impurity screening, or mobile, charged impurities which are described
in Section VI. Although further investigation is needed to conclusively understand this
temperature dependence, we suspect a significant contribution from the mobile impurities,
as measurements were very sensitive to thermal cycling.

Nanoplates provide a useful platform to compare Hall mobility with the typically reported

field-effect and effective mobilities in nanowires,?!34

because our 4-wire contact geometry
allows us to measure all three mobilities on the same nanoplate device. The more commonly
reported field-effect mobility is calculated with a 2-terminal transconductance measurement

according to:3!
L gm
3
HFE WO Vs’ (3)

where L /W is the ratio of channel length to channel width; g,, is the transconductance; Cl,

is the oxide capacitance per unit area; and Vpg is the drain-source bias. In our device, we
geometrically measure L/W=2.71 and C,, is calculated for a 300 nm thick SiO, layer to be
11500 pF/cm?. We experimentally determine transconductance by applying a small D.C.
source-drain bias, Vpg, across contacts C2 and C4 and measuring current while varying gate
bias.

The effective mobility, as with the field-effect mobility, is determined using only a 2-
terminal measurement. Instead of estimating the mobility from the transconductance of the
device, the source-drain conductance is used:3!

L
HEFF = me (4)
where L /W is the ratio of channel length to channel width; g, is the drain conductance; C.,
is the oxide capacitance per unit area; Vi is the gate bias; and Vr is the turn-on threshold.

The preference for Hall mobility is clear because it has no dependence on sample geom-
etry. Additionally, Hall mobility is able to be determined independently from the carrier
concentration. In contrast, field-effect mobility is limited to the gate bias at which the re-
gion of linear transconductance occurs. Effective mobility has the added complication that
it also depends on the threshold voltage, which we show to be highly influenced by mobile

impurities in the next section.

12



Comparing the Hall mobility to field-effect mobility for the temperatures and carrier con-
centrations measured here, we conclude that the field-effect approximation tends to overes-
timate Hall mobility by about a factor of 2 in our devices. Field-effect mobility does report
the correct order-of-magnitude, so it can be a useful approximation when a precise value is
not necessary. Additionally, field-effect mobility provides no indication of the temperature-
dependent mobility peak shown in Figure 5¢ and reported in the literature. We believe
this to be an inherent limitation of the field-effect measurement, since it cannot determine

mobility independent of carrier concentration.

VI. THRESHOLD BEHAVIOR

During transconductance measurements at high temperatures (100 K and above), hys-
teresis was observed between successive sweeps, as shown in Figure 6a. This hysteresis

34,57

is well-documented in the literature, with both surface adsorption and mobile impuri-

ties®®99 cited as possible mechanisms. Additionally, we observed that the threshold voltage
can be varied over tens of volts by holding the gate at high or low bias for a period of time,
as shown in Figure 6b. We note that the threshold voltage always moves toward the gate
bias; that is, for Vg=430 V the threshold would move towards +30 V, and for Vz=-30 V
the threshold would move towards -30 V.

Our experimental data suggest that this hysteresis is the result of mobile Zn interstitials
within the ZnO nanoplate. We believe this for several reasons: (1) the literature reports
that Zn interstitials become mobile between 90-130 K,*® and we observed the hysteresis
effect only for temperatures above 100 K; (2) the activation energy that we measured in
Section III corresponds well with what is expected for Zn interstitials; (3) for positive gate
bias, the threshold moves to higher positive bias, which is consistent with positively-charged
Zn interstitials in an n-type semiconductor; and (4) this effect is observed in a helium
environment where we do not expect any oxygen to be available for adsorption, especially
since we are able to repeatedly cycle the effect. Presumably, the Zn interstitials remain
within the physical ZnO nanoplate, although more research is needed to determine the
location of the active conduction channel and how it is affected by the Zn interstitials. We

note that alkali metal ions could be introduced during typical semiconductor processing;

however, we were careful to select chemical developers (MIBK and acetone) that do not

13



Hold V=0V
for 12 hours

L [Connect device

lgp [A]

Hold Vg=+30V
for 3 hours

0
Vo [V]

FIG. 6: (Color online) (a) Successive transconductance sweeps at 6 K, showing no hysteresis.
This is contrasted by (Inset) successive transconductance sweeps at 100 K for which hysteresis is
evident. The effect is frozen out at temperatures below 100 K. (b) A sequence of transconductance
sweeps at 300 K taken after holding Viz at different values. The threshold shifts by more than 30
V when Vg is held at +30 V for 3 hours. We believe this is caused by mobile, positively-charged

Zn interstitials, as described in the text.

contain any metal ions. Additionally, EDS measurements do not show any evidence of alkali
metals.
The fact that threshold voltage can be tuned over tens of volts may be of interest to device

applications, as this behavior is both reversible and non-volatile. However, as discussed

14



earlier, this variable threshold also makes accurate determination of effective mobility to be

difficult, since Vr in Eq. (4) is constantly changing.

VII. CONCLUSION

In this paper, we present a comprehensive investigation into the electronic and magneto-
transport properties of ZnO nanoplates grown by the vapor-liquid-solid (VLS) method.
Unlike conventional nanostructures such as nanowires, the unique geometry of nanoplates
allows us to conduct 4-terminal van der Pauw and Hall effect measurements. Using these
techniques, we measure resistivity versus temperature and observe an activation energy
(32 meV) characteristic of Zn interstitials that function as n-type donors. We report on
magnetoresistance measurements showing weak localization in ZnO nanostructures and find
the effect to be strongly dependent on temperature and only weakly dependent on carrier
concentration. We obtain electron inelastic scattering lifetimes by fitting magnetoresistance
data to three-dimensional weak localization theory. We observe that the phase coherence
lifetime scales as T—3, characteristic of electron-phonon scattering processes, and that the
phase coherence length scales as T~%* and is 50-100 nm at 1.9 K. We do not observe any
evidence of anti-localization, suggesting that spin-orbit scattering is comparably weak and

thus ZnO nanostructures may be useful for spintronic applications. Finally, we report on

cm2
S

Hall mobility versus temperature and carrier concentration, finding a mobility of ~100 <7

at 275 K, which is comparable to what is observed in ZnO thin films. We compare our
calculated Hall mobility to the commonly reported field-effect mobility for nanowires, and
find that the field-effect mobility overestimates the Hall mobility by a factor of 2 in our
devices, but does function as a reasonable approximation. We comment on temperature-
dependent hysteresis observed during transconductance measurements and attribute it to

mobile, positively-charged Zn interstitial impurities.
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