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Introduction

Artin [A] conjectured that the L-series L(r, s) of any continuous representation
r: Gal (Q*/Q) — GL,(C) is entire except possibly for a pole at s = 1 when
r contains the trvial representation. The case n = 1 is simply a restatement of
the Kronecker-Weber theorem and standard results on the analytic continua-
tion of Dirichlet L-series. Artin proved his conjecture when r is induced from a
1 dimensional representation of an open subgroup of Gal (Q*/Q). Moreover,
Brauer [Br| was able to show in general that L(r,s) is meromorphic on the
whole complex plane. Since then the only real progress has been for n = 2.

When n = 2 such representations can be classified according to the image
of the projectivised representation projr : Gal (Q*/Q) — PGLy(C). This
image is either cyclic, dihedral, the alternating group A4 (the tetrahedral case),
the symmetric group S, (the octahedral case) or the alternating group Ajs (the
icosahedral case). When the image of projr is cyclic then r is reducible and
Artin’s conjecture follows from the n = 1 case. When the image of projr is di-
hedral then r is induced from a character of an open subgroup of index 2, and
so Artin himself proved the conjecture in this case. (Note however that the
result is implicit in earlier work of Hecke (see [He|). Langlands [Langl] proved
Artin’s conjecture for tetrahedral and some octahedral representations. Tun-
nell [Tu] extended this to all octahedral representations. These results are
based on Langlands’ theory of cyclic base change for automorphic represen-
tations of G Ly, and so the method seems to be restricted (at best) to cases
where the image of r is soluble. A number of people, including Buhler [Buh]
and Frey et al. [F], used computer calculations to check Artin’s conjecture for
a few icosahedral examples.

The contribution here to the problem is to treat some (infinite families of)
icosahedral cases. More precisely we prove the following theorem.

Theorem A. Suppose that r : Gal (Q*“/Q) — GLo(C) is a continuous ir-
reducible representation and that r is odd, i.e., the determinant of complex
conjugation s —1. If r is icosahedral suppose that

e projr is unramified at 2 and that the image of a Frobenius element at 2
under projr has order 3,

e and projr is unramified at 5.

Then there is a weight one newform f such that for all prime numbers p the
p'" Fourier coefficient of f equals the trace of Frobenius at p on the inertia
at p coinvariants of r. In particular the Artin L-series for r is the Mellin
transform of a weight one newform and is an entire function.



The proof follows a strategy outlined by one of us (R.T.) to Wiles in 1992
(see [Ta2]), which has now been carried out by the four of us in three main
steps (see [ST], [Di] and [BT]). The purpose of this article is simply to pull
these results together and document some technical results which we require,
but do not seem to be available in the literature. The result is that this paper
is rather technical. The reader who simply desires to get an overview of the
main ideas of the proof should consult [Ta2], perhaps followed by [ST], [BT]
and [Di], rather than this paper.

One might hope that extensions of our method may treat all odd two-
dimensional icosahedral representations of Gal (Q“/Q), although considerable
work remains to be done. On the other hand our method seems to offer no
prospect of treating the general Artin conjecture.

1 Mod 2 icosahedral representations.

In this section we will give a slight extension of results in [ST]. This could
be avoided by appealing to the results of [G]. However his results depend
on certain “unchecked compatibilities”, and so we prefer to make our result
unconditional by using this more ad hoc argument. We remark that the hy-
potheses in our main theorem could be weakened if one could make Gross’
theorem unconditional.

We start with a strengthening of theorem 3.4 of [ST].

Theorem 1.1. Fiz a continuous homomorphism

7: Gal (Q"/Q) —» SLo(F,).

Suppose that p is unramified at 2 and that p(Froby) has distinct eigenvalues
a,( € Fy. Then there is an abelian surface A/Q together with a principal
polarisation N : A — AV and an embedding i = Z[(1 + /5)/2] < End (A)
(both defined over Q) such that

1. Xoi(a) =i(a)V o\ for all a € Z[(1+ V/5)/2];
2. the action of Gal (Q*/Q) on A[2] = F; is equivalent to p;

3. A has good ordinary reduction at 2 and Froby = v on A[2]® (the generic
fibre of the maximal etale quotient of the two torsion on the Néron model
of A over Z);

4. and the action of Gal (Q*/Q) on the \/5-division points, A[\/5] is via a
surjection Gal (Q*/Q) — GLy(F5).
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Proof. With the third condition removed this is the main result of [ST|. The
proof of this strengthening is a slight variant of the argument of that paper.
We start by recalling some of the constructions there.

We fix an identification of Fy with Z[(1++/5)/2]/(2) and of SLy(F,) with
As. We let Y/Q denote the smooth cubic surface given in P* by

5 5
>u-3w-0
=1 =1

The group As acts on Y by permuting the variables. We let Y C Y (resp.
Y! C Y) denote the complement of the 15 lines conjugate to (s : —s : ¢ : —t : 0)
(resp. the complement of the 10 points conjugate to (1 : —1:0:0:0)). We
let Y, (vesp. Y, resp. Y') denote the twist of ¥ (resp. Y, resp. Y') by
p: Gal(Q*/Q) — As. There is an etale P'-bundle C; — Y] together with
6 distinguished sections sy, ..., S¢ : Yﬁl x Q% — (7 x Q% such that the set
{51,.... 56} is Gal (Q"°/Q)-invariant. Over Y} the sections are distinct. (This
is not explicitly proved in [ST], but one may argue as follows. We will use
without comment some notation from section 2 of [ST]. By the formulae on
pages 15-17 of [DO] the locus in P} where s, ..., s¢ are distinct is identified
with the complement, Z°, in 370 | 2, = 30 23 = 0 of the 15 Sg-conjugates
of the plane (s: —s:t: —t:wu: —u). Then using lemma 2.4 of [ST] it is easy
to see that j71Z°% = Y and the claim follows.)

We let W5/Q denote the Fy-vector space scheme corresponding to p :
Gal (Q*¢/Q) — G Ly(Fy). Tt comes with a standard pairing

Wp X Wy — g
which on Q““-points sends
(CL, b) X (C7 d) — (_1)tr]F4/]F2(adfbc).

Then there is a coarse moduli space H;/Q parametrising quadruples (A, A, 7, )
where (A, )) is a principally polarised abelian surface, i : Z[(1 + v/5)/2] —
End (A) has image fixed by the A-Rosati involution and where « : W5 = A[2]
is an isomorphism of F4-vector space schemes taking the standard pairing to
the A-Weil pairing. There is a Zariski open subset 7—[% C H, consisting of those
geometric points for which the corresponding (A, A) is a Jacobian. Then there
is an isomorphism Y = 7 so that a geometric point y of Y} maps to the
point parametrising a quadruple (A, A, i, a) such that (A, \) is the Jacobian of
the curve which maps 2 : 1 to C;, ramified exactly at s;(y), ..., s¢(y). (Again



this is not explicitly stated in [ST]. To prove it one may assume that 5 = 1.
Recall from [ST] we have maps

Y- = H, — A~ — P}

(We keep the notation of [ST], so in particular H} is a compactification of
what we are now calling H;.) The locus of Jacobians in A} is the locus of
points where A;— — PP is regular and map to Z° € PP. Thus Y° maps to
HY C Hi. On the other hand Hj is the disjoint union of the image of Y° and
some P!’s which get contracted to the points of P — (PP)* (see section 2 of
[ST]). Thus, if y is a point of H3 not in the image of Y? then either Hi— — PP
is not regular at y or y gets mapped outside Z°. In either case y does not lie
in HY.)

If X7 denotes the blow up of Y X Y5 along the diagonal, then X7 has an
involution ¢ which exchanges the two factors. We let X5 denote the twist of
X7 by

Gal (Q/Q) — Gal (Q(v'5)/Q) = {1,1},

and X; the complement in X of the strict transforms of L x L as L runs over
lines on Yz. Then there is a morphism

0: X2 —Y;

which (loosely speaking) sends (P, @) to the third point of intersection of the
line through P and @ with Yz(see [ST] for details). We will let X2 (resp. X1,
resp. DE/X%) denote the preimage of Yﬁo (resp. the preimage of Yﬁl, resp. the
pull back of Cj) under #. Then it is proved in [ST] (lemma 3.1 and proposition
3.2) that X;/Q is rational and that D;/X is a Zariski P'-bundle.

The argument preceding lemma 2.7 of [ST] shows that given 2 € X we
can find a Zariski open subset U C XFO containing x and a principally polarised
abelian surface (Ay, Ay)/U such that

1. for all z; € U the fibre (Ay, Ayy)s, is the Jacobian of a curve which maps
2:1 to D5, ramified exactly at s;(z1), ..., s¢(21);

2. there is an isomorphism ay : W, = Ap[2] of finite flat group schemes
over U with alternating pairings;

3. and there exists iy : Z[(1 +/5)/2] < End (Ay) which is compatible
with o and the action of F, on Wa.



(In [ST] the existence of iy is only explained over a non-empty open subset of
U. That it extends to the whole of U follows from remark 1.10 (a) of chapter
I of [CF].) We remind the reader that A; is not canonical. Suppose that T
is a geometric point of U. If f is an automorphism of (Ay, Ay, iy, ay)z then
Ty(f) = 1 mod 2 and so Ty(f?) = 1 mod 4. As f has finite order this implies
that f2 = 1. If f # £1 then Apz = (1+)/24pzD(1— f)/2Ayz and Ay corre-
spondingly decomposes as the direct sum of two polarisations. This contradicts
the fact that 6(Z) € Y, = H). Thus we must have Aut ((Ay, Ay, iv, av)z) =
{£1}. In particular if we set

U = {(a,b) € (Ay x A)VE]| (a,b) # 1}/ ~,

where (a,b) ~ (da',') if and only if (a,b) = £(ua’, V') for some p € Fy', then
the construction of U is canonical and so we can glue the U/U to give an etale

cover )Z'FU/XFO of degree 60. The argument of lemma 2.7 of [ST| shows that 5(’?0
is geometrically irreducible.

Suppose for the moment that we can find a point z, € XﬁU(QQ), a Zariski
open Uy C X} x @, as above and a continuous character x, : Gal (Q5°/Q,) —
{£1} such that

e the twist Ay, ., (x2) of Ay,., by x2 has good reduction

e and, if Ay, .,(x2) denotes the mod 2 reduction of the Néron model
of Ay, ., (x2) over Zy, then Ay, ., (x2)[2]" # (0) and Frob, acts on
AUz,xz (XQ)[2]et by .

Then we can find a neighbourhood (for the 2-adic topology) U € X)(Qy) of
9 such that if x € U then

o v c U,
e Ay, .(x2) has good reduction at 2
o and Ay, ,(x2)[2] = Ay, 2, (x2)[2]-

Because X is rational, it follows from Ekedahl’s version of the Hilbert irre-
ducibility theorem (see theorem 1.3 of [E]) that we can find a point z € X)(Q)
such that

erclU

e and if 7 is a point of )?FO above z then [Q(7) : Q = 60.



Suppose that U is a Zariski neighbourhood of z in Xﬁo as above. Then
(Au, Av, iy, ap)s X Qy is a twist by some character x), : Gal (Q5°/Qy) — {£1}
of (A, vy, iy, sy ). Choose a character y : Gal (Q¢/Q) — {+£1} which
restricts to x2x5 on Gal (Q5¢/Qy). Then Ay ,(x) has the following properties.

o (Ay.(X), Avw)/Q is a principally polarised abelian surface.

ive @ Z[(1++/5)/2] = End(Ap,(x)) and the image is fixed by the
Av.z-Rosati involution.

As an F,[Gal (Q*¢/Q)]-module, Ay, (x)[2](Q*) is equivalent to p.

Apz(x) X Q = Ay, »(x2) and so Ay, (x) has good reduction at 2.

Aua(x)[2] 2 Ay 2, (x2)[2] and so Ay (x)[2]* # (0) and Frob, acts on
Ay (X)[2]* by a.

e If G denote the image Gal (Q*/Q) in Auty, (Ay.(x)[V5]) = GLy(Fs)
then det G = FY (because of the A\-Weil pairing) and

wran ()

Then it is elementary to check that G = G'Ly(F5).

v =+l1, ,uEIF?}zGO.

It remains to explain the construction of x5. This we will do in two steps.
More precisely we will show the following two results.

1. There is a quadruple (A, A, i, ) (as above) defined over K such that A
has good reduction and, if A denotes the reduction of its Néron model,
then A[2]*" # (0) and Frob, acts on A[2]*" by «.

2. Ify € YEU(QQ) then there is a point of Xﬁo((@Q) mapping to y under 6.

The first assertion gives a point y € Hp(Qy) = Y (Q,) and the second a point
X9 € Xg(Qg) mapping to y, under #. This point xo will suffice.

We turn first to the second assertion. Suppose y € Y(Qy) and let Y3(y)’
denote the complement in Y3 of the intersection of Y7 with the tangent plane
to Y; at y. Thus Y,(y)' is a smooth affine cubic surface. There is an involution
vy of Y5(y) which sends any point z to the third point of intersection of the
line through y and z with the cubic surface Y;. We will let Y;(y) denote the
twist of Y5(y)’ by 1, over Gal (Q,(v/5)/Q,). We may identify Y;(y) as a Zariski
open subset of the fibre of 6 : Xﬁ0 — Yﬁo above y, and so it suffices to show

that Yy(y)(Q.) # 0.



Note that the equations defining Y also define a smooth projective surface
over Zy, which we will also denote by Y. The construction of Y}, Y;(y)" and
Y5(y) from Y all make sense over Zy and give rise to smooth relative surfaces
over Zs, which we will denote by the same symbols. (We are using the fact
that p is unramified. We are not asserting that these integral models have
any moduli theoretic meaning.) By Hensel’s lemma it will suffice to show that
Y5(y)(F) is non-empty.

Without loss of generality the surface Y; x Fy is given in P* by the equation

X4+ X0 X7+ X5+ XX, + X3X; =0.

(If v is a root of 7% + T+ 1 = 0, then (X; : Xy : X3: X,) corresponds to the
point

(X5 + Xo) + Xiy + X071 (Xa + Xy) + Xi9? + Xo*
(X‘g + X4) + Xl’)/4 + XQ’)/ . X‘g . X4)

of Y x Fy.) Thus Y5(F,) has three points P = (0:0:1:0), Q@ =(0:0:0:1)
and R=(0:0:1:1).

First suppose that y reduces to P. Then Y;(y) x F, is the surface given in
affine 3-space by the equation

o)+ mas +ws + a3+ a5 =0
and t, maps (1, z2, z3) to
($1,$2,$3+1).

(Here we set z; = X;/X4.) Thus Y;(y) x F, is given in affine 3-space by the
equation

yi s +ys+ 1+ ys +y; =0.

(Here we let (y1,ys,y3) correspond to the point (x1, z9, 23) = (y1,y2,y3 + (1 +
V/5)/2).) Thus Y;(y)(F,) consists of 6 points.

The case that y reduces to @) is exactly analogous, and again we see that
Y5(y)(F2) consists of 6 points.

Thirdly suppose that y reduces to R. Introducing a new variable X} =
X3+ X, we see that Y5 x Fy can also be described in P* by the equation

X34 X X2 4+ X5+ X2X, + X3(X))2 =0,



and that in these new coordinates R becomes the point (0 : 0: 1 :0). Thus
the analysis is the same again and we see that Y,(y)(F,) again consists of 6
points.

Finally we turn to our first assertion. Let K denote the field Q(a), where
a is a root of

T4 +13T7% + 41 = 0.

Then 13 + 2a? is a square root of 5, which we will denote /5. Moreover K
is a CM field with totally real subfield Q(v/5). The inverse different Dl}l/Q is
principal with generator £ = (13a + 2a®)~!. We have the prime factorisation

20k = (1 +V5)/2+a)/2)((1 +5)/2 — a)/2).

As +1 are the only roots of unity in K, the only elements of K* with norm
down to Q(v/5) equal to 2 are (+(1 ++/5)/2+ a)/2.

The normal closure of K/Q is K(v/41)/Q and Gal (K (1/41)/Q) is gener-
ated by two elements o and 7, where

ola) =V4l/a  7(a)=a
o(V41) = V4l 7(v41) = V4L

Thus ¢* = 72 = 1, Tor = 0% and 0% = ¢. By the Cebotarev density theorem

we may choose a prime p of Ok which is split completely and lies above a
rational prime p = 3 mod 4. Let oy denote the character

Ok, = Ok, — {£1}.

Fix an embedding K (v/41) < C such that a has negative imaginary part,
134 2a% > 0 and V41 > 0. Then ® = {1,0} is a CM-type with reflex (L, ®'),
where L = K(v/41){1o7} and & = {1,0%}. The field L is also a CM field
and has totally real subfield Q(v/41). It is isomorphic to the field obtained by
adjoining a root of T* + 2672 +5 to Q. Then L has class number 1 and O is
generated by —1 and 32 + 5v/41. We have a prime factorisation 200, = I1¢.J
with #0, /1 = 2 and #0,,/J = 4. We have a homomorphism

Ng : L* — K~
T +— x03(x).

Then Ng extends to a map Af — A . Define a continuous homomorphism
a: Al — K~

by setting



L O{‘LX - Nd)’,
® |,x = g0 Ny
‘OL,p 0 d'y
e a|,x =1 for any rational prime p’ # p,
L,p'

e and af;x = 1 for any infinite place v of L.

(This makes sense because the class number of L is one and because (aq o
Nor)|ox = Nat|ox)

Then there is a triple (A, A,7)/L (a principally polarised simple abelian
surface with an action i of Ok ) which has type (K, ®, Ok, &) and character a.
(See [Lang|, especially theorems 3.6 and 4.5 of chapter 1 and corollary 5.3 of
chapter 5.) Because a is trivial on OF ;, we see from the fundamental theorem
of complex multiplication (see theorem 1.1 of chapter 4 of [Lang]) that, for a
rational prime [ > 2, inertia at [ acts trivially on T;A, the [-adic Tate module
of A. Thus A has good reduction at I. Let A denote the reduction mod I of
the Néron model of A. Moreover, if I = (a) then Froby acts on T)A via +Nga.
As Ny gvsNara = 2 we see that £Nga = (£(1 + V/5)/2 4 a)/2 and so

+Nya = (1 +v/5)/2 mod (N T)C.

Thus A[Ng 1¢] is etale and Frob, acts on it as (1 4+ v/5)/2.
If o = (14++/5)/2 then (A, ), il21014v5)2))/ L1 will suffice to give the desired

example. If on the other hand a = (1 — v/5)/5 then (A, ), il 21482 © )/ L1
will suffice to give the desired example. O

We would now like to apply this theorem to deduce the modularity of
certain mod 2 representations. If N, M and k are positive integers we will
denote by hy(N; M) the Z-algebra generated by the Hecke operators 7, and
(p) for any prime p /N M, and by the Hecke operators U, for any prime p| N M
acting on the space of weight k£ cusp forms for I'1(N) N [y(M). If M|N
we will drop it from the notation and write simply hy(N). If p/NM set
S(p) = p*2(p). Also for every positive integer n define T'(n) by the relations

e T(niny) = T(nq)T(ny) if ny and ny are coprime,
e (1-T,X +pS(p)X?) > 2, T(p")X" =1 for any prime p [NM,

e and T'(p") = U, for every prime p|NM.



Corollary 1.2. Fiz a continuous homomorphism
p:Gal (Q*/Q) — SLy(TFy).

Suppose that p is unramified at 2 and 5 and that p(Frobs) has distinct eigenval-
ues a, 3 € Fy. Then there is an odd positive integer N divisible by all primes
at which p ramifies and a homomorphism

fo:ho(N) — Ty
which takes
1. T, to trp(Froby,) for all primes p J2N;
2. Ty to a;
3. and U, to 0 for all p|N.

Proof. First note that in [BCDT] theorem 4.1 of [ST] is improved to suppress
the condition on p(I3). Thus theorem 4.2 of [ST] can be improved to suppress
the condition that A has semi-stable reduction at 3. The proof of this corollary
is then the same as the proof of theorem 4.3 in [ST] except that we replace
references to theorem 4.2 by this improvement and references to theorem 3.6
by references to theorem 1.1 of this paper. O

2 2-adic modular forms.

In this section we will recall some facts about 2-adic modular forms. (The
most important for us is the assertion that a 2-adic limit of ordinary classical
modular forms is overconvergent - see lemma 2.9.) Many of these assertions
appear in the literature, but we have not been able to locate proofs for them.
For primes [ > 3 such results are due to Katz [K], but we will follow Coleman’s
approach via rigid geometry. In this section we will work with an arbitrary
rational prime [ as it makes no difference to the arguments.

Fix an integer N > 5 which is not divisible by [. Let X;(N)/Z;, denote
the usual compactification of the moduli scheme for pairs (E, i) where E is an
elliptic curve and 7 is an embedding uy < E[N]. Also let X;(N;[)/Z, denote
the usual compactification of the moduli scheme for pairs (E,i, E = E') where
E is an elliptic curve, i is an embedding uy < E[N] and a: E — E' is an
isogeny of degree [. There are two natural projections m and my : X1(N; 1) —
X, (N), which take (E,i, E = E') to (E,i) and (E', a o) respectively.
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We will let wy,(n) (resp. wx,(vy)) denote the canonical extension to the
cusps of the pullback by the identity section of the sheaf of relative differ-
entials of the universal elliptic curve over the non-cuspidal locus of X (V)
(resp. X;(NV:l)). Then miwx,(v) = wx,(vy) and there is a natural map j =
(@¥)* r wx, (vy) = Trwx, (). After one inverts [, j becomes an isomorphism.

We will let SS denote the finite set of points in X;(N)(F{°) corresponding
to supersingular elliptic curves. For s € SS choose Ts € Ox, (n)xw(me),s SO
that

(X1 (N) x W(IE))§ = Spf W () [[T]],
and so that if o € Gal (Fy°/F,) and s € SS then
(1 X O'*)*(T(lxg*)(s)) = Ts.

(Here W (k) denotes the Witt vectors of k.) We will let X;(/NV)*" denote the
rigid analytic space over C; (the completion of Q) associated to X;(N). It
is connected. If r € Y and 1 > r > 1/1 we will let X;(N)s, (if r # 1/1)
(resp. X1(N)s, (if r # 1)) denote the rigid analytic subspace of X;(N)*"
where for each s € SS we remove all points x in the residue disc of s with
|Ts(x)|; < r (resp. < r). (Here | |, is the [-adic absolute value normalised by
], = 1/1.) We note that X;(N)>, is connected. (Suppose that X;(N)>, had
an admissible open cover {U,V'}, with U and V non-empty and disjoint. For
each s € SS the preimage of s in X;(N)>, is an annulus and hence connected
and contained in either U or V. Let U (resp. ‘7) denote the union of U
(resp. V') with the residue disc of each s € SS for which the preimage of s
in X;(N)s, is contained in U (resp. V). Then {U,V} is an admissible open
cover of X;(N)*" by disjoint non-empty sets, a contradiction.)

We will let M7"(N) (resp. M;7(N)) denote the space of sections of
(wg‘a(m)m over X;(N)s, (resp. X;(N)s,). The spaces M{"(N) have nat-
ural norms making them Banach spaces. More precisely we set

|f‘7" - Sllp ‘f|.’r7
z€X1(N)>,(C)

where we define |f|, as follows. Let T € X (NN)(F{°) denote the reduction of

x and let f, denote a local generator for w?}fw) near T. Then we set

[fle = [(F/ fo) (@),

which is easily checked to be independent of the choice of f;. Note that if
ry > 1y and if f € M,%”(N) then

‘f|r1 S ‘f|T2'

11



We will let X (N)? denote the formal completion of X;(N) along its locally

closed subscheme X;(N) x F, — SS. It is a formal scheme over Z;. The base
change to C; of the rigid analytic space associated to X;(N)? is just X;(N)>;.
Thus we get an identification

F(XI(N)OME?T(N))@ZICZ = Mfl(N)a

under which T'(X;(N)?, W?}f(m)@zlo@, is identified to the unit ball in M7 (N).
There is a map

Spec Zy((q)) — X;(N)

corresponding to the pair (G,, /q”,i°"), where G,,/q” denotes the Tate curve
(Tate(q) in the notation of section 8.8 of [KM]) and where i“*" comes from the
tautological embedding uy — Gy, (see proposition 8.11.7 of [KM]). This map
extends to a map

Spec Zy[[g]] — Xu(N),
(use theorem 8.11.10 of [KM]) and this gives rise to a map
Spf Zi[[q]] — X1 (N)".
If fe F(Xl(N)O,w?}f(N)) then its pullback to Spf Z[[¢]] has the form

(Z cn(f)qn) (dt/1)*,

n=0

where ¢ is the usual parameter on G,, and where we refer to >~ ° ¢, (f)¢" as
the g-expansion at infinity of f. This extends to a map

M (N) — Cillq]]

[ o— Zfzocn(f)q"-

From the g-expansion principle (see section 1.6 of [K] and note that X (N)xFy°
is irreducible) we deduce that for f € MZ'(N) we have

[l = sup |ea ()11

If [ > 5 we will let E denote the section of w?fl(;vl)) over X1(N) with ¢-
expansion at infinity

1 - 1)/Bi) Y ora(n)g”

12



where By denotes the Bernoulli number, and o,(n) = >-,_,, d'. Then the ¢-
expansion at infinity of E is congruent to 1 modulo /. For [ = 3 we may choose
a section F of w?f(m over X(N) with the same property (because N > 5 and
3 [N, see section 2.1 of [K]). If I = 2 and if 5| N we can again choose a section
E of wx, () over X;(N) with the same property (again see section 2.1 of [K]).
In all these cases the section E, when pulled back to X (/N) x F{“, has a simple
zero at each element of SS and no other zeroes (see for instance theorem 12.4.3
of [KM]). In particular if for each s € SS we make a choice of local generator

fs of w?}(l*” near s such that for all o € Gal (F{“/F;) we have

1(N)
(1% 0")" faxor)s) = fss

then the E/f for s € SS form one possible choice for a collection of local
parameters T at s € SS satisfying

(1 x0") Tixewys) = T

for all o € Gal (F}/IF;) and s € SS. Hence E has no zero on X;(N)s1.
If Il >3 wewill set £/ = E. If | = 2 we will take E’ to be the section of

o y over X;(NN) with g-expansion at infinity

Wxi (v

1+ 240 Z os3(n)q".
n=1

In either case the g-expansion at infinity of E' is congruent to 1 modulo [ and
E’ has no zeroes in X;(N)y; 1/a.

We recall some elementary results about rigid analytic functions on annuli.
The set of analytic functions on the annulus 3 < |z|; < a is the set of functions

for which |a,|,8" — 0 as n — —oc and |a,[;,a” — 0 as n — oo. If r € (¢ and
[ < r < « then the supremum of |f(z)|, on |z|, = r equals

sup ‘an‘lrn-
n

(To see this set A = sup,, |a,|;r". Then

sup |f(z)]; = A sup Z Crpw"
|z]y=r lwl;=1 lan |;r=A }

13



for some ¢, with |c,|, = 1. However for |w|; = 1 we see that

Z cpw”| <1,

lan|irm=A !

with equality for some such choice of w.) In particular we see that |f(z)[, will
always achieve its maximum on either |z|; = « or |z|, = # (or possibly on
both). In the former case this maximum equals

sup ‘an‘lan = sup ‘an‘lan
n n>0

and in the latter case it equals
sup |a,|;,0" = sup |a,|,(".
n n<0

Suppose now that f is an analytic function on the annulus § < |z|, < «
such that |f(z)]; is bounded by A. Then we have

o

f2)= ) a2,

n—=-—oo

where |a,|;f" — 0 as n — —oc and where for all n we have

a,); < Aa”"
and

|an| < AT
If |f(2)]; achieves its supremum it does so on |z|; = [ and the supremum
equals

sup |an‘lﬂn = sup ‘an‘lﬂn-
n n<0

Lemma 2.1. Suppose that 1 > r > 1/, that r € IY and that f is a rigid
analytic function on X1(N)s,. Then |f(x)|; achieves its supremum and does so
at some point y which reduces to an element s € SS and satisfies |Ts(y)|, = r.

14



Proof. Because X;(N)>, is a finite union of affinoids the maximum modulus
principle tells us that | f(x)|; does achieve its supremum. Thus we may assume
that this supremum equals 1. If |f(x)|, does not achieve its supremum in
X1(N)>; then it does so in the inverse image under reduction of some s €
SS and the lemma follows from the facts about rigid analytic functions on
annuli which we recalled above. Thus suppose that f achieves its maximum
in Xq(N)>1.

As |f(z)i <1 on X{(N)s1, f is a global section of the structure sheaf
of the formal completion of X;(N) x O, along X;(N) x Ff¢ — SS and thus
reduces to give a regular function f on X;(N)x F¢¢ —SS. Thus we may choose
s € SS such that either f has a pole at s or f is constant. Choose also an
affine neighbourhood U of s in X;(N) x F{¢ which contains no other element
of §S and which admits a regular function g which has a simple zero at s and
no other zero on U. Let the formal completion of X;(N) x W (F¢¢) along U
equal Spf A and let ¢ € A be a lift of §g. Note that the formal completion of
X1 (N) x W(F©) at s is isomorphic to Spf W (F¢¢)[[g]]. The formal completion
of X;(N) x Og, along U — {s} is Spf (A®O¢,){(S))/(gS — 1). Thus we may
expand f as

> RS
=0

with f; € (A@(’)(Cl) and f; — 0 as © — oo. The same expansion holds on the
rigid analytic subspace of X;(/V)>, consisting of points which reduce to U (as
this space is connected, being the inverse image under reduction of a Zariski
connected space). Moreover on U we see that

f= Z fig™,
i=0

where f; denotes the reduction of f; and where now the sum is finite.
In the formal completion of X;(N) x O¢, at s we may expand

o

fi= Z aijgj

j=0

with a;; € Og,. Thus, on the rigid analytic subspace of X;(N)>, consisting of
points which reduce to s, we see that

o

f= 0 aiin)g"

k=—oc0 1

15



(The second sum is over ¢ € Z such that ¢ > 0 and 7 + £ > 0.) Similarly we
see that in the formal completion of X;(N) x F/¢ at s we have

F=Y O aid"
k=—00

oo i
Write by for Y. a; i+, Then by € Og, and either

e for some k£ < 0, by is a unit;

e or by is a unit and by reduces to zero for all k # 0.

In the either case we see that the supremum of |f(z)]; on |g(x)|, = r (i.e. on
|Ts(x)|; = r) is > 1, as desired. O

Lemma 2.2. If 1 > r > 1/l then there is a constant C (depending on k, N
and r) such that for all f € MZ"(N) we have

|flr < Csup|fla,
S,T

where s runs over SS and where x runs over elements of the residue disc of s
with |Ty(z)], = .

Proof. Tt | = 2 reduce to the case 5|N by passing to a cover. By lemma 2.1
we see that |f'"'/E*|; on X;(N)s, achieves its supremum at some point x
which reduces to some s € SS and which satisfies |Ts(z)|, = r. Thus for all
y € X1(N)>, we have

1y /Bl < sup | fI/|EL;,

where s and z run over the sets described in the statement of the lemma.
Hence

L < B sup((fl5 /"),

S,T

where again s and x run over the sets described in the statement of the lemma.
The lemma follows with C = (| E|,/r)¥/(=1), O

For each s € S5, choose a local generator f, of w?éf(N) near s. If f €

MZ"(N) and s € SS then restricting f to the annulus 1 > |[T;(z)|, > 7 in the
residue disc of s we see that f/f, can be expanded

o0

Flfs= )" an(s, T,

n=—0oo
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where the a,,(s, f) are bounded for n > 0 and where
(an(s, f)lir" — 0

as n — —oo. Choose a non-negative integer M such that r™ > C (the
constant from the lemma), and choose 7, € C; with |r,|; = r. Now consider
the map © from MZ"(N) to the direct sum of #S5S Tate algebras C,(T)%°
which sends f to

o

(Z apsn(s, )T T sess-

n=0

One clearly has [O(f)| < |f],. (Here, as usual, we set |(>_, bn(s)T")sess| =
sup, , [bn(s)[;)  On the other hand for all n € Z and s € SS we have
la, (s, f)ml] < |©(f)]. (Suppose not. Choose s and n so that |a,(s, f)77],
is maximal. Then we must have n > M and we see that

\flr > an(s, )l =7""sup|fls > Csup|fls > | f|r,

S,T S,T

a contradiction.) Thus

Clo(f)| = Csup|fls > |f]:-

We deduce that © is a homeomorphism onto a closed subspace of C(T)*5.

Lemma 2.3. Suppose that 1 > ry > ry > 1/l. Then the natural inclusion
MET(N) = MZ™(N)
18 completely continuous.

Proof. We have a commutative diagram

MEP(N) = MET(N)
) !
(Cl <T>SS — (Cl <T>SS

(D nzo bn(8)T")sess = (22020 bn(8) (T, /70)" T ) s,

where the vertical arrows are homeomorphisms onto closed subspaces (and
where we have made the same choice of M to define both vertical arrows).
The lower horizontal arrow is a limit of continuous operators with finite range
and hence completely continuous. It follows that the upper horizontal arrow
is completely continuous. O
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The reduction X;(N;1) x Ff¢ of X;(N, ;1) has two irreducible components
which we will denote X;(N;1)s and X;(N;1l)g. We choose the labelling so
that

o 1 X 1(N;jl)o — X (N) x ¢,

® Ty .

o 7 : X (N;l)g — Xi(N) x F¢ has degree [,

=
=
~ \8_/ ~
=
=
X
=
o
=
&
n
o,
@
ac
e
@
@

e and my 1 X (N;1)g — X;(N) x Fge.

The two curves X(N;1)s and X, (N;1), intersect in a finite number of points
which we shall denote SS;. Then m : SS;, = SS and m : S5, = SS are
both bijections. (See for instance lemma 5.3.1 of [KM] for these assertions.)
If s € SS; we will write T ; for 7T 5.

Lemma 2.4. If s € SS; then (X1(N;1) x W(F©))2 is isomorphic to
Spf W(E) [T, Toall /(T — Teo) (Lo — T y) — luy),
for some us € W(F)[[Ts1, Ts2]]".

Proof. Theorem 6.6.2 of [KM] tells us that (X;(N;1) x W(F“))> = Spf R, for
some 2-dimensional, regular complete local ring R, which is flat over W (IF}¢).
Theorem 13.4.7 of [KM] tells us that

RNR =TT, Tl /(Ton = Tp o) (Tip = T 4)).

S

Thus we have a surjection W (F¢)[[T5,1,Ts2]] — R and the kernel must be
generated by one element f with

o f=(To —T!,)(Tos—T!,) mod
o and f & (I, T, 1, Ty2)%
The lemma follows. O
Corollary 2.5. If s € SS; then
(X1(V3 1) x W(EF©))s = Spf W () [ X7, Xo]] /(X1 Xz — 1)
Proof. Take for instance Xy = (T, — T1,) and Xy = (T, o — T} )u, . O

For 7 € % and 1 > 7 > 1/1 we will define X (N;1)%, (resp. X;(N;1)%,) to
be the admissible open subset of X;(N;1)* consisting of
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e all points of X, (N;1)*" which reduce to a point of X1(N;l)s —SS; (resp.
Xl(N, l)o — SS[)

e and all points x € X;(IV;1)*" which reduce to some s € SS; and for
which

Ty () = Toa(x)ly > 7

(resp.
Too() — Toa ()] > 7).
Ifin fact 1 > r? > 1/l and s € SS; then we will let U,(r) denote the admissible

open subset of X;(N;1)®" consisting of points which reduce to s and which
satisfy

Ty () = Toa(x)|y < r
and
Tyn(w) — Ty ()] <.

It is easy to check that these sets do not depend on the choice of {7} as long
as they satisfy

(1 X a*)*(T(lxa*)(s)) = Ts.

for o € Gal (F°/F,). If ri,ry,r3 € 19 1 > 0?2 > 1/l, 1y > ry > 1/ and
ry > r3 > 1/l then the sets

o X (N; l)‘;m,

[} Xl(N, l)O

2>r3)?
e and for each s € SS) the set Ug(r)

form an admissible cover of X;(N;[)*" by connected admissible open subsets.

(This seems to be very well known, but as we are unable to find a reference
let us sketch the argument. Take an affine Zariski cover U°, U* and U, for
s € S5, of Xy(N;1) x F¢, where for s € SS; we have SS; N U, = {s}, where
U = X (N;1) xFe¢ — X {(N; 1) and where U® = X (N;1) x F¢ — X (N;1)o.
Shrinking Uj if necessary, choose a regular function 2% on U, which is identically
zero on X(N;1)e NU, and non-zero on (X;(N;1)oNU,) — {s} with a simple
zero at s. We can lift 2 to some affine open subset of X (N;1) x W (F¢¢) which
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intersects the special fibre in U,. Set z%° = p/z%. In (X, (N;1) x W (F))) we
have 20 = 3" a; Xo+1f = Xo(320%, a; X5 '+ X, f), i.e. 201 Xy times a unit
(the same X7, X, as in corollary 2.5). Thus again shrinking Uy if necessary we
may assume that % is regular on U, identically zero on X(N;[); N U, and
non-zero on (X(N;1)s NUy) — {s}. Moreover in (X;(N;1) x W (Fe))» 2% is
a unit times X;. We will let Uy, (resp. Uy, resp. U,) denote the preimage in
X1 (N;0)*™ of Uy (resp. Uy, resp. Us). They form an admissible affinoid cover
of X1(N;1)*. Forr e (®and 1> r > 1/l set U, C U, (resp. U, C U,)
to be the locus where |2°|, > r (resp. |2°|; > 7). Note also that U,(r) is the
subspace of U, where |27, < r and |27]; < r. Note that X;(N;1)%, (resp.
Xi(N;1)%,) is the union of Uy and Uy -, for s € SS; (resp. Uy and US, for
s €8S). Iry,ryrs €19 1>02>1/l,r) >ry>1/land ry > r3 > 1/I,

then U2, U], and U, ( 1) form an admissible affinoid cover of U;. Thus
Xi(N; D)%, X1 (N; 1)%,, and Uy(ry) for s € SS; form an admissible open cover

of Xq(N;1)2".
It remains to show that for r € [Y and 1 > 7 > 1/l the spaces X;(N;1)2,
and X (N; )%, are connected. To save on notation we will only explain the
case of X (N; )%, Tt suffices to check that Uy and U, for s € SS; are
all connected. This follows because in each case the reduction map gives a
continuous map with connected fibres to a connected (in the Zariski topology)
space.)
If r €19 and 1 > r > (/040 then it is easy to check that
' X0 (N)s, = X1 (IV; DS, T X, (N; 1)?

>T1/l

and
71'2 Xl(N) Xl(N l)> 1/[HX1(N l)

Moreover X1 (N;1)%, and Xy(N;1)2 0 (resp. X1 (N;1)%, and Xy(N; D)
form an admissible open cover of ;' X (N)s, (resp. w7 ' X;(N)s,). As
X1(N;l) = X1(N) is finite flat of degree [ + 1, the same is true of the analyti-
fications. Thus

T

1 Xq1(V; l) I X (N;1)° — X1(N)>,

>rl/l
and
Xl(N l) 1/1HX1(N l) ‘)Xl(N)ZT

are both finite and flat of degree I + 1. Looking at the cardinality of the
preimages of points we deduce the following lemma.
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Lemma 2.6. 1. Suppose that r € 1% and 1 > r > 170+ then
o Xl(N, l)%or L) Xl(N)ZT
and

T @ Xl(N, l)gr ;> XI(N)ZT

2. Suppose that r € 1% and 1 > r > Y0+ then
Tyt Xi(N; S, — Xi(N)sp
and
m o Xy (N3 1), — Xi(N)sp
are both finite flat of degree I.

We define a bounded linear map

U= (1/Dtr,0j owl\;&(N;l) : MZ(N) — M%rl(]\/')-

o
>r

One may check that U is compatible with the map on ¢-expansions which
sends

00 00
Z anqn — Z anlqn-
n=0 n=0

Note that for 1 > r > [=/0+) using 7, to identify X, (N; l)%or and X (N)>,
we get a map

Hom (hi(N;1),C) = MZ"(N)

which sends f to the form with ¢g-expansion at infinity

> H(T(n)g"

Under this map the Hecke operator U, corresponds to the linear map U.
Suppose that 1 > r > [-Y0+) " Combining U : M7"(N) — ./\/l,frl(N)
with the inclusion M,%TI(N) < MZ"(N) we get a continuous endomorphism
of MZ"(N), which we will also denote U. Tt follows from lemma 2.3 that U
is completely continuous as an endomorphism of MZ"(N). From the theory
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of completely continuous operators on p-adic Banach spaces (see [S1]) we see
that we may write

M (N) = M7 (N)" & M"(N)!

as a direct sum of U-invariant subspaces, where MZ"(N)" is finite dimensional,
all the eigenvalues of U|MZT(N)O are [-adic units and U|MZT(N)1 is topologically
k k

nilpotent (i.e. if f € MZ"(N)' then U"f — 0 as r — 00). We will let e denote
projection onto the summand M;"(N)°, so that

ef = lim U™ f

r—00 ’

Lemma 2.7. If f € M{"(N)° for some 1 > r > 1-1/0+) then

z/(1+t)(

fempt N).

Proof. Choose a minimal integer i such that v < [=Y/0+) and write f =
UL f for some f' € M7"(N)°. Then we see that

U'f e M2 (N) € M7V ()
and hence that

l/(1+z)(

f=UUf) e M;" N).

O

Lemma 2.8. Suppose that 1 > r > [7/0+) that f € M,%T(N), that a € C
15 an l-adic unit and that € € Ryy. If

‘Uf — af|1 S €,
then

f—eflh <e

Proof. For all positive integers ¢ we see that
U f —a"fly <e

Taking the limit as ¢ — oo and noting that | |; < | |, the lemma follows. (We
remark that o — 1 as t — o) O
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Lemma 2.9. Suppose we are given an integer k and a formal q-expansion

oo
" auq" € Cilg]
n=1
such that for all n we have a, = aa, and such that a; is an [-adic unit.

Suppose we also have two series of positive integers t; and k; and a series of
abelian group homomorphisms

fi v b (N:1) = G
such that
1. t; - 00 as 1 — oc,
2. k; =k mod (I —1)I%1,
3. and for all positive integers n and for all 1 we have

fi(T(n)) = a, mod I".

Then " anq™ is the g-expansion at infinity of an element of ./\/l,frl/(lﬂ)(]\f).

Proof. By the last lemma we only need show that ) a,q" is the g-expansion
at infinity of an element of MZ"(N) for some 7 < 1. Choose such an r with
r > 1"Y* and r > 70D We may suppose that each ¢; > 3. Set h = 4 if
[ =2and h =[—1 otherwise. Then f; corresponds to an element of ./\/l,i_r(N)
which we will also denote by f;. Moreover f;/(E")*~#/" ¢ MZ"(N) and has
¢ expansion at infinity congruent to ) a,¢" modulo I%. (If | = 2 note that
E' is congruent to 1 modulo 2%.) Thus e(f;/(E")*®=0/") ¢ MZ"(N)° also
has ¢ expansion at infinity congruent to ) a,¢™ modulo I%. As M%T(N)O is
finite dimensional all [-adic norms are equivalent. The e(f;/(E")*i=K)/") form a
Cauchy sequence for | |; and hence also for | |,. Let f € M7"(N)® denote the
limit of the e(f;/(E')*=*)/") in both of these norms. Then f has g-expansion
at infinity ) a,q", as desired. O

Finally we state the generalisation of theorem 4 of [BT] to [ = 2 and 3.
Although in [BT] there is a running hypothesis that [ > 5, the proof given
there of this theorem makes no use of that hypothesis.

Theorem 2.10. Let N and k denote integers with N > 5. Let I /N be a
prime. Suppose o and 3 are distinct non-zero elements of C; and that f,, fg €
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MZZ/(IH)(N) are etgenvectors for U with eigenvalues o and (3. Suppose also f,

(resp. fs) have g-ezpansions at infinity Y-, an(fa)q" (resp. D51 an(f5)q")
and that for all positive integers n not divisible by | we have

an(fa) = an(fs)-

Then f = (afa — Bfs)/(a — B) is classical, i.e. there is an abelian group
homomorphism f': hg(N) — C; such that for all n

f'(T(n) = (aan(fa) — Ban(fs))/ (= B).

3 2-adic Hida theory and deformation theory.

In this section we will draw together some results about 2-adic Hida theory
which are not well documented in the literature and deduce some slight ex-
tensions of the results of [Di].

If N > 5 is an odd positive integer we will let h’(N) denote

11:? e(ha2(2"N) ®gz Zs),
where e denotes Hida’s idempotent
e = tliglo Ul
Taking the limit of the homomorphisms
():(ZJ2"NZ)* —> e(hs(2"N) ®z Zs)™
we get a continuous homomorphism
S =S8%xSy: (Z/NZ)* x 75 — h°(N)*.

We will let A denote the completed group ring Zs[[(1 +47Z5)]] = Zs|[[T]], where
T = S5(5) — 1. Then Sy induces a continuous homomorphism A — h%(V).

According to theorems 3.3 and 3.4 of [Hi], h°(N) is a finitely generated,
torsion free A-module and for any integer £ > 2 we have a surjection

BN/ (S2(5) — 57%) = e(e(4N) @1 Z,)

which sends T'(n) to T'(n) for all n and which becomes an isomorphism after
tensoring with Q.
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Set ex = (14 S5(—1))/2 and h°(N)x = erh’(N) C h°(N) ®z, Q,. Then
h*(N) C h°(N), @ h°(N)_ C (1/2)h°(N).

Thus we see that h°(N). are finitely generated torsion free A-modules, and so
from the structure theory of finitely generated A-modules we see that we have
exact sequences of A-modules

(0) — RO(N)x — A™* — X, — (0),

where r4 are non-negative integers and where X, have finite cardinality 29+.
If £ > 2 is an integer with the same parity as (1 1)/2 then we see that there
is a surjection

BON)2/(52(5) — 5*2) = e(he(2N) @ Z)

which sends T'(n) to T'(n) for all n and which becomes an isomorphism after
tensoring with Q. In fact the kernel of this surjection has order divisible by
2%, (The key point is that for £ = (1 F1)/2 mod 2 we have an equality

ees (he(AN) © Q) = e(hy(2N) @ Q).

This results from the fact that U; maps the space of modular forms of weight
k and level I'1(2N)NTy(4) to the space of modular forms of weight k and level
I';(2N) (compare for instance proposition 8.3 of [Hi]).)

Similarly set ho(4N)_ =e_hy(4N) C hy(4N) ® Q.

Lemma 3.1. Suppose that f : h°(N)_ — Q& is a continuous Zs-algebra
homomorphism such that f(S3(5)) =1/5. Then

> AT (n)g"

is the q-expansion at infinity of an element of M1>272/3(N).

Proof. For each integer r > 1 set k(r) = 1 + 2% %", Then we can find a
continuous homomorphism of Zs-modules

fr: e(hk(r)(QN) Q7 Z2) — Q;C

such that f,.(T(n)) = f(T(n)) mod 2" for all n. The lemma follows from
lemma 2.9. O
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Suppose that k > 2 is an integer. If o is a minimal prime ideal of h°(N).
containing Sy(5) — 5¥72 then h°(N)./p is a 1-dimensional integral domain.
Thus p contains

ker(hU(N)i —» eei(hk (4N) X7, ZQ))

Thus contraction gives a bijection between prime ideals of eey (hi(4N) ®7, Z5)
and prime ideals of h°(N). containing Sy(5) — 572, hence also a bijection
between maximal ideals of ee(hy(4N) ®z Zy) and maximal ideals of h°(N)..
Hence to any maximal ideal m of h°(N)1 we can associate a continuous semi-
simple representation

P Gal (@ /Q) —> GLy(W(N)/m)
such that for all but finitely many primes p we have

e trp,(Frob,) =1,

p

e and det p,,(Frob,) = pS(p).

(To see that p,, can be defined over h’(N)./m use the facts that its trace is
valued in A’(N)4 /m (which follows from the Chebotarev density theorem) and
that the Brauer group of any finite field extension of h’(N)./m is trivial.) We
will call m Eisenstein if p,, is not absolutely irreducible.

Note that the intersection over all integers k£ > 2 with &k = (1 F£1)/2 of

ker(h®(N)x —» e(hs(2N) @ Q)
equals

hO(N)L N[ )(S2(5) = 55 A™ = (0).

Thus

PON)s = lim(A°(N)+/ ) ker(h(N)+ = e(hs(2N) @ Z,))),

keK

where the inverse limit is over finite sets K of integers k£ > 2 with £ = (1 F
1)/2 mod 2.

For each k > 2 there is a continuous 2-dimensional pseudo-representation
(see [Tal] for the definition of pseudo-representation)

T: Gal (Q%/Q) — e(hy(2N) ® Zy)
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such that for all primes p /2N the pseudo-representation T is trivial on I, (the
inertia group at p) (i.e. T(o7) = T(7) for all 0 € I, and 7 € Gal (Q*/Q))
and T'(Frob,) = T, and T'(Frob2) = T2 — 2pS(p). By the Chebotarev density
theorem we see that there is at most one such pseudo-representation 7". Thus
for any finite set K as in the last paragraph we get a continuous pseudo-
representation

T:Gal (Q“/Q) — h°(N)s/Npes ker(R2(N)y — e(h,(2N) ® Zs))
C  Drek e(hr(2N) ®z Zy),

such that for all primes p 2N the pseudo-representation 7" is trivial on I,
T(Frob,) =T, and T(Frob;) =T7? — 2pS(p). Taking the limit over K we find
a continuous pseudo-representation

T: Gal (Q/Q) — h°(N)4

such that for all primes p 2N the pseudo-representation 7" is trivial on I,
T'(Frob,) =T, and T(Frobi) =T7? — 2pS(p). By the main theorem of [N] (see
also [R]) we see that if m is a non-Eisenstein maximal ideal of h°(N). then
there is a continuous representation

P’ s Gal(Q*/Q) — GLy(h"(N)sm)

such that p° is unramified at all primes p J2N and satisfies

o trpd(Frob,) =T,

e and det po4(Frob,) = pS(p).

m

It is known (by [De] or [W], theorem 2.1.4) that p, |55, (Qg° /0y 18 unramified.
We will suppose that p,[%5, (@gC/Qz)(FrObQ) has two distinct eigenvalues o and
(. Then it is also known that «, § € h’(N)4/m and that either U, — « € m
or U, — # € m ([De] or [W], theorem 2.1.4). We will suppose it is the former.
Choose an element oy € Gal (Q5°/Q,) above Froby. It follows from Hensel’s
lemma that p2(oy) has distinct eigenvalues A and B in h°(N)i, with A =
amod m and B = # mod m. Choose a basis (e, e4) of h’(N)3 , consisting of
eigenvectors of pdd(oy) with eigenvalues B and A respectively. With respect
to this basis write

Also write
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e ¢, for the unramified character of Gal (Q}°/Q,) which takes Frob, to a,
e Y- for the 2-adic cyclotomic character,

e and S for the composite
Gal (Q/Q) — Gal (Qua=n)/Q) = Z5 x (Z/NZ)* 25 BO(N)*.

Then by theorem 2.1.4 of [W] we see that for any integer k£ > 2 with k =
(1F1)/2 mod 2 and for any o € Gal (Q3°/Q,) we have

o a(0) = (x28Uy, ) (0),

e ¢(0) =0,
e and d(o) = 9y, (0),
all modulo

ker (hO(N) 1. — e(hi (2N) @2 Zo)u).

We conclude that

ord X25?/)§21 *
P’ |Gal (03¢ /02) < 0 Yy

and that A = Us.
Now suppose that

p: Gal (Q*/Q) — GL,(F3)
is a continuous representation such that
. 7c) # 1.

e D%, (g° /g, 18 unramified and Pl (Q;C/QQ)(Fron) has distinct eigenval-
ues « and (3,

® Dl|Gal (0(y=T)ee/0(y/=T)) 18 irreducible,

e and such that there exists an odd integer N > 5 and a homomorphism
[ ho(N) — F5© satisfying

(T»)
(Tp) =

a’
1 p(Frob,) for all primes p J2N,
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— and f(pS(p)) = det p(Frob,) for all primes p J2N.

We will let N(p) denote the conductor of p.
Suppose also that S is a finite set of odd primes containing all where p
ramifies and some prime p > 5. Then set

Ns(p) = N(p) | [»"7.

peES

It follows from theorem 3.1 of [Buz] that we can find a ring homomorphism
hs(2Ns(p)) — F5°
such that

e [y maps to a,

U, maps to 0 if p € S,

T, maps to tr p(Frob,) if p /2Ns(p),
e and pS(p) maps to det 5(Frob,) if p [2Ns(p).

(It is here we use that p|qu (qy/=T)/q(v/=T) 18 irreducible, rather than the
weaker assumption that p is irreducible.) We will let mg(p, o)y denote the
kernel of this homomorphism.

Lemma 3.2. Keep the above notation and assumptions.
1. There is a ring homomorphism hs(4Ng(p)) - — FS¢ such that

e U; maps to a,

o U, mapsto 0 ifpe S,

e T, maps to trp(Frob,) if p f2Ns(p),

e and pS(p) maps to det p(Froby,) if p f2Ns(p).

We will denote its kernel mg(p, o).

2. There 1s a surjection

ha(4Ns(P)) - ms@a)-/(2) = ha(2Ns(P))ms @),/ (2)

which takes T'(n) to T'(n) for all n.
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Proof. Let T denote the polynomial algebra over Z, generated by variables ¢,
and s, for p f2Ng(p) and u, for p|]2Ng(p). Then there is a natural map T —
ha(2Ns(D))mg(@.a), /(2) which sends t, to T}, etc. Let m denote the pullback
of mg(p,);. It is a maximal ideal of T. Let Y denote the open (i.e. with
the cusps removed) modular curve of level I';(2Ng(p)) NTy(4). Let € denote
the order two character of I'1(4Ns(p))/(I'1(2Ns(p)) N To(4)) thought of as a
character of the fundamental group of Y. It is known that

H'(Y, Zo)wm = h2(2Ns(p)),

ms(7,0) 4

where T acts on the cohomology by sending ¢, to T, etc. (See proposition
12.10 of [G].) Because H?(Y,Z,) = (0) (as Y is affine) we conclude that

H' (Y, F2)m = (ha(2N5 (D)) ms (p.0)s /(2))*-

Thus to prove the lemma it suffices to see that the action of T on H (Y, Fy )y
factors through hy(4Ns(P)) - ms (@) - However

H'(Y,Fy) = H' (Y, Fo(€))m = H' (Y, Zo(€) ) ® .,

because H%(Y,Zs(¢)) = (0) (as Y is affine). Finally the action of T on
HY(Y, Zy(€))m factors through hy(4Ns(p)) - ms(.a)_, because HY(Y, Zy(€))n is
torsion free (because in turn H(Y,Fy(¢))y = H(Y,Fy), = (0), as m is non-
Eisenstein). O

We remark that by our choice of Ng(p), for p € S we have U, = 0 in each
of h2(2N5 (ﬁ))ms(ﬁ,a”a ho (4N5(ﬁ))7,m5(ﬁ,a), and h° (NS (ﬁ))i,ms(ﬁ,a)i' (In fact it
suffices to check that for p € S we have U, = 0 in h,(4Ng(D))mg(#.a)« Whenever
k> 2and k= (1 F1)/2mod 2. This is standard, see for example corollary
4.2.3 and the proof of lemma 5.1.1 of [CDT].)

We will let

P . Gal(Q*/Q) — GLy(RY), )

denote the universal deformation of p to a representation which is unramified
outside S U {2} and which when restricted to Gal (Q§°/Q,) is of the form

(v )
U

where ¢ is unramified and ¢,(Froby) = « modulo the maximal ideal, and
where, thinking of ¢; as a character of Q) by local class field theory, we have
$1(—1) = F1 and ¢y (v) = x for all x € (1 4 4Z5). Similarly we will let

Pax: Gal(Q/Q) — (RYL )
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denote the universal deformation of p to a representation which is unramified
outside S U {2} and which when restricted to Gal (Q§°/Q,) is of the form

(7 2)
U

where ¢ is unramified and ¢,(Froby) = o modulo the maximal ideal, and
where, thinking of ¢; as a character of Q) by local class field theory, we have
¢1(—1) = F1. The character ¢,y, ' gives a continuous homomorphism, which
we will denote Ss,

(1+4Zs) — (R, )"

and so makes Rosfg,i into a A-algebra. From the definitions one sees that

RY), . = RYS L/(S2(5) — 1)
From the universal properties we get maps
o RS, — ha(2Ns(D))m(za.
o R,(S'Q,Bx,f — h3(4Ns(P)) - m@p.a)_
o and RYY . — 1 (Ns(P))£m(pa)s
which are in fact surjections. (To see that these maps are surjections note

that U, = 0if p € S, that T, = tr pt) (Frob,) or tr po'd . (Frob,) is in the

m(ﬁaa)i m(ﬁaa)i

image for p /2Ng(p), that S(p) is similarly in the image for p /2Ng(p) and that
U, is in the image by Hensel’s lemma (as it is an eigenvalue for an element of
Gal (Q5°/Qy) above Froby in one of these representations).)

Theorem 4 and proposition 6 of [Di] show that the map

RA(S?:Z’(,‘F — h2(2N5(P))m(p,0)+
is an isomorphism.

Proposition 3.3. The natural maps
R, = hy(ANs (D))~ mpa)

&

and

RES = h*(Ns(D)+m(z.o)

are 1somorphisms.

31



Proof. Consider the first of these maps. We have a commutative diagram

RS, /(2) = ha(4Ns(D)) - mpa)_/(2)
{ {
R /2) = ha(2Ns(P))mpas /(2),

where the left hand vertical arrow is an isomorphism from the definitions.
Thus

RS, /(2) 5 ha(ANs()) - mipa_/(2)

and, because hy(4Ngs(D)) - m@.a)_ is torsion free over Z,, we deduce that

RS, 5 ha(ANs(P)) - m(pa). -
Now the composite
RS, _/(S2(5) — 1) = h*(Ns(P) - mpa)-/(S2(5) — 1) = h2(4Ns(P)) - m(pa)-
is an isomorphism and so
Rg5 /(S2(5) = 1) = " (Ns(D)) - im(pa)- /(S2(5) = 1).
Because h°(Ns(p))— m@z.a)_ 18 A-torsion free, we deduce that

R3G - = h*(Ns(P)) - m@a)

The same argument also shows that
RgS = h*(Ns(D)+m(a)s
O

Putting this proposition together with corollary 1.2 and lemma 3.1 we
obtain the following corollary.

Corollary 3.4. Suppose that K/Qy is a finite extension with ring of integers
Ox with maximal ideal . Suppose also that

p: Gal(Q/Q) — GLy(Ok)

18 a continuous representation such that

1. (p mod pg) has image SLo(Fy),
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2. (pmod pk)(c) # 1,

3. (pmod pg) is unramified at 5,

4. p is unramified at 2 and p(Froby) has eigenvalues o and 3 in O with
distinct reduction modulo pk .

Then there exists an odd integer N > 5 divisible by all primes at which p
ramifies and a normalised eigenform f., € M1>272/3(N) such that

o T, fo = (tr p(Froby,)) fo for all primes p 2N,

e pS(p)fo = (det p(Frob,)) fo for all primes p /2N,
o Usfa = afa,

e and U,f, =0 for all p|N.

(We remark that it is presumably not hard to weaken the fourth assumption
to simply require that p[& (Q2° /Q2) is unramified and that « is an eigenvalue

of pr, (Froby). We do not do so as we shall not need this result.)

4 The main theorem.

We now turn to the proof of theorem A. By the previous work cited in the
introduction, it suffices to check the following special case, which is our only
contribution.

Theorem 4.1. Suppose that K/Q is a Galois extension with Galois group As.
Suppose also that

e 2 is unramified in K and Froby € Gal (K/Q) has order 3,
e 5 is unramified in K
e and K 1is not totally real.

If r » Gal(Q°/Q) — GLy(C) is a continuous representation such that the
image of projr is Gal (K/Q) then there is a weight one newform f such that
for all prime numbers p the p® Fourier coefficient of f equals the trace of
Frobenius at p on the inertia at p coinvariants of r. In particular the Artin
L-series for r is the Mellin transform of a weight one newform and is an entire
function.
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Proof. Twisting r by a character of finite order we may suppose that the image
of det r has two-power order, that r is unramified at 2 and 5, and that r(Frob,)
has order 3. Choose an isomorphism of fields Q}° = C, so that we may think
of r as a representation

Gal (Q*/Q) — GL2(Ok)

for some finite extension K/Q, inside Q3°. By corollary 3.4 we see that we
may find an odd integer N > 5 divisible by all primes at which r ramifies and
normalised eigenforms f,, fs € M1>272/3(N) such that

T, fo = (trr(Frob,)) fa and T, f3 = (trr(Frob,)) fs for all primes p J2N,

pS(p)fa = (detr(Frob,))f, and pS(p)fs = (detr(Frob,))fs for all
primes p /2N,

Usrfa = afo and Usfs = B[,

e and U, f, = U,fs = 0 for all p|N.

Theorem 2.10 tells us that
f=(afa—Bfs)/(a—DB)

is classical and theorem A follows from this. ]

Lastly let us give some examples. To that end we will call a number field
K suitable if

e K is Galois over Q with group Aj ,
e 2 is unramified in K and Froby, € Gal (K/Q) has order 3,
e 5 is unramified in K

e and K is totally complex.

If K is such a number field then we can find a continuous homomorphism
r: Gal (Q*/Q) — GLy(C)

such that the image of projr is Gal(K/Q) (see for instance the corollary
to theorem 4 of [S2]). For any such r we have just shown that L(r,s) has
analytic continuation to the whole complex plane. Thus to give examples of
our theorem, one need only give examples of suitable number fields K.

Suppose that S is a finite set of places of Q including 2, 5 and oc. For
v € S let L,/Q, be a finite Galois extension such that Gal(L,/Q,) embeds
into As. Suppose that
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e [,/Q, is unramified of degree 3,
e [5/Qs is unramified
e and L, =C.

According to [M] the quotient of affine 5 space over Q by the action of As
which simply permutes the variables, is rational. Hence, by for example the
discussion on page xiv of [S3] (see in particular theorem 2 and the remark
which follows), we see that there is a number field K which is Galois over Q
with group As and such that for v € S we have K, = LSF@1 By varying
S we see in particular that there are infinitely many suitable number fields.
More concrete examples can be found in the literature. For example, ac-
cording to Buhler [Buh], the splitting fields of the following are suitable:

25 + 4ot + 252% + 172 + 5o + 2
2 + 62t + 1923 4+ 2522 4+ 11z + 2
25 4 32t + T2 + 622 — 11z — 24
25+ 3zt + a3 — 42?2 + 170 -8

x4 224 + 3723 — Ta? + 251 — 4.

Corrigenda for [Ta2].

One of us (R.T.) would like to take the opportunity to record some corrections
to [Ta2]. He would like to thank Kevin Buzzard, Henri Darmon and Nick
Shepherd-Barron for pointing these out.

1

e page 3, line 8 the formula defining 7}, should have a factor p*~! multi-

plying the second sum.

e page 3, line -1/2: between “if and only if” and “ f (as an element...”
insert “cy(f) =1 and”.

e page 4, line -7: the SS, should read SS., and the X;(N)_, should read
Xl (N)>r-

e page 7, line 5: in theorem 1 we need to assume that the image of G|
under the projective representation associated to p has order divisible by
a prime other than [.
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e page 7, line -8: in conjecture 1 we should have assumed that the image of
G, under the projective representation associated to p has order divisible
by a prime other than [.

e page 8, line -14: “together with an embedding i : Z[(1 + V/5)/2 —
End ((A,)/Q) such that the representation of Gg on A[2] is equivalent
to p.” should read “together with an embedding i : Z[(1 + v/5)/2 —
End (A/Q) such that the image of i is fixed by the t-Rosati involution
and the representation of Gg on A[2] is equivalent to p.”

e page 9, line 5: it should read “A[2]”, not“A[v/2]”.
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