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[1] We use the GEOS-Chem chemical transport model and
its adjoint to quantify source contributions to ozone
pollution at two adjacent sites on the U.S. west coast in
spring 2006: Mt. Bachelor Observatory (MBO) at 2.7 km
altitude and Trinidad Head (TH) at sea level. The adjoint
computes the sensitivity of ozone concentrations at the
receptor sites to ozone production rates at 2° x 2.5°
resolution over the history of air parcels reaching the site.
MBO experiences distinct Asian ozone pollution episodes;
most of the ozone production in these episodes takes place
over East Asia with maxima over northeast China and
southern Japan, adding to a diffuse background production
distributed over the extratropical northern hemisphere. TH
shows the same Asian origins for ozone as MBO but no
distinct Asian pollution episodes. We find that transpacific
pollution plumes transported in the free troposphere are
diluted by a factor of 3 when entrained into the boundary
layer, explaining why these plumes are undetectable in U.S.
surface air. Citation: Zhang, L., D. J. Jacob, M. Kopacz, D. K.
Henze, K. Singh, and D. A. Jaffe (2009), Intercontinental source
attribution of ozone pollution at western U.S. sites using an
adjoint method, Geophys. Res. Lett., 36, L11810, doi:10.1029/
2009GL037950.

1. Introduction

[2] Intercontinental transport of ozone pollution is
becoming a major issue as countries at northern mid-
latitudes strive to meet increasingly stringent air quality
standards [Task Force on Hemispheric Transport of Air
Pollution, 2007]. Ozone is produced in the troposphere by
photochemical oxidation of CO and volatile organic com-
pounds (VOCs) in the presence of nitrogen oxides (NOy =
NO + NO,). It has a lifetime of days in the boundary layer
but weeks in the free troposphere [Wang et al., 1998],
enabling transport on the intercontinental scale. Interconti-
nental source attribution for ozone pollution at a given site
is made difficult by the complexity and non-linearity in the
chemistry, the multiplicity of sources and time scales, and
the general lack of structure of the ozone background
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especially in surface air [Goldstein et al., 2004]. We present
here a new approach using the adjoint of a chemical
transport model (CTM) and apply it to examine the detail
of intercontinental influence on ozone pollution at two U.S.
west coast sites.

[3] Previous CTM studies of intercontinental influence
on surface ozone have used either ozone tracers tagged by
production region [Li et al., 2002; Jaeglé et al., 2003;
Derwent et al., 2004; Sudo and Akimoto, 2007] or sensitivity
simulations with perturbed emissions [Jacob et al., 1999;
Yienger et al., 2000; Wild and Akimoto, 2001; Derwent et
al., 2008; Duncan et al., 2008; Fiore et al., 2009]. These
source-oriented methods are computationally limited in the
spatial resolution of the source region that they can achieve.
The CTM adjoint offers a far more computationally efficient
approach for a receptor-oriented problem such as source
attribution of ozone at a given site. A single run of the
adjoint model can compute the sensitivity of ozone concen-
trations at a given location and time (or an average over a
spatial domain and time interval) to the global distribution
of sources over the spatial and temporal resolution of the
model. The method has been applied previously to pollutant
transport to Hawaii [Vukicevi¢ and Hess, 2000; Hess and
Vukicevi¢, 2003], intercontinental transport of aecrosol to the
United States [Henze et al., 2008], and regional sensitivity
analyses for ozone pollution episodes [Elbern and Schmidt,
2001; Hakami et al., 2006, Nester and Panitz, 2006].

[4] We use here the GEOS-Chem CTM and its adjoint to
estimate source contributions to surface ozone pollution in
spring 2006 at two nearby sites on the U.S. west coast, one
at high altitude (Mt. Bachelor Observatory, Oregon) and one
at sea level (Trinidad Head, California). The NASA/
INTEX-B aircraft campaign over the northeast Pacific
taking place at that time provided a detailed characterization
of transpacific transport of ozone and its precursors [Singh
et al., 2009]. The GEOS-Chem simulation was previously
evaluated in detail with INTEX-B as well as concurrent
satellite and ground-based data, lending confidence in its
representation of transpacific transport [Zhang et al., 2008].
Mt. Batchelor Observatory and Trinidad Head are standard
reference sites for background air entering the United States
[Goldstein et al., 2004; Jaffe et al., 2005; Oltmans et al.,
2008]. The altitude difference between the two sites allows
us to explore the dilution effect as Asian pollution plumes
transported mainly in the free troposphere are entrained
down to affect U.S. surface air.

2. GEOS-Chem Model and Its Adjoint

[s] The GEOS-Chem CTM (http://www.as.harvard.edu/
chemistry/trop/geos/) [Bey et al., 2001] is driven by assim-
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Figure 1. Time series of 3-hourly averaged ozone con-
centrations at (top) Mt. Bachelor Observatory and (bottom)
Trinidad Head during the INTEX-B period (April 17—
May 15, 2006). Model results (red) are compared to obser-
vations (black). The contribution of ozone produced over
Asia in the model is also shown (blue). Black arrows indi-
cate the Asian pollution events discussed in the text.

ilated meteorological data from the Goddard Earth Observ-
ing System (GEOS)-4 of the NASA Global Modeling and
Assimilation Office (GMAO). Details of its application to
simulate satellite, aircraft, and ground-based observations of
ozone and its precursors during INTEX-B (April 17—
May 15, 2006) are given by Zhang et al. [2008]. The
GEOS-4 dataset has a temporal resolution of 6 hours
(3 hours for surface variables and mixing depths), a hori-
zontal resolution of 1° x 1.25°, and 55 layers in the vertical.
We degrade the horizontal resolution to 2° x 2.5° for input
to GEOS-Chem. We use Asian anthropogenic emissions
from Zhang et al. [2009] for the year 2006. U.S. anthropo-
genic emissions are from the National Emission Inventory
for 1999 (NEI 99) by the U.S. Environmental Protection
Agency (EPA) (http://www.epa.gov/ttn/chief/net/). Trans-
port of ozone from the stratosphere is simulated using the
“Synoz” boundary condition of McLinden et al. [2000],
which imposes a global cross-tropopause ozone flux of
495 Tga .

[6] Zhang et al. [2008] used a GEOS-Chem simulation
with detailed NO,-VOC chemistry for comparison to
INTEX-B observations and for sensitivity analyses, but also
archived daily 3-D fields of ozone production rates and loss
frequencies to reproduce the ozone simulation results using
tagged tracers of source regions. This tagged ozone tracer
technique offers a computationally efficient approach for
tracking the transport of ozone produced in different
regions, and has been applied in a number of model studies
[Wang et al., 1998; Li et al., 2002; Sudo and Akimoto,
2007]. We use it here in our adjoint model application. We
define “Asian ozone” as ozone produced over Asia (8°N—
55°N, 70°E—152°E) throughout the tropospheric column.
80% of this production is in the lower troposphere below
700 hPa. Asian ozone defined in this way does not discrim-
inate between anthropogenic and natural sources, nor does it
quantitatively resolve ozone production from Asian precur-
sors downwind of the continent. It assigns the source
geographically rather than by precursor emissions. The
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latter would be more precise for Asian anthropogenic source
attribution but would require an adjoint model with full
chemistry. Zhang et al. [2008] previously found by com-
bining the two approaches that half of anthropogenic Asian
influence on surface ozone in the western U.S. is from
production in the Asian lower troposphere, with the rest
from production in the free troposphere and downwind.

[7] The adjoint model of GEOS-Chem was constructed
and tested by Henze et al. [2007] in work directed at
constraining aerosol sources, and was further developed
and applied by Kopacz et al. [2009] in an inverse analysis of
CO emissions. We use the transport component of the
adjoint including advection, boundary layer mixing, and
convection [Henze et al., 2007; K. Singh et al., Towards the
construction of a standard adjoint GEOS-Chem model,
paper presented at High Performance Computing and Sim-
ulation Symposium, Soc. for Model. and Simul. Int., San
Diego, Calif., 2009]. We add self-adjoint ozone chemistry
with archived ozone production rates and loss frequencies.
The resulting model is used to compute the sensitivity of
ozone concentrations at selected receptor sites to 3-D ozone
production rates at 2° x 2.5° resolution for different time
lags and over the history of air parcels reaching the site.

3. Time Series of Ozone at U.S. West Coast Sites

[8] We use ozone measurements from Mt. Bachelor
Observatory (MBO, 44.0°N, 121.7°W, 2700 m) and Trini-
dad Head (TH, 41.0°N, 124.2°W, 107 m). MBO is a
mountain site in central Oregon that is particularly sensitive
to Asian influences due to its exposure to the free tropo-
sphere [Jaffe et al., 2005; Weiss-Penzias et al., 2006; Wolfe
et al., 2007]. TH on the northern California coast is widely
used as a surface background site for the United States
[Goldstein et al., 2004; Oltmans et al., 2008; Parrish et al.,
2009]. The TH ozone measurements were obtained from
http://www.esrl.noaa.gov/gmd/obop/thd/.

[o] Figure 1 shows the 3-hourly observed and modeled
time series of ozone at MBO and TH for the INTEX-B
period. There is good agreement between the measurements
and GEOS-Chem. The mean observed concentration at
MBO is 54 + 10 ppbv, compared with 53 + 9 ppbv in the
model, while the mean observed concentration at TH is 41 +
7 ppbv, compared with 43 + 5 ppbv in the model. The model
cannot reproduce the low ozone levels often observed at TH
at night due to local deposition under stratified conditions
[Goldstein et al., 2004], but the synoptic-scale variability is
well captured.

[10] The contribution of ozone produced over Asia in the
model (“Asian ozone”) at the two sites is also shown in
Figure 1. It averages 13 + 3.6 ppbv at MBO and 8.4 +
1.4 ppbv at TH. This is somewhat larger than the Asian
anthropogenic ozone enhancement derived by Zhang et al.
[2008] from a sensitivity simulation with Asian anthropo-
genic emissions turned off in the same model with full-
chemistry (9 £ 3 ppbv at MBO). The difference is due to
natural production over Asia contributing to Asian ozone as
defined here; see section 2 for further discussion. The
weaker and less variable contribution at TH than at MBO
can be explained by dilution of free tropospheric plumes
during entrainment in the boundary layer [Hudman et al.,
2004]. Model Asian ozone at MBO shows a maximum
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Figure 2a. Sensitivity of ozone concentrations at Mt.
Bachelor Observatory, Oregon (MBO, 2.7 km altitude) to
ozone production worldwide as inferred from the GEOS-
Chem adjoint model: Asian pollution events at MBO ((top)
May 1, 2006, at 00 UT and (middle) May 10, 2006, at
18 UT) as highlighted in Figure 1 and (bottom) the mean for
the INTEX-B period (April 17—May 15, 2006). (left) The
sensitivities integrated in time, over the depth of the
tropospheric column and at the 2° x 2.5° grid resolution of
the model. (right) The time-dependent sensitivities (going
back in time) to ozone production over Asia, the North
Pacific, North America, and Rest of World (as indicated by
rectangles).

event on May 1 (26 ppbv) and a broader event on May 6—11,
consistent with independent analyses of Asian pollution
plumes observed at MBO during INTEX-B [Wolfe et al.,
2007; Zhang et al., 2008]. Asian ozone at TH shows
maximum influence on May 12, reflecting subsidence of
the May 6—11 MBO plumes.

4. Fine Geographical Source Attribution for
Ozone

[11] Figure 2 shows the sensitivities of ozone concen-
trations at MBO and TH to the global distribution of ozone
production rates for the previous two months, as inferred
from the GEOS-Chem model adjoint. The left panels show
the integrals of the production rates over time and over the
tropospheric column depths at the 2° x 2.5° horizontal
resolution of the model. They show the amount of ozone
produced in each grid square and transported to the receptor
site with chemical loss accounted for during transport.
Summing these values globally over all 2° x 2.5° grid
squares approximates the ozone concentrations simulated
by GEOS-Chem at the receptor site; there is a 10%—15%
residual that reflects production in the stratosphere and
tropospheric production at time lags larger than 2 months.
The right panels show the time-dependent sensitivities to
production over Asia (8°N—55°N, 70°E—152°E), North
Pacific (0°N—-80°N, 152°E-232°W), North America
(15°N—80°N, 232°W-295°W), and Rest of World. Similar
sensitivity spectra have been shown by Vukicevi¢ and Hess
[2000]. Integrating under these curves gives the total con-
tributions of ozone production in these regions to the ozone
concentrations at the receptor site.

ZHANG ET AL.: ADJOINT ANALYSIS OF OZONE SOURCES

L11810

4.1. Asian Pollution Events

[12] Figure 2a (top) show the sensitivities of ozone
concentrations at MBO for the transpacific ozone pollution
events of May 1 at 00 UT and May 10 at 18 UT. Most of the
ozone production contributing to MBO ozone on those days
took place over East Asia, with maxima over the northeast
China plain and southern Japan. We also find significant
production over the North Pacific during plume transport.
The Mayl1 plume took a more northerly and higher-altitude
route than the May 10 plume, resulting in less ozone
production over the Pacific [Zhang et al., 2008]. Both
plumes show a secondary maximum of ozone production
just off the west coast of United States, where subsidence of
air masses causes decomposition of Asian PAN (peroxya-
cetylnitrate, a thermo-unstable NO, reservoir species) and
drives further ozone production [Kotchenruther et al., 2001;
Heald et al., 2003; Hudman et al., 2004; Zhang et al.,
2008]. In addition to these direct Asian pollution influences,
both plumes show a significant background contribution to
ozone from diffuse production in the extratropical northern
hemisphere.

[13] The sensitivity spectra on Figures 2a (right) and 2b
(right) show the transport timescales from production region
to the receptor site. We see for the two Asian pollution
episodes (top two panels) that ozone produced over North
America had an immediate impact on MBO; this mostly
reflects the decomposition of PAN in the subsiding air mass
as discussed above rather than North American emissions.
The North American contribution also shows a weak
secondary peak at 20 days that reflects ozone produced in
the United States and transported in the westerly atmospheric
circulation.

[14] We find that ozone production over Asia begins to
impact MBO after a 6-day time lag and that maximum
Asian influence for the two events is at time lags of §—
11 days. This is consistent with previous studies showing
that Asian pollution plumes can be transported across the
Pacific in 5—10 days [Yienger et al., 2000; Stohl et al.,
2002]. We related these time lags to observed cold front
passages over eastern Asia on April 21 and May 3, lifting
Asian pollution in warm conveyor belts (WCBs) that
enables rapid transport across the Pacific [Liu et al.,
2003]. The Asian sensitivity spectra also show a long tail,
similar to the North American spectra and indicating the
impact on background ozone in addition to direct transport.

[15] The May 12 event at TH (Figure 2b, top) shows
similar source attribution as the May 10 event at MBO and

T
= = = Asia
North Pacific

North America 7 TH
3 May 12

Rest of World

7 TH
7 mean

0 10 20 30 40
Lag time [day]

- 60

0.00 004 008 012 016> [10"" ppbv/m’]

Figure 2b. Same as Figure 2a, but for Trinidad Head,
California (TH, sea level). The event is for May 12, 2006, at
15 UT.
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can be interpreted as subsidence of the free tropospheric
plume that affected MBO on May 6—11. The Asian influ-
ence is much weaker at TH. Its sensitivity spectrum peaks at
a time lag of 10 days, 2 day after that at MBO. Integrating
the Asian sensitivity spectra for the events at MBO and TH
over time lags of 5—20 days (direct transport component as
opposed to background), we find a factor of 3 dilution effect
as the plume mixes down to the surface (15 ppbv at MBO
vs. 5 ppbv at TH). Hudman et al. [2004] previously
estimated a factor of 10 dilution between the free tropo-
sphere and surface air for Asian dust plumes observed over
the western United States.

4.2. Mean Conditions at MBO and TH

[16] Figure 2a (bottom) shows the source attribution for
the mean ozone concentration at MBO during the INTEX-B
period. The patterns are similar to the Asian pollution events
previously discussed but the influence of direct Asian
transport is weaker. Background production is mainly north
of 20°N. Fine structure in the contributions from source
regions in Asia can still clearly be distinguished, with
maximum contributions from eastern China (5 ppbv) and
Japan (1 ppbv) as derived by summing the corresponding
grid squares. The Japanese contribution as identified from
the adjoint model is mainly from boundary layer production
and hence associated with local anthropogenic emissions.
Its contribution to transpacific pollution to the U.S. is higher
than would be expected from its NO, emissions (0.7 TgNa ")
relative to China (6.4 Tg N a™') [Zhang et al., 2009].
Export of Japanese pollutants into the westerly flow of the
North Pacific is more efficient than for China [Wild et al.,
2004]. The mean ozone concentration at MBO is also
sensitive to sustained production over the North Pacific
from Asian pollution at 25°N—40°N, and particularly off
the North American west coast, as previously discussed by
Zhang et al. [2008].

[17] Figure 2b shows the sensitivity of the mean ozone
concentration at Trinidad Head to production upwind. North
American production is more important than at MBO. Asian
influence is weaker than at MBO but still shows the Eastern
China — southern Japan dipole. Asian ozone by summing
the sensitivities over Asia is 8 ppbv at TH, consistent with
studies using source-oriented methods [Jaeglé et al., 2003;
Goldstein et al., 2004; Zhang et al., 2008]. The peak in
Asian influence is at a time lag of 16 days, as compared to
12 days at MBO, reflecting the delay and dilution during
entrainment from the free troposphere to the surface. The
mean transport time from Asia, calculated as the sensitivity-
weighted mean time lag [Vukicevi¢ and Hess, 2000], is
23 days for MBO and 27 days for TH, comparable to the
mean transport time of 2—3 weeks from East Asia to the
western North America surface previously estimated by Liu
and Mauzerall [2005].

[18] In summary, we have shown that an adjoint model
analysis can provide detailed geographical and temporal
information on intercontinental pollution influences at spe-
cific receptor sites. Such information can be used to better
determine the sources of this intercontinental pollution,
down to the scale of individual source countries and urban
areas. For policy purposes it will be important to attribute
intercontinental ozone pollution to the actual emissions of
ozone precursors, in particular NO,, taking advantage of the
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fine resolution enabled by the adjoint. This requires an
adjoint of the model chemical mechanism to resolve the
non-linearity on ozone production and hence a more elaborate
calculation than was presented here.

[19] Acknowledgments. This work was funded by the NASA Atmo-
spheric Chemistry Modeling and Analysis Program and by NASA Head-
quarters under the Earth and Space Science Fellowship Program Grant
NNXO07ANG65H to Lin Zhang.
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