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Abstract. Inverse modeling of CO2 satellite observations
to better quantify carbon surface fluxes requires a chemi-
cal transport model (CTM) to relate the fluxes to the ob-
served column concentrations. CTM transport error is a ma-
jor source of uncertainty. We show that its effect can be re-
duced by using CO satellite observations as additional con-
straint in a joint CO2-CO inversion. CO is measured from
space with high precision, is strongly correlated with CO2,
and is more sensitive than CO2 to CTM transport errors on
synoptic and smaller scales. Exploiting this constraint re-
quires statistics for the CTM transport error correlation be-
tween CO2 and CO, which is significantly different from the
correlation between the concentrations themselves. We es-
timate the error correlation globally and for different sea-
sons by a paired-model method (comparing GEOS-Chem
CTM simulations of CO2 and CO columns using different
assimilated meteorological data sets for the same meteoro-
logical year) and a paired-forecast method (comparing 48-
vs. 24-h GEOS-5 CTM forecasts of CO2 and CO columns
for the same forecast time). We find strong error correlations
(r2>0.5) between CO2 and CO columns over much of the
extra-tropical Northern Hemisphere throughout the year, and
strong consistency between different methods to estimate the
error correlation. Application of the averaging kernels used
in the retrieval for thermal IR CO measurements weakens the
correlation coefficients by 15% on average (mostly due to
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variability in the averaging kernels) but preserves the large-
scale correlation structure. We present a simple inverse mod-
eling application to demonstrate that CO2-CO error correla-
tions can indeed significantly reduce uncertainty on surface
carbon fluxes in a joint CO2-CO inversion vs. a CO2-only in-
version.

1 Introduction

The joint Japan Aerospace Exploration Agency (JAXA), Na-
tional Institute of Environmental Studies (NIES) and Min-
istry of the Environment (MOE) Greenhouse gases Ob-
serving SATellite (GOSAT or “Ibuki”) (http://www.jaxa.jp/
projects/sat/gosat/indexe.html), launched in January 2009,
is expected to greatly improve our knowledge of regional
CO2 sources and sinks by providing global measurements
of CO2 dry column mixing ratios (XCO2). It detects CO2
by solar backscatter in the 1.61 and 2.06µm bands, together
with O2 in the 0.76µm band, resulting in XCO2 measure-
ments with near-uniform sensitivity down to the surface. The
National Aeronautics and Space Administration (NASA) Or-
biting Carbon Observatory (OCO) was designed to provide
global XCO2 data with 0.3% (about 1 ppm) precision using
the same channels (Crisp et al., 2004; Miller et al., 2007).
Unfortunately, the February 2009 launch of OCO failed to
reach orbit. Satellite observations of CO2 from space are also
available in the thermal IR from the AIRS (Crevoisier et al.,
2003; Chahine et al., 2005, 2008; Tiwari et al., 2006; Maddy
et al., 2008; Stow and Hannon, 2008), TES (Kulawik et al.,
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2009), and IASI (Crevoisier et al., 2009; Clerbaux et al.,
2009) instruments. These latter observations are most sen-
sitive in the mid-troposphere. The SCIAMACHY instrument
measures CO2 using UV-vis-Near IR spectroscopy, which is
sensitive in the mid-to-lower troposphere, but is presently
limited to retrievals over land (Buchwitz et al., 2005a, b).

Successful exploitation of satellite CO2 data to constrain
carbon fluxes requires advanced inverse models because of
the large volume of data. A number of studies have ap-
plied variational data assimilation (4D-Var) (Rodenbeck et
al., 2003; Baker et al., 2006a, 2008; Chevallier et al., 2007;
Engelen et al., 2009) and ensemble filtering methods (Peters,
et al., 2005; Zupanski, et al., 2007; Lokupitiya et al., 2008;
Feng et al., 2009; Engelen et al., 2009) for CO2 flux inver-
sions. The inverse model optimizes fluxes so that the mis-
match between observations and the values simulated by a
forward chemical transport model (CTM) are minimized un-
der the constraint of a priori knowledge. The CTM solves
the 3-D continuity equation for CO2 concentrations using
assimilated meteorological data for the observation period.
Transport error in the CTM is an important factor limiting the
quality of CO2 surface flux inversions (Gurney et al., 2002,
2003, 2004; Peylin et al., 2002; Patra et al., 2006; Baker et
al., 2006b, 2008).

One approach to improve the inverse CO2 flux estimate
is through the additional constraint offered by CO2-CO error
correlation in a joint CO2-CO inversion (Palmer et al., 2006).
CO is emitted by incomplete combustion and removed from
the atmosphere by oxidation by the OH radical with a life-
time of two months. Several satellite instruments (MOPITT,
AIRS, SCIAMACHY, TES, IASI) provide high-quality data
for CO and global coverage (McMillan et al., 2005; Bowman
et al., 2006; Dils et al., 2006; Calbet et al., 2006; Emmons et
al., 2009). A number of studies have used satellite CO obser-
vations in inverse model analyses of CO sources (e.g., Heald
et al., 2004; Arellano et al., 2004, 2006; Pfister et al., 2005;
Stavrakou and Muller, 2006; Kopacz et al., 2009). CO has
stronger gradients than CO2 on account of its shorter lifetime
and hence it has greater sensitivity to model transport errors
on synoptic and smaller scales, as can be inferred from sim-
ple flux-gradient reasoning. If model transport errors for CO2
and CO are correlated, then CO has the potential to provide
additional information to improve inverse CO2 flux estimates
(Palmer et al., 2006). Strong correlations between CO2 and
CO concentrations are consistently seen in atmospheric ob-
servations at the surface (Potosnak et al., 1999; Gamnitzer
et al., 2006) and from aircraft (Conway et al., 1993; Sawa
et al., 2004; Schmitgen et al., 2004; Suntharalingam et al.,
2004; Takegawa et al., 2004; Palmer et al., 2006). These cor-
relations result from common source/sink regions, common
large-scale latitudinal gradients, and common transport. For
the same reasons, transport errors are expected to be corre-
lated as well.

Palmer et al. (2006) previously conducted a joint CO2-CO
flux inversion using CO2 and CO measurements in Asian

outflow from the TRACE-P aircraft campaign over the west-
ern Pacific in March–April 2001. Observed CO2 and CO
concentrations showed correlation coefficients higher than
0.7 throughout the troposphere with distinct CO2/CO slopes
depending on air mass origin (Suntharalingam et al., 2004).
Palmer et al. (2006) found that exploiting this correlation in
a joint CO2-CO flux inversion improved Asian CO2 flux es-
timates significantly relative to a CO2-only inversion. They
assumed that the model transport error correlation between
CO2 and CO would be identical to the observed correlation
of concentrations, but as shown below this is not a good as-
sumption in general.

Our aim in this paper is to develop an understanding of
CO2-CO model transport error correlations as relevant to
inversion of carbon fluxes from satellite observations. We
present different methods for estimating the model error cor-
relation and show that there is consistency and robustness
across them. We examine the variability of the error corre-
lation geographically, seasonally, and for satellite observa-
tions with different averaging kernels. We illustrate through
a simple example how the error correlation can improve con-
straints on carbon fluxes.

2 Exploiting the CO2-CO error correlation in CO 2 flux
inversions

Consider the Bayesian inversion problem of constraining car-
bon fluxes from satellite measurements of the column mixing
ratio XCO2. We follow the notation of Rodgers (2000). An
ensemble of XCO2 observations (y, the observation vector) is
used to optimize an ensemble of CO2 surface fluxes (x, the
state vector) subject to prior knowledge of the fluxes (best
estimatexa). The state vector is related to the observation
vectory through the CTM forward model:

y = F(x) + ε (1)

whereε is the observational error, described in more de-
tail below. The inverse model minimizes a cost function
J (x) which is the least-squares sum of the observational er-
ror weighted by the observational error covariance matrix
(S = E(εεT ), whereE denotes the expected value operator)
and the a priori error (εa= x − xa) weighted by the a priori
error covariance matrix (Sa= E(εaε

T
a )) (Rodgers, 2000):

J (x) = (2)

(y − F(x))T S−1(y − F(x)) + (x − xa)
T S−1

a (x − xa)

The a priori error describes the inaccuracy of the prior
knowledge of surface fluxes. The observational error de-
scribes the inability of the forward model to match obser-
vations perfectly even if it used the true value (x) of the state
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vector as input. It includes contributions from instrument er-
ror (εI), representation error (εR), and forward model error
(εM) (Heald et al., 2004; Engelen et al., 2002, 2006):

ε = εI+εR+εM (3)

Components of the observational errors are not strictly in-
dependent. We will simplify here by ignoring their covari-
ance. The error variances add quadratically (if the errors
are independent). The instrument error includes measure-
ment noise and retrieval error (Engelen et al., 2002, 2006).
Smoothing error introduced by the averaging kernels of the
satellite instrument is a source of retrieval error, but can be
canceled by smoothing the CTM profiles with the same av-
eraging kernels (Jones et al., 2003; Heald et al., 2004). For-
ward model error is the dominant source of observational er-
ror for CO observations from space (Heald et al., 2004) and
may be dominant for CO2 observations depending on data
quality and averaging strategy (Baker et al., 2008).

The diagonal elements of the observational error covari-
ance matrixS are the variances of observational errors for the
individual components ofy. The off-diagonal elements are
the corresponding observational error covariances, and can
be obtained by scaling the error correlation coefficients with
the corresponding square roots of error variances. One way
to estimate the observational error variance is by the Relative
Residual Error (RRE) method (Palmer et al., 2003; Heald et
al., 2004). In this method, a forward model simulation us-
ing a priori fluxes (Kxa) is conducted and results compared
to observation time series for individual domains (such as
model grid squares). The mean differences for the time se-
ries (model bias) are assumed to be due to error in the a priori
fluxes. The residual differences are taken to represent the ob-
servational error.

In a joint CO2-CO inversion, the observational vector (y)
consists of the CO2 and CO observations, and the state vector
(x) consists of CO2 surface fluxes and CO sources. Coupling
between the CO2 and CO inversions occurs through the cor-
responding off-diagonal elements of the error covariance ma-
trices. The observational error covariance matrix now takes
the form (4), whereSCO2 andSCO are the error covariance
matrices for the single-species inversions:

S =

(
SCO2 E(εCO2ε

T
CO)

E(εCOεT
CO2

) SCO

)
(4)

Since the instrument error for CO2 and CO can be assumed
independent, and the representation error can be assumed
small (Heald et al., 2004), the observational error covariance
between CO2 and CO only comes from the model transport
error. The CO2-CO error covariance terms can be derived
from the model error correlation coefficients by scaling by
the square roots of model error variances of CO and CO2.
Although the model error variances obviously depend on the
model, the correlation structure is more general as shown in
Sect. 4.

In addition to observational error covariance, there could
also be error correlation in the a priori emissions of CO2
and CO due to the common combustion source. However, as
shown by Palmer et al. (2006), this correlation is in fact very
weak because the error in a priori CO emissions is mainly
contributed by the emission factor (emission per unit fuel)
rather than the activity rate (amount of fuel burned). A pos-
sible exception is biomass burning if uncertainty in activity
rate exceeds a factor of two (Palmer et al., 2006). Palmer et
al. (2006) found that this a priori error correlation was not
useful in their inversion and we do not discuss it further here.

3 Estimating the CO2-CO error correlation

We use two independent methods, which we call the paired-
model and paired-forecast methods, to estimate the CO2-CO
model error correlation (rM ) and its geographical and sea-
sonal distribution. In the paired-model method, we conduct
otherwise identical CTM simulations of CO2 and CO using
different assimilated meteorological data sets for the same
meteorological year. In the paired-forecast method, we com-
pare 48-h vs. 24-h chemical forecasts of CO2 and CO. The
latter method has been used extensively for meteorological
data assimilation and is often called the NMC method (Parish
and Derber, 1992).

In both methods, each pair produces global 3-D concentra-
tion fields of CO2 and CO for the same times that differ be-
cause of model transport error. A time series of model output
for a given gridbox thus generates time series of concentra-
tion differences1CO2 and1CO for the pair. We correlate
the time series of1CO2 vs.1CO for individual model grid
boxes and individual months to estimate the corresponding
CO2-CO transport error correlation coefficients (rM ). The
estimates may differ depending on the method and the data
sets used, but by comparing the estimates obtained in differ-
ent ways we can assess their robustness. The concentration
fields are sampled as columns for the satellite overpass times
and with or without instrument averaging kernels. Figure 1
shows typical averaging kernels for CO2 from OCO (values
for GOSAT are similar), CO from SCIAMACHY, and CO
from AIRS. GOSAT, OCO and SCIAMACHY measure by
solar backscatter in the near-IR and thus have near-unit sen-
sitivity through the bulk of the atmosphere (i.e., nearly flat
averaging kernels). AIRS, MOPITT, and TES measure in
the thermal IR and have maximum sensitivity in the mid-
troposphere. Infrared instruments can observe on both the
night side and the day side of the orbit. On the dayside,
all instruments observe at near 13:30 local time (“A-Train”
constellation of satellites on the same orbit track) except
for GOSAT (13:00), MOPITT (10:30) and SCIAMACHY
(10:00).

For the paired-model method, we perform global simula-
tions of CO2 and CO using the GEOS-Chem CTM (v8-01-
01, http://www-as.harvard.edu/chemistry/trop/geos) driven
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Fig. 1. Typical column averaging kernels for OCO retrieving CO2
and for SCIAMACHY and AIRS retrieving CO. OCO kernels are
for conifer and ocean surfaces with solar zenith angle of 20◦ and
optical depth of 0.005 (Bosch et al., 2008). The AIRS kernel is for
a clear-sky ocean scene at 2.2◦ N and 156.9◦ W on 1 August 2006
(http://disc.sci.gsfc.nasa.gov/AIRS). The SCIAMACHY kernel is
for a solar zenith angle of 20◦ (Buchwitz et al., 2004).

by the same sources and sinks but different generations of
Goddard Earth Observing System (GEOS) assimilated mete-
orological data produced by the NASA Global Modeling and
Assimilation Office (GMAO). We compare simulations con-
ducted with GEOS-5 vs. GEOS-4 for 2006, and GEOS-4 vs.
GEOS-3 for 2001. GEOS-3, GEOS-4, and GEOS-5 differ in
the underlying general circulation model, the methodology
for data assimilation, and the data assimilated (Bloom et al.,
2005; Rienecker et al., 2008; Ott et al., 2009). All GEOS data
sets are 6-hourly (3-hourly for mixing depth and surface vari-
ables) and are regridded to 2◦

×2.5◦ horizontal resolution for
input to GEOS-Chem. The GEOS-Chem CO2 and CO sim-
ulations have been documented previously including exten-
sive comparisons to observations (e.g., Suntharalingam et al.,
2004; Duncan et al., 2007). Anthropogenic CO2 emissions
are from Andres et al. (1996). Anthropogenic CO emis-
sions are a combination of currently available inventories as
used in Kopacz et al. (2009). Biomass burning emissions for
both CO2 and CO are from the monthly Global Fire Emis-
sion Database version 2 (GFED2) inventory for the simula-
tion year (van der Werf, 2006). Biofuel emissions of CO2 and
CO are from Yevich and Logan (2003). All CO simulations
use the same monthly 3-D OH concentration fields archived
from a GEOS-Chem full-chemistry simulation (Fiore et al.
2003). Exchange of CO2 with the terrestrial biosphere fol-
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Fig. 2. Model error correlation coefficients between column CO2
and column CO in different seasons calculated with the paired
model method for GEOS-5 vs. GEOS-4 (2006) and GEOS-4 vs.
GEOS-3 (2001) at 2◦×2.5◦ resolution. Both CO2 and CO columns
were sampled at 13:30 local time. No averaging kernels were ap-
plied.

lows the CASA balanced biosphere model with prescribed
diurnal cycle (Randerson et al., 1997; Olsen and Randerson,
2004). Exchange of CO2 with the ocean follows Takahashi
et al. (1997).

For the paired forecast method, we use GEOS-5 global
chemical forecasts of CO and CO2 (1/2◦

×2/3◦ horizontal
resolution) for July 2008 generated by GMAO in support of
the ARCTAS aircraft campaign (Jacob et al., 2009). These
chemical forecasts were not custom designed for this pa-
per. The CO simulation uses the same sources and OH
fields as GEOS-Chem. The CO2 simulation differs in us-
ing daily averaged biospheric fluxes from CASA and no
biomass burning. The 48-h and 24-h forecasts were sampled
at 13:30 GMT.

Atmos. Chem. Phys., 9, 7313–7323, 2009 www.atmos-chem-phys.net/9/7313/2009/
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4 CO2-CO error correlation patterns

Figure 2 shows the global and seasonal patterns of the
model error correlation between column CO2 and column
CO calculated with the paired-model method for GEOS-4 vs.
GEOS-5 (2006) and GEOS-3 vs. GEOS-4 (2001). Both CO2
and CO are sampled at 13:30 local time, corresponding to the
A-Train overpass. Results are for actual columns (no averag-
ing kernels) and would also apply to flat averaging kernels as
obtained from the near-IR GOSAT and SCIAMACHY sen-
sors (Fig. 1).

We find in Fig. 2 strong positive correlations (rM>0.7)
prevailing during the non-growing season and in biomass
burning regions. In January, 92%, 80% and 45% of the area
north of 30◦ N hasrM>0.7, 0.8, and 0.9, respectively. Simi-
larly, strong negative correlations exist in the growing season
in the absence of biomass burning. In July, 26%, 11%, and
3% of the area north of 30◦ N hasrM<-0.6,−0.7, and−0.8,
respectively. Due to the magnitude and variability of the
CASA balanced biospheric flux, the correlations are stronger
and more coherent in winter than in summer. Error correla-
tions extend far downwind of biomass burning and fossil fuel
regions and over the scale of the Northern Hemisphere. Re-
gions of strong model error correlations include but are not
limited to regions of strong model error variances. Inverse
model studies of CO2 fluxes have pointed to model transport
errors in northern extra-tropical land areas as a major lim-
iting factor in flux optimization (Gurney et al., 2002, 2003,
2004; Baker et al., 2006). The strong CO2-CO error correla-
tions in that region offer promise for improvements through
a joint CO2-CO inversion.

We also find in Fig. 2 that error correlation patterns are
very similar for the GEOS-4/GEOS-5 and GEOS-3/GEOS-4
pairs. The robustness of error correlation patterns indicates
that the directions of the general gradients of column CO and
CO2 are similar between the two sets of models. Stronger
positive correlation over Indonesia and the Indian Ocean in
October for the GEOS-4/GEOS-5 pair can be explained by
stronger biomass burning in Indonesia in 2006 (Logan et
al., 2008). We find that correlation magnitudes and patterns
are insensitive to time of day (not shown), even though the
CO2 surface flux changes sign between day and night during
the growing season. This is consistent with observations by
Washenfelder et al. (2006) that CO2 columns (as opposed to
surface concentrations) show little diurnal variability.

Figure 3 shows the model error correlations obtained from
the paired-forecast method for July 2008. As in Fig. 2, no
averaging kernels are applied. Despite the differences in me-
teorology, emissions, sampling time, and method (Sect. 3),
the large scale model error correlations are very similar to
those in Fig. 2. The error structure is finer because of the
higher spatial resolution (1/2◦

×2/3◦ vs. 2◦×2.5◦).
Figure 4 shows the error correlation results including aver-

aging kernels for OCO CO2 and AIRS CO, as obtained by the
paired-model method for January and July 2006. For OCO
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Fig. 3. Model error correlation coefficients between CO2 and CO
columns calculated with the paired-forecast method for July 2008 at
1/2◦

×2/3◦ resolution. No averaging kernels were applied. Results
can be compared to the July panels of Fig. 2.

we use fixed land and ocean averaging kernels taken from
Fig. 1; these do not significantly modify the CO2 columns.
Similar averaging kernels apply for GOSAT. For AIRS, we
used the averaging kernels for each CO retrieval (AIRS data
version 5,http://disc.sci.gsfc.nasa.gov/AIRS; McMillan et
al., 2005), and averaged the resulting CO columns over the
2◦

×2.5◦ model grid. Application of AIRS averaging ker-
nels degrades the error correlation because the CO2 and CO
columns are now observed with different and variable verti-
cal weighting factors. Yet we find that the large-scale cor-
relation structures are preserved (Fig. 4) with the correlation
coefficients reduced on average by 15% (of which 9% is due
to averaging kernel variation) relative to the results of Fig. 2.

In their previous joint CO2-CO inverse analysis using
TRACE-P aircraft data, Palmer et al. (2006) assumed that the
CO2-CO observational error correlation was the same as the
correlation of concentrations. If this assumption was approx-
imately correct it would greatly facilitate the generation of er-
ror correlation statistics. We examine its validity in Fig. 5 by
showing the correlations between column CO2 and column
CO (without averaging kernels) simulated by GEOS-Chem
for 2006. These can be compared to the error correlations
shown in the left panels of Fig. 2. We find the same gen-
eral patterns of strong positive correlations in combustion
source regions, and strong negative correlations in regions
of photosynthesis activity. But there are also large differ-
ences, particularly in the transition seasons (e.g., April). For
the Palmer et al. (2006) conditions of Asian outflow over
the NW Pacific in April, we find that the transport errors are
much more strongly correlated than the columns themselves,
which would increase the utility of the joint CO2-CO inver-
sion for constraining carbon fluxes. Overall, the differences
between Fig. 2 and 5 are sufficiently large and complex that
correlation of concentrations should not be used as error cor-
relations in general.

www.atmos-chem-phys.net/9/7313/2009/ Atmos. Chem. Phys., 9, 7313–7323, 2009
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Fig. 4. CO2-CO model error correlation coefficients between col-
umn CO2 sampled with the land and ocean OCO averaging kernels
of Fig. 1 and column CO sampled with actual AIRS averaging ker-
nels associated with each scene. CO2 and CO are sampled at 13:30
local time for January and July 2006 and error correlations are cal-
culated by the paired-model (GEOS-5 vs. GEOS-4) method. Blank
areas correspond to grid squares that had fewer than 21 AIRS ob-
servations for the month.

5 Demonstration of error reduction in a CO2 flux inver-
sion

We demonstrate the benefit of using CO2-CO model error
correlations in CO2 flux inversions with a simple example.
Pseudo data of column CO2 and column CO with OCO-like
averaging kernels (Fig. 1, OCO-land) were generated along
A-train orbits using 2◦×2.5◦ GEOS-Chem CO and CO2 sim-
ulations driven by GEOS-4 meteorology. Model error vari-
ances and correlation derived from the paired model method
were used to specify the observational error covariance ma-
trix S. Since OCO averaging kernels essentially show uni-
form vertical sensitivity, we used the GEOS-5 vs. GEOS-4
correlation map without averaging kernels (Fig. 2). We as-
sumed that the forward model error is the only source of ob-
servational error (ε = εM), and ignored spatial and temporal
error correlations.

 January  April

 July  October

           -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Correlation coefficients between column CO2 and column
CO simulated by GEOS-Chem with GEOS-4 meteorology for 2006
at 2◦×2.5◦ resolution. Both CO2 and CO are sampled at 13:30 local
time. No averaging kernels are applied.

Fig. 6. The 14 land regions and rest of the world (ROW) used in the
inversion example, from Nassar et al. (2009).

We performed an analytical Bayesian inversion for 14 land
regions and the rest of the world (ROW) (Fig. 6) [Nassar et
al., 2009] for the first two weeks of January 2006 and of July
2005. The Jacobian matrixK = ∇xF = ∂y

/
∂x was con-

structed using a total of 45 tagged tracers. Each land region
had one tracer for CO combustion, one for CO2 combustion,
and one for CO2 biospheric exchange. In addition, there was
one CO tracer and one CO2 tracer for ROW and one CO
tracer for chemical production from methane and biogenic
volatile organic compounds. The a priori error covariance
matrix was assumed diagonal, with 50% uncertainty for CO,
25% for combustion CO2, 80% for biosphere CO2 and 30%
for ROW. We also performed a control CO2-only inversion.

One way to diagnose the benefit of a CO2-CO joint in-
version relative to a CO2-only inversion is examining the de-
crease in the a posteriori flux errors (Palmer et al., 2006). The
a posteriori error covariance matrixŜ is given by (Rodgers,
2000):

Ŝ = (KT S−1K + S−1
a )−1 (5)
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Fig. 7. Ratio of a posteriori CO2 surface flux error between a joint CO2-CO inversion and a CO2-only inversion for the different regions in
Fig. 6. The errors are measured as the square roots of the diagonal terms of the a posteriori error covariance matrixŜ. The inversions used
14 days of pseudo satellite data sampled along the A-train orbit in January 2006 (top) and July 2005 (bottom).

The a posteriori errors are the square roots of the diagonal
terms ofŜ. Figure 7 shows the ratios of a posteriori CO2 flux
errors between the CO2-CO and CO2-only inversion. In Jan-
uary, when strong positive model error correlations prevail in
the Northern Hemisphere, a posteriori CO2 combustion and
biosphere flux uncertainties from the CO2-CO inversion are
39–82% of those in the uncorrelated inversion, with a me-
dian of 56% for combustion sources and 69% for biosphere
fluxes. In July, they typically decrease by 10–30% relative
to the CO2-only inversion. Larger improvements in January
compared to July are due to generally larger absolute values
of correlation coefficients and greater spatial coherence. Dif-
ferences in improvement between source regions in Fig. 7
generally reflect differences in the strength of the correlation
in Fig. 2. The present example indicates significant promise.
Our example involves several simplifications such as neglect-
ing instrument and representation errors, neglecting spatial
and temporal correlations, and using the same model for both
pseudo data and inversion. These simplifications may influ-
ence the benefits of the joint CO2-CO inversion (Chevallier,
2007). A more extensive study will be needed to better un-
derstand their effects.

6 Conclusions

We explored the potential of using CO2-CO transport er-
ror correlations to improve inversions of CO2 surface fluxes
from satellite observations of CO2 columns. CO columns can
be measured from space with high relative precision. Be-
cause of its relatively short lifetime, CO is more sensitive
than CO2 to model transport errors on synoptic and smaller
scales. A joint CO2-CO inversion including model transport
error correlation could improve the inversion of CO2 sur-
face fluxes relative to a CO2-only inversion. In this paper
we showed how the CO2-CO error correlation structure can
be determined robustly on a global scale, and we presented
an illustrative example to demonstrate its value for CO2 flux
inversions.

We used two independent methods to characterize the
model transport error correlation for CO2 and CO columns as
measured from space. The first is a paired-model method in
which we conducted CTM simulations of CO2 and CO with
the same sources and sinks for the same meteorological year
but different assimilated meteorological data sets. We ap-
plied this method to GEOS-5 vs. GEOS-4 data sets for 2006
and to GEOS-4 vs. GEOS-3 data sets for 2001. The second
is a paired-forecast method (often called the NMC method)
in which we compared 48-h vs. 24-h CTM forecasts of CO2
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and CO for the same forecast times. We find that these dif-
ferent methods and data sets yield very similar large scale
error correlation patterns. Strong positive error correlations
are found over much of the Northern Hemisphere during the
non-growing season, and over biomass burning regions of the
tropics extending to the oceans far downwind. Strong nega-
tive error correlations are found over much of the Northern
Hemisphere during the growing season. The correlations are
largely insensitive to the time of day of the observations.

Satellite measurements by solar backscatter in the near-IR
(OCO and GOSAT for CO2, SCIAMACHY for CO) have
vertically uniform sensitivities, but thermal-IR instruments
(MOPITT, AIRS, TES, IASI) have greatest sensitivity in the
mid-troposphere. We therefore examined the model error
correlation of CO2 with CO including variable AIRS aver-
aging kernels for individual scenes as observed in 2006. We
find that the CO2-CO error correlation coefficients decrease
by 15%, mostly due to variations in averaging kernels, but
the large-scale correlation structure is preserved.

We examined whether simple correlation of concentra-
tions could offer a suitable approximation to the error corre-
lation since it is much easier to derive and can be constrained
by observations. We find that the general patterns are often
similar between the two but there are also sufficiently large
differences to make the approximation inadequate.

We illustrated the potential of exploiting CO2-CO error
correlations in a joint CO2-CO flux inversion with a simple
example based on 14 days of pseudo satellite observations.
We find that a posteriori CO2 flux uncertainties are substan-
tially reduced, implying significant improvement in the CO2
flux inversion. Inversions using actual satellite observations
are subject to measurement noise and model biases that com-
plicate greatly the interpretation of results relative to our ide-
alized example. Further work will be needed to demonstrate
the value of CO2-CO error correlations as constraints on CO2
fluxes in real world applications.
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