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IntroductionArtin [A] conjectured that the L-series L(r; s) of any continuous representationr : Gal (Qac=Q) �! GLn(C ) is entire except possibly for a pole at s = 1 whenr contains the trvial representation. The case n = 1 is simply a restatement ofthe Kronecker-Weber theorem and standard results on the analytic continua-tion of Dirichlet L-series. Artin proved his conjecture when r is induced from a1{dimensional representation of an open subgroup of Gal (Qac=Q). Moreover,Brauer [Br] was able to show in general that L(r; s) is meromorphic on thewhole complex plane. Since then the only real progress has been for n = 2.When n = 2 such representations can be classi�ed according to the imageof the projectivised representation proj r : Gal (Q ac=Q) �! PGL2(C ). Thisimage is either cyclic, dihedral, the alternating group A4 (the tetrahedral case),the symmetric group S4 (the octahedral case) or the alternating group A5 (theicosahedral case). When the image of proj r is cyclic then r is reducible andArtin's conjecture follows from the n = 1 case. When the image of proj r is di-hedral then r is induced from a character of an open subgroup of index 2, andso Artin himself proved the conjecture in this case. (Note however that theresult is implicit in earlier work of Hecke (see [He]). Langlands [Langl] provedArtin's conjecture for tetrahedral and some octahedral representations. Tun-nell [Tu] extended this to all octahedral representations. These results arebased on Langlands' theory of cyclic base change for automorphic represen-tations of GL2, and so the method seems to be restricted (at best) to caseswhere the image of r is soluble. A number of people, including Buhler [Buh]and Frey et al. [F], used computer calculations to check Artin's conjecture fora few icosahedral examples.The contribution here to the problem is to treat some (in�nite families of)icosahedral cases. More precisely we prove the following theorem.Theorem A. Suppose that r : Gal (Qac=Q) �! GL2(C ) is a continuous ir-reducible representation and that r is odd, i.e., the determinant of complexconjugation is �1. If r is icosahedral suppose that� proj r is unrami�ed at 2 and that the image of a Frobenius element at 2under proj r has order 3,� and proj r is unrami�ed at 5.Then there is a weight one newform f such that for all prime numbers p thepth Fourier coe�cient of f equals the trace of Frobenius at p on the inertiaat p coinvariants of r. In particular the Artin L-series for r is the Mellintransform of a weight one newform and is an entire function.1



The proof follows a strategy outlined by one of us (R.T.) to Wiles in 1992(see [Ta2]), which has now been carried out by the four of us in three mainsteps (see [ST], [Di] and [BT]). The purpose of this article is simply to pullthese results together and document some technical results which we require,but do not seem to be available in the literature. The result is that this paperis rather technical. The reader who simply desires to get an overview of themain ideas of the proof should consult [Ta2], perhaps followed by [ST], [BT]and [Di], rather than this paper.One might hope that extensions of our method may treat all odd two-dimensional icosahedral representations of Gal (Q ac=Q), although considerablework remains to be done. On the other hand our method seems to o�er noprospect of treating the general Artin conjecture.1 Mod 2 icosahedral representations.In this section we will give a slight extension of results in [ST]. This couldbe avoided by appealing to the results of [G]. However his results dependon certain \unchecked compatibilities", and so we prefer to make our resultunconditional by using this more ad hoc argument. We remark that the hy-potheses in our main theorem could be weakened if one could make Gross'theorem unconditional.We start with a strengthening of theorem 3.4 of [ST].Theorem 1.1. Fix a continuous homomorphism� : Gal (Q ac=Q) �! SL2(F4):Suppose that � is unrami�ed at 2 and that �(Frob2) has distinct eigenvalues�; � 2 F�4 . Then there is an abelian surface A=Q together with a principalpolarisation � : A �! A_ and an embedding i : Z[(1 + p5)=2] ,! End (A)(both de�ned over Q) such that1. � � i(a) = i(a)_ � � for all a 2 Z[(1 +p5)=2];2. the action of Gal (Qac=Q) on A[2] �= F24 is equivalent to �;3. A has good ordinary reduction at 2 and Frob2 = � on A[2]et (the generic�bre of the maximal etale quotient of the two torsion on the N�eron modelof A over Z);4. and the action of Gal (Qac=Q) on the p5-division points, A[p5] is via asurjection Gal (Q ac=Q) !! GL2(F5).2



Proof. With the third condition removed this is the main result of [ST]. Theproof of this strengthening is a slight variant of the argument of that paper.We start by recalling some of the constructions there.We �x an identi�cation of F4 with Z[(1+p5)=2]=(2) and of SL2(F4) withA5. We let Y=Q denote the smooth cubic surface given in P4 by5Xi=1 yi = 5Xi=1 y3i = 0:The group A5 acts on Y by permuting the variables. We let Y 0 � Y (resp.Y 1 � Y ) denote the complement of the 15 lines conjugate to (s : �s : t : �t : 0)(resp. the complement of the 10 points conjugate to (1 : �1 : 0 : 0 : 0)). Welet Y� (resp. Y 0� , resp. Y 1� ) denote the twist of Y (resp. Y 0, resp. Y 1) by� : Gal (Q ac=Q) ! A5. There is an etale P1-bundle C� ! Y 1� together with6 distinguished sections s1; :::; s6 : Y 1� � Q ac ! C� � Qac such that the setfs1; :::; s6g is Gal (Qac=Q )-invariant. Over Y 0� the sections are distinct. (Thisis not explicitly proved in [ST], but one may argue as follows. We will usewithout comment some notation from section 2 of [ST]. By the formulae onpages 15-17 of [DO] the locus in P 61 where s1; :::; s6 are distinct is identi�edwith the complement, Z0, in P6i=1 zi = P6i=1 z3i = 0 of the 15 S6-conjugatesof the plane (s : �s : t : �t : u : �u). Then using lemma 2.4 of [ST] it is easyto see that j�1Z0 = Y 0, and the claim follows.)We let W�=Q denote the F4 -vector space scheme corresponding to � :Gal (Qac=Q ) ! GL2(F4). It comes with a standard pairingW� �W� �! �2which on Q ac -points sends(a; b)� (c; d) 7�! (�1)trF4=F2(ad�bc):Then there is a coarse moduli spaceH�=Q parametrising quadruples (A; �; i; �)where (A; �) is a principally polarised abelian surface, i : Z[(1 + p5)=2] ,!End (A) has image �xed by the �-Rosati involution and where � :W� �! A[2]is an isomorphism of F4 -vector space schemes taking the standard pairing tothe �-Weil pairing. There is a Zariski open subset H0� � H� consisting of thosegeometric points for which the corresponding (A; �) is a Jacobian. Then thereis an isomorphism Y 0� �= H0� so that a geometric point y of Y 0� maps to thepoint parametrising a quadruple (A; �; i; �) such that (A; �) is the Jacobian ofthe curve which maps 2 : 1 to C�;y rami�ed exactly at s1(y); :::; s6(y). (Again3



this is not explicitly stated in [ST]. To prove it one may assume that � = 1.Recall from [ST] we have mapsY� ! H�2 �! A�2� ! P 61 :(We keep the notation of [ST], so in particular H�2 is a compacti�cation ofwhat we are now calling H1.) The locus of Jacobians in A�2 is the locus ofpoints where A�2� ! P 61 is regular and map to Z0 � P 61 . Thus Y 0 maps toH01 � H�2. On the other hand H�2 is the disjoint union of the image of Y 0 andsome P1's which get contracted to the points of P 61 � (P 61 )s (see section 2 of[ST]). Thus, if y is a point ofH�2 not in the image of Y 0 then either H�2� ! P 61is not regular at y or y gets mapped outside Z0. In either case y does not liein H01.)If X 0� denotes the blow up of Y� � Y� along the diagonal, then X 0� has aninvolution t which exchanges the two factors. We let X� denote the twist ofX 0� by Gal (Q ac=Q) !! Gal (Q(p5)=Q) �! f1; tg;and X2� the complement in X� of the strict transforms of L�L as L runs overlines on Y�. Then there is a morphism� : X2� �! Y�which (loosely speaking) sends (P;Q) to the third point of intersection of theline through P and Q with Y�(see [ST] for details). We will let X0� (resp. X1� ,resp. D�=X1�) denote the preimage of Y 0� (resp. the preimage of Y 1� , resp. thepull back of C�) under �. Then it is proved in [ST] (lemma 3.1 and proposition3.2) that X�=Q is rational and that D�=X1� is a Zariski P1-bundle.The argument preceding lemma 2.7 of [ST] shows that given x 2 X0� wecan �nd a Zariski open subset U � X0� containing x and a principally polarisedabelian surface (AU ; �U)=U such that1. for all x1 2 U the �bre (AU ; �U)x1 is the Jacobian of a curve which maps2 : 1 to D�;x1 rami�ed exactly at s1(x1); :::; s6(x1);2. there is an isomorphism �U : W� �! AU [2] of �nite at group schemesover U with alternating pairings;3. and there exists iU : Z[(1 + p5)=2] ,! End (AU) which is compatiblewith �U and the action of F4 on W�.4



(In [ST] the existence of iU is only explained over a non-empty open subset ofU . That it extends to the whole of U follows from remark 1.10 (a) of chapterI of [CF].) We remind the reader that AU is not canonical. Suppose that xis a geometric point of U . If f is an automorphism of (AU ; �U ; iU ; �U)x thenT2(f) � 1 mod 2 and so T2(f 2) � 1 mod 4. As f has �nite order this impliesthat f 2 = 1. If f 6= �1 then AU;x �= (1+f)=2AU;x�(1�f)=2AU;x and �U corre-spondingly decomposes as the direct sum of two polarisations. This contradictsthe fact that �(x) 2 Y 0� �= H0�. Thus we must have Aut ((AU ; �U ; iU ; �U)x) =f�1g. In particular if we seteU = f(a; b) 2 (AU � AU )[p5] j ha; bi 6= 1g= �;where (a; b) � (a0; b0) if and only if (a; b) = �(�a0; b0) for some � 2 F�5 , thenthe construction of eU is canonical and so we can glue the eU=U to give an etalecover eX0�=X0� of degree 60. The argument of lemma 2.7 of [ST] shows that eX0�is geometrically irreducible.Suppose for the moment that we can �nd a point x2 2 X0�(Q 2), a Zariskiopen U2 � X0� �Q 2 as above and a continuous character �2 : Gal (Q ac2 =Q 2)!f�1g such that� the twist AU2;x2(�2) of AU2;x2 by �2 has good reduction� and, if AU2;x2(�2) denotes the mod 2 reduction of the N�eron modelof AU2;x2(�2) over Z2, then AU2;x2(�2)[2]et 6= (0) and Frob2 acts onAU2;x2(�2)[2]et by �.Then we can �nd a neighbourhood (for the 2-adic topology) U � X0� (Q 2) ofx2 such that if x 2 U then� x 2 U2,� AU2;x(�2) has good reduction at 2� and AU2;x(�2)[2] �= AU2;x2(�2)[2].Because X� is rational, it follows from Ekedahl's version of the Hilbert irre-ducibility theorem (see theorem 1.3 of [E]) that we can �nd a point x 2 X0�(Q )such that� x 2 U� and if ex is a point of eX0� above x then [Q (ex) : Q ] = 60.5



Suppose that U is a Zariski neighbourhood of x in X0� as above. Then(AU ; �U ; iU ; �U)x�Q 2 is a twist by some character �02 : Gal (Qac2 =Q 2)! f�1gof (AU2 ; �U2; iU2; �U2)x. Choose a character � : Gal (Qac=Q ) �! f�1g whichrestricts to �2�02 on Gal (Q ac2 =Q 2). Then AU;x(�) has the following properties.� (AU;x(�); �U;x)=Q is a principally polarised abelian surface.� iU;x : Z[(1 + p5)=2] ,! End (AU;x(�)) and the image is �xed by the�U;x-Rosati involution.� As an F4 [Gal (Qac=Q )]-module, AU;x(�)[2](Qac) is equivalent to �.� AU;x(�)� Q 2 �= AU2;x(�2) and so AU;x(�) has good reduction at 2.� AU;x(�)[2] �= AU2;x2(�2)[2] and so AU;x(�)[2]et 6= (0) and Frob2 acts onAU;x(�)[2]et by �.� If G denote the image Gal (Q ac=Q) in Aut F4 (AU;x(�)[p5]) �= GL2(F5)then detG = F�5 (because of the �-Weil pairing) and#G=G \ �� � 00 � ����� � = �1; � 2 F�5 � = 60:Then it is elementary to check that G = GL2(F5).It remains to explain the construction of x2. This we will do in two steps.More precisely we will show the following two results.1. There is a quadruple (A; �; i; �) (as above) de�ned over K such that Ahas good reduction and, if A denotes the reduction of its N�eron model,then A[2]et 6= (0) and Frob2 acts on A[2]et by �.2. If y 2 Y 0� (Q 2) then there is a point of X0�(Q 2) mapping to y under �.The �rst assertion gives a point y2 2 H0�(Q 2) = Y 0� (Q 2) and the second a pointx2 2 X0� (Q 2) mapping to y2 under �. This point x2 will su�ce.We turn �rst to the second assertion. Suppose y 2 Y 0� (Q 2) and let Y�(y)0denote the complement in Y� of the intersection of Y� with the tangent planeto Y� at y. Thus Y�(y)0 is a smooth a�ne cubic surface. There is an involution�y of Y�(y) which sends any point z to the third point of intersection of theline through y and z with the cubic surface Y�. We will let Y�(y) denote thetwist of Y�(y)0 by �y over Gal (Q 2(p5)=Q 2). We may identify Y�(y) as a Zariskiopen subset of the �bre of � : X0� ! Y 0� above y, and so it su�ces to showthat Y�(y)(Q2) 6= ;. 6



Note that the equations de�ning Y also de�ne a smooth projective surfaceover Z2, which we will also denote by Y . The construction of Y�, Y�(y)0 andY�(y) from Y all make sense over Z2 and give rise to smooth relative surfacesover Z2, which we will denote by the same symbols. (We are using the factthat � is unrami�ed. We are not asserting that these integral models haveany moduli theoretic meaning.) By Hensel's lemma it will su�ce to show thatY�(y)(F2) is non-empty.Without loss of generality the surface Y��F2 is given in P3 by the equationX31 +X1X22 +X32 +X23X4 +X3X24 = 0:(If  is a root of T 3 + T + 1 = 0, then (X1 : X2 : X3 : X4) corresponds to thepoint ((X3 +X4) +X1 +X22 : (X3 +X4) +X12 +X24 :(X3 +X4) +X14 +X2 : X3 : X4)of Y � F2 .) Thus Y�(F2) has three points P = (0 : 0 : 1 : 0), Q = (0 : 0 : 0 : 1)and R = (0 : 0 : 1 : 1).First suppose that y reduces to P . Then Y�(y)� F2 is the surface given ina�ne 3-space by the equationx31 + x1x22 + x32 + x3 + x23 = 0and �y maps (x1; x2; x3) to (x1; x2; x3 + 1):(Here we set xi = Xi=X4.) Thus Y�(y)� F2 is given in a�ne 3-space by theequation y31 + y1y22 + y32 + 1 + y3 + y23 = 0:(Here we let (y1; y2; y3) correspond to the point (x1; x2; x3) = (y1; y2; y3 + (1+p5)=2).) Thus Y�(y)(F2) consists of 6 points.The case that y reduces to Q is exactly analogous, and again we see thatY�(y)(F2) consists of 6 points.Thirdly suppose that y reduces to R. Introducing a new variable X 04 =X3 +X4 we see that Y� � F2 can also be described in P3 by the equationX31 +X1X22 +X32 +X23X 04 +X3(X 04)2 = 0;7



and that in these new coordinates R becomes the point (0 : 0 : 1 : 0). Thusthe analysis is the same again and we see that Y�(y)(F2) again consists of 6points.Finally we turn to our �rst assertion. Let K denote the �eld Q(a), wherea is a root of T 4 + 13T 2 + 41 = 0:Then 13 + 2a2 is a square root of 5, which we will denote p5. Moreover Kis a CM �eld with totally real sub�eld Q (p5). The inverse di�erent d�1K=Q isprincipal with generator � = (13a+ 2a3)�1. We have the prime factorisation2OK = (((1 +p5)=2 + a)=2)(((1 +p5)=2� a)=2):As �1 are the only roots of unity in K, the only elements of K� with normdown to Q (p5) equal to 2 are (�(1 +p5)=2� a)=2.The normal closure of K=Q is K(p41)=Q and Gal (K(p41)=Q) is gener-ated by two elements � and � , where�(a) = p41=a �(a) = a�(p41) = �p41 �(p41) = �p41:Thus �4 = � 2 = 1, ��� = �3 and �2 = c. By the Cebotarev density theoremwe may choose a prime } of OK which is split completely and lies above arational prime p � 3 mod 4. Let �0 denote the characterO�K;p !! O�K;} !! f�1g:Fix an embedding K(p41) ,! C such that a has negative imaginary part,13 + 2a2 > 0 and p41 > 0. Then � = f1; �g is a CM-type with reex (L;�0),where L = K(p41)f1;��g and �0 = f1; �3g. The �eld L is also a CM �eldand has totally real sub�eld Q(p41). It is isomorphic to the �eld obtained byadjoining a root of T 4+26T 2+5 to Q . Then L has class number 1 and O�L isgenerated by �1 and 32 + 5p41. We have a prime factorisation 2Ol = IIcJwith #OL=I = 2 and #OL=J = 4. We have a homomorphismN�0 : L� �! K�x 7�! x�3(x):Then N�0 extends to a map A �L ! A �K . De�ne a continuous homomorphism� : A �L �! K�by setting 8



� �jL� = N�0 ,� �jO�L;p = �0 �N�0 ,� �jO�L;p0 = 1 for any rational prime p0 6= p,� and �jL�v = 1 for any in�nite place v of L.(This makes sense because the class number of L is one and because (�0 �N�0)jO�L = N�0 jO�L .)Then there is a triple (A; �; i)=L (a principally polarised simple abeliansurface with an action i of OK) which has type (K;�;OK; �) and character �.(See [Lang], especially theorems 3.6 and 4.5 of chapter 1 and corollary 5.3 ofchapter 5.) Because � is trivial on O�L;I, we see from the fundamental theoremof complex multiplication (see theorem 1.1 of chapter 4 of [Lang]) that, for arational prime l > 2, inertia at I acts trivially on TlA, the l-adic Tate moduleof A. Thus A has good reduction at I. Let A denote the reduction mod I ofthe N�eron model of A. Moreover, if I = (a) then Frob2 acts on TlA via �N�0a.As NK=Q(p5)N�0a = 2 we see that �N�0a = (�(1 +p5)=2� a)=2 and so�N�0a � (1 +p5)=2 mod (N�0I)c:Thus A[N�0Ic] is etale and Frob2 acts on it as (1 +p5)=2.If � = (1+p5)=2 then (A; �; ijZ[(1+p5)=2])=LI will su�ce to give the desiredexample. If on the other hand � = (1�p5)=5 then (A; �; ijZ[(1+p5)=2] � �)=LIwill su�ce to give the desired example.We would now like to apply this theorem to deduce the modularity ofcertain mod 2 representations. If N , M and k are positive integers we willdenote by hk(N ;M) the Z-algebra generated by the Hecke operators Tp andhpi for any prime p6 jNM , and by the Hecke operators Up for any prime pjNMacting on the space of weight k cusp forms for �1(N) \ �0(M). If M jNwe will drop it from the notation and write simply hk(N). If p6 jNM setS(p) = pk�2hpi. Also for every positive integer n de�ne T (n) by the relations� T (n1n2) = T (n1)T (n2) if n1 and n2 are coprime,� (1� TpX + pS(p)X2)P1r=1 T (pr)Xr = 1 for any prime p6 jNM ,� and T (pr) = U rp for every prime pjNM .9



Corollary 1.2. Fix a continuous homomorphism� : Gal (Q ac=Q) �! SL2(F4):Suppose that � is unrami�ed at 2 and 5 and that �(Frob2) has distinct eigenval-ues �; � 2 F�4 . Then there is an odd positive integer N divisible by all primesat which � rami�es and a homomorphismf� : h2(N) �! F4which takes1. Tp to tr �(Frobp) for all primes p6 j2N ;2. T2 to �;3. and Up to 0 for all pjN .Proof. First note that in [BCDT] theorem 4.1 of [ST] is improved to suppressthe condition on �(I3). Thus theorem 4.2 of [ST] can be improved to suppressthe condition that A has semi-stable reduction at 3. The proof of this corollaryis then the same as the proof of theorem 4.3 in [ST] except that we replacereferences to theorem 4.2 by this improvement and references to theorem 3.6by references to theorem 1.1 of this paper.2 2-adic modular forms.In this section we will recall some facts about 2-adic modular forms. (Themost important for us is the assertion that a 2-adic limit of ordinary classicalmodular forms is overconvergent - see lemma 2.9.) Many of these assertionsappear in the literature, but we have not been able to locate proofs for them.For primes l > 3 such results are due to Katz [K], but we will follow Coleman'sapproach via rigid geometry. In this section we will work with an arbitraryrational prime l as it makes no di�erence to the arguments.Fix an integer N � 5 which is not divisible by l. Let X1(N)=Zl denotethe usual compacti�cation of the moduli scheme for pairs (E; i) where E is anelliptic curve and i is an embedding �N ,! E[N ]. Also let X1(N ; l)=Zl denotethe usual compacti�cation of the moduli scheme for pairs (E; i; E �! E 0) whereE is an elliptic curve, i is an embedding �N ,! E[N ] and � : E ! E 0 is anisogeny of degree l. There are two natural projections �1 and �2 : X1(N ; l)!X1(N), which take (E; i; E �! E 0) to (E; i) and (E 0; � � i) respectively.10



We will let !X1(N) (resp. !X1(N ;l)) denote the canonical extension to thecusps of the pullback by the identity section of the sheaf of relative di�er-entials of the universal elliptic curve over the non-cuspidal locus of X1(N)(resp. X1(N ; l)). Then ��1!X1(N) = !X1(N ;l) and there is a natural map j =(�_)� : !X1(N ;l) ! ��2!X1(N). After one inverts l, j becomes an isomorphism.We will let SS denote the �nite set of points in X1(N)(Facl ) correspondingto supersingular elliptic curves. For s 2 SS choose Ts 2 OX1(N)�W (Facl );s sothat (X1(N)�W (Facl ))ŝ �= SpfW (Facl )[[Ts]];and so that if � 2 Gal (Facl =Fl) and s 2 SS then(1� ��)�(T(1���)(s)) = Ts:(Here W (k) denotes the Witt vectors of k.) We will let X1(N)an denote therigid analytic space over C l (the completion of Qacl ) associated to X1(N). Itis connected. If r 2 lQ and 1 � r � 1=l we will let X1(N)�r (if r 6= 1=l)(resp. X1(N)>r (if r 6= 1)) denote the rigid analytic subspace of X1(N)anwhere for each s 2 SS we remove all points x in the residue disc of s withjTs(x)jl < r (resp. � r). (Here j jl is the l-adic absolute value normalised byjljl = 1=l.) We note that X1(N)�r is connected. (Suppose that X1(N)�r hadan admissible open cover fU; V g, with U and V non-empty and disjoint. Foreach s 2 SS the preimage of s in X1(N)�r is an annulus and hence connectedand contained in either U or V . Let eU (resp. eV ) denote the union of U(resp. V ) with the residue disc of each s 2 SS for which the preimage of sin X1(N)�r is contained in U (resp. V ). Then feU; eV g is an admissible opencover of X1(N)an by disjoint non-empty sets, a contradiction.)We will let M�rk (N) (resp. M>rk (N)) denote the space of sections of(!anX1(N))
k over X1(N)�r (resp. X1(N)>r). The spaces M�rk (N) have nat-ural norms making them Banach spaces. More precisely we setjf jr = supx2X1(N)�r(C l ) jf jx;where we de�ne jf jx as follows. Let x 2 X1(N)(Facl ) denote the reduction ofx and let f0 denote a local generator for !
kX1(N) near x. Then we setjf jx = j(f=f0)(x)jl;which is easily checked to be independent of the choice of f0. Note that ifr1 � r2 and if f 2 M�r2k (N) thenjf jr1 � jf jr2:11



We will let X1(N)0 denote the formal completion of X1(N) along its locallyclosed subscheme X1(N) � Fl � SS. It is a formal scheme over Zl. The basechange to C l of the rigid analytic space associated to X1(N)0 is just X1(N)�1.Thus we get an identi�cation�(X1(N)0; !
kX1(N))b
ZlC l �!M�1k (N);under which �(X1(N)0; !
kX1(N))b
ZlOC l is identi�ed to the unit ball inM�1k (N).There is a map SpecZl((q)) �! X1(N)corresponding to the pair (G m=qZ; ican), where G m=qZ denotes the Tate curve(Tate(q) in the notation of section 8.8 of [KM]) and where ican comes from thetautological embedding �N ,! G m (see proposition 8.11.7 of [KM]). This mapextends to a map SpecZl[[q]] �! X1(N);(use theorem 8.11.10 of [KM]) and this gives rise to a mapSpf Zl[[q]] �! X1(N)0:If f 2 �(X1(N)0; !
kX1(N)) then its pullback to Spf Zl[[q]] has the form 1Xn=0 cn(f)qn! (dt=t)
k;where t is the usual parameter on G m and where we refer to P1n=0 cn(f)qn asthe q-expansion at in�nity of f . This extends to a mapM�1k (N) �! C l [[q]]f 7�! P1n=0 cn(f)qn:From the q-expansion principle (see section 1.6 of [K] and note thatX1(N)�Faclis irreducible) we deduce that for f 2 M�1k (N) we havejf j1 = supn jcn(f)jl:If l � 5 we will let E denote the section of !
(l�1)X1(N) over X1(N) with q-expansion at in�nity 1� (2(l � 1)=Bl�1) 1Xn=1 �l�2(n)qn12



where Bk denotes the Bernoulli number, and �t(n) = P0<djn dt: Then the q-expansion at in�nity of E is congruent to 1 modulo l. For l = 3 we may choosea section E of !
2X1(N) over X1(N) with the same property (because N � 5 and36 jN , see section 2.1 of [K]). If l = 2 and if 5jN we can again choose a sectionE of !X1(N) over X1(N) with the same property (again see section 2.1 of [K]).In all these cases the section E, when pulled back to X1(N)�Facl , has a simplezero at each element of SS and no other zeroes (see for instance theorem 12.4.3of [KM]). In particular if for each s 2 SS we make a choice of local generatorfs of !
(l�1)X1(N) near s such that for all � 2 Gal (Facl =Fl) we have(1� ��)�f(1���)(s) = fs;then the E=fs for s 2 SS form one possible choice for a collection of localparameters Ts at s 2 SS satisfying(1� ��)�T(1���)(s) = Tsfor all � 2 Gal (Facl =Fl) and s 2 SS. Hence E has no zero on X1(N)>1=l.If l � 3 we will set E 0 = E. If l = 2 we will take E 0 to be the section of!
4X1(N) over X1(N) with q-expansion at in�nity1 + 240 1Xn=1 �3(n)qn:In either case the q-expansion at in�nity of E 0 is congruent to 1 modulo l andE 0 has no zeroes in X1(N)>l�1=4 .We recall some elementary results about rigid analytic functions on annuli.The set of analytic functions on the annulus � � jzjl � � is the set of functionsf(z) = 1Xn=�1 anznfor which janjl�n ! 0 as n ! �1 and janjl�n ! 0 as n !1. If r 2 lQ and� � r � � then the supremum of jf(z)jl on jzjl = r equalssupn janjlrn:(To see this set A = supn janjlrn. Thensupjzjl=r jf(z)jl = A supjwjl=1 ������ Xjanjlrn=A cnwn������l13



for some cn with jcnjl = 1. However for jwjl = 1 we see that������ Xjanjlrn=A cnwn������l � 1;with equality for some such choice of w.) In particular we see that jf(z)jl willalways achieve its maximum on either jzjl = � or jzjl = � (or possibly onboth). In the former case this maximum equalssupn janjl�n = supn�0 janjl�nand in the latter case it equalssupn janjl�n = supn�0 janjl�n:Suppose now that f is an analytic function on the annulus � � jzjl < �such that jf(z)jl is bounded by A. Then we havef(z) = 1Xn=�1anzn;where janjl�n ! 0 as n! �1 and where for all n we havejanjl � A��nand janjl � A��n:If jf(z)jl achieves its supremum it does so on jzjl = � and the supremumequals supn janjl�n = supn�0 janjl�n:Lemma 2.1. Suppose that 1 > r > 1=l, that r 2 lQ and that f is a rigidanalytic function on X1(N)�r. Then jf(x)jl achieves its supremum and does soat some point y which reduces to an element s 2 SS and satis�es jTs(y)jl = r.
14



Proof. Because X1(N)�r is a �nite union of a�noids the maximum modulusprinciple tells us that jf(x)jl does achieve its supremum. Thus we may assumethat this supremum equals 1. If jf(x)jl does not achieve its supremum inX1(N)�1 then it does so in the inverse image under reduction of some s 2SS and the lemma follows from the facts about rigid analytic functions onannuli which we recalled above. Thus suppose that f achieves its maximumin X1(N)�1.As jf(x)jl � 1 on X1(N)�1, f is a global section of the structure sheafof the formal completion of X1(N) � OC l along X1(N) � Facl � SS and thusreduces to give a regular function f on X1(N)�Facl �SS. Thus we may chooses 2 SS such that either f has a pole at s or f is constant. Choose also ana�ne neighbourhood U of s in X1(N)� Facl which contains no other elementof SS and which admits a regular function g which has a simple zero at s andno other zero on U . Let the formal completion of X1(N) �W (Facl ) along Uequal Spf A and let g 2 A be a lift of g. Note that the formal completion ofX1(N)�W (Facl ) at s is isomorphic to SpfW (Facl )[[g]]. The formal completionof X1(N) � OC l along U � fsg is Spf (Ab
OC l )hhSii=(gS � 1). Thus we mayexpand f as 1Xi=0 fiSiwith fi 2 (Ab
OC l ) and fi ! 0 as i ! 1. The same expansion holds on therigid analytic subspace of X1(N)�r consisting of points which reduce to U (asthis space is connected, being the inverse image under reduction of a Zariskiconnected space). Moreover on U we see thatf = 1Xi=0 f ig�i;where f i denotes the reduction of fi and where now the sum is �nite.In the formal completion of X1(N)�OC l at s we may expandfi = 1Xj=0 aijgjwith aij 2 OC l . Thus, on the rigid analytic subspace of X1(N)�r consisting ofpoints which reduce to s, we see thatf = 1Xk=�1(Xi ai;i+k)gk:15



(The second sum is over i 2 Z such that i � 0 and i + k � 0.) Similarly wesee that in the formal completion of X1(N)� Facl at s we havef = 1Xk=�1(Xi ai;i+k)gk:Write bk for Pi ai;i+k. Then bk 2 OC l and either� for some k < 0, bk is a unit;� or b0 is a unit and bk reduces to zero for all k 6= 0.In the either case we see that the supremum of jf(x)jl on jg(x)jl = r (i.e. onjTs(x)jl = r) is � 1, as desired.Lemma 2.2. If 1 > r > 1=l then there is a constant C (depending on k, Nand r) such that for all f 2 M�rk (N) we havejf jr � C sups;x jf jx;where s runs over SS and where x runs over elements of the residue disc of swith jTs(x)jl = r.Proof. If l = 2 reduce to the case 5jN by passing to a cover. By lemma 2.1we see that jf l�1=Ekjl on X1(N)�r achieves its supremum at some point xwhich reduces to some s 2 SS and which satis�es jTs(x)jl = r. Thus for ally 2 X1(N)�r we have jf jl�1y =jEjky � sups;x jf jl�1x =jEjkxwhere s and x run over the sets described in the statement of the lemma.Hence jf jl�1r � jEjkr sups;x (jf jl�1x =rk);where again s and x run over the sets described in the statement of the lemma.The lemma follows with C = (jEjr=r)k=(l�1).For each s 2 SS, choose a local generator fs of !
kX1(N) near s. If f 2M�rk (N) and s 2 SS then restricting f to the annulus 1 > jTs(x)jl � r in theresidue disc of s we see that f=fs can be expandedf=fs = 1Xn=�1 an(s; f)T ns ;16



where the an(s; f) are bounded for n > 0 and wherejan(s; f)jlrn �! 0as n ! �1. Choose a non-negative integer M such that r�M > C (theconstant from the lemma), and choose �r 2 C l with j�rjl = r. Now considerthe map � from M�rk (N) to the direct sum of #SS Tate algebras C lhT iSSwhich sends f to ( 1Xn=0 aM�n(s; f)�M�nr T n)s2SS:One clearly has j�(f)j � jf jr. (Here, as usual, we set j(Pn bn(s)T n)s2SSj =sups;n jbn(s)jl.) On the other hand for all n 2 Z and s 2 SS we havejan(s; f)�nr jl � j�(f)j. (Suppose not. Choose s and n so that jan(s; f)�nr jlis maximal. Then we must have n > M and we see thatjf jr � jan(s; f)jl = r�n sups;x jf jx > C sups;x jf jx � jf jr;a contradiction.) Thus Cj�(f)j � C sups;x jf jx � jf jr:We deduce that � is a homeomorphism onto a closed subspace of C lhT iSS.Lemma 2.3. Suppose that 1 > r1 > r2 > 1=l. Then the natural inclusionM�r2k (N) ,!M�r1k (N)is completely continuous.Proof. We have a commutative diagramM�r2k (N) ,! M�r1k (N)# #C lhT iSS �! C lhT iSS(P1n=0 bn(s)T n)s2SS 7�! (P1n=0 bn(s)(�r2=�r1)nT n)s2SS;where the vertical arrows are homeomorphisms onto closed subspaces (andwhere we have made the same choice of M to de�ne both vertical arrows).The lower horizontal arrow is a limit of continuous operators with �nite rangeand hence completely continuous. It follows that the upper horizontal arrowis completely continuous. 17



The reduction X1(N ; l)� Facl of X1(N; ; l) has two irreducible componentswhich we will denote X1(N ; l)1 and X1(N ; l)0. We choose the labelling sothat� �1 : X1(N ; l)1 ��! X1(N)� Facl ,� �2 : X1(N ; l)1 �! X1(N)� Facl has degree l,� �1 : X1(N ; l)0 �! X1(N)� Facl has degree l,� and �2 : X1(N ; l)0 ��! X1(N)� Facl .The two curves X1(N ; l)1 and X1(N ; l)0 intersect in a �nite number of pointswhich we shall denote SSl. Then �1 : SSl �! SS and �2 : SSl �! SS areboth bijections. (See for instance lemma 5.3.1 of [KM] for these assertions.)If s 2 SSl we will write Ts;i for ��i T�is.Lemma 2.4. If s 2 SSl then (X1(N ; l)�W (Facl ))ŝ is isomorphic toSpfW (Facl )[[Ts;1; Ts;2]]=((Ts;1 � T ls;2)(Ts;2 � T ls;1)� lus);for some us 2 W (Facl )[[Ts;1; Ts;2]]�.Proof. Theorem 6.6.2 of [KM] tells us that (X1(N ; l)�W (Facl ))ŝ �= Spf R, forsome 2-dimensional, regular complete local ring R, which is at over W (Facl ).Theorem 13.4.7 of [KM] tells us thatR=lR �= Facl [[Ts;1; Ts;2]]=((Ts;1 � T ls;2)(Ts;2 � T ls;1)):Thus we have a surjection W (Facl )[[Ts;1; Ts;2]] !! R and the kernel must begenerated by one element f with� f � (Ts;1 � T ls;2)(Ts;2 � T ls;1) mod l,� and f 62 (l; Ts;1; Ts;2)2.The lemma follows.Corollary 2.5. If s 2 SSl then(X1(N ; l)�W (Facl ))ŝ �= SpfW (Facl )[[X1; X2]]=(X1X2 � l):Proof. Take for instance X1 = (Ts;1 � T ls;2) and X2 = (Ts;2 � T ls;1)u�1s .For r 2 lQ and 1 � r > 1=l we will de�ne X1(N ; l)1�r (resp. X1(N ; l)0�r) tobe the admissible open subset of X1(N ; l)an consisting of18



� all points of X1(N ; l)an which reduce to a point of X1(N ; l)1�SSl (resp.X1(N ; l)0 � SSl)� and all points x 2 X1(N ; l)an which reduce to some s 2 SSl and forwhich jTs;1(x)� Ts;2(x)ljl � r(resp. jTs;2(x)� Ts;1(x)ljl � r):If in fact 1 > r2 > 1=l and s 2 SSl then we will let Us(r) denote the admissibleopen subset of X1(N ; l)an consisting of points which reduce to s and whichsatisfy jTs;1(x)� Ts;2(x)ljl � rand jTs;2(x)� Ts;1(x)ljl � r:It is easy to check that these sets do not depend on the choice of fTsg as longas they satisfy (1� ��)�(T(1���)(s)) = Ts:for � 2 Gal (Facl =Fl). If r1; r2; r3 2 lQ , 1 > r21 > 1=l, r1 > r2 > 1=l andr1 > r3 > 1=l then the sets� X1(N ; l)1�r2 ,� X1(N ; l)0�r3 ,� and for each s 2 SSl the set Us(r1)form an admissible cover of X1(N ; l)an by connected admissible open subsets.(This seems to be very well known, but as we are unable to �nd a referencelet us sketch the argument. Take an a�ne Zariski cover U0, U1 and Us fors 2 SSl of X1(N ; l) � Facl , where for s 2 SSl we have SSl \ Us = fsg, whereU0 = X1(N ; l)�Facl �X1(N ; l)1 and where U1 = X1(N ; l)�Facl �X1(N ; l)0.Shrinking Us if necessary, choose a regular function x0s on Us which is identicallyzero on X1(N ; l)1 \ Us and non-zero on (X1(N ; l)0 \ Us)� fsg with a simplezero at s. We can lift x0s to some a�ne open subset of X1(N ; l)�W (Facl ) which19



intersects the special �bre in Us. Set x1s = p=x0s. In (X1(N ; l)�W (Facl ))ŝ wehave x0s =P1i=1 aiX i2+ lf = X2(P1i=1 aiX i�12 +X1f), i.e. x0s is X2 times a unit(the same X1; X2 as in corollary 2.5). Thus again shrinking Us if necessary wemay assume that x1s is regular on Us, identically zero on X1(N ; l)0 \ Us andnon-zero on (X1(N ; l)1 \Us)�fsg. Moreover in (X1(N ; l)�W (Facl ))ŝ , x1s isa unit times X1. We will let U1 (resp. U0, resp. Us) denote the preimage inX1(N ; l)an of U1 (resp. U0, resp. Us). They form an admissible a�noid coverof X1(N ; l)an. For r 2 lQ and 1 � r > 1=l set U0s;�r � Us (resp. U1s;�r � Us)to be the locus where jx0sjl � r (resp. jx0sjl � r). Note also that Us(r) is thesubspace of Us where jx0sjl � r and jx0sjl � r. Note that X1(N ; l)0�r (resp.X1(N ; l)1�r) is the union of U0 and U0s;�r for s 2 SSl (resp. U1 and U1s;�r fors 2 SSl). If r1; r2; r3 2 lQ , 1 > r21 > 1=l, r1 > r2 > 1=l and r1 > r3 > 1=l,then U1s;�r2, U0s;�r3 and Us(r1) form an admissible a�noid cover of Us. ThusX1(N ; l)1�r2 , X1(N ; l)0�r3 and Us(r1) for s 2 SSl form an admissible open coverof X1(N ; l)an.It remains to show that for r 2 lQ and 1 � r > 1=l the spaces X1(N ; l)0�rand X1(N ; l)1�r are connected. To save on notation we will only explain thecase of X1(N ; l)0�r. It su�ces to check that U0 and U0s;�r for s 2 SSl areall connected. This follows because in each case the reduction map gives acontinuous map with connected �bres to a connected (in the Zariski topology)space.)If r 2 lQ and 1 � r > l�l=(1+l) then it is easy to check that��11 X1(N)�r = X1(N ; l)1�r qX1(N ; l)0�r1=land ��12 X1(N)�r = X1(N ; l)1�r1=l qX1(N ; l)0�r:Moreover X1(N ; l)1�r and X1(N ; l)0�r1=l (resp. X1(N ; l)0�r and X1(N ; l)1�r1=l)form an admissible open cover of ��11 X1(N)�r (resp. ��11 X1(N)�r). AsX1(N ; l)! X1(N) is �nite at of degree l+1, the same is true of the analyti-�cations. Thus �1 : X1(N ; l)1�r qX1(N ; l)0�r1=l �! X1(N)�rand �2 : X1(N ; l)1�r1=l qX1(N ; l)0�r �! X1(N)�rare both �nite and at of degree l + 1. Looking at the cardinality of thepreimages of points we deduce the following lemma.20



Lemma 2.6. 1. Suppose that r 2 lQ and 1 � r > l�l=(1+l) then�1 : X1(N ; l)1�r ��! X1(N)�rand �2 : X1(N ; l)0�r ��! X1(N)�r:2. Suppose that r 2 lQ and 1 � r > l�1=(1+l) then�2 : X1(N ; l)1�r �! X1(N)�rland �1 : X1(N ; l)0�r �! X1(N)�rlare both �nite at of degree l.We de�ne a bounded linear mapU = (1=l)tr �2 � j � �1j�1X1(N ;l)1�r :M�rk (N) �!M�rlk (N):One may check that U is compatible with the map on q-expansions whichsends 1Xn=0 anqn 7�! 1Xn=0 anlqn:Note that for 1 � r � l�l=(1+l) using �1 to identify X1(N ; l)1�r and X1(N)�rwe get a map Hom(hk(N ; l); C l) ,!M�rk (N)which sends f to the form with q-expansion at in�nity1Xn=1 f(T (n))qn:Under this map the Hecke operator Ul corresponds to the linear map U .Suppose that 1 > r > l�1=(1+l). Combining U : M�rk (N) ! M�rlk (N)with the inclusion M�rlk (N) ,!M�rk (N) we get a continuous endomorphismof M�rk (N), which we will also denote U . It follows from lemma 2.3 that Uis completely continuous as an endomorphism of M�rk (N). From the theory21



of completely continuous operators on p-adic Banach spaces (see [S1]) we seethat we may write M�rk (N) =M�rk (N)0 �M�rk (N)1as a direct sum of U -invariant subspaces, whereM�rk (N)0 is �nite dimensional,all the eigenvalues of U jM�rk (N)0 are l-adic units and U jM�rk (N)1 is topologicallynilpotent (i.e. if f 2 M�rk (N)1 then U rf ! 0 as r!1). We will let e denoteprojection onto the summand M�rk (N)0, so thatef = limr!1U r!f:Lemma 2.7. If f 2 M�rk (N)0 for some 1 > r > l�1=(1+l) thenf 2 M>l�l=(1+l)k (N):Proof. Choose a minimal integer i such that rli � l�1=(1+l) and write f =U i+1f 0 for some f 0 2 M�rk (N)0. Then we see thatU if 0 2 M�rlik (N) �M>l�1=(1+l)k (N)and hence that f = U(U if 0) 2 M>l�l=(1+l)k (N):Lemma 2.8. Suppose that 1 > r � l�1=(1+l), that f 2 M�rk (N), that a 2 C lis an l-adic unit and that � 2 R>0 . IfjUf � af j1 � �;then jf � ef j1 � �:Proof. For all positive integers t we see thatjU t!f � at!f j1 � �:Taking the limit as t!1 and noting that j j1 � j jr the lemma follows. (Weremark that at! ! 1 as t!1.) 22



Lemma 2.9. Suppose we are given an integer k and a formal q-expansion1Xn=1 anqn 2 C l [[q]]such that for all n we have anl = alan and such that al is an l-adic unit.Suppose we also have two series of positive integers ti and ki and a series ofabelian group homomorphismsfi : hki(N ; l)! C lsuch that1. ti !1 as i!1,2. ki � k mod (l � 1)lti�1,3. and for all positive integers n and for all i we havefi(T (n)) � an mod lti :Then P anqn is the q-expansion at in�nity of an element of M>l�l=(1+l)k (N).Proof. By the last lemma we only need show that P anqn is the q-expansionat in�nity of an element of M�rk (N) for some r < 1. Choose such an r withr > l�1=4 and r > l�1=(1+l). We may suppose that each ti � 3. Set h = 4 ifl = 2 and h = l� 1 otherwise. Then fi corresponds to an element ofM�rki (N)which we will also denote by fi. Moreover fi=(E 0)(ki�k)=h 2 M�rk (N) and hasq expansion at in�nity congruent to Pn anqn modulo lti . (If l = 2 note thatE 0 is congruent to 1 modulo 24.) Thus e(fi=(E 0)(ki�k)=h) 2 M�rk (N)0 alsohas q expansion at in�nity congruent to Pn anqn modulo lti . As M�rk (N)0 is�nite dimensional all l-adic norms are equivalent. The e(fi=(E 0)(ki�k)=h) form aCauchy sequence for j j1 and hence also for j jr. Let f 2 M�rk (N)0 denote thelimit of the e(fi=(E 0)(ki�k)=h) in both of these norms. Then f has q-expansionat in�nity Pn anqn, as desired.Finally we state the generalisation of theorem 4 of [BT] to l = 2 and 3.Although in [BT] there is a running hypothesis that l � 5, the proof giventhere of this theorem makes no use of that hypothesis.Theorem 2.10. Let N and k denote integers with N � 5. Let l 6 jN be aprime. Suppose � and � are distinct non-zero elements of C l and that f�; f� 223



M>l=(1+l)k (N) are eigenvectors for U with eigenvalues � and �. Suppose also f�(resp. f�) have q-expansions at in�nity Pn�1 an(f�)qn (resp. Pn�1 an(f�)qn)and that for all positive integers n not divisible by l we havean(f�) = an(f�):Then f = (�f� � �f�)=(� � �) is classical, i.e. there is an abelian grouphomomorphism f 0 : hk(N)! C l such that for all nf 0(T (n)) = (�an(f�)� �an(f�))=(�� �):3 2-adic Hida theory and deformation theory.In this section we will draw together some results about 2-adic Hida theorywhich are not well documented in the literature and deduce some slight ex-tensions of the results of [Di].If N � 5 is an odd positive integer we will let h0(N) denotelim r e(h2(2rN)
ZZ2);where e denotes Hida's idempotente = limt!1U t!2 :Taking the limit of the homomorphismsh i : (Z=2rNZ)� �! e(h2(2rN)
ZZ2)�we get a continuous homomorphismS = S2 � S2 : (Z=NZ)�� Z�2 �! h0(N)�:We will let � denote the completed group ring Z2[[(1+4Z2)]] �= Z2[[T ]], whereT = S2(5)� 1. Then S2 induces a continuous homomorphism �! h0(N).According to theorems 3.3 and 3.4 of [Hi], h0(N) is a �nitely generated,torsion free �-module and for any integer k � 2 we have a surjectionh0(N)=(S2(5)� 5k�2)!! e(hk(4N)
ZZ2)which sends T (n) to T (n) for all n and which becomes an isomorphism aftertensoring with Q 2 . 24



Set e� = (1� S2(�1))=2 and h0(N)� = e�h0(N) � h0(N)
Z2 Q 2 . Thenh0(N) � h0(N)+ � h0(N)� � (1=2)h0(N):Thus we see that h0(N)� are �nitely generated torsion free �-modules, and sofrom the structure theory of �nitely generated �-modules we see that we haveexact sequences of �-modules(0) �! h0(N)� �! �r� �! X� �! (0);where r� are non-negative integers and where X� have �nite cardinality 2a� .If k � 2 is an integer with the same parity as (1� 1)=2 then we see that thereis a surjection h0(N)�=(S2(5)� 5k�2)!! e(hk(2N)
ZZ2)which sends T (n) to T (n) for all n and which becomes an isomorphism aftertensoring with Q 2 . In fact the kernel of this surjection has order divisible by2a�. (The key point is that for k � (1� 1)=2 mod 2 we have an equalityee�(hk(4N)
 Q 2) = e(hk(2N)
 Q 2):This results from the fact that U2 maps the space of modular forms of weightk and level �1(2N)\�0(4) to the space of modular forms of weight k and level�1(2N) (compare for instance proposition 8.3 of [Hi]).)Similarly set h2(4N)� = e�h2(4N) � h2(4N)
 Q .Lemma 3.1. Suppose that f : h0(N)� ! Qac2 is a continuous Z2-algebrahomomorphism such that f(S2(5)) = 1=5. Then1Xn=1 f(T (n))qnis the q-expansion at in�nity of an element of M>2�2=31 (N).Proof. For each integer r � 1 set k(r) = 1 + 2a�+r. Then we can �nd acontinuous homomorphism of Z2-modulesfr : e(hk(r)(2N)
ZZ2) �! Q ac2such that fr(T (n)) � f(T (n)) mod 2r+2 for all n. The lemma follows fromlemma 2.9. 25



Suppose that k � 2 is an integer. If } is a minimal prime ideal of h0(N)�containing S2(5) � 5k�2 then h0(N)�=} is a 1-dimensional integral domain.Thus } contains ker(h0(N)� !! ee�(hk(4N)
ZZ2)):Thus contraction gives a bijection between prime ideals of ee�(hk(4N)
ZZ2)and prime ideals of h0(N)� containing S2(5) � 5k�2, hence also a bijectionbetween maximal ideals of ee�(hk(4N)
ZZ2) and maximal ideals of h0(N)�.Hence to any maximal ideal m of h0(N)� we can associate a continuous semi-simple representation�m : Gal (Qac=Q) �! GL2(h0(N)�=m)such that for all but �nitely many primes p we have� tr �m(Frobp) = Tp� and det �m(Frobp) = pS(p).(To see that �m can be de�ned over h0(N)�=m use the facts that its trace isvalued in h0(N)�=m (which follows from the Chebotarev density theorem) andthat the Brauer group of any �nite �eld extension of h0(N)�=m is trivial.) Wewill call m Eisenstein if �m is not absolutely irreducible.Note that the intersection over all integers k � 2 with k � (1� 1)=2 ofker(h0(N)� !! e(h2(2N)
 Q 2))equals h0(N)� \\k (S2(5)� 5k�2)�r� = (0):Thus h0(N)� = lim (h0(N)�= \k2K ker(h0(N)� !! e(hk(2N)
 Z2)));where the inverse limit is over �nite sets K of integers k � 2 with k � (1 �1)=2 mod 2.For each k � 2 there is a continuous 2-dimensional pseudo-representation(see [Ta1] for the de�nition of pseudo-representation)T : Gal (Qac=Q ) �! e(hk(2N)
 Z2)26



such that for all primes p6 j2N the pseudo-representation T is trivial on Ip (theinertia group at p) (i.e. T (��) = T (�) for all � 2 Ip and � 2 Gal (Qac=Q))and T (Frobp) = Tp and T (Frob2p) = T 2p � 2pS(p). By the Chebotarev densitytheorem we see that there is at most one such pseudo-representation T . Thusfor any �nite set K as in the last paragraph we get a continuous pseudo-representationT : Gal (Qac=Q) �! h0(N)�=Tk2K ker(h0(N)� !! e(hk(2N)
 Z2))� Lk2K e(hk(2N)
ZZ2);such that for all primes p6 j2N the pseudo-representation T is trivial on Ip,T (Frobp) = Tp and T (Frob2p) = T 2p � 2pS(p). Taking the limit over K we �nda continuous pseudo-representationT : Gal (Qac=Q) �! h0(N)�such that for all primes p6 j2N the pseudo-representation T is trivial on Ip,T (Frobp) = Tp and T (Frob2p) = T 2p � 2pS(p). By the main theorem of [N] (seealso [R]) we see that if m is a non-Eisenstein maximal ideal of h0(N)� thenthere is a continuous representation�ordm : Gal (Qac=Q ) �! GL2(h0(N)�;m)such that �ordm is unrami�ed at all primes p6 j2N and satis�es� tr �ordm (Frobp) = Tp� and det �ordm (Frobp) = pS(p).It is known (by [De] or [W], theorem 2.1.4) that �mjssGal (Qac2 =Q2 ) is unrami�ed.We will suppose that �mjssGal (Qac2 =Q2 )(Frob2) has two distinct eigenvalues � and�. Then it is also known that �; � 2 h0(N)�=m and that either Up � � 2 mor Up � � 2 m ([De] or [W], theorem 2.1.4). We will suppose it is the former.Choose an element �0 2 Gal (Q ac2 =Q 2) above Frob2. It follows from Hensel'slemma that �ordm (�0) has distinct eigenvalues A and B in h0(N)�;m with A �� mod m and B � � mod m. Choose a basis (eB; eA) of h0(N)2�;m consisting ofeigenvectors of �ordm (�0) with eigenvalues B and A respectively. With respectto this basis write �ordm (�) = � a(�) b(�)c(�) d(�) � :Also write 27



�  a for the unrami�ed character of Gal (Qac2 =Q 2) which takes Frob2 to a,� �2 for the 2-adic cyclotomic character,� and S for the compositeGal (Q ac=Q) �! Gal (Q(�21N)=Q ) �! Z�2 � (Z=NZ)� S�! h0(N)�:Then by theorem 2.1.4 of [W] we see that for any integer k � 2 with k �(1� 1)=2 mod 2 and for any � 2 Gal (Qac2 =Q 2) we have� a(�) � (�2S �1U2 )(�),� c(�) � 0,� and d(�) �  U2(�),all modulo ker(h0(N)�;m !! e(hk(2N)
ZZ2)m):We conclude that �ordm jGal (Qac2 =Q2 ) � � �2S �1U2 �0  U2 �and that A = U2.Now suppose that � : Gal (Qac=Q) �! GL2(Fac2 )is a continuous representation such that� �(c) 6= 1,� �jssGal (Qac2 =Q2 ) is unrami�ed and �jssGal (Qac2 =Q2 )(Frob2) has distinct eigenval-ues � and �,� �jGal (Q(p�1)ac=Q(p�1)) is irreducible,� and such that there exists an odd integer N � 5 and a homomorphismf : h2(N) �! Fac2 satisfying{ f(T2) = �,{ f(Tp) = tr �(Frobp) for all primes p6 j2N ,28



{ and f(pS(p)) = det �(Frobp) for all primes p6 j2N .We will let N(�) denote the conductor of �.Suppose also that S is a �nite set of odd primes containing all where �rami�es and some prime p � 5. Then setNS(�) = N(�)Yp2S pdim�Ip :It follows from theorem 3.1 of [Buz] that we can �nd a ring homomorphismh2(2NS(�)) �! Fac2such that� U2 maps to �,� Up maps to 0 if p 2 S,� Tp maps to tr �(Frobp) if p6 j2NS(�),� and pS(p) maps to det �(Frobp) if p6 j2NS(�).(It is here we use that �jGal (Q(p�1)ac=Q(p�1)) is irreducible, rather than theweaker assumption that � is irreducible.) We will let mS(�; �)+ denote thekernel of this homomorphism.Lemma 3.2. Keep the above notation and assumptions.1. There is a ring homomorphism h2(4NS(�))� ! Fac2 such that� U2 maps to �,� Up maps to 0 if p 2 S,� Tp maps to tr �(Frobp) if p6 j2NS(�),� and pS(p) maps to det �(Frobp) if p6 j2NS(�).We will denote its kernel mS(�; �)�.2. There is a surjectionh2(4NS(�))�;mS(�;�)�=(2)!! h2(2NS(�))mS(�;�)+=(2)which takes T (n) to T (n) for all n.29



Proof. Let T denote the polynomial algebra over Z2 generated by variables tpand sp for p6 j2NS(�) and up for pj2NS(�). Then there is a natural map T !h2(2NS(�))mS(�;�)+=(2) which sends tp to Tp etc. Let m denote the pullbackof mS(�; �)+. It is a maximal ideal of T. Let Y denote the open (i.e. withthe cusps removed) modular curve of level �1(2NS(�)) \ �0(4). Let � denotethe order two character of �1(4NS(�))=(�1(2NS(�)) \ �0(4)) thought of as acharacter of the fundamental group of Y . It is known thatH1(Y;Z2)m �= h2(2NS(�))2mS(�;�)+ ;where T acts on the cohomology by sending tp to Tp etc. (See proposition12.10 of [G].) Because H2(Y;Z2) = (0) (as Y is a�ne) we conclude thatH1(Y; F2)m �= (h2(2NS(�))mS(�;�)+=(2))2:Thus to prove the lemma it su�ces to see that the action of T onH1(Y; F2)mfactors through h2(4NS(�))�;mS(�;�)�. HoweverH1(Y; F2)m = H1(Y; F2(�))m �= H1(Y;Z2(�))m 
 F2 ;because H2(Y;Z2(�)) = (0) (as Y is a�ne). Finally the action of T onH1(Y;Z2(�))m factors through h2(4NS(�))�;mS(�;�)� , because H1(Y;Z2(�))m istorsion free (because in turn H0(Y; F2(�))m = H0(Y; F2)m = (0), as m is non-Eisenstein).We remark that by our choice of NS(�), for p 2 S we have Up = 0 in eachof h2(2NS(�))mS(�;�)+, h2(4NS(�))�;mS(�;�)� and h0(NS(�))�;mS(�;�)� . (In fact itsu�ces to check that for p 2 S we have Up = 0 in hk(4NS(�))mS(�;�)� wheneverk � 2 and k � (1 � 1)=2 mod 2. This is standard, see for example corollary4.2.3 and the proof of lemma 5.1.1 of [CDT].)We will let �(2)S;�;� : Gal (Q ac=Q) �! GL2(R(2)S;�;�)denote the universal deformation of � to a representation which is unrami�edoutside S [ f2g and which when restricted to Gal (Qac2 =Q 2) is of the form� �1 �0 �2 � ;where �2 is unrami�ed and �2(Frob2) � � modulo the maximal ideal, andwhere, thinking of �1 as a character of Q�2 by local class �eld theory, we have�1(�1) = �1 and �1(x) = x for all x 2 (1 + 4Z2). Similarly we will let�ordS;�;� : Gal (Qac=Q ) �! (RordS;�;�)30



denote the universal deformation of � to a representation which is unrami�edoutside S [ f2g and which when restricted to Gal (Qac2 =Q 2) is of the form� �1 �0 �2 � ;where �2 is unrami�ed and �2(Frob2) � � modulo the maximal ideal, andwhere, thinking of �1 as a character of Q�2 by local class �eld theory, we have�1(�1) = �1. The character �1��12 gives a continuous homomorphism, whichwe will denote S2, (1 + 4Z2) �! (RordS;�;�)�and so makes RordS;�;� into a �-algebra. From the de�nitions one sees thatR(2)S;�;� = RordS;�;�=(S2(5)� 1):From the universal properties we get maps� R(2)S;�;+ �! h2(2NS(�))m(�;�)+,� R(2)S;�;� �! h2(4NS(�))�;m(�;�)� ,� and RordS;�;� �! h0(NS(�))�;m(�;�)� ,which are in fact surjections. (To see that these maps are surjections notethat Up = 0 if p 2 S, that Tp = tr �(2)m(�;�)�(Frobp) or tr �ordm(�;�)�(Frobp) is in theimage for p6 j2NS(�), that S(p) is similarly in the image for p6 j2NS(�) and thatU2 is in the image by Hensel's lemma (as it is an eigenvalue for an element ofGal (Qac2 =Q 2) above Frob2 in one of these representations).)Theorem 4 and proposition 6 of [Di] show that the mapR(2)S;�;+ �! h2(2NS(�))m(�;�)+is an isomorphism.Proposition 3.3. The natural mapsR(2)S;�;� !! h2(4NS(�))�;m(�;�)�and RordS;�;� !! h0(NS(�))�;m(�;�)�are isomorphisms. 31



Proof. Consider the �rst of these maps. We have a commutative diagramR(2)S;�;�=(2) !! h2(4NS(�))�;m(�;�)�=(2)# #R(2)S;�;+=(2) ��! h2(2NS(�))m(�;�)+=(2);where the left hand vertical arrow is an isomorphism from the de�nitions.Thus R(2)S;�;�=(2) ��! h2(4NS(�))�;m(�;�)�=(2)and, because h2(4NS(�))�;m(�;�)� is torsion free over Z2, we deduce thatR(2)S;�;� ��! h2(4NS(�))�;m(�;�)� :Now the compositeRordS;�;�=(S2(5)� 1)!! h0(NS(�))�;m(�;�)�=(S2(5)� 1)!! h2(4NS(�))�;m(�;�)�is an isomorphism and soRordS;�;�=(S2(5)� 1) ��! h0(NS(�))�;m(�;�)�=(S2(5)� 1):Because h0(NS(�))�;m(�;�)� is �-torsion free, we deduce thatRordS;�;� �! h0(NS(�))�;m(�;�)� :The same argument also shows thatRordS;�;+ �! h0(NS(�))+;m(�;�)+:Putting this proposition together with corollary 1.2 and lemma 3.1 weobtain the following corollary.Corollary 3.4. Suppose that K=Q 2 is a �nite extension with ring of integersOK with maximal ideal }K. Suppose also that� : Gal (Qac=Q ) �! GL2(OK)is a continuous representation such that1. (� mod }K) has image SL2(F4),32



2. (� mod }K)(c) 6= 1,3. (� mod }K) is unrami�ed at 5,4. � is unrami�ed at 2 and �(Frob2) has eigenvalues � and � in OK withdistinct reduction modulo }K .Then there exists an odd integer N � 5 divisible by all primes at which �rami�es and a normalised eigenform f� 2 M>2�2=31 (N) such that� Tpf� = (tr �(Frobp))f� for all primes p6 j2N ,� pS(p)f� = (det �(Frobp))f� for all primes p6 j2N ,� U2f� = �f�,� and Upf� = 0 for all pjN .(We remark that it is presumably not hard to weaken the fourth assumptionto simply require that �jssGal (Qac2 =Q2 ) is unrami�ed and that � is an eigenvalueof �I2(Frob2). We do not do so as we shall not need this result.)4 The main theorem.We now turn to the proof of theorem A. By the previous work cited in theintroduction, it su�ces to check the following special case, which is our onlycontribution.Theorem 4.1. Suppose that K=Q is a Galois extension with Galois group A5.Suppose also that� 2 is unrami�ed in K and Frob2 2 Gal (K=Q) has order 3,� 5 is unrami�ed in K� and K is not totally real.If r : Gal (Qac=Q ) �! GL2(C ) is a continuous representation such that theimage of proj r is Gal (K=Q) then there is a weight one newform f such thatfor all prime numbers p the pth Fourier coe�cient of f equals the trace ofFrobenius at p on the inertia at p coinvariants of r. In particular the ArtinL-series for r is the Mellin transform of a weight one newform and is an entirefunction. 33



Proof. Twisting r by a character of �nite order we may suppose that the imageof det r has two-power order, that r is unrami�ed at 2 and 5, and that r(Frob2)has order 3. Choose an isomorphism of �elds Qac2 �= C , so that we may thinkof r as a representation Gal (Q ac=Q) �! GL2(OK)for some �nite extension K=Q 2 inside Q ac2 . By corollary 3.4 we see that wemay �nd an odd integer N � 5 divisible by all primes at which r rami�es andnormalised eigenforms f�, f� 2 M>2�2=31 (N) such that� Tpf� = (tr r(Frobp))f� and Tpf� = (tr r(Frobp))f� for all primes p6 j2N ,� pS(p)f� = (det r(Frobp))f� and pS(p)f� = (det r(Frobp))f� for allprimes p6 j2N ,� U2f� = �f� and U2f� = �f�,� and Upf� = Upf� = 0 for all pjN .Theorem 2.10 tells us thatf = (�f� � �f�)=(�� �)is classical and theorem A follows from this.Lastly let us give some examples. To that end we will call a number �eldK suitable if� K is Galois over Q with group A5 ,� 2 is unrami�ed in K and Frob2 2 Gal (K=Q) has order 3,� 5 is unrami�ed in K� and K is totally complex.If K is such a number �eld then we can �nd a continuous homomorphismr : Gal (Qac=Q ) �! GL2(C )such that the image of proj r is Gal (K=Q) (see for instance the corollaryto theorem 4 of [S2]). For any such r we have just shown that L(r; s) hasanalytic continuation to the whole complex plane. Thus to give examples ofour theorem, one need only give examples of suitable number �elds K.Suppose that S is a �nite set of places of Q including 2, 5 and 1. Forv 2 S let Lv=Q v be a �nite Galois extension such that Gal (Lv=Q v ) embedsinto A5. Suppose that 34



� L2=Q 2 is unrami�ed of degree 3,� L5=Q 5 is unrami�ed� and L1 = C .According to [M] the quotient of a�ne 5 space over Q by the action of A5which simply permutes the variables, is rational. Hence, by for example thediscussion on page xiv of [S3] (see in particular theorem 2 and the remarkwhich follows), we see that there is a number �eld K which is Galois over Qwith group A5 and such that for v 2 S we have Kv �= L60=[Lv :Qv ]v . By varyingS we see in particular that there are in�nitely many suitable number �elds.More concrete examples can be found in the literature. For example, ac-cording to Buhler [Buh], the splitting �elds of the following are suitable:x5 + 4x4 + 25x3 + 17x2 + 5x+ 2x5 + 6x4 + 19x3 + 25x2 + 11x+ 2x5 + 3x4 + 7x3 + 6x2 � 11x� 24x5 + 3x4 + x3 � 4x2 + 17x� 8x5 + 2x4 + 37x3 � 7x2 + 25x� 4:Corrigenda for [Ta2].One of us (R.T.) would like to take the opportunity to record some correctionsto [Ta2]. He would like to thank Kevin Buzzard, Henri Darmon and NickShepherd-Barron for pointing these out.� page 3, line 8: the formula de�ning Tp should have a factor pk�1 multi-plying the second sum.� page 3, line -1/2: between \if and only if" and \ f (as an element..."insert \c1(f) = 1 and".� page 4, line -7: the SS>r should read SS<r and the X1(N)<r should readX1(N)>r.� page 7, line 5: in theorem 1 we need to assume that the image of Glunder the projective representation associated to � has order divisible bya prime other than l. 35
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