
 

On the Modularity of Elliptic Curves Over Q: Wild 3-Adic Exercises

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Breuil, Christophe, Brian Conrad, Fred Diamond, and Richard L.
Taylor. 2001. On the modularity of elliptic curves over Q: Wild 3-
adic exercises. Journal of the American Mathematical Society
14(4): 843-939.

Published Version doi:10.1090/S0894-0347-01-00370-8

Accessed February 18, 2015 6:29:24 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3626807

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28932625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/3626807&title=On+the+Modularity+of+Elliptic+Curves+Over+Q%3A+Wild+3-Adic+Exercises
http://dx.doi.org/10.1090/S0894-0347-01-00370-8
http://nrs.harvard.edu/urn-3:HUL.InstRepos:3626807
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


JOURNAL OF THEAMERICAN MATHEMATICAL SOCIETYVolume 00, Number 0, Xxxx XXXX, Pages 000{000S 0894-0347(XX)0000-0ON THE MODULARITY OF ELLIPTIC CURVES OVER Q:WILD 3-ADIC EXERCISES.CHRISTOPHE BREUIL, BRIAN CONRAD, FRED DIAMOND, AND RICHARD TAYLORIntroductionIn this paper, building on work of Wiles [Wi] and of Wiles and one of us (R.T.) [TW], we will prove thefollowing two theorems (see x2.2).Theorem A. If E=Q is an elliptic curve, then E is modular.Theorem B. If � : Gal(Q=Q) ! GL2(F5) is an irreducible continuous representation with cyclotomicdeterminant, then � is modular.We will �rst remind the reader of the content of these results and then brie
y outline the method of proof.If N is a positive integer then we let �1(N) denote the subgroup of SL2(Z) consisting of matrices thatmodulo N are of the form � 1 �0 1 � :The quotient of the upper half plane by �1(N), acting by fractional linear transformations, is the complexmanifold associated to an a�ne algebraic curve Y1(N)=C. This curve has a natural model Y1(N)=Q, whichfor N > 3 is a �ne moduli scheme for elliptic curves with a point of exact order N . We will let X1(N) denotethe smooth projective curve which contains Y1(N) as a dense Zariski open subset.Recall that a cusp form of weight k � 1 and level N � 1 is a holomorphic function f on the upper halfcomplex plane H such that� for all matrices � a bc d � 2 �1(N)and all z 2 H, we have f((az + b)=(cz + d)) = (cz + d)kf(z);� and jf(z)j2(Im z)k is bounded on H.The space Sk(N) of cusp forms of weight k and level N is a �nite dimensional complex vector space. Iff 2 Sk(N) then it has an expansion f(z) = 1Xn=1 cn(f)e2�inzReceived by the editors ? 2000, and in revised form, ? January 2001.1991 Mathematics Subject Classi�cation. Primary 11G05; Secondary 11F80.Key words and phrases. Elliptic curve, Galois representation, modularity.The �rst author was supported by the CNRS. The second author was partially supported by a grant from the NSF. Thethird author was partially supported by a grant from the NSF and an AMS Centennial Fellowship. He was working at RutgersUniversity during much of the research. The fourth author was partially supported by a grant from the NSF and by the MillerInstitute for Basic Science. c
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and we de�ne the L-series of f to be L(f; s) = 1Xn=1 cn(f)=ns:For each prime p 6 jN there is a linear operator Tp on Sk(N) de�ned by(f jTp)(z) = p�1 p�1Xi=0 f((z + i)=p) + pk�1(cpz + d)�kf((apz + b)=(cpz + d))for any � a bc d � 2 SL2(Z)with c � 0 mod N and d � p mod N . The operators Tp for p6 jN can be simultaneously diagonalised onthe space Sk(N) and a simultaneous eigenvector is called an eigenform. If f is an eigenform then thecorresponding eigenvalues, ap(f), are algebraic integers and we have cp(f) = ap(f)c1(f).Let � be a place of the algebraic closure of Q in C above a rational prime ` and let Q� denote thealgebraic closure of Q` thought of as a Q algebra via �. If f 2 Sk(N) is an eigenform, then there is a uniquecontinuous irreducible representation �f;� : Gal(Q=Q) �! GL2(Q�)such that for any prime p6 jNl, �f;� is unrami�ed at p and tr �f;�(Frobp) = ap(f). The existence of �f;� is dueto Shimura if k = 2 [Sh2], to Deligne if k > 2 [De] and to Deligne and Serre if k = 1 [DS]. Its irreducibilityis due to Ribet if k > 1 [Ri] and Deligne and Serre if k = 1 [DS]. Moreover � is odd in the sense thatdet � of complex conjugation is �1. Also, �f;� is potentially semi-stable at ` in the sense of Fontaine. Wecan choose a conjugate of �f;� which is valued in GL2(OQ�), and reducing modulo the maximal ideal andsemi-simplifying yields a continuous representation�f;� : Gal(Q=Q) �! GL2(F`);which, up to isomorphism, does not depend on the choice of conjugate of �f;�.Now suppose that � : GQ ! GL2(Q`) is a continuous representation which is unrami�ed outside �nitelymany primes and for which the restriction of � to a decomposition group at ` is potentially semi-stable inthe sense of Fontaine. To �jGal(Q`=Q`) we can associate both a pair of Hodge-Tate numbers and a Weil-Deligne representation of the Weil group of Q`. We de�ne the conductor N(�) of � to be the product overp 6= ` of the conductor of �jGal(Qp=Qp) and of the conductor of the Weil-Deligne representation associatedto �jGal(Q`=Q`). We de�ne the weight k(�) of � to be 1 plus the absolute di�erence of the two Hodge-Tatenumbers of �jGal(Q`=Q`). It is known by work of Carayol and others that the following two conditions areequivalent� � � �f;� for some eigenform f and some place �j`;� � � �f;� for some eigenform f of level N(�) and weight k(�) and some place �j`.When these equivalent conditions are met we call � modular. It is conjectured by Fontaine and Mazur thatif � : GQ ! GL2(Q`) is a continuous irreducible representation which satis�es� � is unrami�ed outside �nitely many primes,� �jGal(Q`=Q`) is potentially semi-stable with its smaller Hodge-Tate number 0,� and, in the case where both Hodge-Tate numbers are zero, � is odd;then � is modular [FM].Next consider a continuous irreducible representation � : Gal(Q=Q) ! GL2(F`). Serre [Se2] de�nes theconductor N(�) and weight k(�) of �. We call � modular if � � �f;� for some eigenform f and some place�j`. We call � strongly modular if moreover we may take f to have weight k(�) and level N(�). It is knownfrom work of Mazur, Ribet, Carayol, Gross, Coleman and Voloch and others that for ` � 3, � is strongly2



modular if and only if it is modular (see [Di1]). Serre has conjectured that all odd, irreducible � are stronglymodular [Se2].Now consider an elliptic curve E=Q. Let �E;` (resp. �E;`) denote the representation of Gal(Q=Q) on the`-adic Tate module (resp. the `-torsion) of E(Q). Let N(E) denote the conductor of E. It is known thatthe following conditions are equivalent.1. The L-function L(E; s) of E equals the L-function L(f; s) for some eigenform f .2. The L-function L(E; s) of E equals the L-function L(f; s) for some eigenform f of weight 2 and levelN(E).3. For some prime `, the representation �E;` is modular.4. For all primes `, the representation �E;` is modular.5. There is a non-constant holomorphic map X1(N)(C)! E(C) for some positive integer N .6. There is a non-constant morphism X1(N(E))! E which is de�ned over Q.The implications (2) ) (1), (4) ) (3) and (6) ) (5) are tautological. The implication (1) ) (4) followsfrom the characterisation of L(E; s) in terms of �E;`. The implication (3) ) (2) follows from a theorem ofCarayol [Ca1] and a theorem of Faltings [Fa2]. The implication (2) ) (6) follows from a construction ofShimura [Sh2] and a theorem of Faltings [Fa1]. The implication (5) ) (3) seems to have been �rst noticedby Mazur [Maz]. When these equivalent conditions are satis�ed we call E modular.It has become a standard conjecture that all elliptic curves over Q are modular, although at the time thisconjecture was �rst suggested the equivalence of the conditions above may not have been clear. Taniyamamade a suggestion along the lines (1) as one of a series of problems collected at the Tokyo-Nikko conferencein September 1955. However his formulation did not make clear whether f should be a modular form or somemore general automorphic form. He also suggested that constructions as in (5) and (6) might help attackthis problem at least for some elliptic curves. In private conversations with a number of mathematicians(including Weil) in the early 1960's, Shimura suggested that assertions along the lines of (5) and (6) might betrue (see [Sh3] and the commentary on [1967a] in [We2]). The �rst time such a suggestion appears in printis Weil's comment in [We1] that assertions along the lines of (5) and (6) follow from the main result of thatpaper, a construction of Shimura and from certain \reasonable suppositions" and \natural assumptions".That assertion (1) is true for CM elliptic curves follows at once from work of Hecke and Deuring. Shimura[Sh1] went on to check assertion (5) for these curves.Our approach to Theorem A is an extension of the methods of Wiles [Wi] and of Wiles and one of us(R.T., [TW]). We divide the proof into three cases.1. If �E;5jGal(Q=Q(p5)) is irreducible, we show that �E;5 is modular.2. If �E;5jGal(Q=Q(p5)) is reducible, but �E;3jGal(Q=Q(p�3)) is absolutely irreducible, we show that �E;3 ismodular.3. If �E;5jGal(Q=Q(p5)) is reducible and �E;3jGal(Q=Q(p�3)) is absolutely reducible, then we show that E isisogenous to an elliptic curve with j-invariant 0, (11=2)3, or �5(29)3=25 and so (from tables of modularelliptic curves of low conductor) is modular.In each of cases 1 and 2 there are two steps. First we prove that �E;` is modular and then that �E;` ismodular. In case 1 this �rst step is our Theorem B and in case 2 it is a celebrated theorem of Langlandsand Tunnell [L], [T]. In fact, in both cases E obtains semi-stable reduction over a tame extension of Q` andthe deduction of the modularity of �E;` from that of �E;` was carried out in [CDT] by an extension of themethods of [Wi] and [TW]. In the third case we have to analyse the rational points on some modular curvesof small level. This we did, with Elkies' help, in [CDT].It thus only remained to prove Theorem B. Let � be as in that theorem. Twisting by a quadraticcharacter, we may assume that �jGal(Q3=Q3) falls into one of the following cases (see x2.2).1. � is unrami�ed at 3.2. �(I3) has order 5.3. �(I3) has order 4.4. �(I3) has order 12 and �jGal(Q3=Q3) has conductor 27.3



5. �(I3) has order 3.6. �jGal(Q3=Q3) is induced from a character � : Gal(Q3=Q3(p�3)) �! F�25 such that �(�1) = �1 and�(p�3) = �(1 + 3p�3)� �(1� 3p�3);where we use the Artin map (normalised to take uniformisers to arithmetic Frobenius) to identify �with a character of Q3(p�3)�.We will refer to these as the f = 1,3,9,27, 81 and 243 cases respectively.Using the technique of Minkowski and Klein (i.e. the observation that the moduli space of elliptic curveswith full level 5 structure has genus 0, see for example [Kl]), Hilbert irreducibility and some local computa-tions of Manoharmayum [Man], we �nd an elliptic curve E=Q with the following properties (see x2.2)� �E;5 � �,� �E;3 is surjective onto GL2(F3),� and1. in the f = 1 case, either �E;3jI3 
F9 � !2 � !32 or�E;3jI3 � � ! �0 1 �and is peu rami��e;2. in the f = 3 case, �E;3jI3 � � ! �0 1 � ;3. in the f = 9 case, �E;3jI3 
F9 � !2 � !32 ;4. in the f = 27 case, �E;3jI3 � � ! �0 1 �and is tr�es rami��e;5. in the f = 81 case, �E;3jI3 � � 1 �0 ! �and is tr�es rami��e;6. in the f = 243 case, �E;3jGal(Q3=Q3) � � ! �0 1 �is non-split over Qker �3 and is tr�es rami��e.(We are using the terms tr�es rami��e and peu rami��e in the sense of Serre [Se2]. We are also letting ! denotethe mod3 cyclotomic character and !2 the second fundamental character I3 ! F�9 , i.e.!2(�) � �( 8p3)= 8p3 mod 8p3:We will often use the equality ! = !�1 without further remark.) We emphasise that for a general ellipticcurve over Q with �E;5 �= �, the representation �E;3 does not have the above form, rather we are placing asigni�cant restriction on E.In each case our strategy is to prove that �E;3 is modular and so deduce that � � �E;5 is modular. Againwe use the Langlands-Tunnell theorem to see that �E;3 is modular and then an analogue of the arguments of[Wi] and [TW] to conclude that �E;3 is modular. This was carried out in [Di2] in the cases f = 1 and f = 3,and in [CDT] in the case f = 9. (In these cases the particular form of �E;3jI3 is not important.) This leavesthe cases f = 27, 81 and 243, which are complicated by the fact that E now only obtains good reductionover a wild extension of Q3. In these cases our argument relies essentially on the particular form we haveobtained for �E;3jGal(Q3=Q3) (depending on �E;5jI3). We do not believe that our methods for deducing the4



modularity of �E;3 from that of �E;3 would work without this key simpli�cation. It seems to be a piece ofundeserved good fortune that for each possibility for �jI3 we can �nd a choice for �E;3jGal(Q3=Q3) for whichour methods work.Following Wiles, to deduce the modularity of �E;3 from that of �E;3, we consider certain universal defor-mations of �E;3 and identify them with certain modular deformations which we realise over certain Heckealgebras. The key problem is to �nd the right local condition to impose on these deformations at the prime3. As in [CDT] we require that the deformations lie in the closure of the characteristic zero points which arepotentially Barsotti-Tate (i.e., come from a 3-divisible group over the ring of integers of a �nite extension ofQ3) and for which the associated representation of the Weil group (see for example Appendix B of [CDT])is of some speci�ed form. That one can �nd suitable conditions on the representation of the Weil group at3 for the arguments of [TW] to work seems to be a rare phenomenon in the wild case. It is here we makeessential use of the fact that we need only treat our speci�c pairs (�E;5; �E;3).Our arguments follow closely the arguments of [CDT]. There are two main new features. Firstly, in thef = 243 case, we are forced to specify the restriction of our representation of the Weil group completely,rather than simply its restriction to the inertia group as we have done in the past. Secondly, in the keycomputation of the local deformation rings, we now make use of a new description (due to C.B.) of �nite 
atgroup schemes over the ring of integers of any p-adic �eld in terms of certain (semi-)linear algebra data (see[Br2] and the summary [Br1]). This description enables us to make these computations. As the persistentreader will soon discover they are lengthy and delicate, particularly in the case f = 243. It seems miraculousto us that these long computations with �nite 
at group schemes in x7, x8 and x9 give answers completely inaccord with predictions made from much shorter computations with the local Langlands correspondence andthe modular representation theory of GL2(Q3) in x3. We see no direct connection, but can't help thinkingthat some such connection should exist.Acknowledgements. We would like to thank Bas Edixhoven, Rene Schoof, Tom Weston and the referee forcorrections and improvements to preliminary versions of this paper; Barry Mazur for helpful conversations;and David Pollack for help with computer calculations which we made in an earlier attempt to compute someof these local deformation rings. We are grateful to the Harvard University Clay fund for supporting C.B.during a key visit he paid to Harvard. B.C. is grateful to the Institute for Advanced Study for its stimulatingenvironment and the University of M�unster for its hospitality. F.D. is grateful to Harvard University andthe Universit�e de Paris Sud for their hospitality. R.T. is grateful to the University of California at Berkeleyfor its hospitality and the Miller Institute for Basic Science for its support.Notation. In this paper ` denotes a rational prime. In x1.1, x4.1, x4.2 and x4.3 it is arbitrary. In the restof x1 and in x5 we only assume it is odd. In the rest of the paper we only consider ` = 3.If F is a �eld we let F denote a separable closure, F ab the maximal subextension of F which is abelianover F and GF the Galois group Gal(F=F ). If F0 is a p-adic �eld (i.e. a �nite extension of Qp) and F 0=F0a (possibly in�nite) Galois extension we let IF 0=F0 denote the inertia subgroup of Gal(F 0=F0). We also letIF0 denote IF 0=F0 , FrobF0 2 GF0=IF0 denote the arithmetic Frobenius element, and WF0 the Weil group ofF0, i.e. the dense subgroup of GF0 consisting of elements which map to an integer power of FrobF0 . We willnormalise the Artin map of local class �eld theory so that uniformisers and arithmetic Frobenius elementscorrespond. (We apologise for this convention, which now seems to us a bad choice. However we feel it isimportant to stay consistent with [CDT].) We let OF0 denote the ring of integers of F0, }F0 the maximalideal of OF0 and kF0 the residue �eld OF0=}F0 . We write simply Gp for GQp , Ip for IQp and Frobp forFrobQp . We also let Qpn denote the unique unrami�ed degree n extension of Qp in Qp. If k is any perfect�eld of characteristic p we also use Frobp to denote the pth-power automorphism of k and its canonical liftto the Witt vectors W (k).We write � for the `-adic cyclotomic character and sometimes ! for the reduction of � modulo `. We write!2 for the second fundamental character I` ! F�̀2 , i.e.!2(�) � �(`1=(`2�1))=`1=(`2�1) mod `1=(`2�1):We also use ! and !2 to denote the Teichmuller lifts of ! and !2.5



We let 1 denote the trivial character of a group. We will denote by V _ the dual of a vector space V .If g : A ! B is a homomorphism of rings and if X= SpecA is an A-scheme we sometimes write gX forthe pullback of X by Spec g. We adopt this notation so that g(hX) = ghX . Similarly if � : X ! Y is amorphism of schemes over A we will sometimes write g� for the pullback of � by Spec g.By �nite 
at group scheme we always mean commutative �nite 
at group scheme. If F0 is a �eld ofcharacteristic 0 with �xed algebraic closure F 0 we use without comment the canonical identi�cation of �nite
at F0-group schemes with �nite discrete Gal(F 0=F0)-modules, and we will say that such objects correspond.If R is an Dedekind domain with �eld of fractions F of characteristic 0 then by a model of a �nite 
at F -group scheme G we mean a �nite locally free R-group scheme G and an isomorphism i : G �! G � F 0. Asin Proposition 2.2.2 of [Ra] the isomorphism classes of models for G form a lattice ((G; i) � (G0; i0) if thereexists a map of �nite 
at group schemes G! G0 compatible with i and i0) and we can talk about the inf andsup of two such models. If R is also local we call the a model (G; i) local-local if its special �bre is local-local.When the ring R is understood we sometimes simply refer to (G; i), or even just G, as an integral model of G.We use Serre's terminology peu rami��e and tr�es rami��e, see [Se2].ContentsIntroduction 1Acknowledgements. 5Notation. 51. Types 71.1. Types of local deformations 71.2. Types for admissible representations. 81.3. Reduction of types for admissible representations. 101.4. The main theorems. 122. Examples and applications. 152.1. Examples. 152.2. Applications. 172.3. An extension of a result of Manoharmayum. 203. Admittance. 213.1. The case of �1. 213.2. The case of ��1. 213.3. The case of ��3. 213.4. The case of � 0i . 214. New deformation problems. 224.1. Some generalities on group schemes. 224.2. Filtrations. 244.3. Generalities on deformation theory. 284.4. Reduction steps for Theorem 2.1.2. 284.5. Reduction steps for Theorem 2.1.4. 294.6. Reduction steps for Theorem 2.1.6. 304.7. Some Galois cohomology. 325. Breuil Modules. 355.1. Basic properties of Breuil modules. 355.2. Examples. 375.3. Relationship to syntomic sheaves. 395.4. Base change. 405.5. Reformulation. 445.6. Descent data. 465.7. More examples. 476. Some local �elds. 486



6.1. The case of F 01. 486.2. The case of F 0�1. 496.3. The case of F 03. 496.4. The case of F 0�3. 506.5. The case of F 0i . 517. Proof of Theorem 4.4.1. 527.1. Rank one calculations. 527.2. Rank two calculations. 527.3. Rank three calculations. 567.4. Conclusion of proof of Theorem 4.4.1. 568. Proof of Theorem 4.5.1. 588.1. Rank one calculations. 588.2. Models for �. 598.3. Completion of proof of Theorem 4.5.1. 639. Proof of Theorems 4.6.1, 4.6.2 and 4.6.3. 649.1. Rank one calculations. 649.2. Models for �. 659.3. Further rank two calculations. 719.4. Completion of the proof of Theorem 4.6.1. 759.5. Completion of the proof of Theorem 4.6.3. 769.6. Completion of the proof of Theorem 4.6.2. 7810. Corrigenda for [CDT]. 79References 801. Types1.1. Types of local deformations. By an `-type we mean an equivalence class of two-dimensional repre-sentations � : I` ! GL(D)over Q` which have open kernel and which can be extended to a representation of WQ` . By an extended`-type we shall simply mean an equivalence class of two-dimensional representations� 0 :WQ` ! GL(D0)over Q` with open kernel.Suppose that � is an `-type and that K is a �nite extension of Q` in Q`. Recall from [CDT] that acontinuous representation � of G` on a two dimensional K-vector space M is said to be of type � if1. � is Barsotti-Tate over F for any �nite extension F of Q` such that � jIF is trivial;2. the restriction of WD(�) to I` is in � ;3. the character ��1 det � has �nite order prime to `.(For the de�nition of \Barsotti-Tate" and of the representation WD(�) associated to a potentially Barsotti-Tate representation see x1.1 and Appendix B of [CDT].) Similarly if � 0 is an extended `-type then we saythat � is of extended type � 0 if1. � is Barsotti-Tate over F for any �nite extension F of Q` such that � 0jIF is trivial;2. WD(�) is equivalent to � 0;3. the character ��1 det � has �nite order prime to `.Note that no representation can have extended type � 0 unless det � 0 is of the form �1�2 where �1 has �niteorder prime to ` and where �2 is unrami�ed and takes an arithmetic Frobenius element to `; see AppendixB of [CDT]. (Using Theorem 1.4 of [Br2], one can show that for ` odd one obtains equivalent de�nitions of7



\type �" and \extended type � 0" if one weakens the �rst assumption to simply require that � is potentiallyBarsotti-Tate.)Now �x a �nite extension K of Q` in Q`. Let O denote the integers of K and let k denote the residue�eld of O. Let � : G` ! GL(V )be a continuous representation of G` on a �nite dimensional k-vector space V and suppose that Endk[G`] V =k. One then has a universal deformation ring RV;O for � (see, for instance, Appendix A of [CDT]).We say that a prime ideal p of RV;O is of type � (resp. of extended type � 0) if there exist a �nite extensionK 0 of K in Q` and an O-algebra homomorphism RV;O ! K 0 with kernel p such that the pushforward of theuniversal deformation of � over RV;O to K 0 is of type � (resp. of extended type � 0).Let � be an `-type and � 0 an irreducible extended `-type. If there do not exist any prime ideals p of type� (resp. of extended type � 0), we de�ne RDV;O = 0 (resp. RD0V;O = 0). Otherwise, de�ne RDV;O (resp. RD0V;O) tobe the quotient of RV;O by the intersection of all p of type � (resp. of extended type � 0). We will sometimeswrite R�V;O (resp. R� 0V;O) for RDV;O (resp. RD0V;O). We say that a deformation of � is weakly of type � (resp.weakly of extended type � 0) if the associated local O-algebra map RV;O ! R factors through the quotientRDV;O (resp. RD0V;O). We say that � (resp. � 0) is weakly acceptable for � if either RDV;O = 0 (resp. RD0V;O = 0) orthere is a surjective local O-algebra map O[[X ]] � RDV;O (resp. O[[X ]] � RD0V;O). We say that � (resp. � 0) isacceptable for � if RDV;O 6= 0 (resp. RD0V;O 6= 0) and if there is a surjective local O-algebra map O[[X ]]� RDV;O(resp. O[[X ]]� RD0V;O).If K 0 is a �nite extension of K in Q` with valuation ring O0 and residue �eld k0, then O0 
O RDV;O (resp.O0
ORD0V;O) is naturally isomorphic to RDV
kk0;O0 (resp. RD0V
kk0;O0). Thus (weak) acceptability depends onlyon � (resp. � 0) and �, and not on the choice of K. Moreover � (resp. � 0) is acceptable for � if and only if �(resp. � 0) is acceptable for �
k k0.Although it is of no importance for the sequel, we make the following conjecture, part of which we alreadyconjectured as conjecture 1.2.1 of [CDT].Conjecture 1.1.1. Suppose that � is an `-type and � 0 an absolutely irreducible extended `-type. A defor-mation � : G` ! GL(M) of � to the ring of integers O0 of a �nite extension K 0=K in Q` is weakly of type �(resp. weakly of extended `-type � 0) if and only if M is of type � (resp. of extended type � 0).If � is a tamely rami�ed `-type then we expect that it is frequently the case that � is acceptable forresidual representations �, as in Conjectures 1.2.2 and 1.2.3 of [CDT]. On the other hand if � (resp. � 0) isa wildly rami�ed `-type (resp. wildly rami�ed extended `-type) then we expect that it is rather rare that �(resp. � 0) is acceptable for a residual representation �. In this paper we will be concerned with a few wildcases for the prime ` = 3 which do turn out to be acceptable.1.2. Types for admissible representations. From now on we assume that ` is odd. If F is a �niteextension of Q` we will identify F� withW abF via the Artin map. Let U0(`r) denote the subgroup of GL2(Z`)consisting of elements with upper triangular mod `r reduction. Also let eU0(`) denote the normaliser of U0(`)in GL2(Q`). Thus eU0(`) is generated by U0(`) and byw` = � 0 �1` 0 � :(1.2.1)If � is an `-type, set U� = GL2(Z`) if � is reducible and U� = U0(`) if � is irreducible. If � 0 is an extended`-type with � 0jI` irreducible, set U� 0 = eU0(`). In this subsection we will associate to an `-type � an irreduciblerepresentation �� of U� over Q` with open kernel, and to an extended `-type � 0 with � 0jI` irreducible anirreducible representation �� 0 of U� 0 over Q` with open kernel. We need to consider several cases, which wetreat one at a time.First suppose that � = �1jI` � �2jI` where each �i is a character of WQ` . Let a denote the conductor of�1=�2. If a = 0 then set �� = St
(�1 � det) = St
(�2 � det);8



where St denotes the Steinberg representation of PGL2(F`). Now suppose that a > 0. Let �� denote theinduction from U0(`a) to GL2(Z`) of the character of U0(`a) which sends� � �`a
 � � 7�! (�1=�2)(�)�2(�� � `a�
):This is irreducible and does not depend on the ordering of �1 and �2.For the next case, let F denote the unrami�ed quadratic extension of Q` and s the non-trivial automor-phism of F over Q`. Suppose that � is the restriction to I` of the induction from WF to WQ` of a character� of WF with � 6= �s. Let a denote the conductor of �=�s, so that a > 0. Choose a character �0 of WQ`such that �0j�1WF � has conductor a. If a = 1 we set�� = �(�0j�1WF �)
 (�0 � det);where �(�) is the irreducible representation of GL2(F`) de�ned on page 532 of [CDT].To de�ne �� for a > 1 we will identify GL2(Z`) with the automorphisms of the Z`-module OF . If a is eventhen we let �� denote the induction from O�F (1+`a=2OF s) to GL2(Z`) of the character ' of O�F (1+`a=2OF s),where, for � 2 O�F and � 2 (1 + `a=2OF s),'(��) = (�0j�1WF �)(�)�0(det��):If a > 1 is odd, then we let �� denote the induction from O�F (1 + `(a�1)=2OF s) to GL2(Z`) of �, where �is the ` dimensional irreducible representation of O�F (1 + `(a�1)=2OF s) such that �jO�F (1+`(a+1)=2OF s) is thedirect sum of the characters �� 7�! (�0j�1WF ��00)(�)�0(det��)for � 2 O�F and � 2 (1 + `(a+1)=2OF s), where �00 runs over the ` non-trivial characters of O�F =Z�̀(1 + `OF ).Now suppose � 0 is an extended type such that � 0jI` is irreducible. There is a rami�ed quadratic extensionF=Q` and a character � of WF such that the induction from WF to WQ` of � is � 0 (see x2.6 of [G]). Let sdenote the non-trivial �eld automorphism of F over Q` and also let }F denote the maximal ideal of the ringof integers OF of F . Let a denote the conductor of �=�s, so a is even and a � 2. We may choose a character�0 of WQ` such that �0j�1WF � has conductor a. We will identify GL2(Q`) with the automorphisms of the Q`vector space F . We will also identify U0(`) with the stabiliser of the pair of lattices }�1F � OF . We de�ne�� 0 to be the induction from F�(1 + }a=2F s) to eU0(`) of the character ' of F�(1 + }a=2F s), where'(��) = (�0j�1WF ��00)(�)�0(det��);with � 2 F� and � 2 (1 + }a=2F s), where �00 is a character of F�=(O�F )2 de�ned as follows. Let  be acharacter of Q` with kernel Z`. Choose � 2 F� such that for x 2 }a�1F we have(�0j�1WF �)(1 + x) =  (trF=Q`(�x)):We impose the following conditions which determine �00:� �00 is a character of F�=(O�F )2;� �00jO�F is non-trivial;� and �00(��(NF=Q`$)a=2) = Xx2Z=`Z (x2=NF=Q`$);where $ is a uniformiser in OF .Finally if � is an irreducible `-type, choose an extended `-type � 0 which restricts to � on I` and set�� = �� 0 jU0(`).We remark that these de�nitions are independent of any choices (see [G]).Recall that by the local Langlands conjecture we can associate to an irreducible admissible representation� of GL2(Q`) a two-dimensional representation WD(�) of WQ` . (See x4.1 of [CDT] for the normalisationwe use.) 9



Lemma 1.2.1. Suppose that � is an `-type and that � 0 an extended `-type with � 0jI` irreducible. Supposealso that � is an in�nite dimensional irreducible admissible representation of GL2(Q`) over Q`. Then:1. �� and �� 0 are irreducible.2. If WD(�)jI` � � (resp. WD(�) � � 0) thenHomU� (�� ; �) �= Q`(resp. HomU�0 (�� 0 ; �) �= Q`):3. If WD(�)jI` 6�= � (resp. WD(�) 6�= � 0) thenHomU� (�� ; �) = (0)(resp. HomU�0 (�� 0 ; �) = (0)):Proof. The case that � extends to a reducible representation of WQ` follows from the standard theory ofprincipal series representations for GL2(Q`). The case that � is reducible but does not extend to a reduciblerepresentation of WQ` follows from Theorem 3.7 of [G]. The case of � 0 follows from Theorem 4.6 of [G].Thus, suppose that � is an irreducible `-type and that � 0 is an extension of � to an extended `-type. If �denotes the unrami�ed quadratic character of WQ` then � 0 6� � 0 
 � and so we deduce that�� 0 6� �� 0
� � �� 0 
 (� � det):Thus �� 0 jQ�̀U0(`) is irreducible. It follows that �� is irreducible. The second and third part of the lemma for� follow similarly.1.3. Reduction of types for admissible representations. We begin by reviewing some irreduciblerepresentations of GL2(Z`), U0(`) and eU0(`). Let �1;0 denote the standard representation of GL2(F`) overF`. If n = 0; 1; :::; ` � 1 and if m 2 Z=(` � 1)Z then we let �n;m = Symmn(�1;0) 
 detm. We may thinkof �n;m as a continuous representation of GL2(Z`) over F`. These representations are irreducible, mutuallynon-isomorphic and exhaust the irreducible continuous representations of GL2(Z`) over F`.If m1;m2 2 Z=(`� 1)Z we let �0m1;m2 denote the character of U0(`) over F` determined by� a b`c d � 7�! am1dm2 :These representations are irreducible, mutually non-isomorphic, and exhaust the irreducible continuousrepresentations of U0(`) over F`.If m1;m2 2 Z=(` � 1)Z, a 2 F�̀ and m1 6= m2 then we let �0fm1;m2g;a denote the representation ofeU0(`) over F` obtained by inducing the character of Q�̀U0(`) which restricts to �0m1;m2 on U0(`) and whichsends �` to a. If m 2 Z=(` � 1)Z and a 2 F�̀, then we let �0fmg;a denote the character of eU0(`) over F`which restricts to �0m;m on U0(`) and which sends w` to a. These representations are irreducible, mutuallynon-isomorphic and exhaust the irreducible, �nite dimensional, continuous representations of eU0(`) over F`.We will say that a reducible `-type � (resp. irreducible `-type, resp. extended `-type � with irreduciblerestriction to I`) admits an irreducible representation � of GL2(Z`) (resp. U0(`), resp. eU0(`)) over F`, if ��(resp. �� , resp. �� 0) contains an invariant OQ`-lattice � and if � is a Jordan-H�older constituent of �
 F`.We will say that � (resp. � , resp. � 0) simply admits � if � is a Jordan-H�older constituent of � 
 F` ofmultiplicity one.For each of the F`-representations of GL2(Z`), U0(`) and eU0(`) just de�ned, we wish to de�ne notions of\admittance" and \simple admittance" with respect to a continuous representation � : G` ! GL2(F`). Let� be a �xed continuous representation G` ! GL2(F`).10



� The representation �n;m admits � if either�jI` �  !1�`n�m(`+1)2 00 !`�n�m(`+1)2 !or �jI` � � !1�m �0 !�n�m � ;which in addition we require to be peu-rami��e in the case n = 0. (Note that �n;0 admits � if and onlyif the Serre weight (see [Se2]) of �_ 
 ! is n+ 2.)� The representation �n;m simply admits � if �n;m admits �.� The representation �0m1;m2 admits � if either�jI` �  !1�`mi�mj2 00 !`�mi�`mj2 !where fmi;mjg = fm1;m2g and mi � mj , or�jI` � � !1�m1 �0 !�m2 � ;or �jI` � � !1�m2 �0 !�m1 � :(Note that �0m1;m2 admits � if and only if some irreducible constituent of IndGL2(Z`)U0(`) �0m1;m2 admits �.)� The representation �0m1;m2 with m1 6= m2 simply admits � if either�jI` � � !1�m1 �0 !�m2 �or �jI` � � !1�m2 �0 !�m1 � :� The representation �0m;m simply admits � if�jI` � � !1�m �0 !�m �is tr�es rami��e.� The representation �0fm1;m2g;a with m1 6= m2 admits � if either �0m1;m2 or �0m2;m1 admits � and if(!�1 det �)jWQ` equals the central character of �0fm1;m2g;a. (Note that in this case �0fm1;m2g;ajU0(`) =�0m1;m2 � �0m2;m1 .)� The representation �0fm1;m2g;a with m1 6= m2 simply admits � if (!�1 det �)jWQ` equals the centralcharacter of �0fm1;m2g;a and either�jI` � � !1�m1 �0 !�m2 � ;or �jI` � � !1�m2 �0 !�m1 � :� The representation �0fmg;a admits � if{ �0m;m admits �,{ (!�1 det �)jWQ` equals the central character of �0fmg;a,11



{ and, if �jI` � � !1�m �0 !�m �is tr�es rami��e, then � � � � �0 !�m� �where � is unrami�ed and sends Frobenius to �a.(Note that �0fmg;ajU0(`) = �0m;m.)� The representation �0fmg;a simply admits � if �0fmg;a admits �.We remark that the de�nition of \� admits the Cartier dual of �" might look more natural to the reader.We are forced to adopt this version of the de�nition by some unfortunate choices of normalisations in [CDT].We say that a reducible `-type � (resp. irreducible `-type � , resp. extended `-type � 0 with � 0jI` irre-ducible) admits a continuous representation � : G` ! GL2(F`) if � (resp. � , resp. � 0) admits an irreduciblerepresentation of GL2(Z`) (resp. U0(`), resp. eU0(`)) over F` which in turn admits �. We say that � (resp.� , resp. � 0) simply admits � if� � (resp. � , resp. � 0) admits a unique irreducible representation � of GL2(Z`) (resp. U0(`), resp. eU0(`))over F` which admits �,� � (resp. � , resp. � 0) simply admits �,� and � simply admits �.Note that the concept of \simply admits" is strictly stronger than the concept \admits".The starting point for this work was the following conjecture, of which a few examples will be veri�ed inx2.1.Conjecture 1.3.1. Let k be a �nite sub�eld of F`, � : G` ! GL2(k) a continuous representation, � an`-type and � 0 an extended `-type with irreducible restriction to I`. Suppose that det � and det � 0 are tamelyrami�ed; that the centraliser of the image of � is k; and that the image of � is not contained in the centre ofGL2(Q`).1. � (resp. � 0) admits � if and only if RDV;O 6= (0) (resp. RD0V;O 6= (0)), i.e. if and only if there is a �niteextension K 0 of Q` in Q` and a continuous representation � : G` ! GL2(OK0) which reduces to � andhas type � (resp. has extended type � 0).2. � (resp. � 0) simply admits � if and only if � (resp. � 0) is acceptable for �.We remark that to check if � or � 0 simply admits � is a relatively straightforward computation. On theother hand to show that � or � 0 is acceptable for � is at present a non-trivial undertaking. (The reader whodoubts us might like to compare x3 with x4, x5, x6, x7, x8 and x9. All the latter sections are devoted toverifying some very special cases of this conjecture.)1.4. The main theorems. With these de�nitions, we can state our two main theorems. The proofs veryclosely parallel the proof of Theorem 7.1.1 of [CDT].Theorem 1.4.1. Let ` be an odd prime, K a �nite extension of Q` in Q` and k the residue �eld of K. Let� : GQ �! GL2(K)be an odd continuous representation rami�ed at only �nitely many primes. Assume that its reduction� : GQ �! GL2(k)is absolutely irreducible after restriction to Q(p(�1)(`�1)=2`) and is modular. Further, suppose that� �jG` has centraliser k,� �jG` is potentially Barsotti-Tate with `-type � ,� � admits �,� and � is weakly acceptable for �. 12



Then � is modular.Proof. Note that the existence of � shows that � is acceptable for �. Now the proof is verbatim the proof ofTheorem 7.1.1 of [CDT] (see x1.3, x1.4, x3, x4, x5 and x6 of that paper, and the corrigendum at the end ofthis paper), with the following exceptions.� On page 539 one should take US;` = U� , VS;` = ker�� and �S;l = �� .� In the proof of Lemma 5.1.1 one must use Lemma 1.2.1 of this paper, in addition to the results recalledin x4 of [CDT].� On page 546 replace \Setting S = T (�) [ frg ..." to the end of the �rst paragraph by the following.(Again the key component of this argument is very similar to the main idea of [Kh].)\Set S = T (�) [ frg; U 0S = Qp U 0S;p where U 0S;p = U1(pcp) if p 2 T (�) and U 0S;p = US;p other-wise; V 0S = Qp V 0S;p where V 0S;p = U1(pcp) if p 2 T (�) and V 0S;p = VS;p otherwise; and L0S =HomO[U 0S=V 0S ](M`; H1(XV 0S ;O))[I 0S ]. Then � = SL2(Z) \ (U 0SGL2(Z`)) satis�es the hypotheses of The-orem 6.1.1. Furthermore H1(YU 0SGL2(Z`);FM) �= H1(�; Ln 
 k)as a eT0S-module whereM is the module for US;` = GL2(Z`) de�ned by the action of GL2(F`) on Ln
k.Therefore mS is in the support of H1(YU 0SGL2(Z`);FM).We now drop the special assumption on �jI` made in the last paragraph. Twisting we see that if �is an irreducible representation of GL2(Z`) over F` admitting �jG` thenH1(YU 0S GL2(Z`);F�_)mS 6= (0):Moreover if � is irreducible and if �0 is an irreducible representation of U0(`) over F` which admits�jG` then we see using the de�nition of admits and Lemmas 3.1.1 and 6.1.2 of [CDT] thatH1(YU 0S ;F�_)mS �= H1(YU 0S GL2(Z`);FIndGL2(Z`)U0(`) �_)mS 6= (0):It follows from the de�nition of admits and Lemma 6.1.2 of [CDT] that mS is in the support ofH1(YU 0S ;FHomO(M`;O)), so L0S is non-zero. Using the fact that lemma 5.1.1 holds with U 0S replacing USand �` replacing �S and the discussion on page 541 we conclude that NS is non-empty."Theorem 1.4.2. Let ` be an odd prime, K a �nite extension of Q` in Q` and k the residue �eld of K. Let� : GQ �! GL2(K)be an odd continuous representation rami�ed at only �nitely many primes. Assume that its reduction� : GQ �! GL2(k)is absolutely irreducible after restriction to Q(p(�1)(`�1)=2`) and is modular. Further, suppose that� �jG` has centraliser k,� �jG` is potentially Barsotti-Tate with extended `-type � 0,� � 0 admits �,� and � 0 is weakly acceptable for �.Then � is modular.Proof. The existence of � shows that � 0 is in fact acceptable for �. Again the proof now follows very closelythat of Theorem 7.1.1 of [CDT]. In this case we have to make the following changes. All references are to[CDT] unless otherwise indicated.� On page 539 one should take US;` = U0(`), VS;` = ker�� 0 jU0(`) and �S;` = �� 0 jU0(`). One should alsode�ne eUS to be the group generated by US and w` 2 GL2(Q`) and e�S to be the extension of �S to eUSwhich restricts to �� 0 on eU0(`).� In the statement of Lemma 5.1.1 one should replace HomUS (�S ; �1) by HomeUS (e�S ; �1).13



� In the proof of Lemma 5.1.1 one must use Lemma 1.2.1 above in addition to the results recalled in x4of [CDT].� Because � 0 is acceptable for �, we know that det � of a Frobenius lift is `� for some root of unity �.Thus, �� 0(`s) = 1 for some s > 0. Hence, e�S factors through the �nite group eGS = eUS=VS`sZ, where` 2 GL2(Q`).� In x5.3 choose M` so that it is invariant for the action of eU0(`)=VS;``sZ. Also, in the de�nition of LSreplace GS by eGS .� In the proof of Lemma 5.3.1 replace US by eUS and �S by e�S .� Note that w` acts naturally on YS and FS. In Lemma 6.1.3 we should replace the group H1c (YS ;FS)by H1c (YS ;FS)w`=1 and the group H1(YS ;FS) by H1(YS ;FS)w`=1.� Replace x6.2 with the proof of the required extension of Proposition 5.4.1 given below.� On page 547 the isomorphismH1c (YS ;FS) �! HomO(H1(YS ;FS);O)on line 6 is ~T0S [wl]-linear. In the next line one should not only localise at m but restrict to the kernelof w` � 1. Because w2̀ = 1 on H1(YS ;FS)m we see that the natural mapH1(YS ;FS)w`=1m �! H1(YS ;FS)m=(w` � 1)is an isomorphism, and so the map LS �! HomO(LS ;O)is also an isomorphism.� On page 547 the groups H1(YS ;FS)m(p)S and H1(YS0 ;FS0)m(p)S should be replaced by their maximalsubgroups on which w` = 1.� On page 549 one should also de�ne eV0 (resp. eV1) to be the group generated by V0 (resp. V1) andw` 2 GL2(Q`). Similarly de�ne e� to be e�; 
  �2r0 .� In Lemma 6.4.1 replace V0 by eV0, V1 by eV1 and � by e�. In the proof of Lemma 6.4.1 also replace Ufr;r0g(resp. US[fr;r0g) by eUfr;r0g (resp. eUS[fr;r0g) and �fr;r0g (resp. �S[fr;r0g) by e�fr;r0g (resp. e�S[fr;r0g).� On line 20 of page 550 M should be chosen as a model of e�. This is possible because ker e� has �niteindex in eV0, because in turn �� 0(`s) = 1 for some s > 0. One should also set Li = H1(YVi ;FM_)w`=1m .On line 25, we must replace Vi by eVi.� In the proof of Lemma 6.4.2, one must replace V1 by eV1 and � by e�.� In line 2 of the proof of Lemma 6.4.3, to see that L1 is a direct summand of H1(YV1 ;FM_) as an O[�S ]-module, one needs to note that H1(YV1 ;FM_)w`=1m is a direct summand of H1(YV1 ;FM_)m, becausew2̀ = 1 on H1(YV1 ;FM_)m.� On line 12 of page 551 replace R;;DV;O by R;;D0V;O .Proof of extension of Proposition 5.4.1 of [CDT]. Let � =Np2T (�)Mp.First suppose that � 0 admits �0fm1;m2g;a with m1 6= m2 and that �0fm1;m2g;a admits �. As in the proof ofTheorem 1.4.1 (especially x6.2 of [CDT] as modi�ed above), we haveH1(Yfrg;F�_ 
 F(�0m1;m2 )_)m0frg 6= (0):On the other handH1(Yfrg;F�_ 
 F(�0m1;m2 )_)m0frg �= H1(Yfrg;F�_ 
 F(�0m1;m2 )_)w2̀=am0frg�= H1(Yfrg;F�_ 
 F(�0fm1;m2g;a)_)w`=1m0frg :Thus, using the de�nition of \admits" and Lemma 6.1.2 of [CDT], we see thatH1(Yfrg;Ffrg)w`=1m0frg 6= (0);so N; = Nfrg 6= ;. 14



Next suppose that � 0 admits �0fmg;a which in turn admits �. Assume that �jG` is irreducible or peurami��e. By twisting we may reduce to the case m = 0. As in the proof of Theorem 1.4.1 (especially x6.2 of[CDT] as modi�ed above), we have H1(YUfrgGL2(Z`);F�_)m0frg 6= (0):Thus H1(YUfrgGL2(Z`);F�_)w2̀=ea2m0frg 6= (0);where ea is the Teichm�uller lift of a. Using the embeddingea+ w` : H1(YUfrgGL2(Z`);F�_)
Q` ,! H1(Yfrg;F�_)
Q`;we deduce that H1(Yfrg;F�_)w`=eam0frg 6= (0);and so H1(Yfrg;F�_ 
 F(�0f0g;a)_)w`=1m0frg 6= (0):Thus, using the de�nition of \admits" and Lemma 6.1.2 of [CDT], we see thatH1(Yfrg;Ffrg)w`=1m0frg 6= (0);and so N; = Nfrg 6= ;.Finally suppose that � 0 admits �fmg;a which in turn admits �, and that �jG` is reducible and tr�es rami��e.By twisting we may reduce to the case m = 0. Note that �I`(Frob`) = �a. As in the proof of Theorem 1.4.1(especially x6.2 of [CDT] as modi�ed above), we haveH1(Yfrg;F�_)m0frg 6= (0):Suppose that � is a cuspidal automorphic representation which contributes to H1(Yfrg;F�_)m0frg , so � isa cuspidal automorphic representation of GL2(A) such that �1 is the lowest discrete series with trivialin�nitesimal character, �� is a lift of � of type (frg; 1), and hence of type (;; 1), and dim�U0(`)` = 1. As��1 det �� has order prime to `, we see that w2̀ acts on �U0(`)` by the Teichm�uller lift of a2. As �` has aU0(`)-�xed vector but no GL2(Z`)-�xed vector, we see that 1 + U`w�1` = 0 on �U0(`)` . On the other hand,the eigenvalue of U` on �U0(`)` reduces to �a. Thus, w` acts on �U0(`)` by the Teichm�uller lift of a, so w` actson H1(Yfrg;F�_)m0frg by the Teichm�uller lift of a. We deduce thatH1(Yfrg;F�_ 
 F(�00;0)_)w`=am0frg 6= (0):Using the de�nition of \admits" and Lemma 6.1.2 of [CDT], we see thatH1(Yfrg;Ffrg)w`=1m0frg 6= (0);so N; = Nfrg 6= ;. 2. Examples and applications.2.1. Examples. Now we will specialise to the case ` = 3. Fix an element � 2 GL2(Z3) with �3 = 1 but� 6= 1. The following de�nitions, which concern isomorphism classes of 2-dimensional representations intoGL2(Q3), do not depend on this choice. We will consider the following `-types. (These are in fact, up totwist, a complete list of the wildly rami�ed types which can arise from elliptic curves over Q3, or, in thecase of conductor 243, the extended types. We will not need this fact. Rather the justi�cation for studyingthese particular types can be found in x2.2. More detailed information about the �xed �elds of these typescan be found in x6.) 15



� �1 corresponds to the order 3 homomorphismZ�3 �! Z3[�]�determined by �1 7�! 14 7�! �:� ��1 corresponds to the order 3 homomorphismZ3[p�1]� �! Z3[�]�determined by 4p�1 7�! 14 7�! 11 + 3p�1 7�! �:� �3 is the unique 3-type such that �3jIQ3(p3) corresponds to the order 6 homomorphismZ3[p3]� �! Z3[�]�determined by �1 7�! �14 7�! 11 +p3 7�! �:� ��3 is the unique 3-type such that ��3jIQ3(p�3) corresponds to the order 6 homomorphismZ3[p�3]� �! Z3[�]�determined by �1 7�! �14 7�! 11 + 3p�3 7�! 11 +p�3 7�! �:For i 2 Z=3Z, we will also consider the unique extended 3-types � 0i whose restrictions to GQ3(p�3) correspondto the homomorphisms Q3(p�3)� ! Q3(�)�determined by p�3 7�! � � ��1�1 7�! �14 7�! 11 + 3p�3 7�! �1 +p�3 7�! �i:(2.1.1)Subsequent sections of this paper will be devoted to checking the following special cases of Conjecture1.3.1.Lemma 2.1.1. Suppose that � : G3 ! GL2(F3) and�jI3 � � 1 �0 ! �is tr�es rami��e. Both �1 and ��1 simply admit �. 16



Theorem 2.1.2. Suppose that � : G3 ! GL2(F3) and�jI3 � � 1 �0 ! �is tr�es rami��e. Both �1 and ��1 are weakly acceptable for �.Lemma 2.1.3. Suppose that � : G3 ! GL2(F3)�jI3 � � ! �0 1 �is tr�es rami��e. Both �3 and ��3 simply admit �.Theorem 2.1.4. Suppose that � : G3 ! GL2(F3) and�jI3 � � ! �0 1 �is tr�es rami��e. Both �3 and ��3 are weakly acceptable for �.Lemma 2.1.5. Let i 2 Z=3Z. Suppose that � : G3 ! GL2(F3) and� � � ! �0 1 �is tr�es rami��e. The extended 3-type � 0i simply admits �.Theorem 2.1.6. Let i 2 Z=3Z. Suppose that � : G3 ! GL2(F3) and� � � ! �0 1 �is tr�es rami��e. Then � 0i is weakly acceptable for �.We remark that in Theorems 2.1.2, 2.1.4 and 2.1.6 we could replace \weakly acceptable" by \acceptable".This can be shown by using elliptic curves to construct explicit liftings of the desired type. For Theorems2.1.2 and 2.1.4 the results of [Man] su�ce for this. For Theorem 2.1.6 a slightly more re�ned analysis alongthe lines of x2.3 is required.We also remark that it was Lemmas 2.1.1, 2.1.3, 2.1.5, and Conjecture 1.3.1 which originally suggestedto us that we try to prove Theorems 2.1.2, 2.1.4, and 2.1.6.2.2. Applications. Conditional on the results stated in x2.1, which we will prove below, we prove thefollowing results.Theorem 2.2.1. Any continuous absolutely irreducible representation � : GQ ! GL2(F5) with cyclotomicdeterminant is modular.Proof. Choose an element � 2 GL2(F5) with �3 = 1 but � 6= 1. (The following classi�cation will beindependent of the choice of �.) Then up to equivalence and twisting by a quadratic character, one of thefollowing possibilities can be attained.1. � is tamely rami�ed at 3.2. �jG3 is given by the character Q�3 �! F5(�)�determined by 3 7�! �i(� � ��1)�1 7�! 14 7�! �;where i 2 Z=3Z. 17



3. �jGQ3(p�1) is given by the character Q3(p�1)� �! F5(�)�determined by 3 7�! 24p�1 7�! 14 7�! 11 + 3p�1 7�! �:4. �jGQ3(p3) is given by the character Q3(p3)� �! F5(�)�determined by p3 7�! � � ��1�1 7�! �14 7�! 11 +p3 7�! �:5. �jGQ3(p�3) is given by the character Q3(p�3)� �! F5(�)�determined by p�3 7�! � � ��1�1 7�! �14 7�! 11 + 3p�3 7�! 11 +p�3 7�! �:6. �jGQ3(p�3) is given by the character Q3(p�3)� ! F5(�)�determined by p�3 7�! � � ��1�1 7�! �14 7�! 11 + 3p�3 7�! �1 +p�3 7�! �i;where i 2 Z=3Z.To see that one of these cases can be attained, use the following facts, all of which are easy to verify.� A subgroup of GL2(F5) with a non-trivial normal subgroup of 3-power order is, up to conjugation,contained in the normaliser of F5(�)�.� The intersection of SL2(F5) with the normaliser of � in GL2(F5) is generated by � and an element �such that �2 = �1 and ����1 = ��1.� If � 2 F5(�)�, det� = 3, and ����1 = ��, then � = �(� � ��1).In each case, we may choose an elliptic curve E1=Q3 such that the representation �E1;5 of G3 on E1[5](Q3)is isomorphic to �jG3 and such that the representation �E1;3 of G3 on E1[3](Q3) has the following form(where we use the same numbering as above).1. We place no restriction on �E1;3. 18



2. The restriction of �E1;3 to I3 has the form� 1 �0 ! �and is tr�es rami��e. (Use Theorem 5.3.2 of [Man].)3. The restriction of �E1;3 to I3 has the form� 1 �0 ! �and is tr�es rami��e. (Use Theorem 5.3.2 of [Man].)4. The restriction of �E1;3 to I3 has the form� ! �0 1 �and is tr�es rami��e. (Use x5.4 of [Man].)5. The restriction of �E1;3 to I3 has the form� ! �0 1 �and is tr�es rami��e. (Use x5.4 of [Man].)6. �E1;3 has the form � ! �0 1 � ;is tr�es rami��e and remains indecomposable when restricted to the splitting �eld of �. (Use Corollary2.3.2 below.)In each case choose such an E1 and �x an isomorphism � : F25 �! E1[5](Q3), such that the Weil pairing onE1[5] corresponds to the standard alternating pairing on F25, following the conventions in x1 of [SBT]. Thepair (E1; �) de�nes a Q3-rational point on the smooth curve denoted X� in [SBT]. We can �nd a 3-adicopen set U � X�(Q3) containing (E1; �) such that if (E2; �) de�nes a point in U then E2[3] �= E1[3] asF3[G3]-modules.Using Ekedahl's version of the Hilbert Irreducibility Theorem (see Theorem 1.3 of [E]) and the argumentof x1 of [SBT] we may �nd an elliptic curve E=Q and an F5[GQ]-module isomorphism � of � with E[5](Q)such that� under �, the standard alternating pairing on F25 and the Weil pairing on E[5] agree;� the representation �E;3 of GQ on E[3](Q) is surjective onto Aut(E[3](Q));� and (E; �) de�nes a point of U.(See also x2 of [Man].)Corresponding to the six types of � considered above, Proposition B.4.2 of [CDT] ensures that the repre-sentation �E;3 of GQ on the 3-adic Tate module of E is1. either, up to quadratic twist, ordinary in the sense of Wiles [Wi] or potentially Barsotti-Tate of sometamely rami�ed type;2. potentially Barsotti-Tate of type �1;3. potentially Barsotti-Tate of type ��1;4. potentially Barsotti-Tate of type �3;5. potentially Barsotti-Tate of type ��3;6. potentially Barsotti-Tate of extended type � 0i .In the �rst case, E is modular by Theorem 7.2.1 of [CDT]. In the other cases we will simply write � forthe type/extended type. We see that �E;3(G3) has centraliser F3 and the results of x2.1 show that � admits�E;3 and that � is weakly acceptable for �E;3. Moreover �E;3jGal(Q=Q(p�3)) is absolutely irreducible and, by19



the Langlands-Tunnell theorem (see [Wi]), modular. Thus by Theorems 1.4.1 and 1.4.2 we see that �E;3 ismodular. We deduce that E is modular, so � �= �E;5 is modular.Combining this theorem with Theorem 7.2.4 of [CDT] we immediately obtain the following corollary.Theorem 2.2.2. Every elliptic curve de�ned over the rational numbers is modular.2.3. An extension of a result of Manoharmayum. The following facts follow at once from [Man],particularly the classi�cation given just before Theorem 5.4.2 of that paper. Consider elliptic curves E overQ3 with minimal Weierstrass equation Y 2 = X3 +AX +B, whereA � B + 3 � 0 mod 9;so �E;3 has the form � ! �0 1 � and is tr�es rami��e. This leaves three possibilities for the equivalence class of�E;3. Fix � in GL2(F5) with �3 = 1 but � 6= 1. The action of GQ3(p�3) on E[5](Q3) is via a representationof the form p�3 7! �(� � ��1)�1 7! �14 7! 11 +p�3 7! � i1 + 3p�3 7! �;for some � = �1 and some i 2 Z=3Z. All nine possibilities for the pair (�E;3; i) satisfying these conditionscan arise for some such choice of A and B.Lemma 2.3.1. With the above notation and assumptions, we have � = 1.Proof. Let F = Q3(p�3; �; �), where �2 = �p�3 and�3 +A�+B = 9p�3:F is a totally rami�ed abelian extension of Q3(p�3) of degree 6, with uniformiser $ = �=�. The changeof coordinates Y 7! $15Y , X 7! $10X + � shows that E has good reduction over F , and the reduction isisomorphic to Y 2 = X3 �X � 1:The arithmetic Frobenius of WF therefore has trace 3 on E[5]. SinceNF=Q3(p�3)($) � p�3(1� 3p�3) mod 9p�3we conclude that tr �(� � ��1)��1 = 3;so � = 1.Twisting by quadratic characters we immediately deduce the following corollary.Corollary 2.3.2. Let �3 : G3 ! GL3(F3) have the form� ! �0 1 � or � 1 �0 ! �and be tr�es rami��e. Let �5 : G3 ! GL2(F5) have cyclotomic determinant and restriction to GQ3(p�3) givenby a character Q3(p�3)� �! F5(�)�20



determined by p�3 7! (� � ��1)�1 7! �14 7! 11 +p�3 7! � i1 + 3p�3 7! �;for some i 2 Z=3Z. There is an elliptic curve E=Q3 , with E[3](Q3) � �3 and E[5](Q3) � �5. In particular,the action of I3 on T5E factors through a �nite group and so E has potentially good reduction.3. Admittance.In this section we will check Lemmas 2.1.1, 2.1.3, and 2.1.5. We freely use the terminology introduced inx1.2 and x1.3.3.1. The case of �1. In this case ��1 is the induction from U0(9) to GL2(Z3) of a character of order 3. Itsreduction modulo a prime above 3 has the same Jordan-H�older constituents as the reduction modulo 3 ofIndGL2(Z3)U0(9) 1. Using Brauer characters, we see that the reduction modulo 3 of IndU0(3)U0(9) 1 has Jordan-H�olderconstituents �00;0, �00;0 and �01;1. Thus, �1 admits �0;0, �2;0, �0;1 and �2;1, the latter two simply. Lemma 2.1.1follows in this case.3.2. The case of ��1. Let U denote the subgroup of GL2(Z3) consisting of matrices� a bc d �with a � d mod 3 and b+ c � 0 mod 3, so ���1 is the induction from U to GL2(Z3) of a character of order 3.Upon reduction modulo a prime above 3 this will have the same Jordan-H�older constituents as the reductionmodulo 3 of IndGL2(Z3)U 1. If  denotes the non-trivial character of F�3 and � a character of F�9 of order 4,then this latter induction splits up as the sum of the representations of GL2(Z3)!! GL2(F3) denoted 1, sp and �(�) in x3.1 of [CDT]. By Lemma 3.1.1 of [CDT] we see that ��1 admits �0;0, �2;1 and �0;1, the lattertwo simply. Lemma 2.1.1 follows in this case.3.3. The case of ��3. Let U denote the subgroup of GL2(Z3) consisting of matrices� a bc d �with a � d mod 3 and c � 0 mod 3. Then ���3 is the induction from U to U0(3) of a character of order 3.Upon reduction modulo a prime above 3 this will have the same Jordan-H�older constituents as the reductionmodulo 3 of IndU0(3)U 1. Thus, ��3 simply admits �00;0 and �01;1. Lemma 2.1.3 follows.3.4. The case of � 0i . Let � be the character of Q3(p�3)� as in (2.1.1). Let  be a character of Q3 withkernel Z3 and which sends 1=3 to �. If x 2 (3p�3)Z3[p�3] we have�(1 + x) =  (trQ3(p�3)=Q3(�xp�3=54)):We deduce that if �00 is the character used to de�ne �� 0i in x1.2, then �00(p�3) = (� � ��1)�1.Let U denote the subgroup of GL2(Z3) consisting of matrices� a b3c d �with a � d mod 3 and b+ c � 0 mod 3. Let eU be the group generated by w3 (see (1.2.1)) and U , so �� 0i is therepresentation of eU0(3) induced from a character of eU which sends w3 to 1 and has order 3 when restrictedto U . Thus, the Jordan-H�older constituents of the reduction of �� 0i modulo a prime above 3 are the same asthe Jordan-H�older constituents of the reduction modulo 3 of IndeU0(3)eU 1.21



Let V denote the subgroup of GL2(Z3) consisting of matrices� a b3c d �with a � d mod 3. Let eV be the group generated by w3 and V , and let � denote the character of eV =V whichsends w3 to �1. We have IndeVeU (1) � 1� IndeVVQ�3 �where � is a non-trivial character of V=U = (VQ�3 )=(UQ�3 ). The reduction modulo a prime above 3 ofthis (3-dimensional) representation has the same Jordan-H�older constituents as the reduction modulo 3 of1� 1� �. Thus, � 0i admits �0f0g;1, �0f1g;1, �0f0g;�1 and �0f1g;�1, the latter two simply. Lemma 2.1.5 follows.4. New deformation problems.In this section we begin the proof of Theorems 2.1.2, 2.1.4 and 2.1.6. One could approach this directlyby using the results of [Br2] to attempt to describe RDV;O (resp. RD0V;O). At least one of us (R.T.) thinks thatsuch an approach holds out more promise of attacking the non-acceptable case, and another of us (C.B.)has indeed made several computations along these lines. However in the present case it seems to be easierto proceed less directly.To this end we will use ad hoc arguments to de�ne deformation problems, which will be represented byO-algebras S such that� dimk mS=(}K ;m2S) � 1� and the map RV;O !! RDV;O (resp. RD0V;O) factors through S.An important advantage of this approach is that to calculatemS=(}K ;m2S) one need only work in the categoryof �nite 
at group schemes killed by a prime. Breuil modules (see section x5) for �nite 
at group schemeskilled by an odd prime are signi�cantly simpler than the general case (of prime power torsion). This isparticularly true when we also use descent data. On the other hand, to suitably de�ne the new deformationproblems is rather delicate. That is what we will do in this section.4.1. Some generalities on group schemes. In this section, and in x4.2, ` will again be an arbitraryrational prime. Moreover R will denote a complete discrete valuation ring with fraction �eld F 0 of charac-teristic zero and perfect residue �eld k of characteristic `. We will let � denote a �nite group of continuousautomorphisms of R and we will let F0 denote the sub�eld of F 0 consisting of elements �xed by �. ThusF 0=F0 will be �nite and Galois with group �. In our applications of these results it su�ces to considerthe case where F0 is a �nite extension of Q3 (although we will occasionally pass to the completion of themaximal unrami�ed extension of F ).Lemma 4.1.1. Let G be a �nite 
at R-group scheme. Scheme theoretic closure gives a bijection betweensubgroup schemes of G� F 0 and �nite 
at closed subgroup schemes of G.(See for instance x1.1 of [Co].)Lemma 4.1.2. Let G1 and G2 be �nite 
at group schemes over R which have local-local closed �bre. Supposethat G1 and G2 are the only �nite 
at R-group schemes with local-local closed �bre which have generic �bresG1�F 0 and G2�F 0 respectively. Suppose also that we have an exact sequence of �nite 
at R-group schemes(0) �! G1 �! G �! G2 �! (0):Then G is the unique �nite 
at R-group scheme with local-local closed �bre and with generic �bre G� F .Proof. Let G+ and G� denote the maximal and minimal local-local models for G� F . The proof that theseexist follows the of Proposition 2.2.2 of [Ra] and uses the fact that the Cartier dual of a local-local �nite
at group scheme is local-local. We must show that the canonical map G+ ! G� is an isomorphism. Thescheme-theoretic closure of G1 � F in G� must be isomorphic to G1 (by uniqueness), so we have closed22



immersions G1 ,! G� extending G1 � F ,! G� � F . Similarly G�=G1 must be isomorphic to G2. This givesa commutative diagram with exact rows0! G1 ! G+ ! G2 ! 0# # #0! G1 ! G� ! G2 ! 0The vertical maps G1 ! G1 and G2 ! G2 induce isomorphisms on the generic �bre and hence are isomor-phisms. This is because some power of them is the identity on the generic �bre and hence is the identity.Working in the abelian category of fppf abelian sheaves over SpecR, the middle map must also be anisomorphism.When G has `-power order, we will let D(G) denote the classical (contravariant) Dieudonn�e module ofG� k. It is a W (k)-module equipped with a Frobenius operator F and a Verschiebung operator V. We haveFV = VF = ` and for all x 2W (k), Fx = (Frob` x)F and Vx = (Frob�1` x)V.If G is a �nite 
at R-group scheme, then by descent data for G over F0 we mean a collection f[g]g of groupscheme isomorphisms over R [g] : G ��! gGfor g 2 � such that for all g; h 2 � we have [gh] = (g [h]) � [g]:Note that this is not descent data in the sense of Grothendieck, since R=R� might be rami�ed. However,SpecF 0= SpecF0 is �etale, so by �etale descent we obtain a �nite 
at group scheme (G; f[g]g)F0 over F0 togetherwith an isomorphism (G; f[g]g)F0 �F0 F 0 �= G�R F 0compatible with descent data. We also obtain a natural left action of � on the Dieudonn�e module D(G),semilinear with respect to the W (k)-module structure and commuting with F and V. We refer to the pair(G; f[g]g) as an R-group scheme with descent data relative to F0. One de�nes morphisms of such objects to bemorphisms of R-group schemes which commute with the descent data. By a closed �nite 
at subgroup schemewith descent data we mean a closed �nite 
at subgroup scheme such that the descent data on the ambientscheme takes the subscheme to itself. Quotients by such subobjects are de�ned in the obvious way. Thus weobtain an additive category with a notion of short exact sequence. Suppose that G is a �nite 
at F0-groupscheme. By amodel with descent data (or simplymodel) for G overR we shall mean a triple (G; f[g]g; i), where(G; f[g]g) is an R-group scheme with descent data relative to F0 and where i : (G; f[g]g)F0 �! G. Sometimeswe will suppress i from the notation. It is easy to check that isomorphism classes of models admitting descentdata for G over R form a sublattice of the lattice of models for G=F 0 over R. The following lemma followswithout di�culty from Lemma 4.1.1.Lemma 4.1.3. Let F 0=F0 be a �nite Galois extension as above, and let (G; f[g]g) be a �nite 
at R-groupscheme with descent data relative to F0. Base change from F0 to F 0, followed by scheme theoretic closure,gives a bijection between subgroup schemes of (G; f[g]g)F0 and closed �nite 
at subgroup schemes with descentdata in (G; f[g]g).We let FFF 0 denote the category of �nite 
at group schemes over R and FDF 0=F0 the category of �nite
at group schemes over R with descent data over F0. Let W (k)[F;V][�] denote the (non-commutative)W (k)-algebra generated by elements F, V and [g] for g 2 � satisfying� [gh] = [g][h] for all g; h 2 �;� [g]F = F[g] and [g]V = V[g] for all g 2 �;� FV = VF = `;� [g]x = (gx)[g] for all x 2 W (k) and g 2 �;� Fx = (Frob` x)F and Vx = (Frob�1` x)V for all x 2 W (k).23



If I is a two-sided ideal in W (k)[F;V][�], we will let FDF 0=F0;I denote the full subcategory of FDF 0=F0consisting of objects (G; f[g]g) such that I annihilates D(G). If (G; f[g]g) is an object of FDF 0=F0;I andif (H; f[g]g) � (G; f[g]g) is a closed �nite 
at subgroup scheme with descent data then (H; f[g]g) and(G; f[g]g)=(H; f[g]g) are again objects of FDF 0=F0;I.Lemma 4.1.4. For I a two-sided ideal of the ring W (k)[F;V][�], choose objects (G1; f[g]g) and (G2; f[g]g)in FDF 0=F0;I so that (G1; f[g]g)F0 �= (G2; f[g]g)F0. Let G denote the base change of this F0-group schemeto F 0, so G has canonical descent data relative to F 0=F0. Then the sup and inf of G1 and G2 in the latticeof integral models for G are stable under the descent data on G and with this descent data are objects ofFDF 0=F0;I.Proof. By uniqueness of the inf and sup, they are stable under the descent data on the generic �bre. It followsfrom Raynaud's construction of the inf and sup (Proposition 2.2.2 of [Ra]) in terms of subgroupschemes andquotients of G1 � G2 that the sup and inf are objects of FDF 0=F0;I.Corollary 4.1.5. Let I be a two-sided ideal of the ring W (k)[F;V][�]. Let(0) �! G1 �! G �! G2 �! (0)(4.1.1)be an exact sequence of �nite 
at group schemes over F0. Let (G1; f[g]g) and (G2; f[g]g) be objects of FDF 0=F0;Isuch that (G1; f[g]g)F0 �= G1 and (G2; f[g]g)F0 �= G2. Suppose that for all objects (G; f[g]g) of FDF 0=F0;Iwith (G; f[g]g)F0 �= G, the �ltration on (G; f[g]g) induced by the �ltration on G has subobject isomorphic to(G1; f[g]g) and quotient isomorphic to (G2; f[g]g) (without any assumed compatibility with (4.1.1) ). Thenthere is at most model for G in FDF 0=F0;I.Proof. By Lemma 4.1.4, it su�ces to prove that if (G+; f[g]g; i+) and (G�; f[g]g; i�) are two such modelswith a morphism between them, then the morphism between them must be an isomorphism. In such a casewe have a commutative diagram with exact rows0! G1 ! G+ ! G2 ! 0# # #0! G1 ! G� ! G2 ! 0The vertical maps G1 ! G1 and G2 ! G2 induce isomorphisms on the generic �bre and hence are isomor-phisms. This is because some power of them is the identity on the generic �bre and hence is the identity.Working in the abelian category of fppf abelian sheaves over SpecR, the middle map must also be anisomorphism.4.2. Filtrations. We keep the notation and assumptions of the previous section. Let � be a �nite non-emptyset of objects (Gi; f[g]g) of FDF 0=F0;(I;`). (Note the ` in the subscript (I; `), which denotes the two-sidedideal generated by I and `.) Suppose thatHom((Gi; f[g]g); (Gj ; f[g]g)) = Hom((Gi; f[g]g)F0 ; (Gj ; f[g]g)F0) = � 0 if i 6= j�nite �eld if i = j(4.2.1)(in particular, the objects in � are non-zero and pairwise non-isomorphic). By a �-�ltration on a �nite 
at F0-group scheme G we mean an increasing �ltration Filj G such that for all j the graded piece Filj G=Filj�1G isisomorphic to (Gi(j); f[g]g)F0 for a (unique) (Gi(j); f[g]g) 2 �. The following lemma is proved by the standardJordan-H�older argument.Lemma 4.2.1. If G is a �nite 
at F0-group scheme which admits a �-�ltration and if H is a quotient orsubobject of G which admits a �-�ltration, then any �-�ltration of H can be extended to a �-�ltration ofG. In addition, all �-�ltrations of G have the same length and the same set of successive quotients (withmultiplicities).We say that an object (G; f[g]g) of FDF 0=F0;I is weakly �ltered by � if there is some increasing �ltrationFilj(G; f[g]g) of (G; f[g]g) by closed subobjects such that for all j, the graded pieceFilj(G; f[g]g)=Filj�1(G; f[g]g)24



is isomorphic to an element of �. We say that an object (G; f[g]g) of FDF 0=F0;I is strongly �ltered by � if(G; f[g]g) is weakly �ltered by � and if for every �-�ltration of (G; f[g]g)F0 the corresponding �ltration of(G; f[g]g) satis�es Filj(G; f[g]g)=Filj�1(G; f[g]g)is isomorphic to an element of � for all j. The following lemma follows at once from the de�nitions and fromLemma 4.2.1.Lemma 4.2.2. 1. If (G; f[g]g) and (G0; f[g]g) are objects of FDF 0=F0;I which are weakly �ltered by �, then(G; f[g]g)� (G0; f[g]g) is also weakly �ltered by �.2. Let (G; f[g]g) and (G0; f[g]g) be objects of FDF 0=F0;I with (G0; f[g]g) a closed subobject or quotient of(G; f[g]g). Suppose that (G; f[g]g) is strongly �ltered by � and that (G0; f[g]g)F0 admits a �-�ltration.Then (G0; f[g]g) is strongly �ltered by �.If any object of FDF 0=F0;I which is weakly �ltered by � is strongly �ltered by �, then we will letFDF 0=F0;I;� denote the full subcategory of FDF 0=F0;I consisting of objects which are weakly (and there-fore strongly) �ltered by �.Lemma 4.2.3. Suppose that any object of FDF 0=F0;I which is weakly �ltered by � is strongly �ltered by �.Let G be a �nite 
at F0-group scheme. If (G1; f[g]g) and (G2; f[g]g) are two objects of FDF 0=F0;I;� withisomorphisms ij : G ��! (Gj ; f[g]g)F0for j = 1; 2, then there is a unique isomorphism� : (G1; f[g]g) ��! (G2; f[g]g)such that on the generic �bre i2 = � � i1.Proof. It follows from Raynaud's construction of sup and inf that the sup and inf of ((G1; f[g]g); i1) and((G2; f[g]g); i2) are again objects of FDF 0=F0;I;�. Thus we may suppose that there exists a map � :(G1; f[g]g) ! (G2; f[g]g) such that on the generic �bre i2 = � � i1. We will argue by induction on therank of G that � is an isomorphism.If (G1; f[g]g) is isomorphic to an element of � then the result follows by our assumption on �.If (G1; f[g]g) is not isomorphic to an element of � then choose an exact sequence(0) �! (G11; fgg) �! (G1; fgg) �! (G12; fgg) �! (0);where (G11; fgg) and (G12; fgg) are weakly �ltered by �. Let (G21; f[g]g) denote the closed subobject of(G2; f[g]g) corresponding to (G11; f[g]g)F0 and de�ne (G22; f[g]g) = (G2; f[g]g)=(G21; f[g]g). Then we have acommutative diagram with exact rows0! G11 ! G1 ! G12 ! 0# # #0! G21 ! G2 ! G22 ! 0compatible with descent data, where the central vertical arrow is � and where by inductive hypothesis theoutside vertical arrows are isomorphisms. Working in the abelian category of fppf abelian sheaves overSpecR, we see that � is an isomorphism.The following lemma and its corollary give criteria for the equivalence of the notions of being weakly�ltered by � and of being strongly �ltered by �.Lemma 4.2.4. Fix I and � as above. Suppose that for any pair of (possibly equal) elements (G0; f[g]g) and(G00; f[g]g) in �, the natural mapExt1FDF 0=F0;(I;`) ((G00; f[g]g); (G0; f[g]g)) �! Ext1F`[GF0 ]((G00; f[g]g)F0 ; (G0; f[g]g)F0)is injective. Then any object (G; f[g]g) of FDF 0=F0;I which is weakly �ltered by � is also strongly �ltered by�. 25



Proof. For brevity, we say `weakly/strongly �ltered' rather than `weakly/strongly �ltered by �' since thedata � is �xed for the entire proof. Also, we omit the speci�cation of descent data from the notation, butit should not be forgotten.Suppose G is weakly �ltered. In order to prove that G is strongly �ltered, we argue by induction on thelength of a �-�ltration of GF0 , this length being well-de�ned by Lemma 4.2.1. The case of length � 1 is clear.Otherwise, by the de�nition of being weakly �ltered, there is a short exact sequence of �nite 
at R-groupschemes (with descent data relative to F0)(0) �! G0 �! G �! G00 �! (0)with G0 2 � and G00 weakly �ltered (and hence, by inductive hypothesis, strongly �ltered). Let H be anyclosed subgroupscheme of G (with compatible descent data relative to F0) such that HF0 ' Gi0;F0 for someGi0 2 � and such that (G=H)F0 admits a �-�ltration. We need to prove (in the category of �nite 
at groupschemes with descent data relative to F 0=F0) that� H ' Gi0 ,� and G=H is weakly �ltered.If the composite map H ,! G! G00is zero, then H = G0 as closed subgroupschemes of G (with descent data) and likewise G=H = G00 so we aredone. The interesting case is when the composite map is non-zero. The map Gi0;F0 �=HF0 ! G00F0 is then non-zero and therefore must be a closed immersion by the assumption (4.2.1) on � and a devissage with respectto a �-�ltration of G00F0 . We conclude that the map of generic �ber �etale group schemes H� F 0 ! G00 � F 0is a closed immersion.Taking scheme-theoretic closures, we obtain a closed subgroupscheme H00 ,! G00 (with unique compatibledescent data over F0) �tting into a commutative diagram of group schemes with descent dataH ��! H00# #(0) �! G0 �! G �! G00 �! (0)in which the lower row is short exact, the vertical maps are closed immersions, and the top map H ! H00induces an isomorphism on generic �bers. By Lemma 4.2.1 we may extend HF0 ,! G00F0 to a �-�ltrationon G00F0 and so, because G00 is strongly �ltered by induction, we may extend H00 ,! G00 to a �-�ltration. Inparticular H00 is isomorphic to an object in � and G00=H00 is strongly �ltered.Pulling back the short exact sequence 0! G0 ! G! G00 ! 0by H00 ! G00, we get a diagram H#0! G0 ! G�G00 H00 ! H00 ! 0in which the row is a short exact sequence of fppf abelian sheaves and all of the terms are �nite 
at groupschemes (for the middle, this follows from the 
atness of G ! G00). Thus, this bottom row is a short exactsequence of �nite 
at group schemes (with descent data). As HF0 �! H00F0 , the sequence0! G0F0 ! (G�G00 H00)F0 ! H00F0 ! 0is split. In particular (G�G00 H00)F0 and hence G�G00 H00 are killed by `. By the hypothesis of the lemma0! G0 ! G�G00 H00 ! H00 ! 0is also split, i.e. we have an isomorphism G�G00 H00 �= G0 �R H0026



such that G0 ,! G �G00 H00 corresponds to injection to the �rst factor of G0 �R H00 and G �G00 H00 !! H00corresponds to projection onto the second factor. By our hypotheses on � we can �nd a morphism � : H00 !G0 extending H00F0 � � HF0 ,! G0F0 �H00F0 pr!! G0F0 :Then our closed immersion H ,! G0 �R H00 factors asH �! H00 ��1�! G0 �RH00:As H! G0�RH00 is a closed immersion � : H! H00 must be a closed immersion and hence an isomorphism.Thus H is isomorphic to an object in �.Now we turn to the proof that G=H is weakly �ltered. Since � : H ! H00 is an isomorphism, it is clearthat the natural map H�R G0 �! G�G00 H00is an isomorphism, and hence that H�R G0 �! Gis a closed immersion. Thus, the �nite 
at group scheme G=(H� G0) makes sense and the natural mapG=(H� G0)! G00=H00is an isomorphism (as one sees by using the universal properties of quotients to construct an inverse map).We therefore arrive at a short exact sequence0! G0 ! G=H! G00=H00 ! 0(compatible with descent data). Since G00=H00 is strongly �ltered, as we noted above, and G0 2 �, it followsthat G=H is weakly �ltered.Corollary 4.2.5. Fix I and � as above. Suppose that � = f(G; f[g]g)g is a singleton. Suppose also that wehave a short exact sequence(0) �! (G1; f[g]g) �! (G; f[g]g) �! (G2; f[g]g) �! (0)in FDF 0=F0;I, where for any i; j (possibly equal)Hom((Gi; f[g]g); (Gj ; f[g]g)) = Hom((Gi; f[g]g)F0 ; (Gj ; f[g]g)F0) = � 0 if i 6= j�nite �eld if i = jand the natural mapExt1FDF 0=F0;(I;`) ((Gi; f[g]g); (Gj ; f[g]g)) �! Ext1F`[GF0 ]((Gi; f[g]g)F0 ; (Gj ; f[g]g)F0)(4.2.2)is injective. Then any object (H; f[g]g) of FDF 0=F0;I which is weakly �ltered by � is also strongly �ltered by�.Proof. As (H; f[g]g) is weakly �ltered by �, it is weakly �ltered by f(G1; f[g]g); (G2; f[g]g)g, and so byLemma 4.2.4 is strongly �ltered by f(G1; f[g]g); (G2; f[g]g)g. Any �-�ltration of (H; f[g]g)F0 extends toa f(G1; f[g]g); (G2; f[g]g)g-�ltration of (H; f[g]g)F0 , which in turn gives rise to a f(G1; f[g]g); (G2; f[g]g)g-�ltration of (H; f[g]g). By the injectivity of (4.2.2) we see that this yields a �-�ltration of (H; f[g]g) thatinduces to our chosen �-�ltration of (H; f[g]g)F0. 27



4.3. Generalities on deformation theory. Again in this section ` denotes an arbitrary rational prime.We let K denote a �nite extension of Q`, O the ring of integers K, }K the maximal ideal of O and k itsresidue �eld. Note that k has a di�erent meaning from the previous two sections. Let V be a two dimensionalk-vector space and � : G` ! Autk(V ) a continuous representation. Suppose that the centraliser of G` inEndk(V ) is k. Let  : G` ! O� denote a continuous character such that ( mod }K) �= det �. Let S(�)denote the full subcategory of the category of �nite length (discrete) O-modules with a continuous O-linearaction of G` consisting of objects which admit a �nite �ltration so that each successive quotient is isomorphicto V . Because Endk[G`](V ) = k, it follows from the usual Jordan-H�older argument that S(�) is an abeliancategory.Let S be a full subcategory of S(�) stable under isomorphisms and which is closed under �nite products,S(�)-subobjects and S(�)-quotients, and which contains V . We will consider the following set-valued functorson the category of complete noetherian local O-algebras R with �nite residue �eld k.� DV;O(R) is the set of conjugacy classes of continuous representations � : G` ! GL2(R) such that� mod mR is conjugate to �.� D V;O(R) is the set of conjugacy classes of continuous representations � : G` ! GL2(R) such that� mod mR is conjugate to � and det � =  .� DSV;O(R) is the set of conjugacy classes of continuous representations � : G` ! GL2(R) such that� mod mR is conjugate to � and such that for each open ideal a � R the action � makes (R=a)2 intoan object of S.� D ;SV;O(R) is the set of conjugacy classes of continuous representations � : G` ! GL2(R) such that� mod mR is conjugate to �, such that det � =  , and such that for each open ideal a � R the action� makes (R=a)2 into an object of S.Each of these deformation problems is representable by objects which we will denote RV;O, R V;O, RSV;O andR ;SV;O, respectively.Recall that the following sets are in natural (k-linear) bijection with each other.� (mRV;O=(}K ;m2RV;O))_.� The set of deformations of � to k["]=("2).� Ext1k[G`](V; V ).� H1(G`; ad �).These bijections give rise to an isomorphism(mR V;O=(}K ;m2R V;O))_ �= H1(G`; ad0 �);as well as bijections between� (mRSV;O=(}K ;m2RSV;O))_,� the set of deformations of � to k["]=("2) which make (k["]=("2))2 into an object of S,� Ext1k[G`];S(V; V ), i.e. Ext1 in the category of discrete k[G`]-modules which are also objects of S.� the subgroup H1S(G`; ad �) � H1(G`; ad �) corresponding to Ext1k[G`];S(V; V ).We will set H1S(G`; ad0 �) = H1S(G`; ad �) \H1(G`; ad0 �), so that we get an isomorphism(mR ;SV;O=(}K ;m2R ;SV;O))_ �= H1S(G`; ad0 �):4.4. Reduction steps for Theorem 2.1.2. We now begin the proof of Theorem 2.1.2. Making an unram-i�ed twist we may suppose that � has the form � 1 �0 ! � :We may also suppose that O = Z3. 28



Let F1 = F 01 denote a totally rami�ed cubic Galois extension of Q3. Let F 0�1 denote the unique cubicextension of Q3(p�1) such that F 0�1=Q3 is Galois but not abelian, and let F�1 denote a cubic sub�eld ofF 0�1, so F 0�1=F�1 is unrami�ed.Let S�1 denote the full subcategory S(�) consisting of Z3[G3]-modules X for which there exists a �nite
at OF 0�1 -group scheme (G; f[g]g) with descent data for F 0�1=Q3 such that X �= (G; f[g]g)Q3(Q3) as a Z3[G3]-module. By Lemma 4.1.3 we see that S�1 is closed under �nite products, subobjects and quotients. UsingTate's theorem on the uniqueness of extensions of 3-divisible groups from F 0�1 to OF 0�1 (Theorem 4 of [T]),we see that the map RV;Z3 !! R��1V;Z3 factors through R�;S�1V;Z3 . Thus, Theorem 2.1.2 follows from the followingresult which we will prove in x7.Theorem 4.4.1. dimH1S�1(G3; ad0 �) � 1.4.5. Reduction steps for Theorem 2.1.4. We now begin the proof of Theorem 2.1.4. Making an unram-i�ed twist, we may suppose that � has the form� ! �0 1 � :We may also suppose that O = Z3.Let F 0�3 denote the degree 12 abelian extension of Q3(p�3) with norm subgroup in Q3(p�3)� topolog-ically generated by �3, 4 and 1 + 3p�3. Note that F 0�3=Q3 is Galois. We have an isomorphismGal(F 0�3=Q3(p�3)) �= C2 � C2 � C3:Let 
24 2 IF 0�3=Q3(p�3) be the unique element of order 2. (In later applications this will be the square of anelement of order 4 in Gal(F 0�3=Q3).) We also let F�3 denote the �xed �eld of a Frobenius lift of order 2, soF�3=Q3 is totally rami�ed.We will let I�3 denote the two-sided ideal of W (F9)[F;V][Gal(F 0�3=Q3)] generated by� F+V� and [
24 ] + 1.Let S�3 denote the full subcategory of S(�) consisting of objects X for which we can �nd an object(G; f[g]g) of FDF 0�3=Q3;I�3 such that X �= (G; f[g]g)Q3(Q3) as a Z3[G3]-module. By Lemma 4.1.3, we seethat S�3 is closed under �nite products, subobjects and quotients.Now choose a �nite extension K=Q3 and continuous map of rings f : RV;Z3 ! Q3 such that the corre-sponding representation � : G3 �! GL2(OK) is of type ��3. Let G be the corresponding 3-divisible groupover Q3. By Tate's theorem (Theorem 4 of [T]), the base change of G to F 0�3 has a unique extension to a3-divisible group G over OF 0�3 . By the uniqueness of this extension, it is also equipped with descent dataf[g]g relative to F 0�3=Q3 and with an action of OK , compatible with the canonical structure on the generic�bre.Let e
2 2 Gal(Q3(p�3)ab=Q3(p�3)) correspond to p�3. We will use the notation of Appendix B of[CDT] (in particular WD and D0(G)), except that we will write F and F0 in place of � and �0. Then� WD(�)(
24 ) = �1,� WD(�)(e
22 ), but not WD(�)(e
2), is a scalar,� and detWD(�)(e
2) = 3.Thus WD(�)(e
22 ) = �3. Hence on D0(G)
Q3 we have� [
24 ] = WD(�)(
24 ) = �1,� and (F0)2 = [e
22 ]WD(�)(e
�22 ) = �1=3.We conclude that on D(G) we have� [
24 ] = �1,� F2 = �3,� and so F = �V. 29



In particular I�3 annihilates D(G) and for all m � 1 the map (f mod 3m) : RV;Z3 ! OK=(3m) factorsthrough R�;S�3V;Z3 . Hence, the map RV;Z3 !! R��3V;Z3 factors through R�;S�3V;Z3 and Theorem 2.1.4 follows from thefollowing result which we will prove in x8.Theorem 4.5.1. dimH1S�3(G3; ad0 �) � 1.4.6. Reduction steps for Theorem 2.1.6. We now begin the proof of Theorem 2.1.6. We may supposethat O = Z3.Let F 0i denote the degree 12 abelian extension of Q3(p�3) with norms the subgroup of Q3(p�3)�topologically generated by �3, 4, 1 + 9p�3 and 1 + (1 � 3~{)p�3, where ~{ is the unique lift of i to Z with0 � ~{ < 3. Note that F 0i=Q3 is Galois. We identifyGal(F 0i =Q3(p�3)) �= h
2i � h
3i � h
24i;where 
2 corresponds to p�3 and has order 2, 
3 corresponds to 1 � 3p�3 and has order 3, and 
24corresponds to �1 and has order 2. We also let Fi denote the �xed �eld of f1; 
2g, so Fi=Q3 is totallyrami�ed.We will let Ii denote the two-sided ideal of W (F9)[F;V][Gal(F 0i =Q3)] generated by� F+V,� [
24 ] + 1,� and ([
3]� [
�13 ])[
2]�F.We remark that the ideal Ii is unchanged if we change our choice of p�3.In x9 we will prove the following result (and explain the unusual looking notation).Theorem 4.6.1. There are objects (G; f[g]g)(2;6), (G; f[g]g)(6;10), (G; f[g]g)(2;10) and (G; f[g]g)(6;6) in thecategory FDF 0i=Q3;Ii with the following properties.1. For (r; s) = (2; 6), (6; 10), (2; 10) and (6; 6), we have � �= ((G; f[g]g)(r;s))Q3(Q3) as G3-modules.2. For (r; s) = (2; 6), (6; 10), (2; 10) and (6; 6) there is a short exact sequence in FDF 0i=Q3;Ii ,(0) �! (G1; f[g]g)(r;s) �! (G; f[g]g)(r;s) �! (G2; f[g]g)(r;s) �! (0);such that (G1; f[g]g)(r;s) and (G2; f[g]g)(r;s) have order 3 and for all a; b 2 f1; 2g (possibly equal) thenatural mapExt1FDF 0=Q3;(Ii;3)((Ga; f[g]g)(r;s); (Gb; f[g]g))(r;s) �! Ext1F3[GQ3 ]((Ga; f[g]g)(r;s);Q3 ; (Gb; f[g]g)(r;s);Q3)is injective.3. If k=F3 is a �nite �eld extension and if (G; f[g]g) is an object of FDF 0i=Q3;Ii with an action of k suchthat (G; f[g]g)Q3(Q3) is isomorphic to �
 k, then for some (r; s) = (2; 6), (6; 10), (2; 10) or (6; 6) theobject (G; f[g]g) of FDF 0i=Q3;Ii is weakly �ltered by f(G1; f[g]g)(r;s); (G2; f[g]g)(r;s)g.4. For (r; s) = (2; 6), (6; 10) and (2; 10) we have F = 0 on D(G(r;s)), while F 6= 0 on D(G(6;6)).Note that for all a; b (possibly equal), we must haveHom((Ga; f[g]g)(r;s); (Gb; f[g]g)(r;s)) = Hom((Ga; f[g]g)(r;s);Q3 ; (Gb; f[g]g)(r;s);Q3) = � 0 if a 6= b,F3 if a = b.For (r; s) = (2; 6), (6; 10), (2; 10) and (6; 6), we let Si;(r;s) denote the full subcategory of S(�) consistingof objects X which are isomorphic to (H; f[g]g)Q3 for some object (H; f[g]g) of FDF 0i=Q3;Ii;f(G;f[g]g)(r;s)g.By Lemma 4.2.2, Corollary 4.2.5 and Theorem 4.6.1 we see that Si;(r;s) is closed under �nite products,S(�)-subobjects and S(�)-quotients. In x9 we will also prove the following two results.Theorem 4.6.2. For (r; s) = (2; 6), (6; 10), (2; 10) and (6; 6) we havedimH1Si;(r;s)(G3; ad0 �) � 1:30



Theorem 4.6.3. For (r; s) = (2; 6), (6; 10) and (2; 10) and for any N � 1 there exists a continuous repre-sentation �N : GQ3 �! GL2(F3[[T ]]=(TN))such that� det �N = �,� �N �= (GN ; f[g]g)Q3(Q3) for some object (GN ; f[g]g) of FDF 0i=Q3;(Ii;F);f(G;f[g]g)(r;s)g (where (Ii;F) de-notes the two-sided ideal of W (F9)[F;V][Gal(F 0i=Q3)] generated by Ii and F),� and � mod (T 2) 6�= �
 k[[T ]]=(T 2).(We are not asserting that �N and GN are independent of the choice of (r; s), though in fact we believethat �N is independent of this choice.)From these results we can easily draw the following consequence.Corollary 4.6.4. For (r; s) = (2; 6), (6; 10) and (2; 10) we haveR�;Si;(r;s)V;Z3 �= F3[[T ]]:Proof. By Theorems 4.6.2 and 4.6.3 we see that R�;Si;(r;s)V;Z3 =(3) �= F3[[T ]] and that if R is an Artinianquotient of R�;Si;(r;s)V;Z3 =(3) corresponding to a (necessarily unique, see Lemma 4.2.3) object (G; f[g]g) ofFDF 0i=Q3;(Ii;3);f(G;f[g]g)(r;s)g then F = 0 on D(G).Now suppose R is any Artinian quotient of R�;Si;(r;s)V;Z3 which corresponds to an object (G; f[g]g) of thecategory FDF 0i=Q3;Ii;f(G;f[g]g)(r;s)g. Let G = (G; f[g]g)Q3 and consider the exact sequences(0) �! G[3] �! G �! 3G �! (0)and (0) �! 3G �! G �! G=3G �! (0):By Lemma 4.2.3, we have exact sequences(G; f[g]g) �! (K; f[g]g) �! (0)and (0) �! (K; f[g]g) �! (G; f[g]g) �! (H; f[g]g) �! (0)in FDF 0i=Q3;Ii;f(G;f[g]g)(r;s)g such that the composite(G; f[g]g)!! (K; f[g]g) ,! (G; f[g]g)is multiplication by 3. In particular we have exact sequences(0) �! D(K) �! D(G)and (0) �! D(H) �! D(G) �! D(K) �! (0);such that the composite D(G)!! D(K) ,! D(G)is multiplication by 3. As F = �V = 0 on D(H) we see that F and V factor through maps D(K)! D(G),i.e. we can write F = 3F0 and V = 3V0 for some endomorphisms F0 and V0 of D(G). Thus 3 = 9F0V0 equalszero on D(G)=9D(G) and so D(K) = 0. We conclude that K = (0), so that 3G = (0) and 3R = (0).Thus R�;Si;(r;s)V;Z3 = R�;Si;(r;s)V;Z3 =(3) = F3[[T ]]:31



We now modify the argument in x4.4. Choose a �nite extension K=Q3 and continuous map of ringsf : RV;Z3 ! Q3 such that the corresponding representation � : G3 �! GL2(OK) is of extended type � 0i . LetG be the corresponding 3-divisible group over Q3. By Tate's theorem (Theorem 4 of [T]) G has a uniqueextension to a 3-divisible group G over OF 0i . By the uniqueness of this extension, G comes equipped withdescent data f[g]g relative to F 0i=Q3 and with an action of OK , compatible with the canonical structure onthe generic �bre.Let e
2 2 Gal(Q3(p�3)ab=Q3(p�3)) correspond to p�3. We will use the notation of Appendix B of[CDT] (in particular WD and D0(G)), except that we will write F and F0 in place of � and �0. Then� WD(�)(
24 ) = �1,� WD(�)(e
22 ) = �3,� and WD(�)(e
2)(WD(�)(
3)�WD(�)(
3)�1) = 3.Thus on D0(G)
Q3 we have� [
24 ] = WD(�)(
24 ) = �1,� (F0)2 = [e
22 ]WD(�)(e
�22 ) = �1=3,� and [
2]([
3]� [
�13 ]) = 3F0.We conclude that on D(G) we have� [
24 ] = �1,� F2 = �3,� and [
2]([
�13 ]� [
3]) = 3F�1.Hence also� F = �V,� and [
2]([
3]� [
�13 ]) = F.In particular Ii annihilates D(G).Thus (G[}K ]; f[g]g) is an object of FDF 0i=Q3;Ii such that (G[}K ]; f[g]g)Q3 corresponds to � 
 OK=}K .By Theorem 4.6.1 we see that (G[}K ]; f[g]g) is weakly �ltered by f(G1; f[g]g)(r;s); (G2; f[g]g)(r;s)g for some(r; s) = (2; 6), (6; 10), (2; 10) or (6; 6). We will prove (r; s) = (6; 6). By Theorem 4.6.1 and Lemma 4.2.4,(G[}K ]; f[g]g) is strongly �ltered by f(G1; f[g]g)(r;s); (G2; f[g]g)(r;s)g. As (G[}K ]; f[g]g)Q3 is �ltered by �,using Theorem 4.6.1, we see that (G[}K ]; f[g]g) is weakly �ltered by (G; f[g]g)(r;s). For all m � 1 we have(G[}mK ]=G[}m�1K ]; f[g]g) ��! (G[}K ]; f[g]g);so for all m � 1 the object (G[}mK ]; f[g]g) is also weakly and hence strongly �ltered by (G; f[g]g)(r;s) for thesame (r; s). Thus, for all m � 1, the map (f mod pm) : RV;Z3 ! OK0=(3m) factors through R�;Si;(r;s)V;Z3 . ByCorollary 4.6.4 we see that (r; s) = (6; 6), so the map RV;Z3 !! R� 0iV;Z3 factors through R�;Si;(6;6)V;Z3 and Theorem2.1.6 follows from Theorem 4.6.2.4.7. Some Galois cohomology. In this section we will begin the proofs of Theorems 4.4.1, 4.5.1 and 4.6.2.We will let S denote one of the categories S�1, S�3 or Si;(r;s). We will let � = ! in the cases S�1 and � = 1otherwise. In all cases � � � �! �0 � �is tr�es rami��e. 32



The maps ! 
 � ,! � and �!! � induce a commutative diagram with exact rows and columns(0)#Ext1F3[G3](! 
 �; ! 
 �)#Ext1F3[G3](�; �) �! Ext1F3[G3](! 
 �; �)# #(0) �! Ext1F3[G3](�; �) �! Ext1F3[G3](�; �) �! Ext1F3[G3](! 
 �; �):We will let �0 denote the composite mapExt1F3[G3](�; �) �! Ext1F3[G3](! 
 �; �);and �1 (resp. �!) the induced mapping ker �0 �! Ext1F3[G3](�; �)(resp. ker �0 �! Ext1F3[G3](! 
 �; ! 
 �)):We will also let �1 (resp. �!) the induced mappingker �0 �! Ext1F3[G3](�; �) �! Ext1F3[I3](�; �)(resp. ker �0 �! Ext1F3[G3](! 
 �; ! 
 �) �! Ext1F3[I3](! 
 �; ! 
 �)):If we reinterpret our Ext-groups as cohomology groups and use the isomorphism �_ � � 
 !, our diagrambecomes (0)#H1(G3;F3)#H1(G3; ad �) �! H1(G3; �
 ! 
 �)# #(0) �! H1(G3;F3) �! H1(G3; �
 ! 
 �) �! H1(G3; !):Fix a basis of F23 so that � takes the form � ! 
 � �0 � � :Then any extension of � by � in characteristic 3 may be represented by a matrix� � ��0 � � ;where the cocycle � = � �11 �12�21 �22 � 2 Z1(G3; ad �)represents the class of this extension in Ext1F3[G3](�; �) �= H1(G3; ad �). Moreover� �0([�]) = [�21] 2 H1(G3; !),� if �21 = 0 then �1([�]) = [�22] 2 H1(G3;F3) and �!([�]) = [�11] 2 H1(G3;F3),� and [�] 2 H1(G3; ad0 �) if and only if 0 = [�11 + �22] 2 H1(G3;F3).33



In particular we have �1 = ��! on H1(G3; ad0 �) \ ker �0.We have an exact sequence (0) �! �
 � �! ad0 � �! ! �! (0)where the �rst map sends � xy � 7�! � �y=2 x0 y=2 �and the second map sends � a bc �a � 7�! c:Thus we get an exact sequence(0) �! H1(G3; �
 �) �! H1(G3; ad0 �) �0�! H1(G3; !)and so we may identify H1(G3; ad0 �) \ ker �0 with H1(G3; �
 �). We also have an exact sequence(0) �! ! �! �
 � �! 1 �! (0);(4.7.1)which gives rise to an exact sequence(0) �! F3 �! H1(G3; !) �! H1(G3; �
 �) �! H1(G3;F3) �! H2(G3; !):If we identify H1(G3; �
 �) with H1(G3; ad0 �) \ ker �0 then the latter map H1(G3; �
 �) �! H1(G3;F3)is identi�ed with �! = ��1.Lemma 4.7.1. The sequence(0) �! F3 �! H1(G3; !) �! H1(G3; �
 �) �! H1(I3;F3)is exact.Proof. The key point is that � is tr�es rami��e (compare with Proposition 6.1 of [Di1]). It su�ces to showthat the composite H1(GF3 ;F3) �! H1(G3;F3) �! H2(G3; !)is injective. Suppose that x 2 H1(G3;F3) maps to zero in H2(G3; !), then by Tate duality x is annihilatedby the image of the map H0(G3;F3)! H1(G3; !) coming from the short exact sequence(0) �! ! �! (�
 �)_ 
 ! �! 1 �! (0)Cartier dual to (4.7.1). As (�
 �)_ 
 ! is tr�es rami��e we see that the image ofH0(G3;F3) �! H1(G3; !) �= Q�3 =(Q�3 )3is not contained in Z�3 =(Z�3 )3. Thusx 2 Hom(Q�3 =Z�3 ;F3) �= H1(GF3 ;F3) � H1(G3;F3) �= Hom(Q�3 ;F3)must be zero (see Proposition 3 of x1 of chapter XIV of [Se1]).Corollary 4.7.2. The maps �1 : H1(G3; ad0 �) \ ker �0 �! H1(I3;F3)and �! : H1(G3; ad0 �) \ ker �0 �! H1(I3;F3)have the same kernel and this has dimension 1 over F3.Theorems 4.4.1, 4.5.1 and 4.6.2 now follow from the following results, which we will prove later. Oneadvantage of these new formulations is that, with one exception, they refer only to Ext1S(�; �) and makeno mention of the determinant or ad0 �, concepts which we found tricky to translate into the language ofintegral models. 34



Theorem 4.7.3. 1. �0 : Ext1S�1(�; �) �! H1(G3; !) is the zero map.2. �! : Ext1S�1(�; �) �! H1(I3;F3) is the zero map.3. �! : H1S1(G3; ad0 �) �! H1(I3;F3) is the zero map.Theorem 4.7.4. 1. �0 : Ext1S�3(�; �) �! H1(G3; !) is the zero map.2. �! : Ext1S�3(�; �) �! H1(I3;F3) is the zero map.Theorem 4.7.5. Suppose that i 2 Z=3Z and (r; s) = (2; 6), (6; 10), (2; 10) or (6; 6).1. �0 : Ext1Si;(r;s)(�; �) �! H1(G3; !) is the zero map.2. Either �! : Ext1Si;(r;s)(�; �) �! H1(I3;F3) or �1 : Ext1Si;(r;s)(�; �) �! H1(I3;F3) is the zero map.The deduction of Theorems 4.4.1, 4.5.1 and 4.6.2 from these results is immediate.5. Breuil Modules.In this section we recall some results from [Br2] (see also the summary [Br1]) and give some slightextensions of them. Three of the authors apologise to the fourth for the title of this section, but they �ndthat the term \Breuil module" is much more convenient than \�ltered �1-module".Throughout this section, ` will be an odd rational prime and R will be a complete discrete valuation ringwith fraction �eld F 0 of characteristic zero and perfect residue �eld k of characteristic `.5.1. Basic properties of Breuil modules. We will �x a choice of uniformiser � of R and letE�(u) = ue � `G�(u)be the Eisenstein polynomial which is the minimal polynomial of � over the fraction �eld of W (k), soG�(u) 2 W (k)[u] is a polynomial with unit constant term G�(0) 2W (k)� (and degree at most e� 1). The`th power map on k[u]=ue` is denoted �, and we de�nec� = ��(G�(u)) 2 (k[u]=ue`)�:(5.1.1)It is very important to keep in mind that these de�nitions, as well as many of the de�nitions below, dependon the choice of the uniformiser �.The category of `-torsion Breuil modules (or \`-torsion Breuil modules overR", or simply \Breuil modules"or \Breuil modules over R") is de�ned to be the category of triples (M;M1; �1) where� M is a �nite free k[u]=ue`-module,� M1 is a k[u]=ue`-submodule of M containing ueM,� �1 :M1 !M is �-semilinear and has image whose k[u]=ue`-span is all of M.(A morphism (M;M1; �1)! (N;N1;  1) is a morphism f :M! N of k[u]=ue`-modules such that fM1 � N1and  1 � f = f � �1 on M1.) We de�ne the rank of (M;M1; �1) to be the rank of M over k[u]=ue`. Breuilmodules form an additive category (not abelian in general) in the obvious manner and this category doesnot depend on the choice of �. It is denoted �1�modR or �1�modF 0 . The induced �-semilinear map ofk-vector spaces �1 :M1 =uM1 !M =uMis bijective (because it is onto and #M1 =uM1 = #M1[u] � #M[u] = #M =uM). In particular, a map ofBreuil modules (M;M1; �1)! (M0;M01; �01)is an isomorphism if and only if the map M!M0 on underlying k[u]=ue`-modules is an isomorphism.Lemma 5.1.1. Suppose that 0!M0 !M!M00 ! 0is a complex of Breuil modules. The following are equivalent.1. The underlying sequence of k[u]=ue`-modules is exact.35



2. The underlying sequence of k[u]=ue`-modules is exact as is the sequence0!M01 !M1 !M001 ! 0:3. The complex of vector spaces 0!M0 =u!M =u!M00 =u! 0is exact.Proof. The second statement clearly implies the �rst. The �rst implies the third as Breuil modules are freeover k[u]=ue`. It remains to show that the third condition implies the second. Using Nakayama's lemma andthe freeness of Breuil modules we see that0!M0 !M!M00 ! 0is an exact sequence of k[u]=ue`-modules. Using the bijectivity of �1, we see that the natural mapf1 :M1 !M001is surjective modulo u and therefore is surjective. It remains to check that the inclusion of k[u]=ue`-modulesM01 � ker(f1) is an equality. Since f1 is compatible with f :M!M00 via the inclusions M1 �M, M001 �M00and also via the maps �1 and �001 , it is obvious that ker(f1) � ker(f) =M0 and that �1(ker(f1)) �M0. Sinceker(f1) contains M01, which in turn contains ueM0, we see that (M0; ker(f1); �1) is a Breuil module! Then(M0;M01; �01)! (M0; ker(f1); �1) de�ned via the identity map on M0 is a map of Breuil modules which is anisomorphism on underlying k[u]=ue`-modules, so it must be an isomorphism of Breuil modules. This forcesker(f1) =M01.When the equivalent conditions of this lemma are met we call the sequence of Breuil modules0!M0 !M!M00 ! 0exact.For any Breuil module (M;M1; �1), we de�ne the Frobenius endomorphism � :M!M by�(m) = 1c� �1(uem);(5.1.2)where c� is de�ned as in (5.1.1). Note that this depends on our choice of uniformiser.We let N :W (k)[[u]]!W (k)[[u]] denote the unique continuousW (k)-linear derivation satisfyingNu = u,i.e. N = u ddu . This operator \extends" to any Breuil module. More precisely, we have the following lemma.Lemma 5.1.2. Let M be an object of �1�modR. There is a unique additive operator N : M ! M (themonodromy operator) satisfying the three conditions:1. N(sx) = N(s)x+ sN(x), s 2 k[u]=ue`, x 2M,2. N � �1 = � �N on M1,3. N(M) � uM.Moreover, any morphism of Breuil modules M!M0 automatically commutes with N .Proof. Let's start with unicity. Recall we have an isomorphism k[u]=ue` 
k[u`]=ue` �1(M1) �! M ([Br2],2.1.2.1). Suppose there are two operators N and N 0 satisfying (1), (2) and (3) above, so � = N � N 0 isk[u]=ue`-linear and satis�es ��1 = �� and �(M) � uM. Thus,��1(M1) = ��(M1) � �(uM) � u`M;so �(M) = �(k[u]=ue` 
k[u`]=ue` �1(M1)) � u`M. Iterating ��1(M1) � ��(M) � u`2M so �(M) � u`2M,and so on. As ue` = 0, we get � = 0. For the existence, let N0 = N 
 1 onk[u]=ue` 
k[u`]=ue` �1(M1) 'M;and note N0 satis�es N0(sx) = N(s)x+ sN0(x). Call a derivation of M any additive operator satisfying thisrelation and de�ne successive derivations of M by the formulaNj+1(s
 �1(x)) = N(s)
 �1(x) + s�(Nj(x));36



for j � 0. Note that Nj+1 is well de�ned by the following observations.� N(u`s) = u`N(s) and Nj(ux) = ux+ uNj(x) imply that Nj+1(u`s
 �1(x)) = Nj+1(s
 �1(ux)).� If �1(x) = 0 then x 2 ueM (see (1) of Lemma 2.1.2.1 of [Br1]) and so Nj(x) 2 ueM and �(Nj(x)) = 0.As N0(M) � uM, we have (Nj+1 �Nj)(M) � u`j+1M, so Nj = Nj+1 for j � 0. This Nj satis�es (1), (2)and (3).The reason for introducing Breuil modules (and putting the factor c�1� in the de�nition of �) is thefollowing theorem.Theorem 5.1.3. 1. Given the choice of uniformiser � for R there is a contravariant functor M� from�nite 
at R-group schemes which are killed by ` to �1�modR and a quasi-inverse functor G�.2. If G is a �nite 
at R-group scheme killed by `, then G has rank `r if and only if M�(G) has rank r.3. If G is a �nite 
at R-group scheme killed by `, then there is a canonical k-linear isomorphismD(G) 
k;Frob` k �=M�(G)=uM�(G):Under this identi�cation, F
 Frob` corresponds to � and V 
 Frob�1` corresponds to the compositeVM :M =uM ��11! M1 =uM1 !M =uM :4. If 0! G0 ! G! G00 ! 0is a diagram of �nite 
at group schemes over R which are killed by ` and if0!M�(G00)!M�(G)!M�(G0)! 0is the corresponding diagram of Breuil modules, then the diagram of �nite 
at group schemes is a shortexact sequence if and only if the diagram of Breuil modules is a short exact sequence.Proof. See x2.1.1, Proposition 2.1.2.2, Theorem 3.3.7, Theorem 4.2.1.6 and the proof of Theorem 3.3.5 of[Br2]. In 3.3.5 of [Br2] it is shown that M�(G)=uM�(G) can be k-linearly identi�ed with the crystallineDieudonn�e module of G� k. In 4.2.14 of [BBM] the crystalline Dieudonn�e module of G� k is identi�ed withD(G) 
k;Frob` k. The equivalence of the two notions of exactness can be deduced from the compatibility ofM� with Dieudonn�e theory, from Lemma 5.1.1, and from the fact that a complex of �nite 
at group schemesover R is exact if and only if its special �bre is exact (see for example Proposition 1.1 of [deJ]).5.2. Examples. For 0 � r � e an integer and for a 2 k�, de�ne a Breuil module M(r; a) by� M(r; a) = (k[u]=ue`)e,� M(r; a)1 = (k[u]=ue`)ure,� �1(ure) = ae.It is easy to check that �1 is well de�ned (and uniquely determined by the given conditions). We will referto e as the standard generator of M(r; a) and write G(r; a) for G�(M(r; a)). The following lemma is easy tocheck.Lemma 5.2.1. 1. Any Breuil module of rank 1 over k[u]=ue` is isomorphic to some M(r; a).2. There is a non-zero morphism M(r; a) ! M(r0; a0) if and only if r0 � r, r0 � r mod ` � 1 anda=a0 2 (k�)`�1. All such morphisms are then of the form e 7! bu`(r0�r)=(`�1)e0, where b`�1 = a=a0.3. The modules M(r; a) and M(r0; a0) are isomorphic if and only if r = r0 and a=a0 2 (k�)`�1, orequivalently if and only if there are non-zero morphisms M(r; a)!M(r0; a0) and M(r0; a0)!M(r; a).4. If we order the M(r; a) by setting M(r; a) � M(r0; a0) if there is a non-zero morphism M(r0; a0) !M(r; a), then the set of isomorphism classes of M�(G)'s as G runs over models of a �xed �nite 
atF 0-group scheme G of order ` is well ordered.5. On M(r; a) we have Ne = 0, so N � �1 = 0.6. G(r; a) is �etale (resp. multiplicative) if and only if r = e (resp. r = 0).7. G(0; 1) �= �` and G(e;�G�(0)) �= Z=`Z. 37



8. The Cartier dual of G(r;�G�(0)) is G(e� r; 1).Proof. The �rst three parts are easy computations. For the fourth part note that two �nite 
at groupschemes G and G0 of order ` over R have isomorphic generic �bres if and only if there is a non-zero morphismG! G0 or G0 ! G. The �fth part is another easy computation and the sixth part follows on computing theDieudonn�e module using Theorem 5.1.3.By 3.1.2 of [Br2] we see that the a�ne R-algebra of the group scheme attached to M(r; a) isR[X ]=(X` + �e�reaG�(�)X);where ea is a lift of a to W (k). This has constant generic �ber if and only if ��e�rea=G�(�) 2 F 0 is an(` � 1)th power. This occurs if and only if r � e mod ` � 1 and �a=G�(0) 2 k is a (` � 1)th power. ThusM(e;�G�(0)) corresponds to the �etale group scheme Z=`Z over R.Next, we show that the group scheme G corresponding to the Breuil module M(0; 1) is isomorphic to �`.By using the relation between Breuil modules and Dieudonn�e modules (see Theorem 5.1.3) we see that theDieudonn�e module of the closed �ber of G is isomorphic to the Dieudonn�e module of the closed �ber of �`.This forces G �! �`, since we may consider Cartier duals and observe that a �nite 
at R-group scheme G is�etale if and only if its special �bre is �etale, and then x18.5.15 of book IV4 of [EGA] may be used.This establishes the seventh part. The �nal part follows from parts four and seven.Now suppose that 0 � r; s � e are integers and choose a; b 2 k�, f 2 umax(0;r+s�e)k[u]=ue`. We can de�nean extension class (0) �!M(s; b) �!M(s; b; r; a; f) �!M(r; a) �! (0)in �1�modR by� M(s; b; r; a; f) = (k[u]=ue`)e� (k[u]=ue`)e0,� M(s; b; r; a; f)1 = huse; ure0 + fei,� �1(use) = be and �1(ure0 + fe) = ae0,� the standard generator of M(s; b) maps to e,� e maps to 0 and e0 maps to the standard generator in M(r; a).The following lemma is also easy to check.Lemma 5.2.2. 1. Any extension of M(r; a) by M(s; b) in �1�modR is isomorphic to M(s; b; r; a; f) forsome f 2 umax(0;r+s�e)k[u]=ue`.2. Two such extensions M(s; b; r; a; f) and M(s; b; r; a; f 0) are isomorphic as extension classes if and onlyif f 0 � f = ush� (b=a)urh`for some h 2 k[u]=ue`, in which case one such isomorphism �xes e and sends e0 to e0 � (b=a)h`e.We remark that f 2 umax(0;r+s�e)k[u]=ue` is required so that M(s; b; r; a; f)1 � ueM(s; b; r; a; f). We willwrite G(s; b; r; a; f) for G�(M(s; b; r; a; f)).We will also need some slight extensions of these results to allow for coe�cients. To this end let k0=F` bea �nite extension linearly disjoint from k and write k0k for the �eld k0 
F` k. For 0 � r � e an integer andfor a 2 (k0k)�, de�ne a Breuil module, M(k0; r; a), with an action of k0 by� M(k0; r; a) = ((k0k)[u]=ue`)e,� M(k0; r; a)1 = ((k0k)[u]=ue`)ure,� �1(ure) = ae.We will let � denote the automorphism of k0k[u], which is the identity on k0 and which raises elements ofk[u] to the `th power. The following lemma is easy to check.Lemma 5.2.3. 1. Any Breuil module with an action of k0 which is free of rank [k0 : k] over k[u]=ue` isisomorphic to some M(k0; r; a). 38



2. There is a non-zero morphism M(k0; r; a) ! M(k0; r0; a0) if and only if r0 � r, r0 � r mod ` � 1 anda=a0 2 �(b)=b for some b 2 (k0k)�. All such morphisms are then of the form e 7! b0u`(r0�r)=(`�1)e0,where b 2 (k0k)� and �(b0)=b0 = a=a0.3. The modules M(k0; r; a) and M(k0; r0; a0) are isomorphic if and only if r = r0 and a=a0 2 ((k0k)�)��1.4. On M(k0; r; a) we have Ne = 0 and so N � �1 = 0.5. G�(M(k0; r; a)) is �etale (resp. multiplicative) if and only if r = e (resp.r = 0).Now choose 0 � r; s � e integers, a; b 2 (k0k)�, and f 2 umax(0;r+s�e)(k0k)[u]=ue`. We de�ne an extensionclass (0) �!M(k0; s; b) �!M(k0; s; b; r; a; f) �!M(k0; r; a) �! (0)in �1�modR with an action of k0 by� M(k0; s; b; r; a; f) = ((k0k)[u]=ue`)e� ((k0k)[u]=ue`)e0,� M(k0; s; b; r; a; f)1 = huse; ure0 + fei,� �1(use) = be and �1(ure0 + fe) = ae0,� the standard generator of M(k0; s; b) maps to e,� e maps to 0 and e0 to the standard generators in M(k0; r; a).Then the following lemma is easy to check.Lemma 5.2.4. 1. Any extension of M(k0; r; a) by M(k0; s; b) in �1�modR with a compatible action of k0is isomorphic to M(k0; s; b; r; a; f) for some f 2 umax(0;r+s�e)(k0k)[u]=ue`.2. Two such extensionsM(k0; s; b; r; a; f) and M(k0; s; b; r; a; f 0) are isomorphic (as extensions) if and onlyif f 0 � f = ush� (b=a)ur�(h)for some h 2 (k0k)[u]=ue`, in which case one such isomorphism �xes e and sends e0 to e0� (b=a)�(h)e.We will write G(k0; r; a) and G(k0; r; a; s; b; f) for G�(M(k0; r; a)) and G�(M(k0; r; a; s; b; f)) respectively.5.3. Relationship to syntomic sheaves. Let us �rst recall some of the notations of [Br1] and [Br2].Let Spf(R)syn be the small `-adic formal syntomic site over R, S the `-adic completion of W (k)[u; uiei! ]i2N,Sn = S=`nS, En = Spec(Sn) and for any X 2 Spf(R)syn:Ocrisn;� (X) = H0((Xn=En)cris;OXn=En)where Xn = X�R R=`n is viewed over En via the thickening (Spec(R=`n) ,! En; u 7! �). It turns out Ocrisn;�is the sheaf of Sn-modules on Spf(R)syn associated to the presheaf (cf. the proof of Lemma 2.3.2 in [Br2]):X 7! �Wn(k)[u]
�n;Wn(k) Wn(�(X1;OX1))�DP = �(Wn(k)[u]=ue`n)
�n;Wn(k) Wn(�(X1;OX1))�DP :(5.3.1)Here, the subscript \�n" means we twist by the nth power of the Frobenius when sendingWn(k) toWn(k)[u]and the exponent \DP" means we take the divided power envelope with respect to the kernel of the canonicalmap: Wn(k)[u]
�n;Wn(k) Wn(�(X1;OX1)) ! �(Xn;OXn)s(u)
 (w0; :::; wn�1) 7! s(�)(ŵ`n0 + `ŵ`n�11 + :::+ `n�1ŵǹ�1)where ŵi is a local lifting of wi, these divided powers being required to be compatible with the usual dividedpowers 
i(`x) = `ii! xi (i.e. we take the divided power envelope relative to the usual divided power structureon the maximal ideal of Wn(k)). Note that the latter map induces a canonical surjection of sheaves ofSn-modules on Spf(R)syn: Ocrisn;� ! On;where On(X) = �(Xn;OXn). We denote by Jcrisn;� the kernel of this surjection. For any n, let � : Sn ! Sn bethe unique lifting of Frobenius such that �(u) = u` and �(uiei! ) = uie`i! . The sheaf Ocrisn;� is equipped with the39



crystalline Frobenius �, which is also induced by the map s(u)
 (w0; :::; wn�1) 7! �(s(u))
 (w0̀; :::; wǹ�1) onthe above presheaf (5.3.1). (Here � on Wn(k)[u] is Frobenius on Wn(k) and takes u to u`.) Since ` divides�(x)�x`, we get �(Jcrisn;� ) � `Ocrisn;� for all n, so we can de�ne an S1-linear �1 = �̀ jJcrisn;� by the usual \
atness"trick (see x2.3 of [Br2]). Let N : Sn ! Sn be the unique Wn(k)-linear derivation such that N(u) = u andN(
i(ue)) = eue
i�1(ue) = ie
i(ue). Finally de�ne:N : Ocrisn;� ! Ocrisn;�to be the uniqueWn(k)-linear morphism of sheaves which on the presheaf (5.3.1) is given byN(
i(P s
w)) =(PN(s)
 w)
i�1(P s
 w). Note that N � � = `� �N , so N � �1 = � �N on Jcrisn;� .Let G be a �nite 
at group scheme over R, which is killed by `. Viewing G as a formal scheme over R,it is an object in Spf(R)syn. Viewing it as a sheaf of groups on Spf(R)syn, its associated Breuil module isde�ned as:1. M�(G) = Homsheaves of groups(G;Ocris1;� )
S1 k[u]=ue`,2. M�(G)1 = image of Homsheaves of groups(G; Jcris1;� )
S1 k[u]=ue` in M�(G),3. �1 is induced by �1 
 �,where the S1-module structures are induced by the compatible S1 actions on Ocris1;� and Jcris1;� (see x3.2 andx2.1.2.2 of [Br2]). Here S1 ! k[u]=ue` is the surjection that sends u to u, 
i(ue) to 
i(ue) for i < l and
i(ue) to 0 for i � l.We record for future reference the following straightforward observation.Lemma 5.3.1. If we denote by � (resp. pri, i 2 f1; 2g) the coproduct (resp. the two projections)G�Spec(R) G! G;then for any sheaf of commutative groups F on Spf(R)syn we have:Homsheaves of groups(G;F) = fx 2 F(G) j (�� � pr�1 � pr�2)(x) = 0g:The operator N on Ocris1;� induces an operator N on Homsheaves of groups(G;Ocris1;� ), hence on M�(G).Lemma 5.3.2. The above operator N on M�(G) coincides with the operator N de�ned in Lemma 5.1.2.Proof. By unicity in Lemma 5.1.2, we only have to prove that N satis�es N(M�(G)) � uM�(G), since theother conditions are automatically satis�ed. It's enough to prove that N(�1(x)) = (� �N)(x) 2 uM�(G) forany x 2M�(G)1. But ue`�`� �N = 0 on Ocris1;� because it is so on (k[u]
 �(X1;OX1))DP . Thus one also hasue`�`� �N = 0 on Homgroups(G;Ocris1;� ), hence on M�(G). This implies � �N(M�(G)) � u`M�(G) � uM�(G)since M�(G) is free over k[u]=ue`.5.4. Base change. In this section we will examine the relationship of the functor M� with two instancesof base change. First we consider unrami�ed base change.Let k0 be a perfect �eld of characteristic ` which is an extension of k and R0 = R 
W (k) W (k0). Choose�0 = � 
 1 as uniformiser in R0. If X 2 Spf(R)syn, let X0 = Spf(R0)�Spf(R) X and de�ne:Ocris0n;� (X) = Ocrisn;�0(X0) and Jcris0n;� (X) = Jcrisn;�0(X0):As in the proof of 2.3.2 of [Br2], we have that Ocris0n;� is the sheaf on Spf(R)syn associated to the presheaf:X 7! �Wn(k0)[u]
�n;Wn(k0) Wn(�(X01;OX01))�DP= �Wn(k0)[u]
�n;Wn(k0) Wn(k0 
k �(X1;OX1))�DP :De�ne S0n as Sn but with k0 instead of k. There is a canonical isomorphism of sheaves:Ocrisn;� 
Sn S0n = Ocrisn;� 
Wn(k) Wn(k0) �! Ocris0n;�coming from the obvious isomorphism:(Wn(k0)[u]=ue`n)
�n;Wn(k) Wn(�(X1;OX1)) �! (Wn(k0)[u]=ue`n)
�n;Wn(k0) Wn(k0 
k �(X1;OX1))40



and one easily sees it induces an isomorphism Jcrisn;� 
Wn(k)Wn(k0) �! Jcris0n;� . Moreover, we have the followingobvious lemma.Lemma 5.4.1. The diagram of sheaves on Spf(R)syn:Jcrisn;� 
Wn(k) Wn(k0) �! Jcris0n;�# �1
� �1 #Ocrisn;� 
Wn(k) Wn(k0) �! Ocris0n;�is commutative.Using the identi�cation from x5.3, Lemma 5.3.1 and Lemma 5.4.1 (for n = 1), together with obviousfunctorialities, we obtain after tensoring by k[u]=ue` the following corollary.Corollary 5.4.2. Let G be a �nite 
at group scheme over R, which is killed by `. Let k0=k be an extensionof �elds with k0 perfect and let �0 = �
 1, a uniformiser for R0 = R
W (k)W (k0). Then there is a canonicalisomorphism in the category �1�modR�M�(G) 
k k0;M�(G)1 
k k0; �1 
 �� �! �M�0(G0);M�0(G0)1; �1�compatible with composites of such residue �eld extensions.We will now turn to the case of base change by a continuous automorphism g : R �! R. For anys = Pwiui 2 W (k)[[u]], let (g)s = P g(wi)ui and (�)s = P�(wi)ui, where g and � act on W (k) throughtheir action on k. Choose Hg(u) 2 W (k)[[u]] such that g(�) = �Hg(�). Notice that Hg(u) 2 W (k)[[u]]�.De�ne bg :W (k)[[u]] �!W (k)[[u]] by bg(Pwiui) =P g(wi)uiHg(u)i.Lemma 5.4.3. There is a unique element gt(u) 2 W (k)[[u]] such that, if g� is de�ned by g�(Pwiui) =P�(wi)(u`(1 + `gt(u)))i, one has bg � g� = � � bg.Proof. One has to solve in W (k)[[u]]:1 + `(g)g t(uHg(u)) = �Hg(u)�1�`(�)Hg(u`)(where the two sides clearly belong to 1 + `W (k)[[u]]). As Hg(u) 2 W (k)[[u]]�, there is a unique Kg 2uW (k)[[u]]� such that Kg(u)Hg(Kg(u)) = u, so we have1 + `(g)g t(u) = �Hg(Kg(u))�1�`(�)Hg(Kg(u)`):For any object M of �1�modR, de�ne g�1 :M1 !M by the following formula:g�1(x) = �1(x) + gt(u)N(�1(x))(5.4.1)where N is as in Lemma 5.1.2.For any X 2 Spf(R)syn, let gX = Spf(R)�g�;Spf(R) X and de�ne:Ocris;(g)n;� (X) = Ocrisn;� (gX) and Jcris;(g)n;� (X) = Jcrisn;� (gX):Then Ocris;(g)n;� is the sheaf on Spf(R)syn associated to the presheaf:X 7! �Wn(k)[u]
�n;Wn(k) Wn(�(gX1;OgX1))�DP= �Wn(k)[u]
�n;Wn(k) Wn(R 
g;R �(X1;OX1))�DP :Let bg : Sn ! Sn be the unique ring isomorphism such that bg(wi uei+ji! ) = g(wi)uei+ji! Hg(u)ei+j for 0 � j < e,i � 0. There is a canonical isomorphism of sheaves:Ocrisn;� 
Sn;ĝ Sn �! Ocris;(g)n;�41



coming from the obvious bg-semi-linear isomorphism:(Wn(k)[u]=ue`n)
�n;Wn(k) Wn(�(X1;OX1)) �! (Wn(k)[u]=ue`n)
�n;Wn(k) Wn(R 
g;R �(X1;OX1))s
 (w0; :::; wn�1) 7! bg(s)
 (1
 w0; :::; 1
 wn�1)and one easily sees it induces an isomorphism Jcrisn;� 
Sn;ĝ Sn �! Jcris;(g)n;� .De�ne g� : Sn ! Sn as in Lemma 5.4.3 and de�ne:g� : Ocrisn;� ! Ocrisn;�to be the unique morphism of sheaves which is induced by g�(
i(P s 
 w)) = 
i(P g�(s) 
 �(w)) onthe presheaf (5.3.1) (see x5.3 and note that this is well de�ned). Since g�(Jcrisn;� ) � `Ocrisn;� , we can de�neg�1 = g�̀ jJcrisn;� .Lemma 5.4.4. The diagram of sheaves on Spf(R)syn:Jcrisn;� 
Sn;ĝ Sn �! Jcris;(g)n;�# g�1
� �1 #Ocrisn;� 
Sn;ĝ Sn �! Ocris;(g)n;�is commutative. Moreover we have on Jcrisn;� :g�1 = 1Xi=0� log(1 + `gt(u))` �iN ii! � �1where N is de�ned as in x5.3.Proof. By working modulo `n+1, i.e. with Jcrisn+1;� and g�, and looking on the above presheaves, it is completelystraightforward.Let G be a �nite 
at group scheme over R which is killed by `. Note that thanks to Lemma 5.3.2 and theformula for g�1 in Lemma 5.4.4, the operator M�(G)1 ! M�(G) induced by the map g�1 : Jcrisn;� ! Ocrisn;� isprecisely the operator denoted g�1 earlier in this section (see (5.4.1)). Using this, together with Lemma 5.3.1,Lemma 5.4.4 (for n = 1) and obvious functorialities, we obtain, after tensoring by k[u]=ue`, the followingcorollary.Corollary 5.4.5. Let g : R! R be a continuous automorphism.1. Let G be a �nite 
at group scheme over R, which is killed by `. Then there is a canonical isomorphismin the category �1�modR:�M�(G) 
k[u]=ue`;ĝ k[u]=ue`;M�(G)1 
k[u]=ue`;ĝ k[u]=ue`; g�1 
 �� �! �M�(gG);M�(gG)1; �1�:2. If f : G! G0 is a morphism of �nite 
at R-group schemes killed by ` and M�(f) is the correspondingmorphism in �1�modR, then M�(f) also commutes with the g�1 and there is a commutative diagramin �1�modR:M�(G0)
k[u]=ue`;ĝ (k[u]=ue`) M�(f)
1�! M�(G)
k[u]=ue`;ĝ (k[u]=ue`)o # # oM�(gG0) M�(gf)�! M�(gG):3. If g1; g2 are two continuous automorphisms of R and if we choose the unique Hg2g1 2 W (k)[[u]] suchthat dg2g1 = bg2 � bg1 on W (k)[[u]], then on(M�(G)
k[u]=ue`;ĝ1 k[u]=ue`)
k[u]=ue`;ĝ2 k[u]=ue` 'M�(G)
k[u]=ue`;dg2g1 k[u]=ue`;one has g2(g1�1 
 �)
 � = g2g1�1 
 �. 42



Corollary 5.4.6. Let G be a �nite 
at group scheme over R, which is killed by `. To give a morphism ofschemes [g] : G! G such that the diagram of schemesG [g]�! G# #Spec(R) Spec(g)�! Spec(R)is commutative and the induced morphism G! Spec(R)�g;Spec(R) G is an morphism of group schemes overR, is equivalent to giving an additive map bg :M�(G)!M�(G) such that both of the following hold.1. For all s 2 k[u]=ue` and x 2M�(G), bg(sx) = bg(s)bg(x).2. bg(M�(G)1) �M�(G)1 and �1 � bg = bg � �1 + bg(gt(u))bg �N � �1 with gt as in Lemma 5.4.3 and N as inLemma 5.1.2.Proof. Note that the last condition is equivalent to �1 � bg = bg � g�1. The �rst two conditions are equivalentto giving a morphism bg : M�(gG) ! M�(G) in �1�modR, which is equivalent to the last two by Corollary5.4.5.Finally we make some computations that concern the dependence of the above compatibilities on thechoice of Hg(u). Let f(u) be an element of (k[u]=ue`)1 = ue(k[u]=ue`) and de�ne, for any M in �1�modR,the additive map 1f : �1(M1)!M via1f = 1 + � `�1Xi=1 (�1)i�1i f(u)i�Nwhere N is as in Lemma 5.1.2. Using k[u]=ue` 
k[u`]=ue` �1(M1) ' M, we extend 1f to all of M by theformula: 1f (uix) = ui(1 + f(u))i1f (x)for x 2 �1(M1). If x 2M1, one checks that:1f (�1(uix)) = ui`1f (�1(x)) = 1f (ui`�1(x))so 1f is well de�ned. Moreover, it is clear that 1f (M1) �M1. Let1f : Ocris1;� �! Ocris1;�be the unique isomorphism of sheaves coming from the semi-linear isomorphism of presheaves:(k[u]=ue`)
�;k �(X1;OX1) �! (k[u]=ue`)
�;k (�(X1;OX1)s(u)
 (w0; :::; wn�1) 7! s(u(1 + f(u)))
 (w0; :::; wn�1)(see 5.3.1).Let G be a �nite 
at group scheme over R killed by ` and recall thatM�(G) = Homsheaves of groups(G;Ocris1;� )
 k[u]=ue`:Lemma 5.4.7. The operator 1f on M�(G) is induced by the operator 1f on Ocris1;� .Proof. One can check that the operator 1f on Ocris1;� satis�es 1f � �1 = �1 + log(1 + f)N � �1 where Nis de�ned as in x5.3 and log(1 + f) is the usual expansion of log in S1, which makes sense because of theassumption that uejf and because of the divided powers 
i(ue) = ueii! . After tensoring with k[u]=ue`, we get1f = 1+ (P`�1i=1 (�1)i�1i f(u)i)N on �1(M�(G)1) which clearly implies the two 1f 's are the same.Let g = 1 and chooseHg(u) = 1+f(u) for some f 2 E�(u)W (k)[[u]] (see the start of x5.1 for the de�nitionof E�(u)). Recall from Corollary 5.4.5 that we have a canonical isomorphismM�(G)
k[u]=ue`;bg (k[u]=ue`) �!M�(gG). 43



Lemma 5.4.8. The map 1f is the composite M�(G) �! M�(gG) �! M�(G) where the �rst map is the onein Corollary 5.4.5 and the second comes from the obvious isomorphism G �! gG. In other words, onceHg(u) = 1+f(u) has been chosen, 1f :M�(G)!M�(G) is the map corresponding to the identity 1G : G! Gunder the equivalence of Corollary 5.4.6.The proof is straightforward by looking at the usual presheaves and using Lemma 5.4.7. We remark that1f is not necessarily the identity even though 1G is. However, with f = 0, 1f is the identity.5.5. Reformulation. In this section, we will reformulate Corollary 5.4.6.Lemma 5.5.1. There is a unique element tg(u) 2 W (k)[[u]] such that if �g is de�ned by �g(Pwiui) =P�(wi)(u`(1 + `tg(u))i, one has bg � � = �g � bg.Proof. One has to solve in W (k)[[u]]:u`Hg(u)` = u`(1 + `tg(u))(�)Hg(u`(1 + `tg(u))):As Hg(u) 2 W (k)[[u]]�, there is a unique Lg 2 uW (k)[[u]]� such that Lg(uHg(u)) = u. Applying Lg tou = Kg(u)Hg(Kg(u)) (cf. the proof of Lemma 5.4.3), we get Lg(u) = Kg(u). We must solve:1 + `tg(u) = (�)Kg(u`Hg(u)`)u` :Lemma 5.5.2. There is a unique �g(u) 2 1 + uW (k)[[u]] such that if Ng = �gN , then Ng � bg = bg � N .Similarly, there is a unique g�(u) 2 1 + uW (k)[[u]] such that if gN = g�N , then bg � gN = N � bg. Moreover,Ng � �g = `�g �Ng and gN � g� = `g� � gN .Proof. Since N is a derivation, so is �N for any � 2W (k)[[u]]. One has to solve �g(u)N(uHg(u)) = uHg(u)and (g)g �(uHg(u)) = 1 + N(Hg(u))Hg(u) , which amounts to:�g(u) = �1 + N(Hg(u))Hg(u) ��1;(g)g �(u) = 1 + N(Hg)(Kg(u))Hg(Kg(u)) ;where Kg is as in the proof of Lemma 5.4.3. The commutation relations with the Frobenius follow fromN � � = `� �N , �g � bg = bg � �, Ng � bg = bg �N , bg � g� = � � bg, bg � gN = N � bg and the fact bg is bijective onW (k)[[u]].We also denote by gN = g�N and Ng = �gN the corresponding derivations on k[u]=ue`. For any objectM of �1�modR, de�ne �1;g :M1 !M by the formula:�1;g(x) = �1(x) + tg(u)N(�1(x))where N is as in Lemma 5.1.2, and we recall that we de�ned g�1 in (5.4.1). One checks that �1;g(ue) =g�1(ue) = �1(ue) = c� (see (5.1.1)). Note that we also have �1;g �bg = bg � g�1, Ng �bg = bg �N , bg � g�1 = �1 �bg,bg � gN = N � bg in k[u]=ue`.Lemma 5.5.3. Let M be an object of �1�modR, then there is a unique operator Ng : M ! M satisfyingthe three conditions:1. Ng(sx) = Ng(s)x+ sNg(x), s 2 k[u]=ue`, x 2M,2. Ng�1;g(x) = �gNg(x), x 2M1 where �g(y) = 1c� �1;g(uey) if y 2M,3. Ng(M) � uM.The same statement holds for gN , g�, and g�1. 44



Proof. The proof is the same as for Lemma 5.1.2, using the fact we still have isomorphismsk[u]=ue` 
k[u`]=ue` �1;g(M1) �!M(resp. with g�1 replacing �1;g).Lemma 5.5.4. For M an object of �1�modR, Ng = �gN and gN = g�N where Ng, gN are as in Lemma5.5.3, �g, g� as in Lemma 5.5.2 and N as in Lemma 5.1.2.Proof. By unicity of Ng , one has to check �gN satis�es the three conditions of Lemma 5.5.3. The �rst andlast are obvious. Note that N�1(uex) = �N(uex) = 0 so �1;g(uex) = �1(uex), which implies � = �g on M(�g is as in Lemma 5.5.3). One computes:(�g(u)N) � �1;g = �g(u)(1 +N(tg(u)))� �N�g � (�g(u)N) = (�)�g(u`)� �N:But the equality Ng � �g(u) = `�g �Ng(u) in W (k)[[u]] (from Lemma 5.5.2) yields�g(u)(1 +N(tg(u)))� (�)�g(u`) 2 `W (k)[[u]]:We thus get (�gN) � �1;g = �g � (�gN) hence condition (2). For gN , the proof is completely similar.Lemma 5.5.5. Let M be an object of �1�modR and bg : M ! M be an additive map such that for alls 2 k[u]=ue` and x 2 M, bg(sx) = bg(s)bg(x) and bg(M1) � M1. If bg � �1 = �1;g � bg, then bg � N = Ng � bg.Similarly, if �1 � bg = bg � g�1, then N � bg = bg � gN .Proof. We prove the �rst case, the other one being the same. As in the proof of Lemma 5.1.2, we de�neNg;0, Ng;1,..., with Ng = Ng;i for i large enough, using k[u]=ue` 
k[u`]=ue` �1;g(M1) �! M. It is enough toshow bg �Ni = Ng;i � bg for all i. Suppose bg �Ni�1 = Ng;i�1 � bg and let s 2 k[u]=ue` and x 2M1, then:Ng;ibg(s�1(x)) = Ng;i(bg(s)�1;g(bg(x)))= Ng(bg(s))�1;g(bg(x)) + bg(s)�1;gNg;i�1(bg(x))= bg(N(s)�1(x)) + bg(s)�1;gbg(Ni�1(x))= bg(N(s)�1(x)) + bg(s�1(Ni�1(x)))= bgNi(s�1(x));so bg �Ni = Ng;i � bg by linearity. One easily checks by a similar computation that Ng;0 � bg = bg �N0, hencethe result follows by induction.Lemma 5.5.6. Let M be an object of �1�modR and bg : M ! M an additive map such that for all s 2k[u]=ue` and x 2M, bg(sx) = bg(s)bg(x) and bg(M1) �M1. Then the following two conditions are equivalent:1. �1 � bg = bg � �1 + bg(gt(u))bg �N � �12. and bg � �1 = �1 � bg + tg(u)N � �1 � bg.Proof. One has to show �1 � bg = bg � g�1 is equivalent to bg � �1 = �1;g � bg. We prove (1) ) (2), the othercase being the same. On M, we have bg � � = � � bg, because � = �g = g�, as in the proof of Lemma 5.5.4.By Lemmas 5.5.4 and 5.5.5, we have bg �N = bg(g��1)N � bg. Thus we get from (1), using N�1 = �N ,bg � �1 = �1 � bg � bg(gt(u))bg(g�(u)�1)`N � �1 � bg:Playing the same game over W2(k)[[u]] with the relation � � bg = bg � � + bg(gt(u))bg �N � �, which is easilychecked to hold in W2(k)[[u]], we again end up with bg �� = ��bg�bg(gt(u))bg(g�(u)�1)`N ���bg in W2(k)[[u]].But we also have in W2(k)[[u]] the equality:bg � � = � � bg + tg(u)N � � � bg:Thus �bg(gt(u))bg(g�(u)�1)` = tg(u) in k[u]=ue`, so relation (2) holds.We can now derive the variant of Corollary 5.4.6 which we will use.45



Corollary 5.5.7. Let G be a �nite 
at R-group scheme killed by `. Let g : R �! R be a continuous au-tomorphism, choose Hg(u) 2 W (k)[[u]] such that g(�) = �Hg(�) and de�ne bg : k[u]=ue` ! k[u]=ue` bybg(�wiui) = �g(wi)uiHg(u)i. To give a morphism of schemes [g] : G! G such that the diagram of schemesG [g]�! G# #Spec(R) Spec(g)�! Spec(R)is commutative and the induced morphism G! Spec(R)�g;Spec(R) G is an morphism of group schemes overR, is equivalent to giving an additive map bg :M�(G)!M�(G) such that both of the following hold.1. For all s 2 k[u]=ue` and x 2M�(G), bg(sx) = bg(s)bg(x).2. bg(M�(G)1) �M�(G)1 and bg��1 = (1+ tg(u)N)��1 �bg, with tg as in Lemma 5.5.1 and N as in Lemma5.1.2.Moreover, [g] is an isomorphism if and only if bg is. Assume these are isomorphisms. Choose Hg�1 such thatdg�1(u) = bg�1(u) on W (k)[[u]], i.e. Hg�1(u) = bg�1(u)=u. Then the map dg�1 that corresponds to [g]�1 isequal to bg�1. Also, if g1, g2 are two automorphisms of R and if we choose Hg1 ; Hg2 as above, then [g1] � [g2]corresponds to bg2 � bg1 provided we choose Hg2g1 such that bg2(bg1(u)) = uHg2g1(u).Proof. The equivalence is clear thanks to Corollary 5.4.6 and Lemma 5.5.6. The fact that [g1] � [g2] corre-sponds to bg2 � bg1 is automatic using Corollary 5.4.5 and the functor G 7! M�(G). Applying this to g1 = gand g2 = g�1, we see that 1G = [g] � [g]�1 corresponds to dg�1 � bg. But by Lemma 5.4.8, 1G corresponds to1f with f de�ned by (dg�1 � bg)(u) = u(1 + f) in W (k)[[u]]. We see that f = 0 and that 1f is the identity onM�(G). Thus dg�1 = bg�1 on M�(G).5.6. Descent data. Assume now that R is endowed with a continuous left faithful action of a �nite group�. Then � becomes the Galois group of the fraction �eld F 0 of R over some sub�eld. For each g 2 �, chooseHg(u) 2 W (k)[u] so that g(�) = �Hg(�), with the one condition that H1(u) = 1. Recall from Lemma 5.5.1that this uniquely determines elements tg(u) 2 W (k)[[u]] such thatu`Hg(u)` = u`(1 + `tg(u))(�)Hg(u`(1 + `tg(u))):Moreover for any pair g1, g2 2 �, there is obviously a unique fg1;g2(u) 2 E�(u)W (k)[[u]] such thatbg1 � bg2(u) =\g1 � g2(u(1 + fg1;g2(u))):If M is an object of �1�modR, then we will denote by 1g1;g2 the unique k-linear map M!M such that forx 2M1 we have� 1g1;g2(�1(x)) = �1 + (P`�1i=1 (�1)i�1i fg1;g2(u)i)N�(�1(x)), where N is as in Lemma 5.1.2;� and 1g1;g2(ui�1(x)) = ui(1 + fg1;g2(u))i1g1;g2(�1(x)):(See x5.4 where we denoted 1g1;g2 by 1fg1;g2 .)Suppose that G is a �nite 
at R-group scheme. Recall that by descent data on G for � we mean isomor-phisms of �nite 
at group schemes [g] : G �! gGfor g 2 �, such that [gh] = (g [h]) � [g]for all g; h 2 �. Equivalently we may think of [g] as a map of schemes G ! G over g� : SpecR ! SpecRwhich induces an isomorphism of group schemes G! gG. In this picture the compatibility condition simplybecomes [gh] = [h][g]:Theorem 5.6.1. Suppose that G is a �nite 
at R-group scheme killed by `. Fix Hg(u) as above for all g 2 �.46



1. To give descent data on G relative to � is equivalent to giving additive bijections bg : M�(G) ! M�(G)for all g 2 � so that bg takes M�(G)1 into M�(G)1 and:� bg(wuim) = g(w)(uHg(u))ibg(m) for m 2M�(G), w 2 k,� bg � �1 = (1 + tg(u)N) � �1 � bg on M�(G)1,� b1� = 1 and bg1 � bg2 = dg1g2 � 1g1;g2 .2. The above equivalence is functorial in G and is compatible with classical Dieudonn�e theory in thefollowing sense: if the action fbggg2� on M�(G) corresponds to descent data f[g]g on G, then the g-semilinear map D([g]) induced on the contravariant Dieudonn�e module D(G) and the g-semilinear mapbg mod u induced on M�(G)=uM�(G) are compatible via the isomorphism of Theorem 5.1.3.Proof. Part (1) is a consequence of Corollary 5.5.7, Lemma 5.4.8 and the choice H1 = 1. The functoriality in(2) follows from Corollary 5.4.5, and the last statement there comes from g(G� k) �= gG�k, the functorialityof the isomorphism in Theorem 5.1.3, and the reduction modulo u of Corollary 5.4.5.Suppose that � 2 R�. Then we may take Hg(u) = 1 for all g 2 �. With this choice we see that tg1 = 0,fg1;g2 = 0 and 1g1;g2 = 1 for all g1; g2 2 �. In this case to give bijections bg :M�(G)!M�(G) as in the lemmais equivalent to giving an R-semilinear �-action on M�(G) which commutes with u and �1 and preservesM�(G)1. Thus (M�(G)�;M�(G)�1 ; �1) is a Breuil module over R� from which we can recover M�(G) bytensoring with W (k) over W (k�). In other words, �etale descent for group schemes translates in the obviousmanner for Breuil modules if we choose � to be �-invariant.To build an action of � on G using Theorem 5.6.1, the conditions bg1 � bg2 = dg1g2 � 1g1;g2 are not veryconvenient to check in practice since there are too many of them. It is useful to have the following variant.Choose d 2 Z>0 and a group surjection � : �d ! �, where �d is the free group on d generators 
1; :::; 
d.The group �d still acts on R (via its quotient �) and for each i 2 f1; :::; dg, choose elements H
i(u) 2W (k)[[u]] such that �H
i(�) = 
i(�). This determines isomorphisms b
i on W (k)[[u]] and k[u]=ue` and, bycomposition, isomorphisms b
 for all 
 2 �d. Note that if 
 2 ker(�), then H
(u) = u(1 + f
(u)) for somef
 2 E�(u)W (k)[[u]]. For such 
, denote by 1
 the unique k-vector space endomorphism of any object M of�1�modR such that for x 2M1 we have� 1
 = 1 + �P`�1i=1 (�1)i�1i f
(u)i�N on the image of �1,� and 1
(ui�1(x)) = ui(1 + f
(u))i1
(�1(x));where N is as in Lemma 5.1.2. (See x5.4, where we denoted 1
 by 1f
 .) Let R be a subset of ker(�) suchthat ker(�) is the smallest normal subgroup of �d containing R.Corollary 5.6.2. With the above notation, to give descent data on G for � is equivalent to giving additivebijections b
j :M�(G)!M�(G) for j 2 f1; :::; dg so that b
j takes M�(G)1 into M�(G)1 and:� b
j(wuim) = 
j(w)(uH
j (u))i b
j(m) for m 2M�(G), w 2 k,� b
j � �1 = (1 + t
j (u)N) � �1 � b
j on M�(G)1,� if 
 = 
n1i1 � � � � � 
nmim 2 R, where ij 2 f1; : : : ; dg, nj 2 Z, and ij 6= ij+1 for 1 � j < m, and if we de�neb
 = b
n1i1 � � � � � b
nmim , then b
 = 1
.Proof. Straightforward from Corollary 5.5.7 and Lemma 5.4.8.We de�ne a category �1DDF 0=(F 0)� of Breuil modules with descent data for � in the obvious way. Thiscategory is additive but not necessarily abelian. We call a complex in �1DDF 0=(F 0)� exact if the under-lying complex in �1�modR is exact. In the natural way, we extend M� to a functor from FDF 0=(F 0)� to�1DDF 0=(F 0)� .5.7. More examples. In this section we will determine the possible descent data on a rank one Breuilmodule. Let � be as in section x5.6.Lemma 5.7.1. Suppose that G is a �nite 
at R-group scheme of order ` and that its generic �bre admitsdescent data over (F 0)�. Then there is unique descent data on G over (F 0)� extending any choice of descent47



data on G� F 0 over (F 0)�. If M�(G) �=M(r; a) and if 
 2 � satis�es 
(�)=� � 1 mod (�), thenb
(e) = H
(u)�r`=(`�1)e;where H
(u)�r`=(`�1) denotes the unique (`� 1)th root of H
(u)�r` in k[u]=ue` with constant term 1.We remark that since Aut(M(r; a)) = (Z=`Z)� by consideration of the geometric generic �bre, the choiceof isomorphism M�(G) �=M(r; a) does not matter.Proof. We �rst claim two such �nite 
at group schemes G and G0 have isomorphic generic �bres if and onlyif there is a non-zero morphism G ! G0 or G0 ! G. By Lemma 5.2.1 we see that if G is a �nite 
at F 0-group scheme then the lattice of models for G over R is well ordered. Suppose all the integral models areG1 < ::: < Gn. For 
 2 �, any isomorphism [
] : G �! 
G must then induce isomorphisms [
] : Gi �! 
Gi forall i = 1; :::; n. The �rst part of the lemma follows.LetM =M(r; a), soM is a free k[u]=ue`-module of rank 1 with the usual basis element e. The submoduleM1 is spanned by ure and �1(ure) = ae. From Theorem 5.2.1, we have N � �1 = 0, which implies thatb
 � �1 = �1 � b
:For 
 2 �1, H
(0) � 1 mod `. Clearly b
 : cuie 7! cuiH
(u)ib
(e)is a bijection if and only if b
(e) = �
e for some unit �
 2 (k[u]=ue`)�. Evaluating b
 � �01 = �01 � b
 on theelement ure 2M1, we get �
 = H
(u)r`�
̀in k[u]=ue`. Thus, �
 = �
H�r`=(`�1)
for some unit �
 2 F�̀.Since Breuil module descent data always induces a k-linear action of the inertia group on the k-vectorspace M =uM and in this case dimkM =uM = 1, the action of the element 
 of `-power order on M =uMmust be trivial. Thus �
 = 1. 6. Some local fields.In order to apply the methods of x5, we need some more explicit information about the �elds F 0 introducedin x4. In this section we will collect this essentially elementary information. In each case we will give anexplicit description of the Galois group Gal(F 0=Q3). This is needed to carry out the delicate Breuil modulecalculations in subsequent sections. We will also specify a uniformiser � of F 0 and partially calculate thefollowing polynomials and power series (depending on our choice of �).� G(u) 2 W (kF 0)[u] a polynomial of degree at most e(F 0=Q3) � 1 such that � has minimal polynomialue(F 0=Q3) � 3G(u) over Q3.� c� � �G(u)3 mod (3; u3e(F 0=Q3)).� For 
 2 Gal(F 0=Q3), the unique polynomial H
(u) 2 W (kF 0)[u] of degree at most e(F 0=Q3) � 1 suchthat 
(�)=� = H
(�).� In some cases power series t
 and f
;
0 as in x5.6.6.1. The case of F 01. Recall that �1 corresponds to the order 3 homomorphismZ�3 �! GL2(Q3)is determined by �1 7�! 14 7�! �;where det � = 1 and �3 = 1 but � 6= 1. Recall also that F 01 = F1 is any totally rami�ed cubic Galois extensionof Q3. We may take F 01 = F1 = Q3[�], where � is a root of X3 � 3X2 + 3. One may check that the other48



roots of X3 � 3X2 + 3 are �2 � 2� and 3 + � � �2, so Gal(F 01=Q3) is generated by one element 
3, whichsends � to �2 � 2� and satis�es 
33 = 1. Also, � is a uniformiser for F 01, so� G(u) = u2 � 1,� c� � 1� u6 mod (3; u9),� H
3(u) = u� 2.6.2. The case of F 0�1. Recall that ��1 corresponds to the order 3 homomorphismZ3[p�1]� �! GL2(Q3)determined by 4p�1 7�! 14 7�! 11 + 3p�1 7�! �;where det � = 1 and �3 = 1 but � 6= 1. Recall also that F 0�1=Q3(p�1) is the unique cubic extension such thatF 0�1=Q3 is Galois but not abelian and that F�1 is any cubic sub�eld. We may take F�1 = Q3(�) and F 0�1 =F�1(p�1), where � is a root ofX3�3X2+6. The other roots ofX3�3X2+6 are (p�1�2��+3(1�p�1))=2and (�p�1�2��+3(1+p�1))=2. Thus, Gal(F 0�1=Q3) is generated by two elements 
2 and 
3 de�ned by� 
2(�) = �,� 
2(p�1) = �p�1,� 
3(�) = (p�1�2 � � + 3(1�p�1))=2� and 
3(p�1) = p�1.We have 
22 = 
33 = 1 and 
2
3 = 
23
2, and � is a uniformiser for F 0�1. Thus� G(u) = u2 � 2,� c� � �1� u6 mod (3; u9),� H
2(u) = 1,� H
3(u) = ((p�1� 1)u2 + (3�p�1)u� 2)=4.6.3. The case of F 03. Recall that �3 is the unique 3-type such that �3jIQ3(p3) corresponds to the order 6homomorphism Z3[p3]� �! GL2(Q3)determined by �1 7�! �14 7�! 11 +p3 7�! �;where det � = 1 and �3 = 1 but � 6= 1. Recall also that F 03 is the degree 12 abelian extension of Q3(p3) withnorm subgroup in Q3(p3)� topologically generated by 3, 4 and 1 + 3p3. We also let 
24 denote the uniqueelement of IF 03=Q3(p3) of order 3 and we let F3 denote the �xed �eld of some Frobenius lift of order 2.We claim that F 03 = Q3(p3)(p�1; �; �) where � is a root ofX3�3X+3 and � a root ofX2�p3. To verifythis, set F 00 = Q3(p3)(p�1; �; �). We must check that F 00=Q3(p3) is abelian and that NF 00=Q3(p3)(F 00)�contains 3, 4, and 1+3p3. To see that F 00=Q3(p3) is abelian, note that if � is one root ofX3�3X+3 then theother roots are (2p3�2�(�3p3+p�5)��4p3)=2p�5 and (�2p3�2�(3p3+p�5)�+4p3)=2p�5 (wherefor de�niteness we choose p�5 2 1 + 3Z3). Note that NF 00=Q3(p3)(�=�) = 3 and NF 00=Q3(p3)(1 + �) = 54.Note that Gal(F 03=Q3(p3)) is generated by three commuting elements 
2, 
24 and 
3 of respective orders2, 2 and 3. They may be de�ned by� 
2p�1 = �p�1, 
2� = � and 
2� = �;� 
24p�1 = p�1, 
24� = �� and 
24� = �;� 
3p�1 = p�1, 
3� = � and 
3� = (�2p3�2 � (3p3 +p�5)� + 4p3)=2p�5.49



Choose an element 
 2 IF 03=Q3 � IF 03=Q3(p3). Then 
2 2 h
24 ; 
3i. As 

3
�1 = 
23 we may alter our choiceof 
 so that 
2 2 h
24i. As 
p3 = �p3 we see that 
� = �p�1�, so 
2 = 
24 . We will rename 
 as 
4 andsuppose it chosen so that 
4� = p�1�. Thus, Gal(F 03=Q3) is generated by elements 
2, 
3 and 
4 satisfying� 
22 = 
33 = 
44 = 1,� 
2
3 = 
3
2,� 
4
2 = 
2
�14 ,� and 
4
3 = 
23
4.The element 
24 is the unique element of IF 03=Q3(p3) of order 2 and hence coincides with our previous de�nition.The element 
2 is a Frobenius lift of order 2 and so we may take F3 to be its �xed �eld, i.e. F3 = Q3(�),where � = �=� is a uniformiser for F 03. (We are not asserting that 
2 equals the element denoted e
2 insection 4.) One can check that 
3(�)=� � 1 + �2 mod �4:Note also that h
2; 
4i projects isomorphically to the quotient of Gal(F 03=Q3) by the wild inertia subgroup.We conclude� G(0) = 1,� c� � �1 mod (3; u),� H
2(u) = 1,� H
4(u) = �p�1,� H
3(u) � 1 + u2 mod (3; u4),� tg = fg;g0 = 0 for g; g0 2 h
2; 
4i.6.4. The case of F 0�3. Recall that ��3 is the unique 3-type such that ��3jIQ3(p�3) corresponds to the order6 homomorphism Z3[p�3]� �! GL2(Q3)determined by �1 7�! �14 7�! 11 + 3p�3 7�! 11 +p�3 7�! �;where det � = 1 and �3 = 1 but � 6= 1. Recall also that F 0�3 is the degree 12 abelian extension of Q3(p�3)with norm subgroup in Q3(p�3)� topologically generated by �3, 4 and 1 + 3p�3. We also let 
24 denotethe unique element of IF 0�3=Q3(p�3) of order 3 and we let F�3 denote the �xed �eld of some Frobenius lift oforder 2.We claim that F 0�3 = Q3(p�3)(p�1; �; �) where � is a root of X3 � 4 and � a root of X2 + p�3.To verify this, set F 00 = Q3(p�3)(p�1; �; �). Then F 00=Q3(p�3) is abelian and so we must check thatNF 00=Q3(p�3)(F 00)� contains �3, 4, and 1 + 3p�3. But note that we have the identities NF 00=Q3(p�3)((��1)=�) = �3, NF 00=Q3(p�3)(�) = 44 and NF 00=Q3(p�3)(1� �) = (1 +p�3)6.Note that Gal(F 03=Q3(p�3)) is generated by three commuting elements 
2, 
24 and 
3 of respective orders2, 2 and 3. They may be de�ned by� 
2p�1 = �p�1, 
2� = � and 
2� = �;� 
24p�1 = p�1, 
24� = �� and 
24� = �;� 
3p�1 = p�1, 
3� = � and 
3� = (�1�p�3)�=2.Choose an element 
 2 IF 0�3=Q3 � IF 0�3=Q3(p�3), so 
2 2 h
24 ; 
3i. As 

3
�1 = 
23 , we may alter our choiceof 
 so that 
2 2 h
24i. As 
p�3 = �p�3 we see that 
� = �p�1�, so 
2 = 
24 . We will rename 
 as
4 and suppose it chosen so that 
4� = p�1�. Thus, Gal(F 03=Q3) is generated by elements 
2, 
3 and 
4satisfying� 
22 = 
33 = 
44 = 1, 50



� 
2
3 = 
3
2,� 
4
2 = 
2
�14 ,� and 
4
3 = 
23
4.The element 
24 is the unique element of IF 0�3=Q3(p�3) of order 2 and hence coincides with our previousde�nition. The element 
2 is a Frobenius lift of order 2 and so we may take F�3 to be its �xed �eld, i.e.F�3 = Q3(�), where � = �=� is a uniformiser for F 0�3. (We are not asserting that 
2 equals the elementdenoted e
2 in section 4.) One can check that
3(�)=� � 1 + �2 mod �4:Note also that h
2; 
4i lifts tame inertia.We conclude� G(0) = �1,� c� � 1 mod (3; u),� H
2(u) = 1,� H
4(u) = �p�1,� H
3(u) � 1 + u2 mod (3; u4),� tg = fg;g0 = 0 for g; g0 2 h
2; 
4i.6.5. The case of F 0i . Here i 2 Z=3Z and we will let ~{ denote the unique lifting of i to Z with 0 � ~{ < 3.Recall that � 0i is the unique extended 3-type whose restrictions to GQ3(p�3) correspond to the homomorphismQ3(p�3)� ! GL2(Q3)determined by p�3 7�! � � ��1�1 7�! �14 7�! 11 + 3p�3 7�! �1 +p�3 7�! �i;where det � = 1 and �3 = 1 but � 6= 1. Recall also that F 0i is the degree 12 abelian extension of Q3(p�3)with norms the subgroup of Q3(p�3)� topologically generated by �3, 4, 1 + 9p�3 and 1 + (1 � 3~{)p�3.We let 
2, 
3 and 
24 denote the elements of Gal(F 0i=Q3) which correspond respectively to p�3, 1� 3p�3and �1.We claim that F 0i = Q3(p�3)(p�1; �; �) where � is a root of X3 � 3(1 + 3~{) and � a root of X2 +p�3. To verify this, set F 00 = Q3(p�3)(p�1; �; �), so F 00=Q3(p�3) is abelian and we must check thatNF 00=Q3(p�3)(F 00)� contains �3, 4, 1 + 9p�3, and 1 + (1 � 3~{)p�3. But note that NF 00=Q3(p�3)(�=�) =�3(1 + 3~{)4, NF 00=Q3(p�3)(1 + �) = (4 + 9~{)4 andNF 00=Q3(p�3)(�(p�3� �)=�) = (1 +p�3 + 3~{)=(1 + 3~{)4 � 1 + (1� 3~{)p�3 mod 9:Note that 
24 is an element of IF 0i=Q3(p�3) of order 2, 
2 6= 
24 but also has order 2, and 
3 is an elementof IF 0i=Q3(p�3) of order 3. Thus,� 
24p�1 = p�1, 
24� = �� and 
24� = �;� 
2p�1 = �p�1 and 
2� = �;� 
3p�1 = p�1 and 
3� = �.Moreover p�3 is a norm from Q3(p�3)(�; �), because �=� has norm p�3(1 + 3~{)2, so� 
2(�) = �.The determination of 
3(�) is more delicate. Let � be a root of X3� (1+3p�3), so � = 1+p�3� where� is a root of Y 3 �p�3Y 2 � Y + 1. Thus Q3(p�3)(�)=Q3(p�3) is unrami�ed andFrob3(�)=� � (1 +p�3�3)=(1 +p�3�) � (�1 +p�3)=2 mod 3:51



The norms from Q3(p�3)(�)� to Q3(p�3)� are generated by Z3[p�3]� and 3p�3. The norms fromQ3(p�3)(�)� to Q3(p�3)� are generated by 1+ 9Z3[p�3], 1 + (1� 3~{)p�3, 4, �1 and p�3. The normsfrom Q3(p�3)(�; �)� to Q3(p�3)� are generated by 1 + 9Z3[p�3], 1 + (1 � 3~{)p�3, 4, �1 and 3p�3.Thus (
3;Frob3) 2 Gal(Q3(p�3)(�)=Q3(p�3))�Gal(Q3(p�3)(�)=Q3(p�3))�= Gal(Q3(p�3)(�; �)=Q3(p�3))corresponds top�3(1�3p�3) 2 Q3(p�3)�. As �� has norm toQ3(p�3) the product of (p�3(1�3p�3))2and �(1+3~{)(1+3p�3)=(1�3p�3)2, we conclude that (
3;Frob3) �xes ��. Thus 
3(�)=� = �=Frob3(�) =(�1�p�3)=2. In other words� 
3(�) = (�1�p�3)�=2.Choose an element 
 2 IF 0i=Q3 � IF 0i=Q3(p�3). Then 
2 2 h
24 ; 
3i. As 

3
�1 = 
23 we may alter ourchoice of 
 so that 
2 2 h
24i. As 
p�3 = �p�3 we see that 
� = �p�1� and so 
2 = 
24 . We will rename
 as 
4 and suppose it chosen so that 
4� = p�1�. Thus, Gal(F 0i =Q3) is generated by elements 
2, 
3 and
4 satisfying� 
22 = 
33 = 
44 = 1,� 
2
3 = 
3
2,� 
4
2 = 
2
�14 ,� and 
4
3 = 
23
4.The element 
2 is a Frobenius lift and it has �xed �eld Fi = Q3(�), where � = �=� is a uniformiser for F 0i .One can check that 
�13 (�)=� = �(1� (1 + 3~{)�2�6)=2:We conclude� G(u) = �(1 + 3~{)4,� c� � 1 mod (3; u36),� H
2(u) = 1,� H
4(u) = �p�1,� H
�13 (u) � 1� u6 mod 3,� t
�13 (u) � �1� u6 mod (3; u12),� tg = fg;g0 = 0 for g; g0 2 h
2; 
4i,� f
�13 ;
�13 (u), f
�13 ;
�13 (u) � 0 mod (3; u12).7. Proof of Theorem 4.4.1.In this section we will keep the notation of x4.4 and either x6.1 or x6.2 (depending if we are working withS1 or S�1). We will set � = �1 in the case of S�1. We will write F for F�1 and F 0 for F 0�1. If G (resp. M) isa �nite 
at OF -group scheme (resp. Breuil module over OF ) we will write G0 (resp. M0) for the unrami�edbase change to OF 0 .7.1. Rank one calculations. We recall from Lemma 5.2.1 that the only OF -models for (Z=3Z)=F areG(3; �) �= (Z=3Z)=OF and G(1; �), and the only OF -models for (�3)=F are G(0; 1) �= (�3)=OF and G(2; 1). Ineach case, by Lemma 5.7.1, the base change to OF 0 admits unique descent data over Q3 compatible with thecanonical descent data on the generic �bre of Z=3Z (resp. �3) over Q3. We will refer to this descent dataas the standard descent data on these �nite 
at group schemes.7.2. Rank two calculations.Lemma 7.2.1. The group of extensions of M(2; 1) by M(1; �) over OF is parametrised by c 2 F3. TheBreuil module M(1; �; 2; 1; c) corresponding to c is free of rank two over F3[u]=u9 with a basis fe1; e!g suchthat� M1 = hue1; u2e! + ce1i, 52



� �1(ue1) = �e1, �1(u2e! + ce1) = e!,� N(e1) = 0, N(e!) = cu6e1.The standard descent data on M(2; 1)0 and M(1; �)0 extends uniquely to descent data on M(1; �; 2; 1; c)0. Thecorresponding representations G3 ! GL2(F3) are of the form� ! �0 1 �and are peu rami��e. Any such peu-rami��e extension arises for a suitable choice of c.Proof. The classi�cation of extensions of Breuil modules follows from Lemma 5.2.2. Next, we compute Non M = M(1; �; 2; 1; c). (We will not in fact need the result of this computation of N , but the calculationis given here as a representative sample of calculations needed later in more complicated settings.) By thelast part of Lemma 5.2.1, N(e1) = 0 and N(e!) = ge1 for some g 2 F3[u]=ue` divisible by u. In F3[u]=u9we compute c� = ��(G�(u)) = �(u2 � �)3 = �u6 + �;so �u6c� = u6:Using the de�ning properties of N , we compute in F3[u]=u9N(e!) = N � �1(u2e! + ce1)= � �N(u2e! + ce1)= �(�u2e! + u2N(e!))= �1c� (�u5e! + u5N(e!))= �1c� (�u3(u2e! + ce1) + cu3e1 + u5Ne!))= �1c� (cu3e1)since u5N(e!) 2 u6M = u3 � u3M � u3M1 and the Frobenius-semilinear �1 must kill u3M1. Thus,N(e!) = �1c� (cu2 � ue1) = cu6c� �1(ue1) = c�u6c� e1 = cu6e1:To see existence and uniqueness of the descent data onM(1; �; 2; 1; c)0 compatible with the standard descentdata on M(1; �)0 and M(2; 1)0 we will work on the side of �nite 
at group schemes. Because G(1; �; 2; 1; c)0 isthe unique extension of G(1; �)0 by G(2; 1)0 with generic �bre G(1; �; 2; 1; c)0�F 0 (by Lemma 4.1.2), uniquenessreduces to the corresponding questions on the generic �bre, which follows from the injectivity ofH1(G3; !) �! H1(GF 0 ; !):For existence it su�ces to exhibit a continuous representation G3 ! GL2(F3) of the form� ! �0 1 �which is peu rami��e but not split, with restriction to GF corresponding to a local-local �nite 
at OF -groupscheme G. By Theorem 5.3.2 of [Man] we can �nd an elliptic curve E=Q3 such that E[3] furnishes the desiredexample. This also proves the �nal two assertions of the lemma.Lemma 7.2.2. Suppose that eF1 is a totally rami�ed abelian cubic extension of Q3 and suppose that G is alocal-local �nite 
at O eF1-group scheme killed by 3 such that G � eF1 is an extension of Z=3Z by �3. ThenG�O eF1 eF1 �= G�Q3 eF1 for some �nite 
at Q3-group scheme G.53



Proof. As in the proof of the last lemma we see that M�(G) �= M(1; 1; 2; 1; c) for some c 2 F3. As the onlyaction of Gal( eF1=Q3) on a one dimensional F3-vector space is trivial, we see that each such c gives a classin H1(G eF1 ; !) which is invariant by Gal( eF1=Q3). ButH1(G3; !) ��! H1(G eF1 ; !)Gal( eF1=Q3);and so the lemma follows.Lemma 7.2.3. The group of extensions of M(1; �) by M(2; 1) over OF is isomorphic to the group of linearpolynomials c+ c0u in F3[u]. The Breuil module M(2; 1; 1; �; c+ c0u) corresponding to c+ c0u is free of ranktwo over F3[u]=u9 with a basis fe!; e1g such that� M(2; 1; 1; �; c+ c0u)1 = hu2e!; ue1 + (c+ c0u)e!i,� �1(u2e!) = e!, �1(ue1 + (c+ c0u)e!) = �e1,Each M(2; 1; 1; �; c+ c0u)0 admits unique descent data compatible with the standard descent data on M(1; �)0and M(2; 1)0. As c; c0 vary over F3 the corresponding descent to Q3 of the generic �bre of G�(M(2; 1; 1; �; c+c0u)0) runs over all 9 extensions of �3 by Z=3Z. The corresponding representation of G3 is peu rami��e ifand only if c = 0.Proof. The classi�cation of extensions of Breuil modules follows from Lemma 5.2.2. The uniqueness ofthe descent data on M(2; 1; 1; �; c+ c0u)0 follows from Lemma 4.1.2 and the injectivity of H1(G3; !�1) �!H1(GF 0 ; !�1) as in the proof of Lemma 7.2.1. Note that Frobenius vanishes on the Dieudonn�e module ofG(2; 1; 1; �; c+ c0u) if and only if c = 0. Thus the lemma will follow if for each 3-torsion extension G of �3by Z=3Z over Q3 which is tr�es rami��e, we can �nd a �nite 
at OF -group scheme G such that� the generic �bre of G is isomorphic to G� F ,� the closed �bre of G is local-local� and Frobenius is not identically zero on D(G).The splitting �eld of G contains a cube root of 3v for some v � 1 mod 3, where the three choices of v mod 9correspond to the three choices of tr�es rami��e �. The calculations in x5.3 of [Man] give explicit additivereduction elliptic curves E and E0 over Q3 with E[3] ' E0[3] ' G, where E acquires good supersingularreduction over the non-Galois cubic rami�ed extensionQ3[X ]=(X3 � 3X + 2b);with b2 = 1+ 3v, and E0 acquires good supersingular reduction over the abelian cubic rami�ed extension ofQ3 with norm group generated by 3v mod (Q�3 )3. The appropriate G are provided by the 3-torsion on theN�eron models of E or E0 over OF .Corollary 7.2.4. Suppose that G is a �nite 
at OF -group scheme and that f[g]g is descent data on G0 =G� OF 0 such that (G0; f[g]g)Q3(Q3) corresponds to �. ThenM�(G) �=M(2; 1; 1; �; c+ c0u)for some c; c0 2 F3 with c 6= 0.Proof. From the connected-�etale exact sequence and its dual we see that G � F3 must be local-local. Thecorollary now follows from Lemma 7.2.3 and the discussion of x7.1.Lemma 7.2.5. The group of extensions of M(1; �) by M(1; �) over OF is isomorphic to the group of linearpolynomials b+ b0u in F3[u]. The Breuil module M(1; �; 1; �; b+ b0u) corresponding to b+ b0u is free rank twoover F3[u]=u9 with a basis fe; e0g such that� M(1; �; 1; �; b+ b0u)1 = hue; ue0 + (b+ b0u)ei,� �1(ue) = �e, �1(ue0 + (b+ b0u)e) = �e0,This extension splits over an unrami�ed extension if and only if b = 0. If F 0=Q3 is non-abelian, then anydescent data on M(1;�1; 1;�1; b+ b0u)0 compatible with the standard descent data on M(1;�1)0 satis�esb
2e = e; b
2e0 = e0;d
�13 (e) = H
�13 (u)3e; d
�13 (e0) = H
�13 (u)3e0 + h
�13 (u)e54



where h
�13 (0) = �bH 0
�13 (0):Proof. The classi�cation of extensions of Breuil modules follows from Lemma 5.2.2. The computation ofwhich of these split over an unrami�ed extension follows from Lemma 5.2.2 and Corollary 5.4.2.Now suppose that F 0=Q3 is non-abelian. By Lemma 5.7.1, the only issue is to compute h
3(0). SinceH
3(0) � 1 mod 3, by evaluating the congruenceb
3 � �01 � �01 � b
3 mod uM(1;�1; 1;�1; b+ b0u)0on ue0 + (b+ b0u)e and comparing constant terms of the coe�cients of e on both sides we geth
3(0) = h
3(0)3 + b�1�H
3(u)u �3 ju=0 = h
3(0)3 � bH 0
3(0)3 = h
3(0)3 + bH 0
3(0)in F9, where we have used the equality H 0
3(0)2 � �1 mod 3 (see x6.2).In other words h
3(0) is a root of T 3 � T + bH 0
3(0) = 0. Since H 0
3(0)2 = �1, we must have h
3(0) =�bH 0
3(0) + a for some a 2 F3. Since 
2(H
3(u)) = H
�13 (u) and 
2(h
3(u)) = h
�13 (u) are forced by theidentity 
2(�) = �, we see that h
�13 (0) = �bH 0
�13 (0) + a for the same a 2 F3. The identityb
3 �d
�13 � �01 � �01 mod uM(1;�1; 1;�1; b+ b0u)0then implies h
3(0) + h
�13 (0) = 0, so a = 0.Lemma 7.2.6. The group of extensions ofM(2; 1) byM(2; 1) over OF is isomorphic to the group of quadraticpolynomials vanishing at 0, (b+ b0u)u, in F3[u]. The Breuil module M(2; 1; 2; 1; (b+ b0u)u) corresponding to(b+ b0u)u is free rank two over F3[u]=u9 with a basis fe; e0g such that� M(2; 1; 2; 1; (b+ b0u)u)1 = hu2e; u2e0 + (b+ b0u)uei,� �1(u2e) = e, �1(u2e0 + (b+ b0u)ue) = e0,This extension splits over an unrami�ed extension if and only if b = 0. If F 0=Q3 is non-abelian, then anydescent data on M(2; 1; 2; 1; (b+ b0u)u)0 compatible with the standard descent data on M(2; 1)0 satis�esb
3(e) = H
3(u)6e; b
3(e0) = H
3(u)6e0 + h
3(u)ewhere h
3(0) = �bH 0
3(0):The sign in h
3(0) = �bH 0
3(0) will be very important in x7.4. The proof of this lemma is essentially thesame as that of Lemma 7.2.5, but we repeat it anyway.Proof. The classi�cation of extensions of Breuil modules follows from Lemma 5.2.2. The computation ofwhich of these split over an unrami�ed extension follows from Lemma 5.2.2 and Corollary 5.4.2.Now suppose that F 0=Q3 is non-abelian. By Lemma 5.7.1, the only issue is to compute h
3(0). SinceH
3(0) � 1 mod 3, by evaluating the congruenceb
3 � �01 � �01 � b
3 mod uM(2; 1; 2; 1; (b+ b0u)u)0on ue0 + (b+ b0u)e and comparing constant terms of the coe�cients of e on both sides we geth
3(0) = h
3(0)3 + b�1�H
3(u)u �3 ju=0 = h
3(0)3 � bH 0
3(0)3 = h
3(0)3 + bH 0
3(0)in F9, where we have used the equality H 0
3(0)2 = �1 (see x6.2).In other words h
(0) is a root of T 3 � T + bH 0
3(0) = 0. Since H 0
3(0)2 = �1, we must have h
3(0) =�bH 0
3(0) + a for some a 2 F3. Since 
2(H
3(u)) = H
�13 (u) and 
2(h
3(u)) = h
�13 (u) are forced by theidentity 
2(�) = � we see that h
�13 (0) = �bH 0
�13 (0) + a for the same a 2 F3. The identityb
3 �d
�13 � �01 � �01 mod uM(2; 1; 2; 1; b+ b0u)055



then implies h
3(0) + h
�13 (0) = 0, so a = 0.7.3. Rank three calculations.Lemma 7.3.1. Suppose that G is a �nite 
at group scheme over OF which is killed by 3. Suppose that thereis a �ltration by closed �nite 
at subgroupschemes G1 � G2 � G such that G1 �= G(1; �), G2=G1 �= G(2; 1)and G=G2 �= G(1; �). Suppose �nally that G2 �OF F 0 descends to Q3 in such a way that it is a tr�es rami��eextension of �3 by Z=3Z. Then G=G1 �= G(2; 1)� G(1; �)compatibly with the extension class structure.Proof. Let M =M�(G) and N =M�(G=G1). Using Lemmas 7.2.1 and 7.2.3 we see that we can write� M = (F3[u]=u9)e1 � (F3[u]=u9)e! � (F3[u]=u9)e01,� M1 = hue1; u2e! + be1; ue01 + (c+ c0u)e! + fe1ifor b; c; c0 2 F3 with c 6= 0 and with f 2 F3[u]=u9. It su�ces to show b = 0. Since we must have u3M �M1,we see that(c+ c0u)(u2e! + be1)� u2(ue01 + (c+ c0u)e! + fe1) + u3e01 = (bc+ bc0u� u2f)e1 2M1 :The Breuil module N is spanned as a F3[u]=u9-module by e1 and e!, so by Lemma 7.2.1 u must dividebc+ bc0u� u2f . As c 6= 0 we must have b = 0, as desired.Combining this with Lemma 7.2.1 and the injectivity of H1(G3; !) ! H1(GF 0 ; !) we get the followingcorollary, which is also the �rst part of Theorem 4.7.3.Corollary 7.3.2. The natural map �0 : Ext1S�1(�; �) �! H1(G3; !)is zero.7.4. Conclusion of proof of Theorem 4.4.1. Consider �rst the case of F1. We still have to explain why�! : H1S1(G3; ad0 �) �! H1(I3;F3)is zero. Suppose x 2 H1S1(G3; ad0 �) does not map to zero in H1(I3;F3).By our hypothesis on x we may choose a totally rami�ed abelian cubic extension eF1=Q3 such that xrestricts to zero under the natural map H1(G3; ad0 �) ! H1(G eF1 ;F3). Then the image of x under thenatural map H1(G3; ad0 �) ! H1(G eF1 ; �
 !) is the image of some ex 2 H1(G eF1 ; !) under the natural mapH1(G eF1 ; !) ! H1(G eF1 ; � 
 !). The element ex parametrises a �nite 
at eF1-group scheme H which is anextension of �3 by Z=3Z and which is a subquotient of the restriction to G eF1 of the extension of � by itselfparamitrised by x. It follows that H has a �nite 
at model H=O eF1 (see Lemma 4.1.1) and the special �bre ofH must be local-local (if ex = 0 then the extension of � by itself parametrised by x splits over eF1 and this isclear, while if ex 6= 0 we would otherwise get a contradiction from the connected-�etale sequence). By Lemma7.2.2, we may therefore lift ex to H1(G3; !). Using the commutative diagramH1(G3; !) �! H1(G3; �
 !)res # # resH1(G eF1 ; !) �! H1(G eF1 ; �
 !)and noting that the right hand vertical map is injective we conclude thatx 2 H1S1(G3; ad0 �) � H1(G3; �
 !)is in the image of H1(G3; !) ! H1(G3; � 
 !), a contradiction with the hypothesis that even the image ofx in H1(I3;F3) is non-zero.Now consider the case F 0 = F 0�1 which is nonabelian over Q3. We must show that�! : Ext1S�1(�; �) �! H1(I3;F3)56



is zero.An element x 2 Ext1S�1(�; �) gives rise to a �nite 
at OF�1-group scheme G killed by 3 and descent dataf[g]g for F 0�1=Q3 on G0 = G �OF 0�1 F 0�1, such that (G0; f[g]g)Q3 corresponds to the extension of � by itselfclassi�ed by x. Let N denote the Breuil module for G and let N0 = N 
 F9. According to Lemmas 7.2.1,7.2.3, 7.2.5, 7.2.6 and 7.3.1 we see that we can writeN = (F3[u]=u9)e! � (F3[u]=u9)e1 � (F3[u]=u9)e0! � (F3[u]=u9)e01with N1 = hu2e!; ue1 + (c+ c0u)e!; u2e0! + (au+ a0u2)e!; ue01 + (c+ c0u)e0! + (b+ b0u)e1 + he!i(7.4.1)where h 2 F3[u]=u9 is some polynomial and where a; a0; b; b0; c; c0 2 F3 with c 6= 0 (as � is tr�es rami��e). ByLemma 7.2.6 what we must show is that a = 0.Note that H 0
3(0) 6= 0 in F9 by x6.2. By Lemmas 5.7.1 and 7.2.1, the action b
3 is determined byb
3(e!) = H
3(u)6e!; b
3(e1) = H
3(u)3e1 + g
3(u)e0!; b
3(e0!) = H
3(u)6e0! + h
3;!(u)e!;b
3(e0!) = H
3(u)3e01 + g
3(u)e0! + h
3;1e1 +G
3(u)e!;where g
3(u); G
3(u) 2 F9[u]=u9 and h
3;! and h
3;1 are as in Lemmas 7.2.6 and 7.2.5 respectively.Due to the requirement b
3(N01) � N01, we must haveb
3(ue01 + (c+ c0u)e0! + (b+ b0u)e1 + h(u)e!) 2 N01;and this element is obviously equal to(uH
3)(H3
3e01 + g
3e0! + h
3;1e1 +G
3e!) + (c+ c0uH
3)(H6
3e0! + h
3;!e!)++(b+ b0uH
3)(H3
3e1 + g
3e!) + h(uH
3)H6
3e!:We now try to express this as a linear combination of the generators of N01 listed in (7.4.1), while workingmodulo hu3N0; u2e!i � N01. Using that H
3(0) = 1 in F9 and h(uH
3) � h(u) mod u2, we arrive at theexpressionH
3(ue01 + (c+ c0u)e0! + (b+ b0u)e1 + he!) +�c((1�H
3)=u) + g
3u � (u2e0! + (au+ a0u2)e!)+�H
3h
3;1 + b�1�H
3u �� (ue1 + (c+ c0u)e!) + F
3(u)e!;where F
3(u) = uH
3G
3 + (c+ c0uH
3)h
3;! + (b+ b0uH
3)g
3 + h(u)(1�H
3)�(a+ a0u)(c(1�H
3)=u+ g
3)� (c+ c0u)(H
3h
3;1 + b((1�H
3)=u))in F9[u]=u9. In particular, c(1 � H
3(u))=u + g
3 � 0 mod u and F
3(u) � 0 mod u2. The conditionc((1�H
3)=u) + g
3 � 0 mod u can be reformulated asg
3(0) = cH 0
3(0):Since F
3(u) � 0 mod u2, we have to have F
3(0) = 0. But a direct calculation using g
3(0) = cH 0
3(0)and the de�nition of F
3 givesF
3(0) = 0 + ch
3;!(0) + bg
3(0) + 0� 0� c(h
3;1(0)� bH 0
3(0)) = c(h
3;!(0)� h
3;1(0)� bH 0
3(0));so the non-vanishing of c forces h
3;!(0)� h
3;1(0) = bH 0
3(0):Lemmas 7.2.6 and 7.2.5 give us the valuesh
3;!(0) = �aH 0
3(0); h
3;1(0) = �bH 0
3(0):Thus (�a + b)H 0
3(0) = bH 0
3(0), and so a = 0. This completes the proof of Theorem 4.7.3 and hence ofTheorem 4.4.1. 57



8. Proof of Theorem 4.5.1.In this section we will keep the notation of x4.5 and either x6.3 or x6.4 (depending if we are working withS3 or S�3). We will set � = �1 in the case of S�3 (so that c� � � mod (3; u). Note the signs. We will writeF for F�3, F 0 for F 0�3 and I for I�3. If G (resp. M) is a �nite 
at OF -group scheme (resp. Breuil moduleover OF ) we will write G0 (resp. M0) for the base change to OF 0 .8.1. Rank one calculations. We remark that with our choice of polynomials Hg(u) in x6.3 and x6.4, anyobject M in �1DDF 0=Q3 has an action of h
2; 
4i (via b
2 and b
4, the action of 
2 being Frob3-semilinear).Also, since 
3 and 
2 commute, H
2 = 1 and H
�13 (u) 2 Z3[u], we see that b
2 must commute with d
�13 byCorollary 5.6.2.We recall from Lemma 5.2.1 that the only models for (Z=3Z)=F overOF are G(r; �) for r = 0; 2; 4; 6; 8; 10; 12with G(12; �) �= (Z=3Z)=OF , and the only models for (�3)=F over OF are G(r; 1) for r = 0; 2; 4; 6; 8; 10; 12with G(0; 1) �= (�3)=OF . In each case, the base change to OF 0 admits unique descent data over Q3 suchthat descent of the generic �bre to Q3 is Z=3Z (resp. �3). (See Lemma 5.7.1.) We will write G0r;1 (resp.G0r;!) for the corresponding pair (G(r; �) � OF 0 ; f[g]g) (resp. (G(r; 1) � OF 0 ; f[g]g)). We will also let M0r;1(resp. M0r;!) denote the corresponding object of �1DDF 0=Q3 . In particular, for � = 1 or !, the underlyingF9[u]=u36-module has the form (F9[u]=u36)e� with e� the standard generator, though we write e ratherthan e� if � is understood.We have the following useful lemma.Lemma 8.1.1. Let 0 � r � e = 12 be an even integer. The descent data on M0r;1 is determined byb
2(e) = e; b
4(e) = �(�p�1)r=2e; d
�13 (e) = H
�13 (u)�3r=2e;and the descent data on M0r;! is determined byb
2(e) = e; b
4(e) = (�p�1)r=2e; d
�13 (e) = H
�13 (u)�3r=2e:In particular, 
24 = �1 on D(G0r;1) if and only if 
24 = �1 on D(G0r;!) if and only if r = 2, 6 or 10.Proof. Certainly b
2(e) = e. We have already seen in Lemma 5.7.1 that descent data must exist in each case,so our task is to compute the unique units �
4 ; �
3�1 2 (F9[u]=u36)� so thatb
4(e) = �
4e; [
3�1(e) = �
3�1ecorresponds to generic �ber descent data for the mod 3 cyclotomic or trivial character on G3. The case of
3�1 follows from Lemma 5.7.1.From the condition b
4 � �01(ure) = �01 � b
4(ure)we get �2
4(u) = (�p�1)r, so �
4(u) = �(�p�1)r=2:The non-zero morphismsMr;1 !M12;1 are given by e 7! �u3(12�r)=2e and the non-zero morphismsM0;! !Mr;! are given by e 7! �u3r=2e. Thus, it su�ces to check that b
4e = e on M012;1 and b
4e = e on M00;!. Inboth cases we have shown that b
4e = �e and so we only need to check that 
4 = 1 on D(G012;1) and D(G00;!).That is, we have to show that the OF 0-group scheme maps Z=3Z ! 
4(Z=3Z) and �3 ! 
4�3 arising fromthe canonical generic �bre descent data induce the identity on the special �bres. This is easy.Lemma 8.1.2. Let M be an object of �1�modF corresponding to a �nite 
at group scheme G and let f[g]gbe descent data on G0 = G� OF 0 relative to Q3. Assume that (G0; fbgg)Q3 can be �ltered so that each gradedpiece is isomorphic to Z=3Z or �3 and so that the corresponding �ltration of (M0; fbgg) in �1DDF 0=Q3 hassuccessive quotients of the form M0rj ;�j with rj 2 f2; 6; 10g and �j 2 f1; !g. Then 
24 = �1 on M0 =uM0 andthere exists a basis fejg of M over F3[u]=u36 so that for all j58



� ej 2 �1(M1),� ej is an eigenvector of the F9-linear map b
4 on M0,� ej lies in the part of the �ltration of M0 which surjects onto M0rj ;�j and this surjection sends ej ontothe standard basis vector e of M0rj ;�j over F9[u]=u36.Proof. Since 
24 acts linearly onM0 =uM0 and (
24)2 = 1, the action of 
24 must be semisimple. The eigenvaluesof 
24 are all equal to �1, so necessarily 
24 = �1 on M0 =uM0.We now argue by induction on the number of Jordan-H�older factors in the generic �ber, the case of length1 being clear. Thus, we can assume we have a short exact sequence in �1DDF 0=Q30! N0 !M0 !M0r;� ! 0;so the lemma is known for N0. We just have to �nd e0 2 �1(M1) mapping onto the standard basis vectore in M0r;� such that e0 is an eigenvector of b
4. Since �01(M01) ! �01((M0r;�)1) is a surjective map of F9-vector spaces which is compatible with the semisimple F9-linear endomorphism b
4 on each side, we can �nde00 2 �01(M01) mapping onto e with e00 an eigenvector of b
4, say b
4(e00) = (p�1)�1e00. Sinceb
4 � b
2(e00) = b
2 � b
34(e00) = b
2(p�1�1e00) = p�1�1b
2(e00);the element e0 = (1=2)(e00 + b
2(e00)) maps to e and is an an eigenvector for b
4. Also, e0 2 �01(M01) isb
2-invariant and b
2 commutes with �01, so e0 2 �1(M1).8.2. Models for �.Proposition 8.2.1. There exists a unique object (G0; f[g]g) of FDF 0=Q3;I such that (G0; f[g]g)Q3 corre-sponds to �. If we set (M(�)0; fbgg) = M�(G0; f[g]g) then (M(�)0; fbgg) is an extension of M02;! by M010;1in �1DDF 0=Q3 . Moreover Frobenius is not identically zero on D(G0).Proof. Let (G0; f[g]g) be an object of FDF 0=Q3;I such that (G0; f[g]g)Q3 corresponds to �, and set (M0; fbgg) =M�(G0; f[g]g). As in the discussion following Theorem 5.6.1, we have canonicallyM0 ' F9
F3M for a Breuilmodule M over OF , with b
2 acting as 
2 
 1. By Lemma 8.1.1, there is a short exact sequence of Breuilmodules over OF 0!M(s; �)!M!M(r; 1)! 0with r; s 2 f2; 6; 10g and this is compatible with descent data after base change to OF 0 in the sense that weobtain an exact sequence 0!M0s;1 !M0 !M0r;! ! 0compatible with descent data. Because � is tr�es rami��e, it follows that �jGF 0 is non-split, so the sequence0!M(s; �)!M!M(r; 1)! 0is non-split.We �rst show that we must have (r; s) = (2; 10). Since � is self-dual, in order to prove (r; s) = (2; 10) wemay use Cartier duality (and Lemma 5.2.1) in order to reduce to the case where r + s � e = 12. We will�rst rule out cases with r � s and then the case (r; s) = (2; 6).By Lemmas 8.1.1 and 8.1.2, we can writeM = (F3[u]=u36)e1 � (F3[u]=u36)e0!; M1 = huse1; ure0! + he1ifor some h 2 F3[u]=u36 so that �1(use1) = �e1; �1(ure0! + he1) = e0!and b
4(e1) = �(�p�1)s=2e1; b
4(e0!) = (�p�1)r=2e0!:Recall from Lemma 5.2.2 that the `parameter' h gives an isomorphism of abstract groups(F3[u]=u36)=fust� �urt3jt 2 F3[u]=u36g ' Ext1�1�modF (M(r; 1);M(s; �)):59



It is easy to see that b
4(M01) �M01; b
4 � �01 = �01 � b
4 on M01if and only if b
4(ure0! + he1) 2M01 and b
4(e0!) = �01 � b
4(ure0! + he1), or equivalently(p�1)r=2h(u) � �(�p�1)s=2h(�p�1u) mod u12+s:This says exactly that j � 2� (r + s)=2 mod 4(8.2.1)for any j < 12 + s with a non-zero uj term appearing in h.If (r; s) = (6; 2) this would force h � 0 mod u2, yet fu2t � �u6t3jt 2 F3[u]=u36g contains all multiples ofu2, so 0!M(2; �)!M!M(6; 1)! 0is split, a contradiction.When (r; s) = (10; 2) or (r; s) = (2; 2) we see that h � h(0) mod u4, yetu4(F3[u]=u36) � fust� �urt3jt 2 F3[u]=u36g;so the choice of e0! may be changed in order to arrange thath 2 F3(though making this change of basis of M may destroy the `diagonal' form of b
4). Since0!M(s; �)!M!M(r; 1)! 0is non-split, necessarily h 6= 0, so by rescaling e0! it can be assumed that h = 1. Then VM(e0!) � e1 mod uM(by Theorem 5.1.3) and �(e0!) � �(�=c�)u3(12�r�s)e1 � �u3(12�r�s)e1 mod uM :This forces r + s = 12. In particular, (r; s) = (2; 2) is ruled out.For (r; s) = (10; 2), a splitting of the generic �ber �jF is induced by the Breuil module mapM(0; 1)!Mde�ned by e 7! u15e0! + u3fe1 = u5(u10e0! + e1) + (uf � u3)u2e1;where f 2 F3[u]=u36 satis�es f3 � �f = u6 (i.e., f = ��u6 � u18, and a constant c 2 F3 can even be addedto this if � = 1). But �jGF 0 must be non-split, so this rules out (r; s) = (10; 2).The remaining case with r � s is (r; s) = (6; 6). In this case fust � �urt3jt 2 F3[u]=u36g contains allmultiples of u8. But we have j � 0 mod 4 for all j < 12 + s = 18 such that a non-zero uj term appears inh, so again (at the expense of possibly making the b
4-action non-diagonal) we may assumeh = c+ c0u4for some c; c0 2 F3. Writing b
4(e0!) = (p�1)e0! + h
4(u)e1, the commutativity of b
4 and �01 amounts toh
4 = ��h3
4 , so h
4(u) = bp�� for some b 2 F3. The condition b
44(e0!) = e0! forces b = 0, so b
4 still hasdiagonal action. This analysis shows that the map of F3-vector spacesExt1�1DDF 0=Q3 (M06;!;M06;1)! Ext1�1�modF (M(6; 1);M(6; �))has at most a 2-dimensional image. If c0 + �c = 0, then the Breuil module mapF9 
M(0; 1)!M0de�ned by e 7! c�u7e1 + u3(u6e0! + (c+ c0u4)e1);60



gives a splitting of the corresponding representation of GF 0 . Thus the image ofExt1�1DDF 0=Q3 (M06;!;M06;1)! Ext1F3[GF 0 ](1; !)(8.2.2)is at most one dimensional and, because �jGF 0 is non-split, the pair (c; c0) corresponding to a model of �satis�es c0 + �c 6= 0.At this point, we treat the cases � = �1 separately. Consider �rst the case � = 1. We must haveb
3(e1) = H
3(u)�9e1; b
3(e0!) = H
3(u)�9e0! + h
3(u)e1;where h
3(u) 2 F9[u]=u36 lies in F3[u]=u36 because b
3 commutes with b
2. Evaluating b
3 � �01 � �01 �b
3 mod uM0 on u6e0! + (c+ c0u4)e1 2M01 and using our knowledge of H
3(u) mod 3, we arrive ath
3(0) = �(h
3(0)3 + (c+ c0));which is impossible for h
3(0) 2 F3 with � = 1 because c+ c0 = c+ �c0 2 F�3 .Now let us turn to the case � = �1, still in the case (r; s) = (6; 6). In this case Ext1F3[G3](1; !) !Ext1F3[GF 0 ](1; !) is injective and so by (8.2.2) we see that the image ofExt1�1DDF 0=Q3 (M06;!;M06;1)! Ext1F3[G3](1; !)is at most one dimensional. Thus to exclude the case (r; s) = (6; 6) and � = �1, it su�ces to show that thisimage contains the peu rami��e line (as � is tr�es rami��e). By Proposition 5.2.1 of [Man], there is an ellipticcurve E0=Q3 which has supersingular reduction overQ3(p�1; �), with �E0;3 a non-split, peu rami��e extensionof 1 by !. The representation �E0;3jF 0 is non-split (again because H1(G3; !)! H1(GF 0 ; !) is injective in the� = �1 case). Let N0 be the Breuil module corresponding to the 3-torsion on the N�eron model of E0�Q3 F 0,so N0 admits descent data fbg0g via the universal property of N�eron models. The �ltration of � induces ashort exact sequence in �1DDF 0=Q30!M0a;1 ! (N0; fbg0g)!M0b;! ! 0for some even a; b with 2 � a; b � 10. The N�eron model of E0�Q3 Q3(p�1; �) has local-local 3-torsion, andthe induced local-local integral models G! and G1 of the diagonal characters !jQ3(p�1;�) and 1jQ3(p�1;�)must be the unique local-local models (uniqueness follows from Corollary 1.5.1 of [Ra]). Moreover, Corollary1.5.1 of [Ra] makes it clear that base change to OF 0 takes the order 3 group schemes G! and G1 to theintegral models that lie in the middle of the well-ordered sets of integral models of !jF 0 and 1jF 0 . It followsthat a = b = 6, so the map Ext1�1DDF 0=Q3 (M06;!;M06;1)! Ext1F3[G3](1; !)indeed hits the peu rami��e line.We next exclude the case (r; s) = (2; 6). As a �rst step, we check that there is at most one possibility forthe underlying Breuil module M (ignoring the extension class structure) if (r; s) = (2; 6). We can writeM = (F3[u]=u36)e1 � (F3[u]=u36)e0!; M1 = hu6e1; u2e0! + he1ifor some necessarily non-zero h 2 F3[u]=u36 with�1(u6e1) = �e1; �1(u2e0! + he1) = e0!and b
4(e1) = �p�1e1; b
4(e0!) = �p�1e0!:The combined conditions b
4(M01) �M01 and �01 � b
4 = b
4 � �01 on M01 are equivalent toh(u) � �h(�p�1u) mod u18:Since fu6t��u2t3jt 2 F3[u]=u36g contains u6��u2 and all multiples of u9, we may change e0! (at the expenseof possibly losing the diagonal form for b
4) so that h = cu2 for some c 2 F3. Since h is necessarily non-zero,61



we may rescale to get h = u2, so there is indeed at most one possibility for the underlying Breuil module Mwhen (r; s) = (2; 6).Again we treat the cases � = �1 separately. Consider �rst the case � = �1. We have seen above thatthere is an extension E6;6 = (N0; fbg0g) of M06;! by M06;1 in �1DDF 0=Q3 corresponding to a non-split, peurami��e extension of 1 by !. Pulling back E6;6 by a non-zero mapM02;! !M06;!in �1DDF 0=Q3 given by e 7! �u6e, we get an extension E2;6 of M02;! by M06;1 in �1DDF 0=Q3 correspondingto a non-split, peu rami��e extension of 1 by !. The underlying Breuil module of E2;6 must be isomorphic toF9 
F3 M for our uniquely determined M (with h = u2). By the injectivity of H1(G3; !) ! H1(GF 0 ; !) inthe � = �1 case, we conclude that F9
F3 M cannot admit descent data giving rise to a tr�es rami��e elementin Ext1F3[G3](1; !). This rules out the case (r; s) = (2; 6) and � = �1.Now turn to the case (r; s) = (2; 6) and � = 1. We will show that with the Breuil module M constructedabove (with h = u2), the Breuil module M0 = F9 
F3 M does not admit descent data relative to F 0=Q3(with b
2 = 
2 
 1, without loss of generality). One checks that N(e1) = N(e0!) = 0, soN � �1 = 0:We must have b
3(e1) = H
3(u)�9e1; b
3(e0!) = H
3(u)�3e0! + h
3(u)e1for some h
3 2 F9[u]=u36. As usual, since b
3 and b
2 must commute, we have h
3 2 F3[u]=u36. The conditionb
3(M01) �M01 is equivalent to b
3(u2e0! + u2e1) 2M01;which amounts to h
3(u) � H�3
3 �H�9
3 � 0 mod u4;so b
3(u2e0! + u2e1) = H
3(u)�1(u2e0! + u2e1) + h
3 �H�3
3 +H�9
3u4 !H2
3u6e1:As N � �1 = 0, we have b
3 � �01 = �01 � b
3on M01. Evaluating this identity on u2e0! + u2e1 2M1 givesh
3 = H6
3 � h
3 �H�3
3 +H�9
3u4 !3 ;so h
3 is a cube. Thus, h
3 = u6g
3 for some g
3 2 F3[u]=u36.Since H3
3 � 1 + u6 mod u12, we computeH�9
3 �H�3
3 � u6 mod u12;so h
3 � H6
3 � �h
3u4 �3 + u6! mod u7and g
3(0) = g
3(0)3 + 1in F3. This is absurd. This rules out all possibilities for (r; s) aside from (r; s) = (2; 10). Uniqueness nowfollows from Corollary 4.1.5.From Theorem 5.4.2 of [Man] and Proposition B.4.2 of [CDT] we see that there is an elliptic curve E=Q3such that E[3](Q3) �= � and �E;3 has type ��3. Let E denote the N�eron model of E�Q3 F 0 over OF 0 . By theN�eron property of E=OF 0 we see that E[31] has descent data over Q3. As in x4.5 we see that I annihilates62



the Dieudonn�e module of E[31]�F9. Thus M(�)0 �=M�(E[3]) in �1DDF 0=Q3 and it follows that Frobeniusis non-zero on D(G0).8.3. Completion of proof of Theorem 4.5.1.Lemma 8.3.1. Let (G0; f[g]g) be the unique object of FDF 0=Q3;I such that (G0; f[g]g)Q3 corresponds to �.Set (M(�)0; fbgg) =M�(G0; f[g]g). The natural map of groupsExt1�1DDF 0=Q3 ((M(�)0; fbgg); (M(�)0; fbgg))! Ext1�1DDF 0=Q3 (M010;1;M02;!);using pushout by (M(�)0; fbgg)!M02;! and pullback by M010;1 ! (M(�)0; fbgg), is zero.Proof. Let ( eM0; fbgg) represent a class in Ext1�1DDF 0=Q3 ((M(�)0; fbgg); (M(�)0; fbgg)) and let (M0; fbgg) be itsimage in Ext1�1DDF 0=Q3 (M010;1;M02;!). By Lemma 5.2.2, M0 = F9 
M with b
2 = 
2 
 1 andM = (F3[u]=u36)e! � (F3[u]=u36)e01; M1 = hu2e!; u10e01 + (c+ c0u)e!i;with c; c0 2 F3. Also, �1(u2e!) = e!; �1(u10e01 + (c+ c0u)e!) = �e01;and b
4(e!) = �p�1e!; b
4(e01) = p�1e01 + h
4(u)e!for some h
4 2 F9[u]=u36.The properties b
4(M01) �M01 and b
4 � �01 = �01 � b
4 on M01 amount toc0 = 0; h
4 = ��h3
4u24;so h
4 = 0. If c = 0 then N � �1 = 0, so b
3 � �01 = �01 � b
3 on M01. From this we readily see that (M0; fbgg) issplit in �1DDF 0=Q3 , as desired.Now assume c 6= 0; we will deduce a contradiction. Consider the rank three Breuil module with descentdata (N; fbgg) = ( eM0; fbgg)=(M010;1; fbgg);where M010;1 ,!M(�)0 ,! eM0. Then N has an ordered basis fe!; e01; e0!g with respect to whichN1 = hu2e!; u10e01 + e!; u2e0! + he01 + (b+ b0u)e!ifor some b; b0 2 F9 and h = a+ a0u4 + a00u8 2 F9[u]=(u36) de�ned modulo fu10t� �u2t3g (see 8.2.1). Sinceour base �eld F 0 has absolute rami�cation degree 12, N1 containsu12e0! = u10(u2e0! + he01 + (b+ b0u)e!)� h(u10e01 + e!) + (h� u10(b+ b0u))e!:From the list of generators of N1, it is not di�cult to check that in the above expression for u12e0! 2 N1, u2must divide the coe�cient of e!. Thus a = 0.We must have N =he!i �=M(�)0. Since a = 0, M(�) has basis fe01; e0!g andM(�)1 = hu10e01; u2e0! + (a0u4 + a00u8)e01i:Since �1 for M(�) satis�es �1(u10e01) = �e01; �1(u2e0! + (a0u4 + a00u8)e01) = e0!;it follows immediately that � � 0 mod uM(�), which (using Theorem 5.1.3) contradicts Proposition 8.2.1.Corollary 8.3.2. The natural map �0 : Ext1S�3(�; �) �! H1(G3; !)is zero.Theorem 4.7.4, and hence Theorem 4.4.1, now follow from the �rst case of the following lemma. Weinclude the second case to simplify the proof. 63



Lemma 8.3.3. The maps of groupsExt1�1DDF 0=Q3 (M010;1;M010;1)! Ext1F3[G3](1; 1); Ext1�1DDF 0=Q3 (M02;!;M02;!)! Ext1F3[G3](!; !)have images inside the line of extension classes that split over an unrami�ed extension of Q3.Proof. Since H1(G3;Z=3) �! H1(GF 0 ;Z=3)is injective and induces an isomorphism between the subgroups of unrami�ed classes, it su�ces to check thatExt1�1DDF 0=Q3 (M010;1;M010;1)! Ext1�1�modF (1; 1); Ext1�1DDF 0=Q3 (M02;!;M02;!)! Ext1�1�modF (!; !)have images consisting of elements split over an unrami�ed extension of F . By Cartier duality it su�ces toconsider only the second map.Consider a representative (M0; fbgg) of an element in Ext1�1DDF 0=Q3 (M02;!;M02;!). Lemma 5.2.2 ensuresthat we can write M = (F3[u]=u36)e! � (F3[u]=u36)e0!; M1 = hu2e!; u2e0! + he!ifor some h = c+ c0u+ c00u2 with c; c0; c00 2 F3 and�1(u2e!) = e!; �1(u2e0! + he!) = e0!:We have b
4(e!) = �p�1e!; b
4(e0!) = �p�1e0! + h
4(u)e!for some h
4 2 F9[u]=u36, and the condition b
4(M01) �M01 is equivalent toh(u) � �h(�p�1u) mod u2;so c = c0 = 0. The Breuil module extension class M over OF (ignoring descent data) therefore only dependson the parameter c00 2 F3. We then have a splitting F3 
F3 M(2; 1)! F3 
F3 M determined bye 7! ae! + e0!where a 2 F3 satis�es a3 = a+ c00.9. Proof of Theorems 4.6.1, 4.6.2 and 4.6.3.In this section we will keep the notation of x4.6 and x6.5. We will write F for Fi, F 0 for F 0i and I for Ii.If G (resp. M) is a �nite 
at OF -group scheme (resp. Breuil module over OF ) we will write G0 (resp. M0)for the base change to OF 0 .9.1. Rank one calculations. We remark that with our choice of polynomials Hg(u) in x6.5, any object Min �1DDF 0=Q3 has an action of h
2; 
4i via b
2 and b
4. (The action of 
2 is Frob3-semilinear). Since 
3 and
2 commute and H
�13 (u) 2 Z3[u] we see that b
2 must commute with d
�13 (see Corollary 5.6.2).By Lemma 5.2.1, the only models for (Z=3Z)=F overOF are G(r; 1) for r = 0; 2; 4; 6; 8; 10; 12with G(12; 1) �=(Z=3Z)=OF , and the only models for (�3)=F over OF are G(r; 1) for r = 0; 2; 4; 6; 8; 10; 12 with G(0; 1) �=(�3)=OF . Lemma 5.7.1 ensures that the base changes to OF 0 admit unique descent data over Q3 such thatdescent of the generic �bre to Q3 is Z=3Z (resp. �3). We will write G0r;1 (resp. G0r;!) for the correspondingpair (G(r; 1) �OF OF 0 ; f[g]g) (resp. (G(r; 1) �OF OF 0 ; f[g]g)). We will also let M0r;1 (resp. M0r;!) denote thecorresponding object of �1DDF 0=Q3 .We have the following useful lemmas, for which the proofs are identical to the proofs of Lemmas 8.1.1and 8.1.2. 64



Lemma 9.1.1. Let 0 � r � e = 12 be an even integer. The descent data on Mr;1 is determined byb
2(e) = e; b
4(e) = �(�p�1)r=2e; d
�13 (e) = H
�13 (u)�3r=2e;and the descent data on Mr;! is determined byb
2(e) = e; b
4(e) = (�p�1)r=2e; d
�13 (e) = H
�13 (u)�3r=2e:In particular, 
24 = �1 on D(Gr;1) if and only if 
24 = �1 on D(Gr;!) if and only if r = 2, 6 or 10.Lemma 9.1.2. Let M be an object of �1�modF corresponding to a �nite 
at group scheme G and let f[g]gbe descent data on G0 = G �OF OF 0 over Q3. Assume that (G0; fbgg)Q3 can be �ltered so that each gradedpiece is isomorphic to Z=3Z or �3 and so that the corresponding �ltration of (M0; fbgg) in �1DDF 0=Q3 hassuccessive quotients of the form M0rj ;�j with rj 2 f2; 6; 10g and �j 2 f1; !g. Then 
24 = �1 on M0 =uM0 andthere exists a basis fejg of M over F3[u]=u36 so that for all j� ej 2 �1(M1),� ej is an eigenvector of the F9-linear map b
4 on M0,� ej lies in the part of the �ltration of M0 which surjects onto M0rj ;�j and this surjection sends ej ontothe standard basis vector e of M0rj ;�j over F9[u]=u36.9.2. Models for �. Recall that we are assuming that � has the tr�es rami��e form� ! �0 1 � ;and is not split over F 0. We will let �1DDF 0=Q3;I denote the full subcategory of �1DDF 0=Q3 consisting ofobjects M0 for which the ideal I acts trivially on (M0=uM0)
F9;Frob3 F9.Proposition 9.2.1. Suppose that (M0; fbgg) is an object of �1DDF 0=Q3;I such that (M0; fbgg)Q3 is an exten-sion of Z=3Z by �3. Then we have an exact sequence(0) �!M0s;1 �!M0 �!M0r;! �! (0)with (r; s) = (2; 6), (6; 10), (2; 10) or (6; 6). Moreover we can write M0 = M 
F3 F9 with b
2 = 1 
 Frob3,where M has an F3[u]=(u36)-basis fe1; e0!g with e1 the standard basis element of M(s; 1) and e0! mapping tothe standard basis element of M(r; 1). More precisely we have the following exhaustive list of extension classpossibilities, all of which are well-de�ned. (N denotes the monodromy operator described in Lemma 5.1.2.)1. (r; s) = (2; 6): The natural mapExt1�1DDF 0=Q3;I(M02;!;M06;1)! Ext1F3[G3](1; !)is an isomorphism, with elements parameterized by pairs (c; c1) 2 F23 corresponding toM1 = hu6e1; u2e0! + cu2e1i; �1(u6e1) = e1; �1(u2e0! + cu2e1) = e0!(so N � �1 = 0) with b
4(e1) = �p�1e1; b
4(e0!) = �p�1e0!;d
�13 (e1) = e1; d
�13 (e0!) = (1� u18)(e0! � c1u6e1):The pairs with c = 0 are the ones which generically split over F 0. In all cases � � 0 mod uM.2. (r; s) = (6; 10): The natural mapExt1�1DDF 0=Q3;I(M06;!;M010;1)! Ext1F3[G3](1; !)is an isomorphism, with elements parameterized by pairs (c; c1) 2 F23 corresponding toM1 = hu10e1; u6e0! + cu6e1i; �1(u10e1) = e1; �1(u6e0! + cu6e1) = e0!65



(so N � �1 = 0) with b
4(e1) = p�1e1; b
4(e0!) = p�1e0!;d
�13 (e1) = (1� u18)e1; d
�13 (e0!) = e0! � c1u6e1:The pairs with c = 0 are the ones which generically split over F 0. In all cases � � 0 mod uM. Thesecases are Cartier dual to the (2; 6) cases above.3. (r; s) = (2; 10): The natural mapExt1�1DDF 0=Q3;I(M02;!;M010;1)! Ext1F3[G3](1; !)is an isomorphism, with elements parameterized by pairs (c; c1) 2 F23 corresponding toM1 = hu10e1; u2e0! + cu8e1i; �1(u10e1) = e1; �1(u2e0! + cu8e1) = e0!(so N � �1 = 0) with b
4(e1) = p�1e1; b
4(e0!) = �p�1e0!;d
�13 (e1) = (1� u18)e1; d
�13 (e0!) = (1� u18)(e0! � c1u12e1):The pairs with c = 0 are the ones which generically split over F 0. In all cases � � 0 mod uM.4. (r; s) = (6; 6): The natural mapExt1�1DDF 0=Q3;I(M06;!;M06;1)! Ext1F3[G3](1; !)is an isomorphism, with elements parameterized by pairs (c; c0) 2 F23 corresponding toM1 = hu6e1; u6e0! + (c+ c0u4)e1i; �1(u6e1) = e1; �1(u6e0! + (c+ c0u4)e1) = e0!(it is easily checked that N(e1) = 0 and N(e0!) = c0u30e1) andb
4(e1) = �p�1e1; b
4(e0!) = p�1e0!;d
�13 (e1) = e1; d
�13 (e0!) = e0! + (�c� c0u12 � c0u30)e1:In particular, � � 0 mod uM if and only if c = 0.In the �rst three cases, the peu rami��e condition on a class in Ext1F3[G3](1; !) is equivalent to the vanishingof c1. In the fourth case it is equivalent to the vanishing of c.Proof. By Lemma 9.1.1 we have an exact sequence(0) �!M0s;1 �!M0 �!M0r;! �! (0)with r; s 2 f2; 6; 10g. As usual M1 = huse1; ure0! + he1i:In the cases (r; s) = (2; 2) and (6; 2) as in the proof of Proposition 8.2.1 we may take h = 0. We will showthat in the case (r; s) = (10; 2) we also have h = 0. Following the proof of Proposition 8.2.1 we may supposethat h 2 F3. Without loss of generality we can take h = 1 and look for a contradiction. Again following theproof of Proposition 8.2.1 and using M1 = hu2e1; u10e0! + e1iwe �nd that �e0! � �e1 mod uM. Alsod
�13 e1 = (1� u18)e1d
�13 e0! = (1� u18)e0! + h�1(u)e166



for some h�1(u) 2 F9[u]=(u36), which must actually lie in F3[u]=(u36) (using, as usual, the fact that b
2 andb
3 commute). Thus �e1 � �e0!� (b
3b
2 �d
�13 b
2)(e0!)� (b
3 �d
�13 )(e0!)� (h1(0)� h�1(0))e1 mod uM0:The inverse linear maps d
�13 on M0=uM0 have matrices� 1 h�1(0)0 1 �with respect to the basis fe1; e0!g, so that h�1(0) = �h1(0). Thus h1(0) = 1. On the other hand evaluatingb
3�01 � �01b
3 mod uM0 on u10e0! + e1 and comparing coe�cients of e1 gives h1(0) = 0, a contradiction.Thus if any case (r; 2) arises, the underlying Breuil module must be a split extensionM = (F3[u]=(u36))e1 � (F3[u]=(u36))e0!; M1 = hu2e1; ure0!i�1(u2e1) = e1; �1(ure0!) = e0!(so N � �1 = 0), with b
2e1 = e1; b
2e0! = e0!b
4e1 = p�1e1; b
4e0! = (�p�1)r=2e0!:We also have d
�13 e1 = H
�13 (u)�3e1 d
�13 e0! = H
�13 (u)�3r=2e0! + h�1(u)e1for some h�1 2 F3[u]=(u36). Since N � �1 = 0 we have d
�13 �01 = �01d
�13 on M01. Evaluating this on ure0! andcomparing coe�cients of e1 gives h�1(u) = u3(r�2)h�1(u)3H
�13 (u)3r. This forces h�1(u) = 0 if r 6= 2. Ifr = 2 it forces h�1(u) = c�1(1�u18) for some c�1 2 F3. We will show c�1 = c1 = 0. Indeed, evaluating thecongruence � � (b
3b
2 �d
�13 b
2) mod uM0on e0! gives 0 = �(e0!) � (c1 � c�1)e1 mod uM0so that c�1 = c1. On the other hand the congruenceb
3b
4 � b
4d
�13 mod uM0gives � 1 c10 1 �� p�1 00 �p�1 � = � p�1 00 �p�1 �� 1 c�10 1 �in M2(F3), so c�1 = �c1. Thus c�1 = c1 = 0 and h�1 = 0 for r = 2 as well. Thus for r = 2, 6, and 10 theBreuil module with descent data M0 is split, so � is split, a contradiction.This rules out the possibilities (2; 2), (6; 2) and (10; 2). Using Cartier duality we can also rule out (10; 10)and (10; 6). We are left with the four possible pairs (r; s) as asserted in the proposition and must determinewhich possibilities arise in each case.Next consider the case (r; s) = (2; 6). Using the same analysis as in the (r; s) = (2; 6) case in Proposition8.2.1, we �nd that the possibilities for the Breuil module M are the ones in the statement of the proposition(and N � �1 = 0 is easy to check), though we only know thatb
4(e1) = �p�1e1; b
4(e0!) = �p�1e0! + h
4(u)e167



for some h
4(u) 2 F9[u]=u36. The conditionsb
4(M01) �M01; b
4 � �01 = �01 � b
4 on M01are equivalent to h
4 � 0 mod u4; h
4 = ��h
4u4 �3 :The solutions to this are h
4 = ap�1u6 for a 2 F3. Replacing e0! by e0! + au6e1 preserves our standardizedform but makes h
4 = 0: b
4(e1) = �p�1e1; b
4(e0!) = �p�1e0!:The wild descent data must have the formd
�13 (e1) = e1; d
�13 (e0!) = (1� u18)e0! + h�1(u)e1for some h�1 2 F9[u]=u36. The conditionsd
�13 (M01) �M01; d
�13 � �01 = �01 �d
�13 on M01(recall N � �1 = 0) are equivalent toh�1 � 0 mod u4; h�1 = (1� u18)�h�1u4 �3 ;whose solutions are h�1 = c�1u6(1� u18)for some c�1 2 F3. Since N � �1 = 0, we haved
�13 �d
�13 � �01 = �01;so c�1 = �c1:Using Lemma 5.2.2 and Corollary 5.6.2, we see that all of these possibilities are well-de�ned. We alsosee that I annihilates M=uM 
 F9. It is straightforward to check that generic splitting over F 0 (which isequivalent to generic splitting over F ) is equivalent to c = 0, and that such splitting is compatible withdescent data (i.e., descends to Q3) if and only if c = c1 = 0. For dimension reasons, the map on Ext1's istherefore an isomorphism.Now consider the case (r; s) = (2; 10). Here we haveM1 = hu10e1; u2e0! + he1ifor some h 2 F3[u]=u36, with �1(u10e1) = e1; �1(u2e0! + he1) = e0!and b
4(e1) = p�1e1; b
4(e0!) = �p�1e0!:In order that b
4(M01) �M01; b
4 � �01 = �01 � b
4 on M01;it is necessary and su�cient that h � h(�p�1u) mod u22:But fu10t � u2t3jt 2 F3[u]=u36g is spanned by u13 � u11, u12 � u8, u11 � u5, u10 � u2, and all multiples ofu15, so we may suppose h = c00 + c0u4 + cu8;(9.2.1)for some c00; c0; c 2 F3, at the expense of possibly losing the diagonal form of b
4.The monodromy operator satis�esN(e1) = 0; N(e0!) = (c00u6 � c0u18 + c00u30)e1:68



Since the wild descent data must take the formd
�13 (e1) = (1� u18)e1; d
�13 (e0!) = (1� u18)e0! + h�1e1for some h�1 2 F9[u]=u36, we computed
�13 (u2e0! + he1) = H2
�13 (u)(1� u18)(u2e0! + he1) + f�1(u)e1;where f�1(u) = �hH2
�13 (u)(1� u18) + u2H2
�13 h�1 + (1� u18)h(uH
�13 ):(9.2.2)Thus, in order that d
�13 (M01) �M01, it is necessary and su�cient that f�1 satis�esf�1 � 0 mod u10:Using (9.2.1) and H
�13 � 1� u6 mod 3, this amounts toh�1 � �c00u4 mod u8:(9.2.3)However, N � �1(M1) � u6M, so d
�13 � �01 � �01 �d
�13 mod u6M0when evaluated on M01. This gives h�1 � �f�1u10 �3 mod u6:Since h�1 is a cube modulo u6, by (9.2.3) we must have c00 = 0, and so N � �1 � 0 mod u18M. Thus, d
�13and �01 commute modulo u18M0 when evaluated on M01, so we geth�1 � �f�1u10 �3 mod u18;(9.2.4)and h�1 is a cube modulo u18.On the other hand, with c00 = 0, we see from (9.2.3) thath�1 � 0 mod u8:Because h�1 is a cube modulo u18, so we get the slight improvementh�1 � 0 mod u9:Combining this with the vanishing of c00, we deduce from (9.2.2) that f�1 � �c0u10 mod u11, so by (9.2.4)h�1 � �c0 mod u:This forces c0 = 0, so N � �1 = 0. Thus, d
�13 and �01 commute on M01, soh�1 = �f�1u10 �3 :in F9[u]=u36. Using h = cu8 this becomes (via (9.2.2))h�1 = (1� u18)�h�1u8 �3 ;so h�1 = c�1u12(1� u18)for some c�1 2 F3. As before, we get c�1 = �c1.Now we \diagonalise" b
4. Since we haveb
4(e1) = p�1e1; b
4(e0!) = �p�1e0! + h
4(u)e169



for some h
4 2 F9[u]=u36, the conditionsb
4(M01) �M01; b
4 � �01 = �01 � b
4 on M01are equivalent to h
4 � 0 mod u8; h
4 = ��h
4u8 �3 ;which is to say h
4 = ap�1u12for some a 2 F3. Replacing e0! by e0! + au12e1 then puts us in a setting with a = 0. Thus all extensionshave the form asserted in the proposition. It is easy to check that in each case I annihilates (M=uM)
F9.Pushout by the non-zero mapM06;1 !M010;1 in �1DDF 0=Q3 induced by e 7! u6e takes our (2,6) examplesto our (2,10) examples (compatibly with the labelling of parameters c; c1 as in the statement of the proposi-tion). Thus all 9 possibilities for (c; c1) do occur and we get an isomorphism of Ext1's as asserted. Moreover,generic splitting over F 0 (which is equivalent to generic splitting over F ) is equivalent to c = 0, and suchsplitting is compatible with descent data (i.e., descends to Q3) if and only if c = c1 = 0.Using Cartier duality and the case (r; s) = (2; 6), we see that in the case (r; s) = (6; 10) the map of Ext1'sis an isomorphism. It is easy to check that the objects in our asserted list of 9 possibilities for (r; s) = (6; 10)are well-de�ned and that pullback by the non-zero map M02;! ! M06;! induced by e 7! u6e takes these toour (2; 10) examples (compatibly with the labelling of parameters c; c1).Finally, we turn to the case (r; s) = (6; 6). Choosing a basis with respect to which b
4 has a diagonalaction, the conditions b
4(M01) �M01; b
4 � �01 = �01 � b
4 on M01(9.2.5)are equivalent to h(u) � h(�p�1u) mod u18:Since fu6t� u6t3jt 2 F3[u]=u36g consists of multiples of u7, we may change e0! to geth = c+ c0u4for some c; c0 2 F3, with b
4(e1) = �p�1e1; b
4(e0!) = p�1e0! + h
4(u)e1for some h
4 2 F9[u]=u36. Feeding this into (9.2.5) we get h
4 = �h3
4 , so h
4 = p�1a for some a 2 F3.Replacing e0! by e0!�ae1 returns us to the setting with `diagonal' b
4-action and preserves the standardizationswe have made so far.It is easy to compute N(e0!) = c0u30e1 (and we know N(e1) = 0). The `wild' descent data isd
�13 (e1) = e1; d
�13 (e0!) = e0! + h�1e1for some h�1 2 F9[u]=u36. Using the congruence for t
�13 in x6.5, the identityd
�13 � �01 = (1 + t
�13 �N) � �01 �d
�13on M01 amounts to the condition h�1 = h3�1 � c0u12 � c0u30;whose solutions are h�1 = c�1 � c0u12 � c0u30for some c�1 2 F3. The identity d
�13 �d
�13 � 1 mod uM0implies c�1 = �c1. Thus�VM0(e0!) � �(e0!) � �ce1 mod uM0; (b
3 � b
2 �d
�13 b
2)(e0!) � �c1e1 mod uM0 :Thus I annihilates (M=uM)
F3 F9 if and only if c1 = c.70



By Lemma 5.2.2 and Corollary 5.6.2, it is easy to see that all of these objects are well-de�ned. The kernelof Ext1�1DDF 0=Q3;I(M06;!;M06;1)! Ext1F3[GF ](1; !)(9.2.6)consists of pairs (c;�c), where generic splittings are induced by any of the (non-zero) Breuil module mapsM(0; 1)!Mde�ned by e 7! u9e0! + (~cu9 + cu3)e1 = u(c+ u2~c)u6e1 + u3(u6e0! + (c� cu4)e1)with ~c 2 F3. Thus, the pairs (c; c0) corresponding to the � which are split over F (or equivalently, split overF 0) are exactly those for which c+ c0 = 0. The mapExt1�1DDF 0=Q3;I(M06;!;M06;1)! Ext1F3[G3](1; !)is therefore injective, because the splitting given above respects descent data if and only if ~c = c1 = 0.It remains to establish which of the given extensions of Breuil modules correspond to peu rami��e extensionsof Z=3Z by �3 overQ3. We noted above that the maps among the Ext1�1DDF 0=Q3 's in the (2,6), (6,10), (2,10)cases induced by pushout/pullback along e 7! u6e are compatible with the parameterization by pairs (c; c1).With a little more care, one checks that the mapsExt1�1DDF 0=Q3;I(M02;!;M06;1) Ext1�1DDF 0=Q3;I(M06;!;M06;1)! Ext1�1DDF 0=Q3;I(M06;!;M010;1)induced by e 7! u6e send the pair (c; c0) in the middle to the pair (c+ c0; c) on either end (to construct thenecessary commutative diagrams of short exact sequences in the two cases, use the maps(e0!; e1) 7! (u6e0! � c0e1; e1); (e0!; e1) 7! (e0! + c0e1; u6e1)respectively). This reduces us to checking the (6; 6) case.By Corollary 2.3.2, the two tr�es rami��e extensions, �1 and �2, of 1 by ! which are non-split over F arisefrom elliptic curves, E1 and E2, over Q3 for which �Ej ;3 is potentially Barsotti-Tate with extended type � 0i(see x6.5). Let Gj denote the 3-torsion in the N�eron model of Ej over OF . From the universal property ofN�eron models we see that G0j = Gj �OF OF 0 inherits descent data f[g]g over Q3. By the same argument usedat the end of x4.6 we see that (G0j ; f[g]g) is an object of �1DDF 0=Q3;I. Moreover we see that F 6= 0 on D(Gj).Since all non-(6; 6) cases above have � � 0 mod uM, by the parts of Proposition 9.2.1 which we have alreadyproved we see that M�(G0j ; f[g]g) is an extension of M06;! by M06;1 and correspond to a pair (c; c0) with c 6= 0(since F 6= 0) and c + c0 6= 0 (by our analysis of (9.2.6), since �i is not-split over F ). Hence M�(G01; f[g]g)and M�(G02; f[g]g) must correspond in some order to the lines c0 = 0 and c = c0 in F23.As a non-split peu rami��e extension of 1 by ! remains non-split over F 0, we see that the peu rami��e linein Ext1�1DDF 0=Q3;I(M06;!;M06;1) �= Ext1F3[G3](1; !)cannot correspond to c+ c0 = 0. By the above analysis it cannot correspond to c0 = 0 or c� c0 = 0. Thus itmust correspond to the remaining line c = 0.The properties of � in the cases listed in Proposition 9.2.1 make it clear that the (6; 6) case there is\di�erent". We will see further manifestations of this di�erence later.9.3. Further rank two calculations.Lemma 9.3.1. For (r; s) = (2; 6), (6; 10) and (2; 10) we haveExt1�1DDF 0=Q3;I(M0s;1;M0r;!) = (0):71



Proof. The (6,10) case follows from the (2,6) case by Cartier duality. Thus, we assume r = 2, s 2 f6; 10g.Let (M0; fbgg) be such an extension. By Lemma 8.1.2, (M0; fbgg) arises from a Breuil module over OF of theform M = (F3[u]=u36)e! � (F3[u]=u36)e01; M1 = hu2e!; use01 + he!iwith �1(u2e!) = e!; �1(use01 + he!) = e01and b
4(e!) = �p�1e!; b
4(e01) = �(�p�1)s=2e01;where h 2 F3[u]=u36.The combined conditions b
4(M01) �M01; b
4 � �01 = �01 � b
4 on M01are equivalent to (p�1)s=2h(u) � (p�1)h(�p�1u) mod u14:Treating the cases s = 6 and s = 10 separately, we conclude from Lemma 5.2.2 that we may change e01 sothat h = 0 when s = 6 and h 2 F3 when s = 10. As a result of this change, we only haveb
4(e!) = �p�1e!; b
4(e01) = �(�p�1)s=2e01 + h
4(u)e!:However, with h 2 F3 when s = 10 and h = 0 when s = 6, the conditionb
4 � �01 = �01 � b
4 on M01forces h
4 = �u3(s�2)h3
4 , so that in fact h
4 = 0 after all.When h = 0, soM is split in �1�modF (compatibly with b
4 onM0), and it is easy to check (using N = 0)that the `wild' descent data d
�13 must also be diagonal, so we have the desired splitting in �1DDF 0=Q3 .It remains to consider the case (r; s) = (2; 10) with h = c 2 F3. It is easy to computeN(e!) = 0; N(e01) = �cu30e!:The wild descent data must have the formd
�13 (e!) = (1� u18)e!; d
�13 (e01) = (1� u18)e01 + h�1e!with h�1 2 F9[u]=u36.It is straightforward to check that d
�13 (M01) �M01, and then the conditiond
�13 � �01 = (1 + t
�13 �N) � �01 �d
�13on M01 gives h�1 = �cu12 + h3�1u24(1� u18) + cu30:The unique solution to this is h�1 = c(�u12 + u30):Thus b
3b
2�d
�13 b
2 � 0 mod u, while �(e01) � �ce! mod u. This forces c = 0. With c = 0 we obviously haveonly the split extension class.Lemma 9.3.2. The natural mapExt1�1DDF 0=Q3;I(M06;1;M06;!)! Ext1F3[G3](!; 1)is an isomorphism, with elements parametrised by pairs (c; c0) 2 F23 corresponding toM = (F3[u]=u36)e! � (F3[u]=u36)e01; M1 = hu6e!; u6e01 + (c+ c0u4)e!i;where �1(u6e!) = e!; �1(u6e01 + (c+ c0u4)e!) = e01; N(e!) = 0; N(e01) = c0u30e!72



and the descent data is b
4(e!) = p�1e!; b
4(e01) = �p�1e01;d
�13 (e!) = e!; d
�13 (e01) = e01 + (�c� c0u12 � c0u30)e!:Proof. The proof is identical to the proof of the case (r; s) = (6; 6) in Proposition 9.2.1, except p�1 iseverywhere replaced by �p�1 and when we study splitting we give M(0; 1) the descent data for the trivialmod 3 character (which amounts to using b
4(e) = �e rather than b
4(e) = e).Lemma 9.3.3. For r 2 f2; 10g, the mapsExt1�1DDF 0=Q3 (M0r;!;M0r;!)! Ext1F3[G3](!; !)and Ext1�1DDF 0=Q3 (M0r;1;M0r;1)! Ext1F3[G3](1; 1)are injective and have image consisting of the 1-dimensional space of classes which split over an unrami�edextension of Q3.Proof. The cases r = 10 follow from the cases r = 2 using Cartier duality. Thus we suppose r = 2. We treatonly the case of M02;!, the case M02;1 being exactly the same except that �p�1 replaces p�1 everywhere.Let (M0; fbgg) represents an element in Ext1�1DDF 0=Q3 (M02;!;M02;!). Lemma 8.1.2 ensures the existence ofan ordered F3[u]=u36-basis e!, e0! of M such thatM1 = hu2e!; u2e0! + he!i; �1(u2e!) = e!; �1(u2e0! + he!) = e0!with b
4(e!) = �p�1e!; b
4(e0!) = �p�1e0!:Carrying out the usual calculation,b
4(M01) �M01; �01 � b
4 = b
4 � �01 on M01(9.3.1)if and only if h � �h(�p�1u) mod u14:Combining this with Lemma 5.2.2, we may change e0! so that h = cu2, with c 2 F3, at the expense ofpossibly losing the diagonal form of b
4. But with h = cu2 and b
4(e0!) = �p�1e0!+h
4(u)e!, the conditions(9.3.1) imply h
4 = �h3
4 , and so h
4(u) = (p�1)a for some a 2 F3. Then b
44 = 1 forces a = 0, so b
4 stillhas diagonal form.It is easy to check that N(e0!) = 0, so N � �1 = 0. Thus, we must haved
�13 � �01 = �01 �d
�13(9.3.2)on M01. Since the wild descent data has to be of the formd
�13 (e!) = (1� u18)e!; d
�13 (e0!) = (1� u18)e0! + h�1e!for some h�1 2 F3[u]=u36, evaluation of (9.3.2) on u2e0! + cu2e! 2 M1 gives h�1 = (1 � u18)h3�1, soh�1 = c�1(1� u18) for some c�1 2 F3. The relation d
�13 � b
4 �d
�13 �c
34(e0!) = e0! forces c�1 = 0.We now have described all possibilities in terms of the single parameter c 2 F3, and it is straightforwardto use Corollary 5.6.2 to check that all of these examples are in fact well-de�ned. Generic splittings overunrami�ed extension of Q3 correspond to the mapsF3 
F3 M(0; 1)! F3 
F3 Mgiven by e 7! au3e! + u(u2e0! + cu2e!);where a 2 F3 satis�es a3 = a+ c. Such generic splittings can be de�ned over Q3 (i.e. without extending theresidue �eld) if and only if c = 0. 73



Lemma 9.3.4. 1. The map of groupsExt1�1DDF 0=Q3 (M06;1;M06;1)! Ext1F3[G3](1; 1)is an isomorphism.Explicitly, the group Ext1�1DDF 0=Q3 (M06;1;M06;1) is parameterized by pairs (c; c0) 2 F23 correspondingto M = (F3[u]=u36)e1 � (F3[u]=u36)e01; M1 = hu6e1; u6e01 + (cu2 + c0u6)e1i;with �1(u6e1) = e1; �1(u6e01 + (cu2 + c0u6)e1) = e01; N(e1) = 0; N(e01) = �cu24e1and descent data b
4(e1) = �p�1e1; b
4(e01) = �p�1e01;d
�13 (e1) = e1; d
�13 (e01) = e01 + c(�u6 � u18 � u24 � u30)e1:The classes in Ext1F3[G3](1; 1) which split over an unrami�ed extension of Q3 correspond to the pairswith c = 0.2. The map of groups Ext1�1DDF 0=Q3 (M06;!;M06;!)! Ext1F3[G3](!; !)is an isomorphism.Explicitly, the group Ext1�1DDF 0=Q3 (M06;!;M06;!) is parameterized by pairs (c; c0) 2 F23 correspondingto M = (F3[u]=u36)e! � (F3[u]=u36)e0!; M1 = hu6e!; u6e0! + (cu2 + c0u6)e!i;with �1(u6e!) = e!; �1(u6e0! + (cu2 + c0u6)e!) = e0!; N(e!) = 0; N(e0!) = �cu24e!and descent data b
4(e!) = p�1e!; b
4(e0!) = p�1e0!;d
�13 (e!) = e!; d
�13 (e0!) = e0! + c(�u6 � u18 � u24 � u30)e!:The classes in Ext1F3[G3](!; !) which split over an unrami�ed extension of Q3 correspond to the pairswith c = 0.Proof. We treat the �rst part of the lemma; replacing p�1 with �p�1 throughout gives the proof of thesecond part.As usual, we can �nd an ordered F3[u]=u36-basis e1, e01 of M so thatM1 = hu6e1; u6e01 + he1i; �1(u6e1) = e1; �1(u6e01 + he1) = e01;and b
4(e1) = �p�1e1, b
4(e01) = �p�1e01. The conditions b
4(M01) � M01 and b
4 � �01 = �01 � b
4 on M01amount to h(u) � �h(�p�1u) mod u18:Since fu6t� u6t3jt 2 F3[u]=u36g consists of multiples of u7, we can change the choice of e01 so thath = cu2 + c0u6for some c; c0 2 F3, where we may a priori lose the diagonal form of b
4. But the same kind of calculation asin Lemma 9.3.3 shows b
4(e01) = �p�1e01 + ap�1e1 for some a 2 F3, so the condition b
44 = 1 forces a = 0(i.e. b
4 still has diagonal action).It is straightforward to compute the asserted formula for N , and then the wild descent data can becomputed exactly as in our previous computations of wild descent data; this yields the formulasd
�13 (e1) = e1; d
�13 (e01) = e01 + (c�1 + c(�u6 � u18 � u24 � u30))e1;74



where c�1 2 F3. Modulo u, the linear action of 
�13 
4
�13 
34 sends e01 to e01� c�1e1, but 
�13 
4
�13 
34 = 1, soc� = 0 for � = �1. Thus, we obtain the asserted list of possibilities. The well-de�nedness of these examplesfollows from Lemma 5.2.2 and Corollary 5.6.2.It is easy to see that there is a non-zero map F3 
F3 M(0; 1)! F3 
F3 M if and only if c = 0, in whichcase such non-zero maps are precisely those induced bye 7! au9e1 + u3(u6e01 + c0u6e1);where a 2 F3 satis�es a3 = a+ c0. The veri�cation that c = c0 = 0 corresponds to being in the kernel of ourmap of Ext1's is now clear, since X3 = X + c0 has a solution in F3 if and only if c0 = 0.9.4. Completion of the proof of Theorem 4.6.1. Everything in Theorem 4.6.1 is now clear except forthe third assertion, to the proof of which we now turn. Let (G0; f[g]g) be as in the third part of that theorem.We may suppose that G0 = G�OF OF 0 for some G=OF . The �ltration on �
F3 k gives a �ltration(0) �! G! �! G �! G1 �! (0);which is compatible with the descent data over Q3. According to Lemma 5.2.3 we have M�(G!) �=M(k; r!; f!) and M�(G1) �= M(k; r1; f1) for some 0 � r1; r! � 12 and some f1; f! 2 k[u]=u36. We willlet � denote either 1 or !. In particular M�(G�)1 = ur�M�(G�) for � = 1; !. From this one can concludethat if H is an subquotient of G� then M�(H)1 = ur�M�(H). Quite generally, for any Breuil module Mover OF with M1 = urM and any short exact sequence of Breuil modules0!M0 !M!M00 ! 0;we must also have M01 = urM0; M001 = urM00 :Indeed, M ! M00 is a surjection taking M1 onto M001 , so the assertion for M00 is clear. Since M0 is aF3[u]=u36-module direct summand of M andM01 =M0 \M1 =M0 \urM;the assertion for M0 is likewise clear. We conclude that (M�(G�)0; fbgg) admits a �ltration with successivequotients M0r�;�. Thus r� 2 f2; 6; 10g.Consider a �xed surjection of F3[G3]-modules�
 k � �:This gives rise to a �nite 
at OF -group schemeH with descent data on H0 =H�OF 0 overQ3 correspondingto � and an epimorphism G!! Hcompatible with descent data. Consider the commutative diagram0! M�(H1) ! M�(H) ! M�(H!) ! 0# # #0! M�(G1) ! M�(G) ! M�(G!) ! 0where the top row corresponds to the non-split �ltration of �. The middle vertical map is an isomorphismof the source onto a F3[u]=u36-module direct summand of the target, so the left vertical map is as well,because an injection of F3[u]=u36 into a free F3[u]=u36-module must be an identi�cation with such a directsummand (consider torsion). This forces M�(H1)0 =M0r1;1 and so, by Proposition 9.2.1, we see that r1 6= 2.Repeating the analogous argument applied to a submodule � � �
 k one sees that r! 6= 10.Thus (G0; f[g]g) is weakly �ltered by fGs;1;Gr;!g for (r; s) = (2; 6), (6; 10), (2; 10) or (6; 6), as desired.75



9.5. Completion of the proof of Theorem 4.6.3. Write AN for F3[[T ]]=(TN). For (r; s) = (2; 6),(6; 10) and (2; 10), we will de�ne a Breuil module MN;(r;s) over OF and descent data fbgg for Gal(F 0=Q3)on M0N;(r;s) = MN;(r;s) 
F3 F9 such that MN;(r;s) and (M0N;(r;s); fbgg) have compatible actions of AN (andb
2 = 1
 Frob3). More speci�cally set t = 2, 6 or 8 according as (r; s) = (2; 6), (6; 10) or (2; 10). Viewing �as an extension class, it corresponds to a particular pair (c; c1) 2 F23 in Proposition 9.2.1. Fix these values.Motivated by the idea of deforming the formulae in Proposition 9.2.1, we are led to de�neMN;(r;s) = (AN [u]=u36)e1 � (AN [u]=u36)e0!; (MN;(r;s))1 = huse1; ure0! + (c+ T )ute1iwith �1(use1) = e1; �1(ure0! + (c+ T )ute1) = e0!:It is straightforward to check that N ��1 = 0 onMN;(r;s). We may de�ne AN -linear descent data onM0N;(r;s)by setting b
2 = 1
 Frob3 and using the following formulae.1. When (r; s) = (2; 6), set b
4(e1) = �p�1e1; b
4(e0!) = �p�1e0!;d
�13 (e1) = e1; d
�13 (e0!) = (1� u18)(e0! � c1u6e1):2. When (r; s) = (6; 10), set b
4(e1) = p�1e1; b
4(e0!) = p�1e0!;d
�13 (e1) = (1� u18)e1; d
�13 (e0!) = (e0! � c1u6e1):3. When (r; s) = (2; 10), set b
4(e1) = p�1e1; b
4(e0!) = �p�1e0!;d
�13 (e1) = (1� u18)e1; d
�13 (e0!) = (1� u18)(e0! � c1u12e1):It is readily checked that this de�nes an object of �1DDF 0=Q3;I with an action of AN . Let GN;(r;s) and(G0N;(r;s); f[g]g) be the corresponding �nite 
at OF -group scheme and �nite 
at OF 0 -group scheme withdescent data.If 1 �M < N then we have a short exact sequence in �1DDF 0=Q3;I(0) �!M0M;(r;s) �!M0N;(r;s) �!M0N�M;(r;s) �! (0);where the �rst map is induced by multiplication by TN�M . The case M = 1 shows that(GN;(r;s); f[g]g)Q3=T (GN;(r;s); fbgg)Q3corresponds to �. Thus we get a surjection of AN [G3]-modules A2N !! GN;(r;s)(Q3), which must in fact be anisomorphism (count orders). Thus (GN;(r;s); f[g]g)Q3 de�nes a deformation �N;(r;s) of � to A2N . For N � 2we have �N;(r;s) mod T 2 �= �2;(r;s).We also have an exact sequence(0) �!M0s;1 
F3 AN �! (M0N;(r;s); fbgg) �!M0r;! 
F3 AN �! (0)in �1DDF 0=Q3 , from which we obtain an exact sequence of AN [G3]-modules(0) �! X! �! �N �! X1 �! (0):Note that X1 �= FN3 and X! �= F3(!)N as F3[G3]-modules. Moreover, this sequence must split as a sequenceof AN -modules. (Use, for instance, the kernel of �N(�) � 1 for any � 2 G3 � GQ3(p�3).) Thus X1 �= ANand X! �= AN (!) as AN [G3]-modules, so det �N = !.Finally, we must check that the exact sequence(0) �! � �! �2 �! � �! (0)76



is not split. We have maps of Breuil modulesf1 :Ms;1 �! M2;(r;s)e 7�! e1and f2 :M2;(r;s) �! Mr;!e1 7�! 0Te1 7�! 0e0! 7�! 0Te0! 7�! ecompatible with descent data. These give rise to mapsf�1 : �2 �! 1and f�2 : ! �! �2;such that the composites � ,! �2 f�1�! 1and ! f�2�! �2 !! �are non-zero.To check that (0) �! � �! �2 �! � �! (0)is non-split, it su�ces to check that(0) �! ! �! ker f�1 = Im f�2 �! 1 �! (0)(9.5.1)is non-split. However ker f�1 = Im f�2 corresponds to an object (N0; fbgg) of �1DDF 0=Q3;I satisfyingN0 = (F9[u]=u36)(Te1)� (F9[u]=u36)e0!; N01 = hus(Te1); ure0! + ut(Te1)iwith �1(us(Te1)) = (Te1); �1(ure0! + ut(Te1)) = e0!:By Lemma 5.2.2, the sequence of Breuil modules with descent data(0) �!M0s;1 �! N0 �!M0r;! �! (0)is not split. This sequence recovers (9.5.1) under generic �bre descent, so by Proposition 9.2.1(0) �! ! �! ker f�1 = Im f�2 �! 1 �! (0)is not split. 77



9.6. Completion of the proof of Theorem 4.6.2. Suppose �rst that (r; s) = (2; 6), (6; 10) or (2; 10). ByLemma 9.3.1 �0 : Ext1Si;(r;s)(�; �) �! H1(G3; !)is the zero map. Lemma 9.3.3 then tells us that if r 6= 6 then�1 : Ext1Si;(r;s)(�; �) �! H1(I3;F3)is the zero map; while if s 6= 6 then �! : Ext1Si;(r;s)(�; �) �! H1(I3;F3)is the zero map. Thus Theorem 4.7.5, and hence Theorem 4.6.2, follows in these cases.Now consider the case (r; s) = (6; 6). Choose x 2 H1Si;(6;6) (G3; ad0 �). Let G denote the correspondingrank 81 �nite 
at OF -group scheme with descent data f[g]g on G0 = G �OF OF 0 . Set M = M�(G). LetH � G denote the closed subgroup scheme (with descent data) corresponding to the kernel of the map(G0; f[g]g)Q3 !! �!! F3 and let N =M�(H). Then N has F3[u]=u36-basis e!; e01; e0! with respect to whichN1 = hu6e!; u6e01 + (b+ b0u4)e!; u6e0! + (c+ c0u4)e01 + fe!i;where b; b0; c; c0 2 F3, f 2 F3[u]=u36, and �1 sends the indicated generators of N1 to e!; e01; e0! respectively.Also, the descent data has the formb
4(e!) = p�1e!; b
4(e01) = �p�1e01; b
4(e0!) = p�1e0! + h
4(u)e!for some h
4 2 F9[u]=u36, andd
�13 (e!) = e!; d
�13 (e01) = e01 + (�b� b0(�u12 + u30))e!; d
�13 (e0!) = e0! + (�c� c0(�u12 + u30))e01 + h�1e!;where h�1 2 F9[u]=u36. Also, as � is tr�es rami��e, we see that c 6= 0 by Proposition 9.2.1 and Lemma 9.3.4.The requirement that u12N � N1 forces N1 to containu12e0! = u6(u6e0! + (c+ c0u4)e01 + fe!)� (c+ c0u4)(u6e01 + (b+ b0u4)e!) + ((b+ b0u4)(c+ c0u4)� fu6)e!;so N1 must contain (b+ b0u4)(c+ c0u4)e!. As c 6= 0 we get (b+ b0u4)e! 2 N1, and since e!; u4e! 62 N1, wemust have b = b0 = 0. We conclude that the natural map�0 : Ext1Si;(6;6) (�; �) �! H1(G3; !)is the zero map.Let us further analyse N. Replacing e0! by e0! + t3e! for t 2 F3[u]=u36 causes f to be replaced byf�u6t3+u6t and otherwise leaves our standardized form unchanged (except that h
4 and h�1 may change).Using a suitable choice of such t, we may assume f has degree at most 6. On the other hand,b
4(u6e0!+(c+c0u4)e01+fe!) = �p�1(u6e0!+(c+c0u4)e01+fe!)+(p�1(f(u)+f(�p�1u))�u6h
4(u))e!;so b
4(N01) � N01 if and only if f(u) + f(�p�1u) � 0 mod u6;which forces f = a2u2 + a6u6for some a2; a6 2 F3. From the wild descent data formulae derived in the proof of Lemma 9.3.4 we also seethat h�1 � 0 mod u6.Now M has an ordered basis e1; e!; e01; e0! with respect to whichM1 = hu6e1; u6e! + (c+ c0u4)e1; u6e01 + he1; u6e0! + (c+ c0u4)e01 + (a2u2 + a6u6)e! + ge1i;(9.6.1)where g; h 2 F3[u]=u36 and �1 sends the indicated generators of M1 to e1; e!; e01; e0!. If we try to expandout u12e0! as a linear combination of the indicated generators of M1, we �nd thatu12e0! � ((c+ c0u4)h+ ca2u2)e1 modM1 :78



It follows that u12e0! 2M1 if and only if(c+ c0u4)h+ ca2u2 � 0 mod u6:Since � is tr�es rami��e, the last part of Proposition 9.2.1 tells us that c 6= 0. Thus, u12e0! 2M1 if and only ifh � �a2u2 mod u6. We can now use Lemma 9.3.4 to see that the wild descent data action is determined byd
�13 (e1) = e1; d
�13 (e!) = e! + (�c� c0(�u12 + u30))e1; d
�13 (e01) = e01 + f�1e1(with f�1 � 0 mod u6), andd
�13 (e0!) = e0! + (�c� c0(�u12 + u30))e01 + h�1e! + g�1e1where g�1 2 F9[u]=u36 and h�1 � 0 mod u6.We must have d
�13 (u6e0! + (c+ c0u4)e01 + (a2u2 + a6u6)e! + g(u)e1) 2M01;(9.6.2)and this expression is easily computed to equalu6H6
�13 � (e0! + (�c� c0(�u12 + u30))e01 + h�1e! + g�1e1) + (c+ c0u4H4
�13 )(e01 + f�1e1)+(a2u2H2
�13 + a6u6H6
�13 )(e! + (�c� c0(�u12 + u30))e1) + g(uH
�13 )e1:Remembering that hu6e1; u12M0i �M01, (9.6.2) becomesu6(e0! � ce01) + (c+ c0u4H4
�13 )e01 + (a2u2H2
�13 + a6u6)e! � a2cu2e1 + g(u)e1 2M01:Using the explicit generators of M1 given in (9.6.1) and recalling that h � �a2u2 mod u6, this simpli�es to�a2cu2e1 2M01 :Thus a2cu2 is divisible by u6, so a2 = 0.The image of the class x in Ext1F3[G3](!; !) under �! corresponds to a �nite 
at OF -group scheme withBreuil module Mx free of rank two over F3[u]=u36 with basis e!; e0!, and with(Mx)1 = hu6e!; u6e0! + a6u6e!i;where �1 sends the indicated generators of (Mx)1 to e! and e0! respectively. According to the proof of Lemma9.3.4 this implies that the image of the class x in Ext1F3[G3](!; !) is split over an unrami�ed extension of Q3.Thus, �! : Ext1Si;(6;6) (�; �) �! H1(I3;F3)is the zero map. This completes the proof of Theorem 4.7.5, and hence of Theorem 4.6.2.10. Corrigenda for [CDT].We would like to take this opportunity to record a few corrections to [CDT].� Page 532, line -6: \The semisimplicity of �n follows from that of �1" is false and should be deleted.This assertion was not used anywhere in the rest of the paper.� Page 537, line 7: replace GL2(C) by GL2(R).� Page 538, line -10: replace \of type (S; �)" by \such that �jG` is of type � and � is of type (S; �)".� Page 539, lines 18-20: replace each !1 by �1 and each !2 by �2.� Page 541, line 14: replace each of the three occurences of A by A1.� Page 544, line -6: \the discrete topology on Vp" should read \the `-adic topology on Mp".� Page 545, part 4 of Lemma 6.1.2: V 0 should be assumed to be a normal subgroup of V .� Page 546, line 1: We should have noted that the key component of this argument is very similar to themain idea of [Kh].� x6.2: There are two signi�cant errors in this section. The assertion \� = SL2(Z) \ US satis�es thehypotheses of Theorem 6.1.1" is false and Hom(Ln; k) should be Ln
 k. The argument of this sectioncan be repaired by making the following changes.79



{ Page 546, lines 5 and 6: Replace \Setting S = T (�)[frg, we �nd that the group � = SL2(Z)\USsatis�es the hypotheses of Theorem 6.1.1." by \Set S = T (�) [ frg; U 0S = Qp U 0S;p where U 0S;p =U1(pcp) if p 2 T (�) and U 0S;p = US;p otherwise; V 0S = Qp V 0S;p where V 0S;p = U1(pcp) if p 2 T (�)and V 0S;p = VS;p otherwise; and L0S = HomO[U 0S=V 0S ](M`; H1(XV 0S ;O))[I 0S ]. Then � = SL2(Z) \ U 0Ssatis�es the hypotheses of Theorem 6.1.1."{ Page 546, lines 7-13: Replace YS by YU 0S , Hom(Ln; k) by Ln 
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