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MODULARITY OF CERTAIN POTENTIALLY BARSOTTI-TATEGALOIS REPRESENTATIONSBRIAN CONRAD, FRED DIAMOND, AND RICHARD TAYLOR

Introdu
tionConje
tures of Langlands, Fontaine and Mazur [22℄ predi
t that 
ertain Galoisrepresentations � : Gal(Q=Q)! GL2(Q`)(where ` denotes a �xed prime) should arise from modular forms. This applies inparti
ular to representations de�ned by the a
tion of Gal(Q=Q) on the `-adi
 Tatemodule of an ellipti
 
urve de�ned over Q, and so implies the Shimura-Taniyama-Weil 
onje
ture.Wiles' breakthrough in [46℄, 
ompleted by [45℄ and extended in [12℄, providedresults of the form � modular ) � modularwhere � is the redu
tion of �. These results were subje
t to hypotheses on the lo
albehavior of � at `, i.e., the restri
tion of � to a de
omposition group at `, and toirredu
ibility hypotheses on �. In this paper, we build on the methods of [46℄, [45℄and [12℄ and relax the hypotheses on lo
al behavior. In parti
ular, we treat 
ertain`-adi
 representations whi
h are not semistable at `, but potentially semistable.We do this using results of [6℄, generalizing a theorem of Ramakrishna [32℄ (seeFontaine-Mazur [22, x13℄ for a slightly di�erent point of view). The results in [6℄show that 
ertain \potentially Barsotti-Tate" deformation problems are smooth, al-lowing us to de�ne 
ertain universal deformations for � with the ne
essary Galois-theoreti
 properties to apply Wiles' method. To 
arry out the proof that thesedeformations are indeed realized in the 
ohomology of modular 
urves (i.e., thatthe universal deformation rings are He
ke algebras), we need to identify the 
orre-sponding 
ohomology groups and prove they have the modular-theoreti
 propertiesneeded to apply Wiles' method. As in [15℄ and [12℄, the identi�
ation is madeby mat
hing lo
al behavior of automorphi
 representations and Galois represen-tations via the lo
al Langlands 
orresponden
e (together with Fontaine's theoryat the prime `). We work dire
tly with 
ohomology of modular 
urves instead ofRe
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using the Ja
quet-Langlands 
orresponden
e, and we use the simpli�
ation of [46℄provided by [13℄ and Fujiwara [23℄ independently.The main te
hni
al restri
tion in this paper is that we only treat representationswhi
h arise from `-divisible groups over 
ertain tamely rami�ed extensions of Q`.We do obtain suÆ
iently strong results here to give the following appli
ation:Theorem If E is an ellipti
 
urve over Q with 
ondu
tor not divisible by 27, thenE is modular.Note that the hypothesis on the 
ondu
tor of E is satis�ed if and only if Ea
quires semistable redu
tion over a tamely rami�ed extension of Q3.Notation We �x an odd prime ` and algebrai
 
losures Q, R = C, and Qp forall p. Choose embeddings of Q into C and Qp for all p, so we realize the Galoisgroup Gp = Gal(Qp=Qp) as a de
omposition group inside of GQ = Gal(Q=Q). LetIp denote the inertia subgroup, Frobp 2 Gp=Ip the arithmeti
 Frobenius element,and Wp the Weil subgroup of Gp (i.e., the preimage of the subgroup of Gp=Ip ' bZgenerated by Frobp). We de�ne Fp to be the residue �eld of the valuation ring ofQp, and regard this as `the' algebrai
 
losure of Fp. The order pn sub�eld of Fp isdenoted Fpn .For any �eld F of 
hara
teristi
 distin
t from ` and having a �xed 
hoi
e ofseparable 
losure Fs, with GF = Gal(Fs=F ) the resulting Galois group, de�ne� : GF ! Z�̀ to be the `-adi
 
y
lotomi
 
hara
ter. We let ! = � mod ` andlet ~! : GF ! Z�̀ denote its Tei
hm�uller lift. For any Z`[GF ℄-module V , de�neV (n) = V 
Z`�n for all n 2 Z. For a representation � ofGF and L=F a subextensionof Fs=F , let �jL denote the restri
tion �jGL .We will let �p;n denote the 
hara
ter Ip ! W (Fpn)� obtained from the inverseof the re
ipro
ity map F� ! GabF of lo
al 
lass �eld theory, where F is the �eldof fra
tions of W (Fpn). We write �n for �`;n, �n for ��1n , !n : I` ! F�̀n for theredu
tion mod ` of �n and ~!n for the Tei
hm�uller lift of !n. Thus �1 = �, !1 = !,and ~!n satis�es �(`1=(`n�1)) = ~!n(�)`1=(`n�1);where `1=(`n�1) denotes any (`n � 1)th root of ` in Q` [36, x1.5, Prop 3℄.1. Deformation Algebras1.1. Potentially Barsotti-Tate representations. Fix a �nite extension K ofQ` in Q` with valuation ring O and residue �eld k. Let E be a 
hara
teristi
 0 �eld
omplete with respe
t to a dis
rete valuation, with valuation ring OE and residue�eld perfe
t of 
hara
teristi
 `. Consider a 
ontinuous representation� : GE ! GL(M);where M is a ve
tor spa
e of �nite dimension d over K. By a 
ontinuity and
ompa
tness argument, there exists an O-latti
e L in M whi
h is stable under thea
tion of GE .Sin
e all 
hoi
es of L are 
ommensurable, an argument using the method ofs
heme-theoreti
 
losure (see [33, x2.2-2.3℄) shows that if there exists an `-divisiblegroup �=OE with generi
 �ber representation L (as a Z`[GE ℄-module), then for any
hoi
e of L su
h a � exists. In this 
ase, we say that � is Barsotti-Tate (over E).It is straightfoward to 
he
k that for K 0=K a �nite extension, � is Barsotti-Tate ifand only if � 
K K 0 is Barsotti-Tate. We say that � is potentially Barsotti-Tate if2



there exists a �nite extension E0=E su
h that �jGE0 is Barsotti-Tate, in whi
h 
asewe say � be
omes Barsotti-Tate over E0.We remark that if E0 denotes the 
ompletion of the maximal unrami�ed extensionEun of E, so GE0 is identi�ed with the inertia group of E (be
ause the valuation ringof Eun is a henselian dis
rete valuation ring with algebrai
ally 
losed residue �eld),then � is Barsotti-Tate if and only if �jIE = �jGE0 is Barsotti-Tate. To see this, �xa latti
e L stable under � and let � denote the representation of GE on L. Applying[1, Ch 6, Prop. D4(b)℄ to ea
h torsion level, if �jIE is Barsotti-Tate (over E0) thenthere exists an `-divisible group � over the (perhaps non-
omplete) valuation ringof Eun with generi
 �ber �jIE . Using [44, Thm 4℄ and �etale des
ent at ea
h torsionlevel, this des
ends to an `-divisible group over OE with generi
 �ber �, so � isBarsotti-Tate. The same theorem [44, Thm 4℄ shows that when � is Barsotti-Tateand we �x a 
hoi
e of GE-stable latti
e L, the 
orresponding `-divisible group �=OEis 
anoni
ally unique and admits a unique a
tion of O extending that on the generi
�ber.Let � : GE ! AutO(L) be a potentially Barsotti-Tate representation, with L a�nite free O-module of rank d (so �
OK is potentially Barsotti-Tate). Suppose thatthe residue �eld of E is �nite (i.e., E is a �nite extension of Q`). In Appendix B, wereview (following ideas of Fontaine) how to atta
h to � a 
ontinuous representationWD(�) :WE ! GL(D);whereWE is the Weil group of E (i.e., the subgroup ofGE whi
h maps to an integralpower of Frobenius in the Galois group of the residue �eld) and D is a ve
tor spa
eover Q` of dimension d. A dis
ussion of various properties of this 
onstru
tion (e.g.,behavior with respe
t to tensor produ
ts) is given in Appendix B. For example,if � has 
y
lotomi
 determinant, then WD(�) has unrami�ed determinant sendingFrobE to jkE j, the size of the residue �eld of E.1.2. Types of lo
al deformations. Fix a 
ontinuous two-dimensional represen-tation � : G` ! GL(V )over k su
h that Endk[G`℄ V = k. One then has a universal deformation ring RV;Ofor � (see Appendix A).An `-type is an equivalen
e 
lass of two-dimensional representations� : I` ! GL(D)over Q` with open kernel. For ea
h `-type � , we shall de�ne a 
ertain quotient RDV;Oof the 
omplete lo
al Noetherian O-algebra RV;O. This quotient will be a `Zariski
losure of 
ertain 
hara
teristi
 0 points'.A deformation � of V to the the ring of integers O0 of a �nite extension of K inQ`, is said to be of type � if(1) � is Barsotti-Tate over F for any �nite extension F of Q` su
h that � jIF istrivial;(2) the restri
tion of WD(�) to I` is equivalent to � ;(3) the 
hara
ter ��1 det � is the Tei
hm�uller lift of the prime-to-` order 
har-a
ter !�1 det � : G` ! F�̀.We say that a prime ideal p of RV;O is of type � if there exists a �nite extensionK 0 ofK (with valuation ring O0) and a (ne
essarily lo
al) O-algebra homomorphismRV;O ! O0 with kernel p su
h that the 
orresponding deformation is of type � . If p is3



of type � , then so is the deformation 
orresponding to any O-algebra homomorphismwith kernel p and values in some O0 as above.If there do not exist any prime ideals p of type � , we de�ne RDV;O = 0. Otherwise,de�ne RDV;O to be the quotient of RV;O by the interse
tion of all p of type � . We saythat a deformation of � to R is weakly of type � if the asso
iated lo
al O-algebramap RV;O ! R fa
tors through the quotient RDV;O. We say that � is a

eptable for� if RDV;O 6= 0 and if there is a surje
tive lo
al O-algebra map O[[X℄℄� RDV;O. More
on
retely, if mD denotes the maximal ideal of RDV;O, then the surje
tivity 
onditionis equivalent to dimkmD=(�; (mD)2) � 1.It is straightforward to 
he
k (
f. [9, Lemma 2.38℄) that the above notions arewell-behaved with respe
t to extension of the �eld K. In parti
ular, if K 0 is a�nite extension of K with valuation ring O0 and residue �eld k0, then O0 
O RDV;Ois naturally isomorphi
 to RDV
kk0;O0 and � is a

eptable for � if and only if � isa

eptable for �
k k0.We make the following 
onje
tures, although they are 
onsiderably stronger thanthe results that will a
tually be important in the sequel. What is important for thesequel is only the question of whi
h `-types are a

eptable for a given �jG` .Conje
ture 1.2.1. A deformation � : G` ! GL(M) of � to O0 is weakly of type �if and only if it is of type � .Conje
ture 1.2.2. Suppose that � = ~!i � ~!j. Then RDV;O 6= (0) if and only if�jI` 
k k is of one of the following three forms:� � !1+i �0 !j � and in the 
ase j � i mod ` � 1, � is peu-rami��e (in thesense of Serre [40℄),� � !1+j �0 !i � and in the 
ase j � i mod `� 1, � is peu-rami��e,� !1+fj�ig+(`+1)i2 � !`�fj�ig+(`+1)j2 , where fag denotes the unique integer inthe range from 0 to `� 2 
ongruent to a modulo `� 1.In the �rst two of these three 
ases RDV;O �= O[[X℄℄ and so � is a

eptable for �. Inthe last 
ase, if j � i mod `� 1, then RDV;O �= O[[X℄℄ and so � is a

eptable for �.Conje
ture 1.2.3. Suppose that � = ~!m2 � ~!`m2 where m 2 Z=(`2 � 1)Z andm = i+(`+1)j with i = 1; : : : ; ` and j 2 Z=(`� 1)Z. Then RDV;O 6= (0) if and onlyif �jI` 
k k is of one of the following four forms:� � !i+j �0 !1+j � and in the 
ase i = 2, � is peu-rami��e,� � !1+j �0 !i+j � and in the 
ase i = `� 1, � is peu-rami��e,� !1+m2 � !`(1+m)2 ,� !`+m2 � !1+`m2 ,In all these 
ases RDV;O �= O[[X℄℄ and so � is a

eptable for �.It will be 
onvenient to say that a type � is strongly a

eptable for �jG` if it isa

eptable and if one of the following is true:4



� �jI` �= � !m �0 !n � for some m;n 2 Z=(` � 1)Z (and in the 
ase m �n + 1 mod ` � 1, � is peu-rami��e), and � is equivalent to ~!m�1 � ~!n or~!fm�ng+1+(n�1)(`+1)2 � ~!`(fm�ng+1)+(n�1)(`+1)2 .� �jI` 
k k �= !1+m2 � !`(1+m)2 for some m 2 Z=(`2 � 1)Z, and � �= ~!m2 � ~!`m2Note that in parti
ular we are 
onje
turing that we 
an suppress the assumption ofa

eptability in the de�nition of strong a

eptability. In se
tion 2 we shall explainwhat we know about these 
onje
tures.1.3. Global Galois representations. Fix a �nite extension K of Q` in Q` withvaluation ring O, uniformizer � and residue �eld k, and a 
ontinuous global two-dimensional (over k) Galois representation� : GQ ! GL(V ):We shall suppose � satis�es the following hypotheses.� The determinant of �(
) is �1, where 
 denotes a 
omplex 
onjugation.� The restri
tion of � to Q(p(�1)(`�1)=2`) is absolutely irredu
ible.� The 
ondu
tor of � (see [40℄) divides the 
ondu
tor of all of its twists byk�-valued 
hara
ters.� The 
entralizer of �(G`) 
onsists only of s
alar matri
es.We remark that the third 
ondition is simply for 
onvenien
e and will be removedas an assumption from all our main theorems by an easy twisting argument. Let Sbe a �nite set of rational primes whi
h does not 
ontain `, and let � : I` ! GL(D)be an `-type whi
h is strongly a

eptable for �jG` .We will say that a deformation � : GQ ! GL(M) of � to an obje
t R of C�O (seeAppendix A) is of type (S; �) if the following hold:� �jG` is weakly of type � .� If p 62 S [ f`g and the order of �(Ip) is not `, then �(Ip) �! �(Ip).� If p 62 S [ f`g and the order of �(Ip) is `, then M=M Ip is free of rank oneover R.� ��1 det � has �nite order prime to `.One 
he
ks that the subsets of deformations of type (S; �) satisfy the representabil-ity 
riterion in Appendix A. Note that when p 62 S [ f`g, �(Ip) has order `, andthe fourth 
ondition above holds, then �jIp is tame with det �jIp trivial, so if g 2 Itpis a topologi
al generator, then a lift �(g) of �(g) �xes a basis ve
tor if and only iftr�(g) = 1+det(�(g)) (whi
h is equivalent to (�(g)�1)2 = 0 in the present setting).We let RS;DV;O denote the universal type (S; �) deformation ring. We write simplyRV;O and RDV;O for the deformation rings asso
iated to �jG` . Then RV;O, RDV;O andRS;DV;O are 
omplete lo
al Noetherian O-algebras with residue �eld k, well-behavedwith respe
t to �nite extension of K.1.4. Galois 
ohomology. We will let ad0 V denote the representation of GQ onthe tra
e zero endomorphisms of V . The tra
e pairing gives rise to a Galois equi-variant perfe
t pairing ad0 V 
k (ad0 V )(1)! k(1):If m denotes the maximal ideal of RDV;O, then there is a natural inje
tive map fromthe k-dual of m=(�;m2) to H1(Q`; ad0 V ). Using the tra
e pairing and a k-linear5



analogue of lo
al Poitou-Tate duality we get a surje
tive mapH1(Q`; (ad0 V )(1))!m=(�;m2). We will denote the kernel of this map by H1D(Q`; ad0 V (1)). We willlet H1S;D(Q; (ad0 V )(1)) denote those 
lasses in H1(Q; (ad0 V )(1)) whi
h lo
alizetrivially at all primes in S, to an element of H1D(Q`; (ad0 V )(1)) at `, and to anelement of H1(Fp; ((ad0 V )(1))Ip) at all primes p 62 S [ f`g.Observe that for p 62 S[f`g with �(Ip) not of order `, the 
ondition �(Ip) �! �(Ip)for a deformation � of � to k[�℄ with det � = det � is equivalent to the splitting ofthe extension as a k[Ip℄-module. To see this, let � be su
h a deformation of �, so�(g) = (1 + �
(g))�(g) for g 2 Ip, with the 
o
y
le 
 representing an element ofH1(Ip; ad0 �). We need to 
he
k that the 
ohomology 
lass of 
 is zero. Supposethat g; h 2 Ip and �(h) = 1. By our hypothesis on �, we have 
(h) = 0, and sin
e
(gh) = �(g)
(h)�(g)�1+ 
(g), it follows that 
(gh) = 
(g). Thus, we 
an view 
 asrepresenting an element of H1(�(Ip); ad0 �), and we must show that this elementis zero. By restri
tion-in
ation, H1(�(Ip); ad0 �) �= H1(G; (ad0 �)Iwp ), where Iwp iswild inertia at p and G = �(Ip)=�(Iwp ). Sin
e G is a �nite dis
rete quotient of thetame inertia group at p, G is a 
y
li
 group. Let G(`) denote the `-Sylow subgroupand I(`)p the kernel of the map from Ip onto its maximal `-primary quotient. Byrestri
tion-in
ation we 
an identify 
 with an element ofH1(G(`); (ad0 �)I(`)p ). Sin
eG(`) is a �nite 
y
li
 group, the size of this H1 
ohomology group is the same asthe size of the analogous H0 group, whi
h is H0(Ip; ad0 �).Without loss of generality, we may assume H0(Ip; ad0 �) 6= 0 (so G(`) 6= 0 also).After making a �nite extension of s
alars on k (whi
h we may do), �jIp is redu
ibleand is a non-trivial extension of � by itself, where � : Ip ! k� is some 
ontinuous
hara
ter. If � is non-trivial, then the 
ondu
tor N(�) of � is divisible by p2. Butif we twist � by a global 
hara
ter GQ ! k� whose restri
tion to Ip is ��1 andwhi
h is unrami�ed at all other primes, then this twist of � has 
ondu
tor whi
hhas the same prime-to-p part as N(�) but has p-part equal to p. By our hypothesison the minimality of the 
ondu
tor of �, this is a 
ontradi
tion. Thus, the above
hara
ter � must be trivial, so � is a non-trivial extension of 1 by 1. Sin
e ` 6= p,this for
es � to be tame at p. The pro-
y
li
ity of tame inertia then for
es �(Ip)to have order `, 
ontrary to hypothesis. Therefore, the original deformation � asa k[Ip℄-module extension 
lass of � by � must be the trivial extension, as desired.A similar argument (ending with the same analysis of H0(Ip; ad0 �)) proves theanalogue for (O=�n)[�℄-deformations of type (S; �) of a �xed O=�n-deformation of �of type (S; �) (this is needed in the proof of Lemma 1.4.2 below). With this noted,the usual 
al
ulations give rise to the following lemma (see for example se
tion 2of [9℄, espe
ially Corollary 2.43).Lemma 1.4.1. Suppose that � is a

eptable for �jG` . Then RS;DV;O 
an be topologi-
ally generated as an O-algebra bydimkH1S;D(Q; (ad0 V )(1)) +Xp2S dimkH0(Qp; (ad0 V )(1))elements.The proof of this lemma makes essential use of the assumption that � is a

ept-able for �jG` . More pre
isely, the a

eptability hypothesis enables the lo
al 
ontri-bution at ` to `exa
tly 
an
el' the lo
al 
ontribution (of dimH0(R; ad0 �) = 1) at1. 6



Now suppose that we are given a deformation � : GQ ! GL(M) of � of type(S; �) to O. Let �S;D : RS;DV;O ! O, �D : RDV;O ! O and � : RV;O ! O denote the
orresponding homomorphisms. We let adM and ad0M denote the representationsof GQ on the endomorphisms and tra
e-zero endomorphisms ofM respe
tively. LetH1D(Q`; ad0M 
O K=O) denote the image ofHomO(ker �D=(ker �D)2;K=O) �! HomO(ker �=(ker �)2;K=O)�= H1(Q`; adM 
O K=O):It is easy to see that the image is in fa
t 
ontained inH1(Q`; ad0M 
O K=O) � H1(Q`; adM 
O K=O):We letH1S;D(Q; ad0M
OK=O) denote the set of elements ofH1(Q; ad0M
OK=O)whi
h lo
alise at ` to an element of H1D(Q`; ad0M 
O K=O) and at ea
h primep 62 S[f`g to an element ofH1(Fp; (ad0M
OK=O)Ip). Note that for any parti
ularx 2 H1(Q; ad0M 
O K=O), the 
onditions at the p 62 S [ f`g are automati
allysatis�ed for all but �nitely many p. Therefore, we 
an argue by passage to thedire
t limit from the torsion 
ases, using the usual 
al
ulations to get the followinglemma (see for example se
tion 2 of [9℄).Lemma 1.4.2. In the above situation we have an isomorphism of O-modulesHomO(ker �S;D=(ker �S;D)2;K=O) �= H1S;D(Q; ad0M 
O K=O):This isomorphism is 
ompatible with 
hange in S.Corollary 1.4.3. Suppose that p 62 S [ f`g, let S0 = S [ fpg and let �S0;D denotethe 
omposite RS0;DV;O ! RS;DV;O ! O. ThenlengthO(ker �S0;D)=(ker �S0;D)2� lengthO(ker �S;D)=(ker �S;D)2 + lengthO(ad0M)(1)Ip=(Frobp � 1)(ad0M)(1)Ip :In this 
orollary, the lengths involved 
ould a priori be in�nite, so the inequalityis understood to imply that if the right side is �nite, then so is the left side. In orderto see that the se
ond term on the right (whi
h might be in�nite) has the same
ardinality as H1(Ip; ad0M 
O K=O)Gp (whi
h is what arises in the 
al
ulation),we just need to observe that ad0M(1) is (via the tra
e pairing) Cartier dual toad0M 
O K=O and for any �nite dis
rete Gp-module X with prime-to-p-powerorder n and Cartier dual X�, the Gp=Ip-equivariant pairing (via 
up produ
t)H1(Ip; X)�H0(Ip; X�)! H1(Ip; �n) = H1(Ip;Z=nZ) = (Z=nZ)(�1)is a perfe
t pairing. This follows from [37, Ch I, x3.5, Prop 17, Rem 4℄ and theproof of [37, Ch II, x5, Thm 1℄.2. Lo
al Cal
ulationsIn this se
tion, we study lo
al deformation problems. Consider a 
ontinuoustwo-dimensional representation � : G` ! GL(V ) over k. Choose a sub�eld F � Q`with �nite degree over Q` and with absolute rami�
ation index e = e(F ) � ` � 1.We write A for the valuation ring of F , and IF for the inertia subgroup of GF .A �nite dis
rete G`-module � : G` ! Aut(M) is 
alled A-
at if there existsa �nite 
at 
ommutative group s
heme G over A and a GF -module isomorphism�jGF ' G(Q`). In this 
ase, all subrepresentations and quotient representations are7



also A-
at. If instead � is an inverse limit of �nite dis
rete G`-modules, we say that� is A-
at if all �nite dis
rete quotients of � are A-
at.2.1. A-ordinary deformations. Assume that � is redu
ible and Endk[G`℄ V = k,so � is isomorphi
 to a non-semisimple representation� ' � a!m �0  b!n�for some a; b 2 k�, m;n 2 Z=(`� 1) with a 6= b or m 6= n (where  x : G` ! k� isthe unique 
ontinuous unrami�ed 
hara
ter sending Frob` to x 2 k�). If m 6= n+1or a 6= b, then dimkH1(G`; ( b!n)�1 a!m) = 1, so the non-split 
ondition impliesthat � is determined up to k[G`℄-module isomorphism by the spe
i�
ation (andordering) of its diagonal 
hara
ters. See the dis
ussion above [6, Thm 2.4.4℄ for moredetails on this. In the 
ase m = n+ 1, we assume � is peu rami��e. This 
onditionis automati
ally satis�ed if a 6= b, and it is satis�ed for a unique isomorphism 
lassof representations in the 
ase a = b.In this se
tion, we let F denote the unrami�ed extension of Q`(�`) of degree jk�j(so both diagonal 
hara
ters of � are trivial onGF ). We say that a deformationM of� to an obje
t R of C�O is A-ordinary if its determinant is ��, with � the Tei
hm�ullerlift of (det �)!�1 : G` ! k�, and there is an exa
t sequen
e of R[G`℄-modules0!M (�1) !M !M (0) ! 0with M (�1) and M (0) free of rank one over R, and IF a
ting via � on M (�1)and trivially on M (0). (Note that the G` a
tions on M (�1)=mR and M (0)=mR arene
essarily via  a!m and  b!n respe
tively.) Using the 
riterion in Appendix A,one 
he
ks that there is a universal A-ordinary deformation of �, where in the 
asem = n+1 we also require that the twist of our deformations by ~!�n is Z`-
at. Welet RA�ordV;O denote the universal A-ordinary deformation ring, 
anoni
ally a quotientof RV;O.We shall now de�ne a subspa
e ofH1(G`; ad0 V ) denotedH1A�ord(G`; ad0 V ). LetW (0) denote the subspa
e of ad0 V 
onsisting of those tra
e-zero endomorphismspreserving the �ltration 0! V (�1) ! V ! V (0) ! 0(i.e., W (0) 
onsists of matri
es with lower left entry vanishing), and let W (�1) =Homk(V (0); V (�1)) � W (0) (i.e., the matri
es vanishing outside of the upper rightentry). There are thus 
anoni
al exa
t sequen
es0 �!W (0) �! ad0 V �! Homk(V (�1); V (0)) �! 0; and0 �!W (�1) �!W (0) �! Homk(V (�1); V (�1)) �! 0:We de�ne a subspa
e C1 of H1(I`;W (�1)) as follows: If m 6= n + 1, we let C1 =H1(I`;W (�1)). If m = n + 1, then W (�1) �= k(1) as k[I`℄-modules and we de�neC1 to be the kernel of the mapH1(I`;W (�1)) �= H1(I`; k(1)) �= (Qun` )� 
 k ! k;where the se
ond isomorphism is the Kummer map and the last homomorphism isindu
ed by the valuation onQun` . Let C2 denote the image of C1 inH1(I`;W (0)), letC3 denote the preimage of C2 in H1(G`;W (0)), and �nally, let H1A�ord(G`; ad0 V )be the image of C3 under the natural in
lusion.8



Theorem 2.1.1. There is a surje
tive homomorphism of O-algebrasO[[T ℄℄! RA�ordV;O :Proof. Letting m denote the maximal ideal RA�ordV;O , it suÆ
es to prove m=(�;m2)is at most one-dimensional over k. This is done by 
he
king that the image ofHomk(m=(�;m2); k) in H1(G`; adV ) is 
ontained in H1A�ord(G`; ad0 V ), and then
omputing the dimension of this subspa
e. See the proof of [46, Prop 1.9(iii)℄ forthe 
ase m 6= n+1 (re
all that �(G`) has trivial 
entralizer) and see [9, 2.4℄ for the
ase m = n+ 1 . �Now suppose that � : G` ! GL2(O0) is a deformation of � of type � , with� = ~!i � ~!j for some i and j. In this 
ase there is an `-divisible group � over Awith an a
tion of O0 su
h that �jGF is isomorphi
 to the representation de�ned bythe a
tion of O0[GF ℄ on the Tate module of �:M = proj lim�[`n℄(Q`):The 
anoni
al 
onne
ted-�etale sequen
e for � gives rise to an exa
t sequen
e0!M0 !M !M�et ! 0of free O0-modules with an a
tion of GF .Lemma 2.1.2. The O0-modules M0 and M�et are ea
h free of rank one, and IFa
ts via � on M0.Proof. First observe that it suÆ
es to prove that M�et 6= 0, for IF a
ts trivially onM�et and det �jIF = �.Suppose now that M�et = 0, so �[`℄ is 
onne
ted. Sin
e V �= M=�M has anonzero element �xed by GF , the same is true of(M=`M)[�℄ � �[`℄(Q`):Therefore there is a nontrivial map�`;F = (Z=`Z)=F ! �[`℄=F ! �[`℄:Sin
e �[`℄ is 
onne
ted and e = `�1, the s
hemati
 
losure of the image is isomorphi
to �`;A. It follows that the Cartier dual of �[`℄ is not 
onne
ted.Now let �D denote the dual `-divisible group, and MD its Tate module. AsO0[GF ℄-modules, we haveMD �= HomZ`(M;Z`(1)) �= HomO0(M;O0(1))(the �rst isomorphism is 
anoni
al, the se
ond depends on a 
hoi
e of generator forthe di�erent of O0). We have just proved that �D[`℄ is not 
onne
ted, soMD;�et 6= 0.The lemma follows on observing that the �rst paragraph of the proof now appliesto MD, showing that IF a
ts via � on MD;0 6= 0. �We 
an now dedu
e the following from Theorem 2.1.1.Corollary 2.1.3. Suppose that � is redu
ible with Endk[G`℄ V = k. If � admitsa lifting of type � : I` ! GL(D) (i.e., if RDV;O 6= 0) with � �= ~!i � ~!j , then � isa

eptable for �. 9



Proof. Let p be a prime ideal of RV;O of type � , so p is the kernel of a homomorphismRV;O ! O0 su
h that the asso
iated deformation to O0 is of type � . The lemma(along with [16, Prop 8.2℄ in 
ase m = n+1) shows this deformation is A-ordinary,so the map RV;O ! O0 fa
tors through RA�ordV;O . Therefore the kernel of the mapRV;O ! RA�ordV;Ois 
ontained in the interse
tion of all prime ideals p of type � . It follows that RDV;Ois a quotient of RA�ordV;O , hen
e a quotient of O[[T ℄℄. �2.2. A-
at deformations. Now we return to the 
ase of arbitrary F with e � `�1.We no longer assume that � is redu
ible. We assume that V is A-
at, with G
onne
ted and having 
onne
ted dual. Under these 
onditions, G is the unique �nite
at A-group s
heme with generi
 �ber isomorphi
 (as a GF -module) to �jGF , withG determined up to unique isomorphism (see [6, x2.1℄ for details; the 
onne
tedness
onditions ensure uniqueness when e = `� 1).LetM denote the (
ontravariant) Dieudonn�e module of the 
losed �ber of G. Weassume that the 
anoni
al sequen
e of groups0!M=VM F!M =M=`M !M=FM ! 0is exa
t, where F and V denote the Frobenius and Vers
hiebung operators respe
-tively. This exa
tness 
ondition is automati
ally satis�ed when G ' �[`℄ for �=A an`-divisible group, and so is an extremely natural 
ondition; also, it is needed in theresults we will require from [6℄ below.We now give the 
omplete list of isomorphism 
lasses of representations � sat-isfying the above 
onditions. (See Corollary 2.2.3 and Theorem 2.4.4 of [6℄.) Theirredu
ible � whi
h arise are absolutely irredu
ible and are exa
tly those 
ontinuous� : G` ! GL2(k) satisfying �jI` 
k �k ' !m2 � !`m2 , with em � e mod `2 � 1. Theredu
ible � whi
h arise 
an be written as non-semisimple representations� ' � a!m �0  b!n�for a; b 2 k�, m;n 2 Z=(` � 1) . The pre
ise possibilities are as follows. Theremust exist an integer j satisfying 1 � j � e � 1, en � j mod ` � 1, ejj(` + 1) andm = n + 1 � j(` + 1)=e mod ` � 1. These 
onditions imply e6 j(` � 1), m 6= n, andfor ` � �1 mod 4 they also imply m 6= n + 1. For ` � �1 mod 4, the unique (upto isomorphism) non-split extensions of  b!n by  a!m for a; b 2 k� and n andm as above are exa
tly the � whi
h arise. For ` � 1 mod 4, we get the same list,ex
ept that the 
ases with m = n + 1 (whi
h o

ur pre
isely when e = (` + 1)=2,n = (` � 1)=2) and a = b are given by the unrami�ed k-twists the (unique up toisomorphism) non-split F`-representation of the form!(`�1)=2 
 �! �0 1�for whi
h � is peu-rami��e.The property of being A-
at is 
losed under taking submodules, quotients and�nite produ
ts, and sin
e Endk[G`℄ V = k for the representations listed above, thereis an asso
iated universal A-
at deformation ring RA�
atV;O whi
h is a quotient ofRV;O. Consider also the �xed determinant 
hara
ter � : G` ! O� of the form ��,10



with � the Tei
hm�uller lift of (det �)!�1 : G` ! k�. There is a universal deforma-tion of � whi
h is A-
at with determinant �, and the universal deformation ring isnaturally a quotient of RA�
atV;O whi
h we denote RA�
at;�V;O . The main deformation-theoreti
 result we need in the lo
al theory is provided by Theorems 4.1.1 and 4.1.2of [6℄.Theorem 2.2.1. There are O-algebra isomorphismsRA�
atV;O ' O[[T1; T2℄℄ and RA�
at;�V;O ' O[[T ℄℄:Corollary 2.2.2. If � admits a lifting of type � : I` ! GL(D) (i.e., if RDV;O 6= 0)and � is trivial on the inertia group of F , then � is a

eptable for �.Proof. Let p be a prime ideal of RV;O of type � , so p is the kernel of a homomorphismRV;O ! O0 su
h that the asso
iated deformation to O0 is of type � . Repla
ing O byO0 without loss of generality, the determinant � of this deformation is O�-valued,so our map RV;O ! O fa
tors through RA�
at;�V;O . Therefore the kernel of the mapRV;O ! RA�
at;�V;Ois 
ontained in the interse
tion of all prime ideals p of type � . It follows that RDV;Ois a quotient of RA�
at;�V;O , whi
h, by the pre
eding theorem, is isomorphi
 to O[[T ℄℄.�2.3. Twisted A-
at deformations. We now 
onsider a variant of the A-
at de-formation problem. We still �x a �nite extension F=Q` with e(F ) � `�1 and study
ertain deformations of a given � : G` ! GL2(k). However, instead of requiring�jGF to arise as the generi
 �ber of a �nite 
at A-group s
heme, we �x a (rami�ed)quadrati
 
hara
ter  on GF and require that �jGF 
  is the generi
 �ber of a �-nite 
at A-group s
heme. Moreover, we impose the same 
onne
tedness/unipoten
e
onditions and the same exa
tness hypothesis on Dieudonn�e modules as above, andwe study those deformations of � whose  -twist is A-
at (in the same sense asabove). In 
ontrast to the (untwisted) A-
at setting, the 
ase ej(` � 1) 
an nowo

ur, and we shall a
tually restri
t our attention to this 
ase. In x4.2 of [6℄, it isexplained how the methods of [6℄ 
arry over to this setting. In parti
ular, under theabove hypotheses, Endk[G`℄ V = k, so there is a universal deformation ring RV;O for�. The property of the  -twist being A-
at is preserved under taking submodules,quotients and �nite produ
ts, so there is an asso
iated quotient of RV;O, whi
h wedenote RA� 

atV;O . We 
an also 
onsider the quotient RA� 

at;�V;O representing su
hdeformations with �xed determinant � = ��. Theorem 4.2.1 of [6℄ then gives:Theorem 2.3.1. Under the above hypotheses, there are O-algebra isomorphismsRA� 

atV;O ' O[[T1; T2℄℄ and RA� 

at;�V;O ' O[[T ℄℄:Corollary 2.3.2. Suppose that e(F )j(`� 1),  is a quadrati
 
hara
ter of GF and�
 is trivial on the inertia group of F . If � admits a lifting of type � : I` ! GL(D)(i.e., if RDV;O(�) 6= 0) and � 
  is A-
at and satis�es the above 
onne
tedness,unipoten
e and Dieudonn�e module hypotheses, then � is a

eptable for �.11



3. Some Representations of Finite Groups3.1. Representations of GL2(Fp). Let us re
all the 
lassi�
ation of irredu
ible�nite-dimensional representations of GL2(Fp) over an algebrai
ally 
losed �eld F of
hara
teristi
 zero. Any su
h representation is isomorphi
 to one of the following,where we have �xed an embedding i : Fp2 ! M2(Fp) 
orresponding to a 
hoi
e ofFp-basis of Fp2 .� For any 
hara
ter � : F�p ! F�, the representation � Æ det.� For any 
hara
ter � : F�p ! F�, the representation sp� = sp 
 (� Ædet), where sp is the representation of GL2(Fp) on the spa
e of fun
tionsP1(Fp)! F with average value zero (with g 2 GL2(Fp) a
ting on a fun
-tion through the usual a
tion of g�1 on P1(Fp)).� For any pair of 
hara
ters �1 6= �2 : F�p ! F�, the representation I(�1; �2)on the spa
e of fun
tions f : GL2(Fp)! F whi
h satisfyf �� a1 b0 a2 � g� = �1(a1)�2(a2)f(g);where g 2 GL2(Fp) a
ts on f through right multipli
ation of g on GL2(Fp).This representation is isomorphi
 to the representation indu
ed from the fol-lowing 
hara
ter on the subgroup of upper-triangular matri
es in GL2(Fp):� a1 b0 a2 � 7! �1(a1)�2(a2):� For any 
hara
ter � : F�p2 ! F� with � 6= �p, a representation �(�) ofdimension p� 1 whi
h is 
hara
terized by�(�)
 sp ' IndGL2(Fp)F�p2 �:The only isomorphisms between these representations are I(�1; �2) �= I(�2; �1) and�(�) �= �(�p). For 
onvenien
e, we in
lude the 
hara
ter table of GL2(Fp):
RepresentationConjuga
y
lass of: � Æ det sp� I(�1; �2) �(�)� a 00 a � �(a)2 p�(a)2 (p+ 1)�1(a)�2(a) (p� 1)�(a)� a 10 a � �(a)2 0 �1(a)�2(a) ��(a)� a 00 b � 62 F�p �(ab) �(ab) �1(a)�2(b) + �1(b)�2(a) 0i(
) 62 F�p �(
p+1) ��(
p+1) 0 ��(
)� �(
p)We re
all also the 
lassi�
ation of absolutely irredu
ible �nite-dimensional rep-resentations of GL2(F`) in 
hara
teristi
 `. We will let �n denote the naturalrepresentation of GL2(F`) on Symmn(F2̀) for ea
h n 2 Z�0. The semsimpli
ity of�n follows from that of �1, and for n � `�1 the representation �n is absolutely irre-du
ible (
f. [8, Example 17.17℄). For m 2 Z=(`� 1)Z and 0 � n � `� 1, we will let12



�n;m denote �n 
 detm. These representations �n;m are mutually non-isomorphi
and exhaust the isomorphism 
lasses of absolutely irredu
ible �nite-dimensionalrepresentations of GL2(F`) in 
hara
teristi
 `. The Brauer 
hara
ter of �n;m isgiven by: � a 00 a � 7! (n+ 1)~a2m+n;� a 00 b � 62 F�̀ 7! ~am~bm(~an+1 � ~bn+1)=(~a� ~b);
i(
) 62 F�̀ 7! ~
m(`+1)(~
(n+1)` � ~
n+1)=(~
` � ~
);where ~ indi
ates Tei
hm�uller lift. In fa
t, sin
e the �n;m are de�ned over F`, anyirredu
ible �nite-dimensional representation of GL2(F`) over a �eld k of 
hara
-teristi
 ` is isomorphi
 to some �n;m 
F` k and so is absolutely irredu
ible. UsingBrauer 
hara
ters, one �nds:Lemma 3.1.1. Let L be a �nite free O-module with an a
tion of GL2(F`) su
hthat V = L
O Q` is irredu
ible.(1) If V �= � Æ det with �(a) = ~am, then L
O k �= �0;m.(2) If V �= sp� with �(a) = ~am, then L
O k �= �`�1;m.(3) If V �= I(�1; �2) with �i(a) = ~ami (for distin
t mi 2 Z=(` � 1)Z), thenL
Ok has two Jordan-H�older subquotients: �fm1�m2g;m2 and �fm2�m1g;m1 ;where 0 < fmg < `� 1 and fmg � m mod `� 1.(4) If V �= �(�) with �(
) = ~
i+(`+1)j where 1 � i � ` and j 2 Z=(`�1)Z, thenL
Ok has one or two Jordan-H�older subquotients: �i�2;1+j and �`�1�i;i+j.Both o

ur unless i = 1 (when only the se
ond one o

urs) or i = ` (whenonly the �rst o

urs), and in either of these ex
eptional 
ases L 
O k �=�`�2;;1+j.3.2. Representations of GL2(Z=pnZ). We shall also need to 
onsider 
ertainrepresentations of GL2(Z=pnZ) for n > 1 whi
h generalize the representations �(�)for n = 1. Let � denote Frobp on A =W (Fp2), 
hoose an isomorphismM2(Zp) �= EndZp A = A�A�;and let $n denote the proje
tion GL(A)! G = GL2(Z=pnZ). Let m = [n=2℄ � 1and de�ne subgroups N � H of G as follows:N = $n �fx+ y� jx 2 1 + pnA; y 2 pn�mA g�H = $n �fx+ y� jx 2 A�; y 2 pmA g� :Thus [N : 1℄ = p2m and [G : H℄ = �(p2m). Note that N is normal in H and H
ontains the 
enter of G.Again let F denote an algebrai
ally 
losed �eld of 
hara
teristi
 0. Suppose that� : A� ! F� is a 
hara
ter of 
ondu
tor pn. We assume also that �=(� Æ �) has
ondu
tor pn (or equivalently, no twist of � by a 
hara
ter fa
toring through thenorm A� ! Z�p has 
ondu
tor less than pn; see [24, x3.2℄). Sin
e the quotientgroup Fp2=Fp is of order p, this latter 
ondition implies that for any x 2 A� withx 6� x� mod pA, (�=� Æ�)(1+ pn�1x) 6= 1. If n is even, we de�ne a 
hara
ter �� of13



H=N by ��(x+ y�) = �(x). If n is odd, we let �� denote the unique p-dimensionalrepresentation of H=N whose 
hara
ter satis�estr��(x+ y�) = 8<: p�(x); if y � 0 mod pm+1A = pn�mA and x � x� mod pA;��(x); if y � 0 mod pm+1A = pn�mA and x 6� x� mod pA;0; if x+ y� is not 
onjugate to an element as above.Note that sin
e the above 
lass fun
tion satis�es htr��; tr��iH=N = 1, the existen
eof su
h a representation 
an be proved using Brauer's 
riterion [38, x11.1℄, and itis absolutely irredu
ible. Regarding �� as a representation of H, let �(�) denotethe �(pn)-dimensional representation IndGH ��. The isomorphism 
lass of �(�) isindependent of the 
hoi
e of isomorphism M2(Zp) �= EndZp A, sin
e any two su
hisomorphisms di�er by 
onjugation by an element of GL2(Zp). So far, the only
ondu
tor hypothesis we have used is that � has 
ondu
tor dividing pn.Lemma 3.2.1. Suppose that n � 1 and �1 and �2 are a pair of 
hara
ters ofA� ! Q�̀ as above. Suppose that Li for i = 1; 2, is a free O-module with an a
tionof G = GL2(Z=pnZ) su
h that Li 
O Q` is isomorphi
 to �(�i). Let B denotethe subgroup of G 
onsisting of matri
es whi
h mod p are upper triangular, and letC = A� \B = fx 2 A�jx � x� mod pg.(1) The restri
tions �(�i)jB are irredu
ible,(2) �(�1) ' �(�2), �2 2 f�1; �1 Æ � g;(3) �(�1)jB ' �(�2)jB , �2jC 2 f�1jC ; �1 Æ �jC g;(4) if p(p� 1) is not divisible by `, then Li 
O k is absolutely irredu
ible,(5) if �1 � �2 mod �, then L1 
O k and L2 
O k have isomorphi
 semisimpli-�
ations.Proof. The se
ond assertion is proved by 
omputing h�(�1);�(�2)iG and showingthat this equals 1 if �2 = �1 or if �2 = �1 Æ�, and equals 0 otherwise. This uses thehypotheses on 
ondu
tors, as we now explain. Using Frobenius re
ipro
ity twi
eand [38, x7.3℄, we get h�(�1);�(�2)iG = Xg2Xh�g�1 ; ��2iHg ;where X is a set of double 
oset representatives for HnG=H, Hg = H \ gHg�1,and �g�1(z) = ��1(g�1zg). Note that 1 and � represent two distin
t double 
osets,and H� = �H, so H� = H. By 
omputing 
onjuga
y 
lasses in H=N and treatingseparately the 
ases where n is even or odd, we 
ompute thath��1 ; ��2iH = h��1 ; ��2iH=N = h�1; �2iA� :Sin
e ��� = ��Æ� and � 6= � Æ � for our 
hara
ters � = �i, the sum of the terms forg = 1 and g = � is 1 if �2 2 f�1; �1 Æ �g, and is 0 otherwise.For g 2 X not equivalent to 1 or �, we 
laim that h��1 ; ��2iHg = 0. It suÆ
esto 
onstru
t h 2 H \ gNg�1 of the form h = 1+ pn�1(t� t�)+ pn�ms� for t 2 A�with t 6� t� mod pA and s 2 A, be
ause then on the subgroup of Hg generated byh, �g�1 is a dire
t sum of 
opies of the trivial representation (sin
e g�1hg 2 N) and��2 is a dire
t sum of 
opies of a non-trivial 
hara
ter (the number of 
opies being1 when n is even and p when n is odd). This non-triviality follows from the fa
tthat on the subgroup in H=N generated by h, ��2 is a dire
t sum of 
opies of the1-dimensional representation whi
h sends h to�2(1 + pn�1(t� t�)) = (�2=�2 Æ �)(1 + pn�1t) 6= 1:14



Sin
e � and H normalize N , we may multiply g on the right by � or an element ofH without 
hanging gNg�1, and hen
e without loss of generality.To 
onstru
t h, we write g = x+ y� and �rst multiply by � if ne
essary so thatx is not divisible by p and then multiply by x�1 2 H to get a representative ofthe form g = 1 + pru�, with u 6� 0 mod pA and r < m. Note that for r = 0, theinvertibility of 1+u� for
es uu� 6� 1 mod pZp, be
ause det(x+y�) = Nx�Ny for allx; y 2 A, where N : A! Zp is the norm map. Now de�ne h = g(1+pn�r�1v�)g�1,where v 2 A� is 
hosen so that uv� 6� vu� mod pA (in whi
h 
ase we 
an taket = uv� when r 6= 0 and t = uv�=(1 � uu�) if r = 0). For the �rst and thirdassertions, after 
hanging the isomorphism M2(Zp) �= EndZp(A) we 
an supposethat � 2 B. Thus, for g 2 B, g 2 H \ B if and only if g 2 H and g 2 (H \B)� ifand only if g 2 H�. In parti
ular, if g 62 (H \B)[ (H \B)� then we 
an 
onstru
tthe h as above and this also lies in B sin
e h � 1 mod p. Sin
e G = BH,�(�)jB �= IndBH\B(��jH\B):We 
an now run through the exa
t same 
al
ulation as before with B and H \ Brepla
ing G and H respe
tively. This settles the �rst and third assertions (notethat �1jC 6= �1 Æ �jC be
ause �1=�1 Æ � has 
ondu
tor pn and n � 2).If ` doesn't divide p(p � 1), so #B is not divisible by `, then the redu
tionsLi 
O k are also absolutely irredu
ible by [38, x15.5℄. The last assertion followssin
e the two representations have the same Brauer 
hara
ter. �3.3. Duality. Let K, O, � and k be as above, and let O0 denote the valuation ringof K 0 = K(�0), where �02 = �. Suppose that V is a K-ve
tor spa
e with an a
tionof GL2(Z=pnZ) su
h that V 
K Q` is one of the representations 
onsidered above,i.e., that n = 1 and V is absolutely irredu
ible, or that n > 1 and V 
K Q` isisomorphi
 to �(�) for some 
hara
ter � : A� ! Q�̀ with 
ondu
tor pn su
h that�=� Æ � also has 
ondu
tor pn. In ea
h 
ase, there is a nondegenerate pairing ( ; )on V su
h that (gu; gv) =  (det g)(u; v);where  : (Z=pnZ)� ! K� is the 
entral 
hara
ter of the representation (note that ne
essarily takes values in K sin
e V is absolutely irredu
ible). Equivalently,we have an isomorphism of representation spa
es V ' V � 
 ( Æ det) in all 
ases.For n = 1, this is 
lear from the 
hara
ter table, and for �(�) with n > 1, thisfollows from the analogous assertion for ��. More pre
isely, using the fa
t thatdet(x + y�) = xx� 2 Z�p for x + y� 2 H with y � 0 mod pm+1A for odd n, one
he
ks that �� �= ���Æ� 
 ( Æ det)jH, where  = �j(Z=pnZ)� (and then indu
t up toG, using that �(�) = �(� Æ �)).We will need the following lemma.Lemma 3.3.1. Suppose G is a �nite group whi
h a
ts absolutely irredu
ibly on a�nite dimensional K-ve
tor spa
e V . Let ( ; ) be a non-degenerate pairing on V su
hthat (gu; gv) =  (g)(u; v) for some 
hara
ter  : G! K�. Let V 0 = V 
KK(�1=2).Then there is a G-invariant O0-latti
e L0 � V 0 whi
h is self-dual for ( ; ).Proof. First note that by S
hur's lemma, the pairing is symmetri
 or alternating.Choose a G-invariant latti
e L1 in V whi
h 
ontains its dual latti
e L?1 . Then ( ; )indu
es a perfe
t pairing L1=L?1 � L1=L?1 ! K=O. Let X be a maximal isotropi
G-submodule of L1=L?1 and repla
e L1 by L2, the preimage of X?. Using the15



maximality of X, one sees that L2 � L?2 � �L2. It is then easy to 
he
k thatL0 = L?2 � �1=2L2 will suÆ
e. �4. Galois representations for modular forms.4.1. `-adi
 representations asso
iated to modular forms. Now let us re
allsome fa
ts about the `-adi
 representations atta
hed to 
ertain automorphi
 repre-sentations of GL2(A), where A denotes the adele ring of Q. Re
all that we have�xed embeddings of Q into C and into Qp for all p. Suppose that � �= 
0v�v is a
uspidal automorphi
 representation of GL2(A) su
h that �1 is a lowest dis
reteseries representation of GL2(C) with trivial 
entral 
hara
ter. Re
all that the setof su
h representations � is in one-to-one 
orresponden
e with the set of weight twonewforms. The theory of Ei
hler and Shimura asso
iates a 
ontinuous irredu
ibletwo-dimensional representation �� : GQ ! GL(V�)over Q` to � whi
h is 
hara
terized as follows: For any prime p 6= ` su
h that �p isunrami�ed, �� is unrami�ed at p and ��(Frobp) has 
hara
teristi
 polynomialX2 � tpX + psp;where tp denotes the eigenvalue of the He
ke operatorTp = �GL2(Zp)� p 00 1 �GL2(Zp)�on �GL2(Zp)p , and sp denotes that ofSp = �GL2(Zp)� p 00 p �GL2(Zp)� :Let S(�) denote the set of primes p su
h that �p is rami�ed, and let S be any�nite set of primes. Then the set of tp for p 62 S [ S(�) generate a number �eldover whi
h � is de�ned, and �� is de�ned over the 
losure of this �eld inside ofQ` (some �nite extension of Q`). If � and �0 are su
h that the 
orrespondingeigenvalues tp and t0p 
oin
ide for all p 62 S [ S(�) [ S(�0), then in fa
t � = �0.For any automorphism � in G`, there is an automorphi
 representation denoted ��su
h that ��� ' ��� .For any prime p, the lo
al Langlands 
orresponden
e asso
iates to �p a 
ertain
ontinuous semi-simple two-dimensional representation WD(�p) : Wp ! GL(D�p)over Q with dis
rete topology. Our 
onvention here is that WD(�p) is the restri
-tion to Wp of �(�p) 
 j j�1, where �(�p) is as in [3℄ and we have identi�ed Q�pwith W abp by the Artin map (whi
h, with our 
onventions, sends p to a preimageof Frobp 2 Wp=Ip). Thus � 7! WD(�) establishes a bije
tion between (a) iso-morphism 
lasses of irredu
ible admissible in�nite-dimensional representations ofGL2(Qp) de�ned over Q, and (b) isomorphism 
lasses of 
ontinuous semi-simplerepresentations Wp ! GL2(Q). The bije
tion has the following properties:� If � is a 
ontinuous 
hara
terQ�p ! Q�, thenWD(�
�Ædet) �=WD(�)
�.� The determinant of WD(�) is ���, where �� is the 
entral 
hara
ter of �.16



A theorem of Carayol ([3, Thm. A℄, generalizing results of Langlands and Deligne)shows that Q` 
QWD(�p) �= (��jWp)ssfor p 6= `. If �` is not spe
ial, then ��jG` is Barsotti-Tate over any �nite extensionF of Q` su
h that WD(�`)jIF is trivial andQ` 
QWD(�`) �=WD(��jG`):For a proof of this last isomorphism, see Appendix B (note also that the isomor-phism of representations follows from the main theorem of [34℄).4.2. The lo
al Langlands 
orresponden
e. We shall need to re
all some prop-erties of the 
orresponden
e � $ WD(�). Before doing so, we de�ne, for ea
hn � 0, open subgroups U0(pn) � U`(pn) � U1(pn) � U(pn)of GL2(Zp) as follows. We set� U0(pn) = $�1n �� � �0 � ��;� U`(pn) = $�1n �� � �0 a � j a 2 (Z=pnZ)� has `-power order�;� U1(pn) = $�1n �� � �0 1 ��;� U(pn) = ker$n;where$n denote the natural proje
tion GL2(Zp)! GL2(Z=pnZ). For V = U0(pn),U`(pn) or U1(pn) with n � 1, we let Up denote the He
ke operator V � p 00 1 �Von �V . If V and V 0 are two su
h subgroups with V 0 � V , then the operatorsdenoted Up are 
ompatible with the natural in
lusion �V ! �V 0 .Lemma 4.2.1. There is an integer 
 = 
(�) � 0 su
h thatdim�U1(pm) = maxf0;m� 
+ 1gfor all m � 0.(1) If 
 = 0 and n > 0, then the 
hara
teristi
 polynomial of Up on �U0(pn) =�U1(pn) is Xn�1(X2 � tpX + psp), where tp (respe
tively, sp) is the eigen-value of Tp (respe
tively, Sp) on �GL2(Zp)p .(2) If 
 > 0 and n > 0, then the 
hara
teristi
 polynomial of Up on �U1(p
+n)is Xn(X � up), where up is the eigenvalue of Up on �U1(p
).With the above notation, we have the following well-known properties of the
orresponden
e �$WD(�).Lemma 4.2.2. (1) Suppose that 
 = 0. Then WD(�) is unrami�ed and the
hara
teristi
 polynomial of Frobp on WD(�) is X2 � tpX + psp.(2) Suppose that 
 = 1. Let � denote the 
hara
ter of Z�p de�ned by the a
tionof F�p �= U0(p)=U1(p) on �U1(p). Then WD(�)jIp �= 1 � � Æ �p;1. If � istrivial, then WD(�) �= �� �j j�1 where � is unrami�ed and �(Frobp) = up.If � is not trivial, then Frobp a
ts via up on WD(�)Ip.17



(3) Suppose that 
 > 1. Then 
 is the 
ondu
tor of WD(�). Moreover up 6= 0if and only if WD(�)Ip 6= 0, in whi
h 
ase Frobp a
ts via up on WD(�)Ip .Note that the only 
ase where 
(�) is not the 
ondu
tor of WD(�) is when
(�) = 1 and the 
entral 
hara
ter of � is unrami�ed. We refer to su
h � as un-rami�ed spe
ial representations. We let e(�) = 1 if WD(�) is unrami�ed spe
ial,and e(�) = dimWD(�)Ip otherwise. In general, if � is an automorphi
 represen-tation as above and p 6= `, then dim �Ip� = e(�p).Corollary 4.2.3. The 
hara
teristi
 polynomial of Up on �U1(p
(�p)+e(�p))p is of theform xf(x) where f(x) has degree e(�) and roots whi
h are `-adi
 units.We also have the following relationship between WD(�) and the a
tion ofGL2(Z=pnZ) �= GL2(Zp)=U(pn) on �U(pn).Lemma 4.2.4. (1) Suppose that � : F�p ! Q�. If hsp���Ædet;�U(p)iGL2(Fp) 6=0, then WD(�)jIp �= � Æ �p;1 � � Æ �p;1. Conversely if WD(�)jIp �=� Æ �p;1 � � Æ �p;1, then either �U(p) �= sp� � � Æ det and � is the twistof an unrami�ed representation, or �U(p) �= sp� and � is spe
ial.(2) Suppose that �1 6= �2 : F�p ! Q�. If hI(�1; �2);�U(p)iGL2(Fp) 6= 0, thenWD(�)jIp �= (�1 Æ �p;1) � (�2 Æ �p;1). Conversely if WD(�)jIp �= (�1 Æ�p;1)� (�2 Æ �p;1), then �U(p) �= I(�1; �2).(3) Suppose that � : A� =W (Fp2)� ! Q� is as in x3.2 with 
ondu
tor pnA. Ifh�(�);�U(pn)iGL2(Z=pnZ) 6= 0, thenWD(�)jIp �= (�Æ�p;2)�(�ÆFrobpÆ�p;2).Conversely ifWD(�)jIp �= (�Æ�p;2)�(�ÆFrobpÆ�p;2), then �U(pn) �= �(�).These assertions follow from expli
it des
riptions of the lo
al Langlands 
orre-sponden
e. The �rst two parts 
an already be dedu
ed from the properties listedabove, together with the 
lassi�
ation of representations of GL2(Fp). For the thirdpart, see [24, x3℄. 5. He
ke Algebras and Modules5.1. De�nition of He
ke algebras. We use the notation of x1.3. In parti
ular,� : GQ ! GL(V )is absolutely irredu
ible, � is an `-type strongly a

eptable for �jG` and S is a �niteset of primes not 
ontaining `. We suppose from now on that � is modular, meaningthere exist an automorphi
 representation as in x4 and a �nite extension K 0 of Ksu
h that �� �= Q` 
O0 � for some deformation � of � to O0. We let NS denote theset of � su
h that this holds for some � of type (S; �). We shall write RS for theuniversal deformation ring of type (S; �), and �S for the universal deformation.Let S(�) denote the set of primes p su
h that p = ` or � is rami�ed at p. LetT (�) denote the set of primes p su
h that p � �1 mod `, �jGp is irredu
ible and�jIp is redu
ible. We let ~TS denote the polynomial algebra over O generated bythe variables Tp and Sp for p 62 S [ S(�). We de�ne the He
ke algebra TS as theimage of the O-algebra homomorphism~TS ! Y�2NSQ`;18



sending Tp 7! tp and Sp 7! sp in ea
h 
omponent. We let IS denote the kernel of~TS ! TS . We also let ~T0S denote the polynomial algebra over ~TS generated bythe variables Up for p 2 S, and let I 0S denote the ideal generated by IS and the setof Up for p 2 S.For ea
h prime p we will de�ne open subgroups VS;p, normal in US;p � GL2(Zp),an element wS;p 2 GL2(Qp) and a �nite-dimensional irredu
ible representation�S;p of US;p=VS;p over Q. For p 6= `, let 
p denote the 
ondu
tor of �jGp andep = dimk �Ip . If p 2 T (�), then 
p is even and we 
an 
hoose a 
hara
ter �p :W (Fp2)� ! Q� of order prime to ` whose redu
tion �p satis�es�jIp 
k F` �= �p Æ �p;2 � �p Æ Frobp Æ �p;2:� If p 62 S[T (�)[f`g then US;p = VS;p = U`(p
p), wS;p = � 0 �1p
p 0 � and�S;p = 1.� If p 2 S � T (�) then US;p = VS;p = U`(p
p+ep), wS;p = � 0 �1p
p+ep 0 �
and �S;p = 1.� If p 2 T (�) � S then US;p = GL2(Zp), VS;p = U(p
p=2), wS;p = 1 and�S;p = �(�p).� If p 2 T (�) \ S then US;p = U0(p), VS;p = U(p
p=2), wS;p = 1 and �S;p =�(�p)jUS;p=VS;p .� If p = `, then US;p = GL2(Z`), VS;p = U(`), wS;p = 1 and �S;p is8><>: � Æ det; if � �= � Æ !1 � � Æ !1 for some � : F�̀ ! Q�;I(�1; �2); if � �= �1 Æ !1 � �2 Æ !1 with �1 6= �2 : F�̀ ! Q�;�(�); if � �= � Æ !2 � �` Æ !2 with � 6= �` : F�̀2 ! Q�.We will set US = Qp US;p, and VS = Qp VS;p, wS = Qp wS;p and �S = 
p�S;p.We have de�ned wS for later use. The point of the de�nitions of US and �S is thefollowing lemma.Lemma 5.1.1. Suppose that �� �= Q` 
O0 � for some deformation � of � to thering of integers O0 of a �nite extension K 0 of K. Then � 2 NS if and only ifHomUS (�S; �1) 6= (0):In that 
ase, the eigenvalues of Up on HomUS (�S ; �1) for ea
h p 2 S are either 0or `-adi
 units, and the subspa
e on whi
h Up = 0 for all p 2 S is 1-dimensional.Proof. This follows from the results re
alled in the pre
eding se
tion together withthe analysis of possible lifts of �jGp for p 6= ` (see [4℄ and [15℄). In parti
ular thatanalysis shows that 
(�p) + e(�p) = 
p + ep. Moreover if p 62 T (�), 
p = 
(�p)and det �jIp has order prime to `, then �jIp satis�es the lo
al 
ondition at p in thede�nition of type (S; �). On the other hand, if p 2 T (�), then �U(p
p=2)p as a modulefor GL2(Zp) is isomorphi
 to �(�p p) for some 
hara
ter  p of `-power order. Notethat in that 
ase �(�p p)jU0(p) �= �(�p)jU0(p). �19



Corollary 5.1.2. The set NS is �nite, TS is �nitely generated as an O-moduleand the natural map TS 
O Q` ! Y�2NSQ`is an isomorphism.Proof. By the lemma, NS is �nite, from whi
h it follows thatTS is �nitely generatedover O. For � 2 NS and p 62 S [ S(�), let tp(�) denote the eigenvalue of Tp on�GL2(Zp)p . Choose any � 2 NS . For ea
h �0 2 NS distin
t from �, 
hoose a primep(�0) 62 S [ S(�) [ S(�0) with tp(�0)(�) 6= tp(�0)(�0). The elementY�0 6=�(Tp(�0) 
 1� 1
 tp(�0)(�0)) 2 TS 
O Q`maps to 0 in all 
omponents ex
ept for the �th one, where it has non-zero image.This proves surje
tivity. It now suÆ
es to show dimK TS 
O K � jNS j. LetK� � Q` denote the sub�eld of �nite degree over Q` whi
h is generated by thetp(�)'s for p 62 S [ S(�). Under the natural a
tion of GK � G` on the 
oeÆ
ient�eld Q`, NS is stable. For � 2 GK , ��� = ��� ' �� if and only if � �xes K�, so theorbit of � under the a
tion of GK has size equal to [K� : K℄. Thus, if we sum overa set X of representatives for the GK-orbits in NS ,jNS j = X�2X[K� : K℄:
But the image of TS
OK in the �th fa
tor Q` is K�, and using the GK-a
tion wesee that any element of TS
OK is determined by its image in the K�'s for � 2 X.Thus, dimK TS 
O K � jNS j. �5.2. The universal modular deformation. For ea
h � in NS , the universalproperty of the deformation ring RS provides an O-algebra homomorphism RS !Q` so that �� is the extension of s
alars of the universal deformation. The mapRS ! Y�2NSQ`has image TS sin
e RS is topologi
ally generated by tra
es. We let �S denote theresulting surje
tive O-algebra homomorphismRS ! TS :Note that whenever S � S0, we have a natural 
ommutative diagram of O-algebrahomomorphisms ~TS0 ! TS0  RS0# # #~TS ! TS  RS ;with all maps surje
tive ex
ept ~TS0 ! ~TS whi
h is inje
tive.20



5.3. De�nition of He
ke modules. It is 
onvenient to �x an auxiliary primer 62 S(�) su
h that no lift of � 
an be rami�ed at r (see Lemma 2 of [15℄). Thuswe have NS = NS[frg, so TS[frg �= TS . We also assume the �eld K is suÆ
ientlylarge that it 
ontains all quadrati
 extensions of some �eld K0 su
h that� � is de�ned over k0;� �;;p 
Q Q` is de�ned over K0 for ea
h p 2 T (�) [ f`g.For ea
h p 2 T (�)[f`g, we �x a latti
eMp as in Lemma 3.3.1 for �;;p and a pairing( ; )p indu
ing an isomorphismMp ! HomO(Mp;O(�p))of OU;;p-modules, where �p =  p Æ det,  p being the 
entral 
hara
ter of �;;p.Letting MS denote the model 
p62SMp over O for �S , we have a pairing ( ; )S onMS whi
h indu
es an isomorphismMS ! HomO(MS ;O(�S))of OUS-modules, where �S =  S Æ det, where  S = 
p2S p.If U is an open 
ompa
t subgroup of GL2(A1) then we will let YU denote themodular 
urveGL2(Q)n((GL2(A1)=U)� (C�R)) �= GL2(Q)nGL2(A)=UU1;where U1 = O2(R)R�. We let XU denote its 
ompa
ti�
ation obtained by adjoin-ing 
usps. Re
all that XU is not ne
essarily 
onne
ted (its 
onne
ted 
omponentsare in bije
tion with Ẑ�= detU), and that XU has a model over Q. Our 
onventionfor the de�nition of this model is that YU (Q) is in 
anoni
al bije
tion with theset of equivalen
e 
lasses of pairs (E;�), where E is an ellipti
 
urve over Q and� : A �A ��! (proj limnE[n℄) 
Ẑ A. We 
onsider (E1; �1) � (E2; �2) if there isan isogeny � : E1 ! E2 su
h that � Æ �1 = �2 Æ u for some u 2 U . The pointGL2(Q) � (xU; �) 
orresponds to the ellipti
 
urve C=�� where �� = Z� � Z and� is de�ned by 
omposing x with the isomorphism obtained using (�; 1) as a basisover Ẑ for proj limnE[n℄.We obtain an admissible GL2(A1)-moduleH = inj limU H1(XU ;Q)where the limit is with respe
t to the natural maps on 
ohomology indu
ed byXV ! XU whenever V � U . Then H de
omposes as ��(B+� � B�� ) where ea
hB�� is a model for �. We re
over ea
h H1(XU ;Q) from H as the subspa
e HU ofU -invariants.We let XS = XVS and 
onsider H1(XS ;O). We have natural 
ompatible a
tionson it of ~T0S , and GS = US=VS . If r is in S, then we de�ne LS to be the TS-moduleHomO[GS ℄(MS ; H1(XS;O))[I 0S ℄:(If I is an ideal in a ring R and M is an R-module, we write M [I℄ for the largestsubmodule of M whose annihilator 
ontains I.) If r is not in S, then we setLS = LS[frg.Lemma 5.3.1. The (TS 
O K)-module LS 
O K is free of rank two.21



Proof. We may assume r is in S and repla
e K by Q`. Writing H1(XS;Q`) as(H
QQ`)VS and de
omposing H, we obtain an isomorphism of TS
OQ`-modulesLS 
O Q` �=M(B0� 
Q Q`)[IS ℄where B0� is the subspa
e of HomUS (�S ; B+� � B�� ) killed by Up for all p in S.By Lemma 5.1.1, this spa
e is two-dimensional whenever � is in NS . The lemmafollows, sin
e for p not in S [ S(�), the operators Tp and Sp a
t on B0� as tp andsp, respe
tively. �There is also a natural a
tion of GQ on LS 
ompatible with that of TS . This 
anbe de�ned, for example, via the isomorphism of HomZ`(H1(XS;Z`);Z`) with the `-adi
 Tate module of the Ja
obian ofXS . Ea
h � 2 NS gives rise to a homomorphism��;S : TS ! Q` sending Tp 7! tp and Sp 7! sp. The resulting representation of GQon LS 
TS Q`(1) is isomorphi
 to ��, and we therefore have the following lemma:Lemma 5.3.2. There is an isomorphismLS 
O Q`(1) �= M�2NS V�of representations of GQ over TS 
O Q` �=L�2NS Q`.5.4. The main results. Re
all that we are assuming � is as in x1.3 and that it ismodular. We de�ned NS and TS in x5.1, �S in x5.2 and LS in x5.3. We have notyet shown that these obje
ts are non-trivial. We shall dedu
e the following lemmafrom related results in the literature in se
tion 6.Proposition 5.4.1. With the above notation and hypotheses, NS 6= ;.Our main result is the following theorem; we give the proof in the rest of thisse
tion, subje
t to some propositions whi
h are proved in x6.Theorem 5.4.2. With the above hypotheses and notation, the following hold:(1) �S is an isomorphism;(2) TS is a 
omplete interse
tion;(3) LS is free over TS.5.5. Redu
tion to the 
ase S = ;. Following Wiles [46℄, we shall dedu
e theresult for arbitrary S from the result for S = ;.For ea
h p 62 S [ f`g, we de�ne an element �p 2 TS as follows:� If ep = 2, then �p = (p� 1)(T 2p � Sp(1 + p)2).� If ep = 1 and det � is unrami�ed at p, then �p = p2 � 1.� If ep = 1 and det � is rami�ed at p, then �p = p� 1.� If ep = 0 and p 2 T (�) then �p = p+ 1.� If ep = 0 and p 62 T (�) then �p = 1.If � is a �nite set of primes disjoint from S [ f`g, we let �� =Qp2� �p.The key proposition we prove in x6 for the indu
tion step is the following:Proposition 5.5.1. (1) There exists a pairing h ; iS on LS whi
h indu
es anisomorphism LS ! HomO(LS ;O)of TS-modules. 22



(2) If S � S0 and ` 62 S0, then there exists a TS0-module homomorphismiS0S : LS ! LS0su
h that iS;S0 
O k is inje
tive andjSS0iS0S LS = �S0�SLSwhere jSS0 is the adjoint of of iS0S with respe
t to the pairings h ; iS andh ; iS0 .Fix for the moment an element � of N;. Note that if part 1 or 2 of Theorem 5.4.2holds for some K su
h that TS is de�ned, then it holds for all su
h K, and similarlyfor part 3 provided LS is de�ned. We may therefore assume that K 
ontains theeigenvalues tp and sp for all p 62 S(�). Let pS denote the kernel of ��;S and JS theannihilator of pS in TS . De�neCS;� = LS=(LS [pS ℄ + LS [JS ℄):This is isomorphi
 to the 
okernel of the mapL[pS ℄! HomO(L[pS ℄;O)de�ned by the restri
tion of h ; iS . Thus CS;� has �nite length over O, and byProposition 5.5.1 we havelengthO CS[fpg;� = lengthO CS;� + 2 � lengthO(O=��;S(�p)):Sin
e ��;S(�p) is a unit times the determinant of Frobp � 1 on ad0 V�(1)Ip , we
an 
ombine this with Theorem 2.4 of [13℄ and Corollary 1.4.3 to 
on
lude thatTheorem 5.4.2 for all S follows from the spe
ial 
ase S = ;.5.6. The 
ase of S = ;. We now turn to the proof of Theorem 5.4.2 in the 
aseS = ;. We will use the improvement on the method of Taylor and Wiles ([45℄)found by Diamond ([13℄) and Fujiwara ([23℄). We keep the above hypotheses andnotation, but only 
onsider �nite sets S of primes with the following properties. Ifp 2 S then� p 62 S(�),� p � 1 mod `,� �(Frobp) has distin
t eigenvalues �1;p and �2;p.One 
he
ks as in Lemma 2.44 of [9℄, that for ea
h p 2 S, the restri
tion to Gp ofthe universal deformation �S is equivalent to �S1;p � �S2;p for some 
hara
ters�Si;p : Gp ! R�S ;where the redu
tion of �Si;p mod the maximal ideal of RS is unrami�ed and sendsFrobp to �i;p for i = 1; 2. The restri
tions �Si;pjIp are of the form �Si;p Æ !p;1 where!p;1 denotes the mod p 
y
lotomi
 
hara
ter Ip ! (Z=pZ)�. We let �S =Qp2S �pwhere �p denotes the `-Sylow subgroup of (Z=pZ)�. We regard RS as an O[�S ℄-algebra by mapping �S1;p : �p ! R�Sfor ea
h p 2 S. This makes LS an O[�S ℄-module. We let aS denote the augmen-tation ideal of O[�S ℄. The last key result whose proof we postpone until x6 is thefollowing proposition: 23



Proposition 5.6.1. The O[�S ℄-module LS is free. The map �;;S : LS ! L;indu
es an isomorphism LS=aSLS ��! L;:We also need the following lemma, whi
h is proved exa
tly as Theorem 2.49 of[9℄ using Lemma 1.4.1.Lemma 5.6.2. There exists an integer r � 0 su
h that for any integer n > 0, thereexists a �nite set of primes Sn disjoint from S(�) su
h that(1) if p 2 Sn then p � 1 mod `n;(2) if p 2 Sn then �(Frobp) has distin
t eigenvalues;(3) #Sn = r;(4) RSn 
an be topologi
ally generated by r elements as an O-algebra.We 
an then apply Theorem 2.1 of [13℄ to 
omplete the proof of Theorem 5.4.2in the 
ase S = ;. (See the proof of Theorem 3.1 of [13℄.)6. Cohomology of modular 
urvesIn this se
tion we will give the proofs of Propositions 5.4.1, 5.5.1 and 5.6.1.We maintain the notation of the pre
eding se
tion. In parti
ular, we 
onsider arepresentation � : GQ ! GL2(k) whi
h is irredu
ible and modular. Re
all that ~TSis the polynomial algebra generated by the operators Tp and Sp for p not in S[S(�).We de�ne mS to be the kernel of the map ~TS ! k de�ned by Tp 7! tr(�(Frobp)),Sp 7! p�1 det(�(Frobp)). We 
onsider also the polynomial algebra ~T0S over ~TSgenerated by the operators Up for p 2 S, and the maximal ideal m0S generated bymS and the operators Up for p 2 S. Re
all that sin
e � is irredu
ible, the maximalideals mS and m0S are not Eisenstein. (We say a maximal ideal m of ~TS or ~T0S isEisenstein if there exists an integer N > 0 su
h that Tp� 2 2 m and Sp� 1 2 m forall p 2 S [ S(�) with p � 1 mod N ; see [14, Proposition 2℄, for example.)For n � 0, we let Ln denote the SL2(Z)-module Symmn Z2. Re
all that if�1(N) � � � �0(N) for some N � 1 and S[S(�) 
ontains the set of prime divisorsof N , then there is a natural a
tion of ~TS on H1(�; Ln
M) for any O-module M .(See for example, [43, Chapter 8℄.)6.1. Preliminary Lemmas. The following is a 
onsequen
e of the results of Ribetand others (see [11, Corollary 1.2℄).Theorem 6.1.1. Suppose that 0 � n � `� 1 and �jI` is of the form� � !n+1 �0 1 � with � peu rami��e if n = 0, or� � !n+12 00 !(n+1)`2 �.Let N be any integer divisible by the 
ondu
tor of �, let � denote the group ofmatri
es � a b
 d � 2 �0(N) su
h that d mod N has `-power order and let S be aset of primes su
h that S [ S(�) 
ontains the set of prime divisors of N . Then mS
ontains the annihilator of H1(�; Ln
K), hen
e is in the support of H1(�; Ln
O)and H1(�; Ln 
 k). 24



Suppose that V is an open 
ompa
t subgroup of GL2(A1). We assume thatV is of the form Qp Vp with Vp � GL2(Zp) and that Vr � U1(r2) for some �xedprime r as in x5.3. Suppose that � is a �nite set of primes, and that for ea
h p in� we are given a �nitely generated O-module Mp with a left a
tion of Vp whi
h is
ontinuous for the dis
rete topology on Vp. We 
an then asso
iate to the V -moduleM = 
pMp a lo
ally 
onstant sheafFM = GL2(Q)n(GL2(A)�Mop)=V U1on YV . If r is in S, then we let YS = YUS and FS = F �MS , where �MS denotes theUS-module HomO(MS ;O). (See x5.1 and x5.3 for the de�nitions of US and MS .) Ifr is not in S, then we let YS = YS[frg and FS = FS[frg.If for all p 62 S [ S(�) we have Vp = GL2(Zp) and Vp a
ts trivially on M , thenthere is a natural a
tion of ~TS on the 
ohomology groupsH1
 (YV ;FM) and H1(YV ;FM):Standard arguments yield the following useful te
hni
al result.Lemma 6.1.2. Suppose V , M and S are as above and let m be a non-Eisensteinmaximal ideal of ~TS with �nite residue �eld.(1) The map H1
 (YV ;FM)m ! H1(YV ;FM)m is an isomorphism.(2) If M is free over O, then the natural mapH1(YV ;FM)m 
O k ! H1(YV ;FM
Ok)mis an isomorphism.(3) If 0 ! M 0 ! M ! M 00 ! 0 is an exa
t sequen
e of O[V ℄-modules, thenthe sequen
e0! H1(YV ;FM 0)m ! H1(YV ;FM)m ! H1(YV ;FM 00)m ! 0is exa
t.(4) If V 0 � V and satis�es the hypotheses above for S, thenH1(YV ;FM)m ! H1(YV 0 ;FM)Vmis an isomorphism.(5) If V a
ts trivially on M , thenH1(XV ;O)m 
OM ! H1(YV ;FM)mis an isomorphism.If in addition we have U1(pn) � Vp � U0(pn) for some n > 0 and Vp a
tstrivially on M for all p 2 S, then this a
tion extends naturally to an a
tion of ~T0S .Furthermore, the lemma holds for m = m0S . In parti
ular, ~T0S[frg a
ts onH1
 (YS ;FS) and H1(YS ;FS)and the lemma yields natural isomorphismsH1
 (YS ;FS)m ! H1(YS ;FS)m ! HomGS (MS ; H1(XS;O))mwhere m = m0S[frg. One 
an also 
he
k that the natural mapLS = HomGS (MS ; H1(XS;O))[I 0S[frg℄! HomGS (MS ; H1(XS;O))mis an isomorphism, so we 
on
lude: 25



Lemma 6.1.3. There are natural isomorphisms of ~T0S[frg-modulesH1
 (YS ;FS)m �= H1(YS ;FS)m �= LSidentifying TS = TS[frg with the lo
alization at m of the image of ~T0S[frg inEndOH1(YS ;FS) (or EndOH1
 (YS ;FS) ).6.2. Proof of Proposition 5.4.1. Suppose for the moment that 0 � n � ` � 1and �jI` is of the form� � !n+1 �0 1 � with � peu rami��e if n = 0, or� � !n+12 00 !(n+1)`2 �.Setting S = T (�) [ frg, we �nd that the group � = SL2(Z) \ US satis�es thehypotheses of Theorem 6.1.1. FurthermoreH1(YS ;FM) �= H1(�; Ln 
 k)as a ~T0S-module where M is the module for US;` = GL2(Z`) de�ned by the a
tionof GL2(F`) on Hom(Ln; k). Therefore mS is in the support of H1(YS ;FM). Onexamining the list of possible � whi
h 
an be 
onsidered strongly a

eptable for �(see the de�nition after Conje
ture 1.2.3), we see from Lemma 3.1.1 that M is a
onstituent of HomO(MS ; k). It follows from Lemma 6.1.2 that mS is in the supportof H1(YS ;FS), so LS is non-zero and NS is non-empty. Moreover by twisting by apower of the Tei
hm�uller 
hara
ter, we see that this holds without the assumptionon �jI` imposed in Theorem 6.1.1.Now 
hoose an automorphi
 representation � in NS . Then for ea
h p 2 T (�),��jIp is ne
essarily of the form�0p Æ �p;2 � �0p Æ Frobp Æ�p;2for some 
hara
ter �0p of W (Fp2) su
h that �0p = �p. Suppose now that O issuÆ
iently large that ea
h representation �(�0p) has a model M 0p over O, and setM 0frg =M` 
O Op2T (�)M 0p:It follows from Lemma 6.1.2 and the last part of Lemma 4.2.4 thatHomO[Gfrg℄(M 0frg; H1(Xfrg;O))mS �= H1(Y;;FM 0frg)mS 6= 0:Finally, sin
e M 0frg 
O k �= Mfrg 
 k by Lemma 3.2.1, we 
on
lude from Lemma6.1.2 that mS is in the support ofH1(Yfrg;Ffrg) = H1(Y;;F;);hen
e N; is not empty.6.3. Proof of Proposition 5.5.1. We �rst de�ne the pairings h ; iS on LS indu
-ing isomorphisms LS ! HomO(LS ;O)of TS-modules. We may assume r 2 S. We let WS denote the involution of YSde�ned by g 7! (det g)�1gwS , where wS was de�ned in x5.1. There is a naturalisomorphism of sheavesW �SFS ! FS(�S) = FS 
O F�SÆdet;26



where �S = �S jA�\US . (Re
all that FS is asso
iated to �MS = HomO(MS;O).) TheUS-equivariant perfe
t pairing 
hosen in x5.3 gives rise to one on �MS whi
h de�nesan isomorphism of sheaves FS(�S)! FMS . We thus obtain an isomorphismH1
 (YS ;FS) ��! H1
 (YS ;W �SFS) ��! H1
 (YS ;FMS):The 
up produ
t gives rise to a pairingH1
 (YS ;FMS)�H1(YS ;FS)! H2
 (XS;O) �= O;whi
h de�nes an isomorphismH1
 (YS ;FMS)! HomO(H1(YS ;FS);O):We thus obtain an isomorphismH1
 (YS ;FS)! HomO(H1(YS ;FS);O);whi
h one 
an 
he
k is ~T0S-linear. Lo
alizing at m and applying Lemma 6.1.3, weobtain the desired isomorphismLS ! HomO(LS ;O)of ~TS-modules, arising from an alternating pairing h ; iS on LS .Now we suppose p is a prime not in S [ f`g and we de�ne a homomorphismiS0S : LS ! LS0of TS0-modules where S0 = S [ fpg. We use the identity map if p = r, and thenwe 
an 
an assume r 2 S. We let �pn = � p�n 00 1 �p. Let ~T(p)S denote thepolynomial algebra over O generated by the variables Tq and Sq for q 62 S0 [ S(�)and Uq for q 2 S. We regard ~T(p)S as a subalgebra of both ~T0S and ~T0S0 , and letm(p)S = m0S \ ~T(p)S = m0S0 \ ~T(p)S .If 0 � n � ep, then g 7! g�pn de�nes a map YS0 ! YS and ��pnFS is 
anoni
allyisomorphi
 to FS0. We also use �pn to denote the indu
ed ~T(p)S -linear map on
ohomology H1(YS ;FS)! H1(YS0 ;FS0):Now 
onsider the mapiS0S : H1(YS ;FS)m(p)S ! H1(YS0 ;FS0)m(p)Sde�ned by� x 7! p�1x� �pTpx+ �p2Spx, if ep = 2;� x 7! p�1x� �pUpx, if ep = 1;� x 7! �1x, if ep = 0.Using Lemma 6.1.2 we 
an identify H1(YS ;FS)m(p)S with the TS0-module LS . Onethen 
he
ks that the image of iS0S is in H1(YS0 ;FS0)m(p)S [Up℄; whi
h 
an be identi�edwith the TS0-module LS0 . We thus obtain the desired map iS0S : LS ! LS0 .These are 
ompatible for varying p in the sense that iS0S[fpg Æ iS[fpgS = iS0S[fqg ÆiS[fqgS if S0 = S [ fp; qg for distin
t primes p; q 62 S [ f`g. We 
an thereforeindu
tively de�ne iS0S : LS ! LS0 if S � S0 and ` 62 S0.27



To 
omplete the proof of the proposition, we 
an assume S0 = S [ fpg. First
onsider the 
al
ulation of jSS0iS0S . The assertion holds for p = r sin
e �r is a unitin TS . We 
an then assume r 2 S.In the 
ase ep = 2, one �nds that the adjoint of �pn is the tra
e mapH1
 (YS0 ;FS0)! H1
 (YS ;FS)with respe
t to �p2�n , whi
h we denote �tp2�n . After lo
alizing at m(p)S , we 
an
ompute the 
omposites �tpm�pn onH1(XS;O), for example. Finally, we are redu
edto the 
al
ulation ofd(p;�Tp; Sp)0� T 2p � (p+ 1)Sp pTp p(p+ 1)pTp p(p+ 1) pS�1p Tpp(p+ 1) pS�1p Tp S�2p (T 2p � (p+ 1)Sp)
1A0� p�TpSp

1A
where d is the prime-to-` part of �(p2). The result is �d�p.The 
ase of ep = 1 is similar, ex
ept that one gets �pUp(p2 � U�pUp) whereU�p = VS;p � 1 00 p �p VS;p. One then uses that

U�pUp = � 1; if �p is unrami�ed spe
ial;p; if �p is prin
ipal series with ep = 1.Note that this also shows that Up is an automorphism of LS .In the 
ase ep = 0, one gets jSS0iS0S = p+1 if p 2 T (�) and jSS0iS0S = 1 if p =2 T (�).We now turn to the proof that LS 
O k ! LS0 
O k is inje
tive. Again we mayassume r 2 S and S0 = S [ fpg for some p 62 S [ f`g.First we treat the 
ase ep = 0. There is nothing to prove if p 62 T (�), and if p isin T (�) then the assertion is immediate from Lemma 6.1.2.The remaining 
ases of Proposition 5.5.1 follow from Lemma 6.1.2 and the lemmabelow, the �rst part of whi
h is essentially due to Ihara [27℄ and the se
ond toWiles [46℄. For the following lemma, we let V1(N) = Qq U1(qvq(N)), V0(N) =Qq U0(qvq(N)) and V (N) =Qq U(qvq(N)). We also let V1;0(N;N 0) denote V1(N) \V0(N 0) and V1(N;N 0) denote V1(N) \ V (N 0). We also use �p to denote the mapH1(XV ;FM)! H1(XV 0 ;FM) indu
ed on 
ohomology (by the matrix �p) whenever�pV 0��1p � V and Vp a
ts trivially on M .Lemma 6.3.1. Suppose that D and N are relatively prime positive integers withN > 3 and p not dividing ND`. Let m = m� where � is a �nite set of primes 
on-taining those dividing NDp`. Suppose that M is a k[GL2(Z=DZ)℄-module, �nite-dimensional over k.(1) The map H1(XV1(N);FM)2m 1��p�! H1(XV1(Np);FM)mis inje
tive.(2) If s � 1 then0! H1(XV1(Nps�1);FM)m (��p;1)�! H1(XV1(Nps);FM)2m 1��p�! H1(XV1(Nps+1);FM)mis exa
t. 28



Proof. We �rst explain the proof of the se
ond part. Let V = ��1p V1(Nps)�p andL = H1(XV1(N;ps);FM)m. Then using Lemma 6.1.2, we see that we are required to
he
k the exa
tness of(0) �! LV1(Nps�1) �! LV � LV1(Nps) �! LV \V1(Nps);where the nontrivial maps are given by x 7! (�x; x) and (x; y) 7! x + y. Thusit suÆ
es to 
he
k that V1(Nps�1) is generated by V1(Nps) and V , whi
h is astraightforward 
al
ulation.We now turn to the proof of the �rst part of the lemma. By Lemma 6.1.2, itsuÆ
es to show that if (x; y) is in the kernel ofH1(XV1(N);FM)2 1��p�! H1(XV1;0(N;p);FM)then x restri
ts to zero in H1(XV ;FM) for some open subgroup V � V1(N). How-ever we 
an rewrite this map asH1(�1(N);M)2 �! H1(�1(N) \ �0(p);M)with the map indu
ed by 1 � � where � = � p 00 1 � 2 GL2(Z[1=p℄). Thus itsuÆ
es to show that if (x; y) is in the kernel, then there is a 
ongruen
e subgroup� � �1(N) with Resx = 0 in H1(�;M). Let � � SL2(Z[1=p℄) denote the subgroupof elements 
ongruent to � 1 �0 1 � modulo N . Then � is the amalgam of �1(N)and ��1�1(N)� over �1(N)\ �0(p) (see Serre [39, II.1.4℄). Thus we have an exa
tsequen
eH1(�;M)! H1(�1(N);M)�H1(��1�1(N)�;M)! H1(�1(N) \ �0(p);M):(See [39, II.2.8℄.) Thus it suÆ
es to show that if x 2 H1(�; �) there is a 
ongruen
esubgroup �0 � � with 0 = Resx 2 H1(�0;M). We may 
hoose a subgroup �0 of�nite index in � su
h that Resx = 0, and sin
e � has the 
ongruen
e subgroupproperty [35℄, �0 will be a 
ongruen
e subgroup. �6.4. Proof of Proposition 5.6.1. For the rest of the se
tion, S will denote a �xedset of primes as in x5.6. We let s denote the 
ardinality of S. Re
all that r is a�xed prime su
h that no lift of � 
an be rami�ed at r. It is 
onvenient to 
hooseanother su
h prime r0 and a 
hara
ter  : (Z=r0Z)� ! O� of order greater than 2.For ea
h prime p, we de�ne open subgroups V1;p � V0;p � GL2(Zp) as follows:� V1;p = V0;p = Ufrg;p if p 62 S [ fr0g, where Ufr;r0g;p was de�ned in x5.1;� V1;p = U1(p) and V0;p = U`(p) if p 2 S;� V1;p = V0;p = U0(r02) if p = r0.We then set V1 = Qp V1;p and V0 = Qp V0;p, so V1 � V0 � Uf;g. We identifyU 0S=U 00;S with �S =Qp2S �p, where �p denotes the `-Sylow subgroup of (Z=pZ)�.Re
all that we de�ned a representation �; of U; in x5.1. Now we let � = �; 
  �2r0where  r0 is the 
hara
ter of U0(r02) ! (Z=r0Z)� gotten by 
omposing with  . If� is a Diri
hlet 
hara
ter and � is an automorphi
 representation, we write simply� � � for � 
 (�A Æ det) where �A is the 
hara
ter of A�=Q�R� 
orresponding to�. The analogue of Lemma 5.1.1 for V1 and V0 is the following:29



Lemma 6.4.1. Suppose that ��� �= Q` 
O0 � for some deformation � of � to thering of integers O0 of a �nite extension K 0 of K.(1) The spa
e HomV0(�; �1) is non-zero if and only if � � 2 N;. In that 
asethe dimension is 3 � 2s.(2) The spa
e HomV1(�; �1) is non-zero if and only if the following hold:� � �  � is in NS for some 
hara
ter � unrami�ed outside S;� 
(�p) � 1 for all p 2 S.In that 
ase the 
hara
ter � is unique, and the spa
e has dimension 3 �2s�dwhere d is the number of primes dividing the 
ondu
tor of �.Proof. For part 1, we note that if p 2 S, 
(�p) � 1 and �p has unrami�ed 
entral
hara
ter, then ��� �1 is unrami�ed at p (using the above des
ription of the uni-versal deformation, or the analysis of lo
al lifts in [15℄). So if HomV0(�; �1) is notzero, then 
(�p) = 0 for ea
h p 2 S and it follows that HomUfr;r0g(�fr;r0g; (� �  )1)is not zero. Therefore � � 2 Nfr;r0g = N;. To 
ompute the dimension if � � 2 N;,one uses the lemmas in x4 to 
he
k that
dimHomV0;p(�p; �p) = 8<: 3; if p = r2; if p 2 S1; otherwise.For part 2, we note that if p 2 S, then the 
entral 
hara
ter ��p of �p has `-powerorder. We may therefore 
hoose a �nite order 
hara
ter � of A� so that �2p = ��1�p .If HomV1(�; �1) is not zero, then neither is HomUS[fr;r0g(�S[fr;r0g; (� �  �)1), so� �  � is in NS[fr;r0g = NS . The uniqueness of � is 
lear and the dimension
al
ulation is similar to the one above. �Choose a model M for � over O. For i = 0; 1, we let Li = H1(YVi ;F �M)m where�M = HomO(M;O) and m is the kernel of the map~TS[fr;r0g ! kTp 7!  (p)�1 tr(�(Frobp))Sp 7!  (p)�2p�1 det(�(Frobp)):Lemma 6.1.2 lets us identify Li with HomO[Vi℄(M;H1(XV ;O))m for V � V1\ker�.Lemma 6.4.2. The O-rank of L0 is 3 � 2s#N;. The O-rank of L1 is 3 � 2s#NS.Proof. The �rst assertion follows from Lemma 6.4.1 and the argument of 5.3.1.Simliarly one �nds rankO L1 = X�02N0S dim(HomV1(�; �01));

where N0S is the set of automorphi
 representations as in part 2 of Lemma 6.4.1.Note that if � 2 NS , then for ea
h p in S, ��jIp is equivalent to a representation ofthe form �p � ��1p where � has `-power order. It follows that there are 2d twists of� in N0S , where d is the number of primes in S su
h that �p is rami�ed. �30



There is also a natural a
tion �S on L1 
ompatible with that of TS[fr;r0g; infa
t, the a
tion �p fa
tors through the homomorphismYp2S(Z=pZ)� ! T�S[fr;r0gsending q�1 to the image of Sq for ea
h prime q 62 S su
h that q � 1 mod N(�)r2`.The key lemma for the proof of Proposition 5.6.1 is the following:Lemma 6.4.3. The O[�S ℄-module L1 is free of rank equal to the O-rank of L0.Proof. Sin
e L0 is isomorphi
 to L�S1 , it suÆ
es to prove L1 is free over O[�S ℄.Sin
e L1 is an O[�S ℄-module summand of H1(YV1 ;F �M), it suÆ
es to prove thatH1(YV1 ;F �M) is free. Letting �i = GL2(Q) \ Vi, we haveH1(YV1 ;F �M) �= H1(�1; �M)as a module for �S �= �0=�1. Sin
e �1 and �2 are fundamental groups of 
onne
tednon-
ompa
t Riemann surfa
es, they are free groups, so Hi(�1; A) = Hi(�1; A) = 0for i > 1 and any �0-module A. Note also that this holds for i = 0 and A = �M
O ksin
e  2 is non-trivial. Therefore H1(�1; �M) is torsion-free over O, and it suÆ
esto prove that Hi(�S ; H1(�1; �M)) = 0 for i > 0 (see [2, VI.8.10℄, for example), andthis is immediate from the Ho
hs
hild-Serre spe
tral sequen
e. �We now 
omplete the proof of Proposition 5.6.1. First note that the image of aSin R;;DV;O is trivial, so we have a surje
tive map TS=aSTS ! T;. By Corollary 5.1.2,this map is an isomorphism after tensoring over O with Q`, hen
e after tensoringwith K. It follows that the rank of TS [aS ℄ is the same as that of T;. SettingbS = AnnO[�S ℄ aS , we also see that the rank of TS [bS ℄ is the same as that of thekernel of TS ! T;. Sin
e iS; (L;) � LS [aS ℄and iS; is inje
tive with torsion-free 
okernel (by Lemma 5.5.1), we 
on
lude thatequality holds. Similarly we �nd that LS [bS ℄ = ker j;S . Furthermore, using thesurje
tivity of jS; and the formula for j;SiS; , we 
on
lude thatLS=(LS [bS ℄ + LS [aS ℄) ��! L;=#�S(L;):The �rst assertion of Proposition 5.6.1 now follows from Theorem 3 of [13℄, and these
ond follows from surje
tivity and 
omparison of ranks.7. Appli
ations7.1. Basi
 Results. Combining Theorem 5.4.2 with [12, Thm 5.3℄, we obtain thefollowing result.Theorem 7.1.1. Let K denote a �nite extension of Q` and k its residue �eld.Suppose that � : GQ ! GL2(K) is a 
ontinuous odd representation rami�ed at only�nitely many primes. Assume its redu
tion, � : GQ ! GL2(k) is irredu
ible andmodular. Suppose also that ` 6= 2, that �jQ(p(�1)(`�1)=2`) is absolutely irredu
ible,and that at least one of the following holds:� the 
entralizer of �(G`) 
onsists only of s
alars, � is potentially Barsotti-Tate and the type of WD(�) is strongly a

eptable for �jG` ,31



� there are 
hara
ters �1 and �2 of G` su
h that �1jI` and �2jI` have �niteorder, �1� 6= �2 and �jG` ' ��1� �0 �2� :Then � is modular.Using the theorem, we will obtain the following strengthening of [12, Thm 5.4℄:Theorem 7.1.2. Let E=Q be an ellipti
 
urve whose 
ondu
tor is not divisible by27. Then E is modular.Let us �rst re
all some basi
 fa
ts about an ellipti
 
urve E over a �nite extensionF of Q`. If j(E) 62 OF , then E a
quires multipli
ative redu
tion over a quadrati
extension of F . If j(E) 2 OF , then E a
quires good redu
tion over a �nite Galoisextension F 0=F with rami�
ation degree dividing 6 if ` � 5, dividing 12 if ` = 3,and dividing 24 if ` = 2. In the 
ase of potentially good redu
tion, the j-invariantof the redu
tion of the N�eron model of E over OF 0 is the redu
tion of j(E). Inparti
ular, the notions of potentially good ordinary and potentially supersingularredu
tion are well-de�ned and 
an be dete
ted from j(E) 2 F .Let �E;` denote the representation of GF on the Tate module of E, and assumethat E a
quires good redu
tion over the �nite extension F 0=F . Then �E;` 
Z` Q`is potentially Barsotti-Tate; in fa
t, this representation be
omes Barsotti-Tate overF 0 and the representations WD(�E;`) and �E;`0 jWF for `0 6= ` are de�ned overQ (viewed as a sub�eld of Q`, Q`0) and are semisimple and isomorphi
 over this
ommon sub�eld of de�nition (for a proof, see Proposition B.4.2).We need the following lemma:Lemma 7.1.3. Let ` be a prime and E an ellipti
 
urve over Q`. Let � = �E;`
Z`Q`. (1) If E has potentially multipli
ative redu
tion, then� � ��� �0 ��for some quadrati
 
hara
ter �.(2) If E has potentially good ordinary redu
tion, then� ' ��~!j� �0 ~!�j��1�for some 
hara
ter � su
h that �jI` is trivial if ` � 3, and quadrati
 if` = 2.(3) If E has potentially supersingular redu
tion, then � is irredu
ible.Proof. First, we 
onsider the 
ase in whi
h E is potentially ordinary. Let F be aGalois extension ofQ` over whi
h E a
quires good ordinary redu
tion. The `-powertorsion geometri
 points of the 
losed �ber of the N�eron model of E=F give rise toan unrami�ed quotient of �jF , so �jIF is of the form� � �0 1 � :32



Let v generate the line on whi
h IF a
ts via �. Sin
e IF is normal in G`, we see thatIF a
ts via � on �(g)v for any g 2 G`, so � is redu
ible. Moreover the representationhas the form � �1� �0 �2 �with �1jIF = �2jIF trivial. Sin
e �1jI` and �2jI` have order dividing the number ofroots of unity in Z�̀, they are of the required form.The 
ase of potentially multipli
ative redu
tion is similar; split multipli
ativeredu
tion is attained over a quadrati
 extension and the Tate model yields antrivial quotient in the split 
ase.There remains the 
ase in whi
h E is potentially supersingular. We will provethat if E has potentially good redu
tion and � is redu
ible, then E is potentiallyordinary. Let F be a �nite extension of Q` su
h that E=F has good redu
tion.Sin
e � is redu
ible, we must have�E;`jGF � ��1 �0 �2� :The representation �E;` arises from the Tate module of an `-divisible group � overOF , so the same is true of �1 and �2 by [33, Prop 2.3.1℄. Clearly, the `-divisiblegroup over OF 
orresponding to ea
h �i has dimension 0 or 1, so it follows from [33,Thm 4.2.1℄ that ea
h �ijIF is either trivial or �jIF . Sin
e �1�2 = �, it follows thatone of the 
hara
ters is unrami�ed. By Tate's full faithfulness theorem [44, Thm 4℄,� has non-trivial 
onne
ted and �etale parts, so E=F has ordinary redu
tion. �7.2. Modularity Results. We now prove the following weaker version of Theorem7.1.2:Theorem 7.2.1. Let E=Q be an ellipti
 
urve su
h that �E;3jQ(p�3) is absolutelyirredu
ible. If the 
ondu
tor of E is not divisible by 27, then E is modular.Proof. Re
all that the modularity of � = �E;3 follows from results of Langlands andTunnell. If E has a quadrati
 twist with semistable redu
tion over Q3, then E ismodular by Theorem 5.4 of [12℄, so suppose this is not the 
ase. Sin
e we assumethe 
ondu
tor of E is not divisible by 27 (so the `wild' part of the 
ondu
tor at 3is trivial), Lemma 7.1.3 shows that E a
quires good supersingular redu
tion overany extension L of Q3 with e(L) = 4, but not over any extension with e(L) = 2. Itfollows from xB.2 and Proposition B.4.2 that � =WD(�)jI3 has the form ~!22 � ~!62 ,where � = �E;3.We now 
laim that the 
entralizer of �jG3 
onsists only of s
alars and thatWD(�)jI3 is strongly a

eptable for �. Let F be a rami�ed quadrati
 extensionof Q3 and 
onsider the twist E0 of E=F by any rami�ed quadrati
 
hara
ter  ofGF . Considering �E0;`0 for any `0 6= 3, we see that E0 has good redu
tion, whi
h issupersingular sin
e jE0 = jE . Therefore �jGF 
 arises from a lo
al-lo
al �nite 
atgroup s
heme over OF and so satis�es the hypotheses in x2.3. The 
laim 
on
erningthe 
entralizer follows, and � is a

eptable by Theorem 2.3.2. To 
on
lude stronga

eptability, we need to know that if �jG3 ' E[3℄(Q3) is redu
ible, then the split-ting �eld is peu rami��e. One 
an 
ompute this splitting �eld to be Q3(p�3;�1=3),whi
h is peu rami��e be
ause 3jv3(�), or one 
an see the peu rami��e property byusing [6, Thm 4.2.2℄. �33



We shall use Wiles' argument swit
hing to ` = 5, where we have:Theorem 7.2.2. Let E=Q be an ellipti
 
urve su
h that �E;5jQ(p5) is absolutelyirredu
ible. If �E;5 is modular, then E is modular.Proof. Theorem 5.3 of [12℄ applies if E has a twist with semistable redu
tion or,in view of Lemma 7.1.3, potentially ordinary redu
tion at 5. We will show thatTheorem 7.1.1 applies even if E has potentially supersingular redu
tion (but hasno twist with good redu
tion). Making a quadrati
 twist if ne
essary, we 
an assumeE a
quires good redu
tion over a �eld F with e(F ) = 3. Note then (by xB.2 andProposition B.4.2) that � =WD(�) must be of the form ~!82 � ~!162 , where � = �E;5.Applying the results of x2.2, we 
on
lude that the 
entralizer of � 
onsists only ofs
alars and � is a

eptable for �. Moreover, the list of possibilities in x2.2 showsthat �jI5 is isomorphi
 (over the algebrai
 
losure of F5 in the �rst 
ase below) toone of the following:� !m2 � !5m2 for some m � 1 mod 8;� � !1�m �0 !m � for some m 2 f2; 3g, with � peu rami��e if m = 2.Appealing to Theorem 5.3 of [5℄, we 
an rule out the possibility that (over thealgebrai
 
losure of F5) �jI5 �= !2 � !52 , and 
on
lude that � is strongly a

eptablefor �. �To remove the irredu
ibility hypothesis in Theorem 7.2.1, we need the followinglemma. We are grateful to Elkies for providing part of the proof (for details ofElkies' 
al
ulation, see the appendix of [17℄).Lemma 7.2.3. Suppose that E=Q is an ellipti
 
urve su
h that neither �E;5jQ(p5)nor �E;3jQ(p�3) is absolutely irredu
ible. Then jE 2 f0; (11=2)3; 5(29)3=25g, andE is modular.Proof. We divide the proof into four 
ases, a

ording to whether the representations�E;3 and �E;5 are redu
ible.Suppose �rst that both �E;3 and �E;5 are redu
ible. Then E gives rise to rationalpoints on X0(15), and as noted in [46℄, su
h points are a

ounted for by ellipti

urves with 
ondu
tor 50 (and j = 5(29)3=25), known to be modular.Now suppose that one of the representations, say �E;p, is irredu
ible, but itsrestri
tion to GF is not absolutely irredu
ible, where F is the appropriate qua-drati
 extension of Q. In the 
ase of p = 3, we see (taking into a

ount 
omplex
onjugation) that the proje
tive image of �E;3 in PGL2(F3) �= S4 is isomorphi
 toZ=2Z � Z=2Z. It follows that the image of �E;3 has order 8 and that �E;3jK is infa
t redu
ible for some quadrati
 extension K of Q. In the 
ase of p = 5, we see(again using 
omplex 
onjugation) that �E;5jQ(p5) is redu
ible and the image of�E;5 has order 16.Consider the 
ase in whi
h the other of the two representations �E;q is redu
ible.The 
ase of p = 3, q = 5 is dis
ussed in the �nal remark of [46℄, and the detailsare given in [12, Lemma 5.5℄. In that 
ase one �nds that E is isomorphi
 (overQ) to a modular ellipti
 
urve of 
ondu
tor 338, with j = (11=2)3. We need toanalyze the situation with the roles of 3 and 5 inter
hanged. For 
larity, we repeatthe argument of [12, Lemma 5.5℄ with two arbitrary distin
t odd primes p and q,and then spe
ialize to the 
ases (p; q) = (3; 5); (5; 3).34



Thus, our ellipti
 
urve E=Q satis�es the properties that there is subgroup oforder q de�ned over Q and E[p℄(Q) 
ontains two lines whi
h are inter
hangedby the a
tion of GQ. We will now exhibit all su
h E=Q as Q-rational points on asuitable 
urve and will thereby 
he
k dire
tly that all su
h E=Q are modular. De�nethe 
urve Y=Q to be the quotient of the smooth 
onne
ted aÆne 
urve Y (pq)=Q (inthe sense of [28, x3.1℄) by the subgroup of elementsg = �a b
 d� 2 GL2(Z=pqZ)for whi
h 
 � 0 mod p, and a � d � 0 mod q or b � 
 � 0 mod q. This is the 
oarsemoduli s
heme atta
hed to the fun
tor \isomorphism 
lasses of ellipti
 
urves Eover S with a 
y
li
 order q subgroup C and an unordered pair of 
y
li
 order psubgroups fL1; L2g su
h that the natural map of S-group s
hemes L1�SL2 ! E[p℄is an isomorphism," for variable Q-s
hemes S.The 
omplex manifold asso
iated to the base 
hange Y=C is a smooth 
onne
tedopen Riemann surfa
e whi
h is naturally identi�ed with the quotient of the upperhalf plane in C by the a
tion of the group of elements g 2 SL2(Z) whose imagein GL2(Z=pqZ) satis�es the above 
ongruen
es. The elements of Y (Q) 
orrespondto Q-isomorphism 
lasses of triples (E;C; fL1; L2g) with E=Q an ellipti
 
urve, Ca GQ-stable subgroup of E[q℄(Q) with order q, and fL1; L2g a non-ordered set ofdistin
t lines in E[p℄(Q) su
h that the set fL1; L2g is stable under the a
tion ofGal(Q=Q) on lines in E[p℄(Q).In order to determine theQ-rational points on Y , we �rst identify it with another
urve. Let Y0(N)=Q denote the smooth geometri
ally 
onne
ted 
urve whi
h is the
oarse moduli s
heme for the fun
tor \isomorphism 
lasses of ellipti
 
urves E overS with a 
y
li
 subgroup C of order N" for variable Q-s
hemes S. If djN and(d;N=d) = 1, then there is a natural involution Wd : Y0(N) ! Y0(N) whi
h ongeometri
 points is given by sending (E;C) to (E=C[d℄; (E[d℄ + C)=C[d℄). Thisis 
ompatible with the involution Wd : Y0(d) ! Y0(d) via the natural proje
tionY0(N) ! Y0(d) (we should really write Wd;N for a

ura
y). We also note that ifej(N=d) and (e;N=de) = 1, then the operatorsWd andWe 
ommute, with 
ompositeWde.There is a natural map Y0(p2q)! Y arising from the map(E;C)! (E=C[p℄; C[pq℄=C[p℄; fC[p2℄=C[p℄; E[p℄=C[p℄g)on `points'. This is visibly Wp2 -invariant, so we get a natural map of smoothgeometri
ally 
onne
ted 
urves Y0(p2q)=Wp2 ! Y . One 
an 
he
k that the map isan isomorphism by noting that the resulting map on 
omplex points is a bije
tion.We will study Q-rational points on Y0(p2q)=Wp2 , and even its `
ompa
ti�
ation'X0(p2q)=Wp2 , withWp2 a
ting on the smooth 
onne
ted proper 
urve X0(p2q)=Q inthe unique way extending the above a
tion on Y0(p2q). For p = 3, q = 5, one �ndsthat X0(45)=W9 is an ellipti
 
urve of 
ondu
tor 15, and has at most four rationalpoints, all a

ounted for by modular ellipti
 
urves with j = (11=2)3. For p = 5,q = 3, the resulting 
urve X = X0(75)=W25 is a 
urve of genus 3 whose rationalpoints were determined by Elkies as follows. The quotient E0 = X=W3 has genusone and exa
tly one rational 
usp. Elkies found an expli
it Weierstrass equationfor E0 and 
on
luded it is isomorphi
 to the ellipti
 
urve of 
ondu
tor 15 denoted15-A3(B) [1; 1; 1;�5; 2℄ in the tables of Cremona [7℄. This 
urve has rank 0 anda torsion subgroup of order 8. One need only look in the �bers of X ! E0 over35



the 7 non-
uspidal points in E0(Q) in order to �nd the rational points on Y . Bywriting the fun
tion �eld Q(X) as Q(E0)[T ℄=(T 2 � f) for an expli
it f 2 Q(E0),Elkies 
omputed that the value of f at 6 of the points in E0(Q) is a non-squarein Q, and also that there is a single point in the geometri
 �ber on X over theremaining point. From this it follows that there is a unique non-
uspidal point inX(Q); sin
e it is �xed by W3, it must arise from an ellipti
 
urve over Q with
omplex multipli
ation. One 
an also 
he
k that j = 0 for su
h a 
urve.Finally we rule out the possibility that both �E;3 and �E;5 are irredu
ible. Firstsuppose that E has potentially multipli
ative or potentially good ordinary redu
tionat 5. In that 
ase Lemma 7.1.3 shows that �E;5jG5 is redu
ible, so its semisimpli-�
ation is isomorphi
 to !�� ��1 for some 
hara
ter �. On the other hand, sin
e�E;5 is indu
ed from GQ(p5), the ratio of the above 
hara
ters on G5 must be thequadrati
 
hara
ter trivial on GQ5(p5). This gives !�2 = !2, 
ontradi
ting the fa
tthat ! is not a square. We 
an therefore assume that E has potentially supersin-gular redu
tion at 5. If E has a quadrati
 twist with good supersingular redu
tion,then the order of �E;5(I5) is divisible by 24, 
ontradi
ting that �E;5(GQ) has order16. Otherwise, the order of �E;3(I5) (whi
h a priori divides 6) is divisible by 3,
ontradi
ting that �E;3(GQ) has order 8. �We now 
omplete the proof of Theorem 7.1.2. A

ording to Theorem 7.2.1, wemay suppose that �E;3jQ(p�3) is not absolutely irredu
ible. By Lemma 7.2.3, wemay assume �E;5jQ(p5) is absolutely irredu
ible. Wiles' argument using the HilbertIrredu
ibility Theorem shows that there is an ellipti
 
urve E0 over Q su
h that� �E0;5 � �E;5;� �E0;3jQ(p�3) is absolutely irredu
ible.Sin
e �E0;5 � �E;5, the 
ondu
tor of E0 is not divisible by 27. Therefore E0 ismodular by Theorem 7.2.1, so �E;5 � �E0;5 is modular. Therefore E is modular byTheorem 7.2.2.Finally, we re
ord the following strengthening of Theorem 7.2.2, immediate fromTheorem 7.1.2:Theorem 7.2.4. Let E=Q be an ellipti
 
urve. If �E;5 is modular or �E;5jQ(p5) isnot absolutely irredu
ible, then E is modular.
Appendix A. Deformation theoryWe re
all some general fa
ts from the deformation theory of representations ofpro�nite groups. The basi
 results are due to Mazur [30℄, with improvements byRamakrishna [32℄, Faltings, deSmit and Lenstra [10℄.Let G be a pro�nite group, and let O be a lo
al Noetherian ring with residue �eldk. We give k the dis
rete topology. Suppose that V is a �nite-dimensional dis
retek-ve
tor spa
e with a 
ontinuous a
tion of G. We assume that Endk[G℄ V = k, andwe 
onsider deformations of the representationG �! Endk Vto 
ertain O-algebras. 36



We let C�O denote the 
ategory of lo
al topologi
al O-algebras A su
h that thenatural map A! proj lima2UA A=ais a topologi
al isomorphism, where UA is the set of open ideals a 6= A su
h thatA=a is Artinian. The basi
 theory of su
h rings is developed in [26, Exp. VIIB ℄(where they are 
alled pseudo
ompa
t). For example, C�O is stable under formationof inverse limits and quotients by 
losed ideals. Also, if A is an obje
t of C�O, thenUA above is simply the set of open ideals. We let mA denote the maximal idealof A and kA the residue �eld. Note that we do not assume that kA = k. (In theappli
ations, O will be a 
omplete dis
rete valuation ring, and A will be a 
ompletelo
al Noetherian O-algebra.)De�nition A deformation of V to A (an obje
t of C�O) is an isomorphism 
lassof A[G℄-modules D su
h that D is free of �nite rank over A, kA
AD is isomorphi
to kA 
k V as a kA[G℄-module, and G! EndA(D) is 
ontinuous.We let FV (A) denote the set of deformations of V to A. If A! B is a morphismin C�O, then extension of s
alars de�nes a map FV (A) ! FV (B), allowing us toregard FV as a fun
tor from C�O to the 
ategory of sets. A

ording to Theorem7.1 of [10℄, FV is representable on the full sub
ategory of C�O whose obje
ts haveresidue �eld k. The proof a
tually shows that FV is representable on C�O by anobje
t RV;O with residue �eld k. We 
all RV;O the universal O-deformation ring ofV , and the 
anoni
al element of FV (RV;O) is 
alled the universal O-deformation ofV .If RV;O is Noetherian, then it represents FV on the 
ategory CO of 
ompletelo
al Noetherian O-algebras, be
ause CO is a full sub
ategory of C�O (as shown bythe proof of Proposition 2.4 of [10℄). This holds, for instan
e, if G is topologi
ally�nitely generated.A.1. Change of rings. Suppose we are given another lo
al Noetherian ring O0 withmaximal ideal m0 and residue �eld k0, and a lo
al map O ! O0. Let V 0 = V 
k k0and note that Endk[G℄ V = k if and only if Endk0[G℄ V 0 = k0. For an obje
t B inC�O0 , we 
an identify FV (B) with FV 0(B), so we have a 
anoni
al bije
tionHomC�O(RV;O; B)! HomC�O0 (RV 0;O0 ; B):For an obje
t A of C�O with residue �eld k, 
onsiderO0b
OA = proj limn>0;a2UA(O0=(m0)n)
O (A=a):Ea
h ring (O0=(m0)n)
O (A=a) is a lo
al Artinian ring with residue �eld k0 be
auseA has residue �eld k. Thus by Exp. VIIB, 0.2 of [26℄, O0b
OA is an obje
t of C�O0 .The natural map A! O0 b
OA is 
ontinuous, and for any obje
t B of C�O, it indu
esa bije
tion HomC�O0 (O0b
OA;B) �! HomC�O(A;B):It follows that O0b
ORV;O is the universal O0-deformation ring of V 0. Furthermore,the universal deformation is obtained by extending s
alars from RV;O. Analogousstatements are also true for the 
onstru
tion in the next se
tion.37



A.2. Restri
ted deformations. Suppose that for ea
h A in C�O, we are givena subset SV (A) of FV (A). We then have the following ne
essary and suÆ
ient
ondition for SV to be a fun
tor represented by RV;O=I for some 
losed ideal I ofRV;O: for all A 2 C�O and D 2 FV (A), we have:(1) D 2 SV (A) if and only if D=a 2 SV (A=a) for all a 2 UA;(2) if a; b 2 UA, D=a 2 SV (A=a) and D=b 2 SV (A=b), thenD=(a \ b) 2 SV (A=(a \ b));(3) if A ! A0 is an in
lusion of Artinian rings in C�O, then D 2 SV (A) if andonly if D 
A A0 2 SV (A0).The ne
essity of (1), (2) and (3) is easily veri�ed. The suÆ
ien
y is proved exa
tlyas in Proposition 6.1 of [10℄.Suppose we are given a lo
al Noetherian O-algebra O0 as in xA.1. Suppose thatSV is a restri
tion on deformations represented by RO;V =I for some 
losed ideal I,and that SV 0(B) = SV (B) for B 2 C�O0 . Then SV 0 is represented by O0 b
ORO;V =I,whi
h is naturally isomorphi
 to the quotient of RO0;V 0 by the 
losure of the idealgenerated by the image of I.Example A.2.1. This example is based on an observation of Ramakrishna [32℄.Suppose that k has positive 
hara
teristi
 and P is a property of �nite dis
rete G-modules whi
h is preserved under taking submodules, quotients and �nite produ
ts.Suppose there is a �nite sub�eld k0 of k su
h that V = k 
k0 V0 for some k0[G℄-module V0. For D 2 FV (A) = FV0(A), we let AD;0 denote the the image ofRV0;W (k0) ! A. We let D0 denote the 
orresponding element of FV0(AD;0). (Giventhe quotient topology, AD;0 is an obje
t of C�W (k0) with residue �eld k0. Sin
e themap AD;0 ! A is 
ontinuous, both spa
es are Hausdor� and AD;0 is 
ompa
t, thetopology is the same as the subspa
e topology. This means that the set of a\AD;0for a 2 UA is a base of open ideals in AD;0.)De�ne SPV (A) as the set of D su
h that D0=a has property P for all a in UAD;0 .One 
he
ks that SPV is independent of the 
hoi
e of k0 and satis�es (1), (2) and (3).If A itself is �nite, then SPV (A) is simply the set of D having property P . Note alsothat given O! O0 as in xA.1, we have SPV (B) = SPV 0(B) for B in C�O0 .Appendix B. Potentially Barsotti-Tate representationsB.1. De�nition of WD(�). Let K and E be �nite extensions of Q` inside of Q`,and let � : GE ! GL(M) be a 
ontinuous representation on a d-dimensional ve
torspa
e M over K. We denote the valuation rings of K and E by O and OE respe
-tively. Under 
ertain hypotheses on �, we will de�ne a 
ontinuous representationof the Weil group WD(�) :WE ! GL(D)on a d-dimensional Q`-ve
tor spa
e D and will investigate several properties. Also,in 
ase � is potentially Barsotti-Tate, we will give a more expli
it des
ription of this
onstru
tion. This expli
it des
ription will be used to prove several `independen
eof `' properties in the 
ontext of ellipti
 
urves and Ja
obians of modular 
urves.Throughout this appendix, the oddness of ` is never needed.In [20℄, the notions of semistable, 
rystalline, potentially semistable, and poten-tially 
rystalline are de�ned for 
ontinuous representations of the Galois group of a38




hara
teristi
 0 lo
al �eld with perfe
t residue �eld of 
hara
teristi
 ` (on a �nite-dimensional Q`-ve
tor spa
e). There are a number of rings (Bst; B
ris; : : : ) thatare used there as well. We use these 
on
epts below, and refer to [20℄ and thereferen
es therein for 
omplete proofs of the basi
 fa
ts we need. Although our pri-mary interest is in the 
ase of potentially Barsotti-Tate representations, the greatergenerality of potentially semistable representations is 
onvenient for making theinitial de�nition of the WD fun
tor and establishing some properties (e.g., behav-ior with respe
t to tensor produ
t 
onstru
tions, whi
h 
an destroy the potentiallyBarsotti-Tate property).Consider � as above. Assume � is potentially semistable [20, 5.6.1, 5.6.8℄, whi
his to say that for some �nite extension F=E, �jGF is semistable (this dependsonly on the underlying Q`[GE ℄-module of �). For example, sin
e Barsotti-Taterepresentations are 
rystalline [21, Thm 6.2℄, hen
e semistable, we 
an take any �whi
h is potentially Barsotti-Tate. This in
ludes any �nite order representation.By the very de�nition of semistability, the Q`-ve
tor spa
eDst;F (M) = (Bst 
Q` M)GFis a ve
tor spa
e over the maximal unrami�ed subextension F0 of F (via a
tion onBst) of dimension equal to the Q`-dimension of M . By fun
toriality, Dst;F (M) is amodule over F0
Q` K, and in fa
t is free of rank d. To see this, it suÆ
es to 
he
kthat after applying the faithfully 
at extension of s
alars Bst
F0 we get a free rankd module over Bst 
Q` K. But this follows from [20, 5.6.7(iii), 5.6.8(ii)℄ (and thesemistability of � over F ).From the de�nitions, Dst;F (M) is equipped with a bije
tive endomorphism �whi
h is semilinear with respe
t to the arithmeti
 Frobenius automorphism of F0and linear with respe
t to K. Also, if F=E is Galois then there is a 
anoni
ala
tion of Gal(F=E) whi
h is semilinear with respe
t to F0 and linear with respe
tto K and whi
h 
ommutes with �. There are additional stru
tures (�ltration onF 
F0 Dst;F (M) and a monodromy operator) whi
h we ignore. If F 0=F is a �niteextension, then �jGF 0 is semistable and there is a natural isomorphismF 00 
F0 Dst;F (M)! Dst;F 0(M)of F 00
Q`K-modules whi
h respe
ts the a
tion of Gal(F 0=E) if F 0 and F are Galoisover E.Suppose F=E is Galois, so Dst;F (M) is an (F0
Q`K)[Gal(F=E)℄-module with anautomorphism � whi
h a
ts semilinearly with respe
t to the F0-a
tion and linearlywith respe
t to the K[Gal(F=E)℄-a
tion. We de�ne an F0 
Q` K-linear a
tion ofWE as follows. For any g 2 WE , we let g a
t on Dst;F (M) as the produ
t of the
ommuting operators given by the a
tion of the image of g in Gal(F=E) and ��n,where the image of g in Gal(F`=F`) is the nth power of absolute Frobenius (not thenth power of the Frobenius relative to the residue �eld of E). Note that the a
tionof IF �WE is trivial, so WE a
ts 
ontinuously on Dst;F (M). Thus, Dst;F (M) is afree module of rank d over F0 
Q` K equipped with a 
ontinuous linear a
tion ofWE that 
ommutes with �. De�neWDK(�) = Dst;F (M)
F0
Q`K Q`:Clearly WDK(�) is of dimension d over Q` and the a
tion of K on � indu
esthe a
tion of K � Q` on WDK(�). When there is no risk of 
onfusion, we writeWD(�) in pla
e of WDK(�). 39



B.2. Properties of WD(�). If E0=E is a �nite extension, then WD(�jGE0 ) 'WD(�)jWE0 It follows trivially from the de�nitions (and properties of the fun
torDst;F ) that the representation WD(�) admits as a �eld of de�nition any 
ommon�nite extension of F0 and K inside of Q` and that it is (up to isomorphism) inde-pendent of the 
hoi
e of F . Moreover, if K 0=K is a �nite extension (so � 
K K 0is potentially semistable if and only if � is), then for potentially semistable � wehave a 
anoni
al isomorphism WDK0(� 
K K 0) ' WDK(�) as Q`[WE ℄-modules.Consider 
ontinuous representations of GE on �nite-dimensional Q`-ve
tor spa
es(it is automati
 that there is a �eld of de�nition of �nite degree over Q`). There isan obvious notion of potential semistability for these representations, and we havea well-de�ned fun
tor WD on the 
ategory of su
h potentially semistable represen-tations on Q`-ve
tor spa
es.By using [20, 1.5, 5.1.2℄, the fun
tor WDK on potentially semistable K[GE ℄-modules is exa
t and is naturally of formation 
ompatible with tensor produ
ts(and hen
e exterior produ
ts). The tensor produ
t 
ompatibility means that for�1; �2 two semistable representations of GE on �nite-dimensional K-ve
tor spa
es,there is a 
anoni
al mapWD(�1)
Q` WD(�2)!WD(�1 
K �2)of Q`[WE ℄-modules whi
h is an isomorphism. Stri
tly speaking, [20℄ only 
onsiders
ases with K = Q`, but sin
e the Q`[GE ℄-module �0 underlying � gives rise to anatural isomorphism WDQ`(�0)
K
Q`Q` Q` �=WDK(�);we readily get the tensor produ
t 
ompatibility for WD = WDK . In the samemanner, we get 
ompatibility with the Hom fun
tor (and WD is even a fun
torbetween tensor 
ategories).We mention two expli
it examples. First, WD(�) is a 1-dimensional unrami�edrepresentation of WE over Q`, given by the 
hara
ter that sends arithmeti
 Frobe-nius to jkE j, where kE is the residue �eld of E. For a proof, one is redu
ed tothe 
ase E = K = Q`, where (by [20, 5.5.1, 5.6.3℄) it 
omes down to the assertionthat D
ris(�) is 1-dimensional over Q` with � a
ting as multipli
ation by 1=`. ButBG`
ris = Q` and there exists a non-zero t 2 B
ris on whi
h G` a
ts as the 
y
lotomi

hara
ter and �(t) = `t, so D
ris(�) = Q` � 1=t has � a
ting as desired.The se
ond example is when � has �nite order (e.g., a �nite order 
hara
ter withvalues in K�). In this 
ase, we 
laim that WD(�) ' �jWE 
K Q`. This is animmediate 
onsequen
e of the de�nitions, as we now explain. Take F=E to be thesplitting �eld of �, so �jGF is trivial (and hen
e 
rystalline). Sin
e BGF
ris = F0 (themaximal unrami�ed subextension of F ), on whi
h the a
tion of � 
orresponds tothe lifting of absolute Frobenius, we see that Dst;F (�) = F0 
Q` � with g 2 WEa
ting as 1
 �(g). Thus, WDK(�) is naturally isomorphi
 to �jWE 
K Q`.B.3. The Potentially Barsotti-Tate Case. We give an alternate de�nition ofWD in the potentially Barsotti-Tate 
ase. This formulation, to be given in termsof Dieudonn�e modules, will be the means by whi
h we establish the desired resultsfor representations 
oming from ellipti
 
urves and modular forms.Let � as above be potentially Barsotti-Tate, �x a �nite Galois extension F=E(with residue �eld kF ) over whi
h � be
omes Barsotti-Tate, and �x a stable O-latti
e L for �. This gives us an `-divisible group �=OF and by [44, Thm 4℄ there is40



a unique a
tion of O on � 
ompatible with the O-a
tion on the generi
 �ber. Thegeneri
 �ber des
ent data for �jGF down to � gives rise (via 
ontravarian
e of Spe
and Tate's full faithfulness theorem [44, Thm 4℄) to a right a
tion of Gal(F=E) on� over the right a
tion on Spe
(OF ). This 
ommutes with the O-a
tion on �. Weget indu
ed a
tions on the 
losed �ber �=kF .Let �E denote the kE-Frobenius endomorphism of the 
losed �ber, so this 
om-mutes with the other a
tions we just de�ned. Now suppose that g is in WE ,g 7! � 2 Gal(F=Q`) and g 7! FrobnE in WE=IE . Working in the 
ategory of `-divisible groups `up to isogeny', we 
an de�ne the a
tion of g on �=kF to be ���nE ,and thereby give �=kF the stru
ture of a `right-module' over K[WE ℄.Let D(�) denote the (
ontravariant) Dieudonn�e module of �=kF , as de�ned in[18, III, 1.2℄. Sin
e the Dieudonn�e fun
tor is 
ontravariant, it 
onverts right a
tionsinto left a
tions. Thus, D(�) is a free W (kF )-module of rank d � [K : Q`℄ su
h thatD(�)
OK is a left module over K[WE ℄. De�ne D0(�) = HomW (kF )(D(�);W (kF )),and de�ne the Frob`-semilinear endomorphism �0 of D0(�)[1=`℄ to be the `semilin-ear transpose' of ��1 (i.e., �0(f) = � Æ f Æ ��1, with � the absolute Frobeniusendomorphism of W (kF )). De�ne a left semilinear a
tion of Gal(F=E) on D0(�)by g(f) = g Æ f Æ g�1, where g denotes the automorphism of W (kF ) indu
ed by gand where we have used the previously de�ned semilinear left a
tion of Gal(F=E)on D(�). This 
ommutes with �0 on D0(�)[1=`℄. We de�ne a W (kF )-linear a
tionof WE in the usual manner (using powers of �0 to `
an
el' the semilinearity of thea
tion of Gal(F=E)). Also, we let O a
t through its a
tion on D(�). We de�neWD0(�) = D0(�)
W (kF )
Z`O Q`as a Q`[WE ℄-module.This is our desired `
on
rete' de�nition ofWD(�) in the potentially Barsotti-Tate
ase (as the following Proposition will justify). Note that the Dieudonn�e module ofthe dual `-divisible group of � has underlying W (kF )-module D0(�) and Frobeniusendomorphism `�0.Due to the 
ompatibility of the Dieudonn�e module fun
tor with respe
t to base
hange (e.g., Frobenius automorphisms of the base �eld), we 
an re
over the Frobe-nius morphism of D(�) from the semilinear absolute Frobenius morphism of � andwe 
an likewise de�ne a semilinear left a
tion of Gal(F=E) on D(�) by using the`generi
 �ber des
ent data'. Putting these together gives an alternate formulationof the linear WE-a
tion on D in terms of suitable 
omposites of semilinear a
tions(of � and Gal(F=E)).Proposition B.3.1. For potentially Barsotti-Tate � as above, WD0(�) ' WD(�)as Q`[WE ℄-modules.Proof. Let �0 = HomQ`(�;Q`). Via �, this is a K[GE ℄-module. In [21, 6.6℄, thereis de�ned a natural isomorphism�� : D(�)[1=`℄! D
ris(�0jGF ) = Dst;F (�0)as `�ltered modules'. In parti
ular, this map respe
ts the W (kF ) 
Z` O-modulestru
tures, as well as the absolute Frobenius maps on ea
h side. Be
ause the fun
torDst;F 
ommutes with formation of duals, we are redu
ed to 
he
king that thisidenti�
ation �� respe
ts the left WE-a
tions. Looking ba
k at how the linear WE-a
tions have been de�ned in terms of the absolute Frobenius maps and semilinear41



Galois a
tions on ea
h side, it remains to show that the semilinear left a
tions ofGal(F=E) on D(�) and D
ris(�0jGF ) are 
ompatible via ��.Choose any g 2 Gal(F=E). We have an OF -linear isomorphism � ' �g to thebase 
hange by g, satisfying the usual 
o
y
le 
ondition as we vary g. The indu
edisomorphism on the 
losed �ber, when 
ombined with the base 
hange 
ompatibilityof the Dieudonn�e module fun
tor, gives rise to the semilinear a
tion of g on D(�).Now using the fun
toriality of the map �� with respe
t to a variable `-divisible groupover a �xed base OF , all we have to do is prove that this map is also fun
torial withrespe
t to base 
hange of a �xed `-divisible group �.More pre
isely, 
onsider an extension of s
alars by a lo
al extension OF 0 of OF(e.g., an automorphism � of OF ) and 
hoose an embedding of algebrai
 
losuresF ! F 0 over F ! F 0 (e.g., an element of GE over � 2 Gal(F=E)). This gives riseto a 
ontinuous group map GF 0 ! GF and a natural map B
ris(F )! B
ris(F 0) [19,4.2.5(d)℄. There is a `base 
hange diagram' whi
h we need to 
ommute. Namely,if �0 = � �OF OF 0 (so V`(�) = V`(�0) 
ompatibly with GF 0 ! GF ), then we havenatural maps D(�)! D(�0) andHomQ`[GF ℄(V`(�); B
ris(F ))! HomQ`[GF 0 ℄(V`(�0); B
ris(F 0)):We want these to be 
ompatible with the maps �� and ��0 .In view of the de�nition of the � maps, this �nally redu
es to the 
laim that theisomorphism [21, 6.4℄ is of formation 
ompatible with su
h a base 
hange OF ! OF 0 .But this is a 
onsequen
e of the de�nitions (
f. [18, III, 6.2℄ in the 
ase of `-divisiblegroups, and note that the `base 
hange' 
ompatibility of this is a 
onsequen
e ofhow the Dieudonn�e module fun
tor is de�ned). �B.4. Independen
e of �. Let A be an abelian variety over a �eld k. Suppose that(in 
ontrast to previous notation) K � Q is a number �eld with ring of integers Oand we are given an embeddingK ! End0k A = Endk(A)
Z Q(we use here endomorphisms in the `invert isogenies' 
ategory). If �0 is a prime of Olying over a prime `0 in Z distin
t from the 
hara
teristi
 of k, we let �A;�0 denotethe representation of Gk over K�0 de�ned by the Galois a
tion on the �0-adi
 Tatemodule V�0(A) of A, whi
h is (lim �A(ks)[�0n℄)
Qif the full integer ring a
ts on A and more generally is de�ned as the fa
tor of the`0-adi
 Tate module 
orresponding to the fa
tor ring K�0 of the ring K 
Q Q`0(whi
h a
ts on the usual `0-adi
 Tate module V`0(A)). The dimension of �A;�0 overK�0 is independent of �0 (equivalently, V`0(A) is free as a K 
Q Q`0 -module), andso this dimension is equal to 2 dimA=[K : Q℄. Moreover, for any f 2 End0k(A)whi
h 
ommutes with the a
tion of K, the K�0-linear a
tion of f on V�0(A) has
hara
teristi
 polynomial in K[T ℄ whi
h is independent of the 
hoi
e of prime �0of O. For proofs of these fa
ts, see [42, Prop 11.9℄. The proof of [31, x19, Thm 4℄for Tate modules (and 
hara
teristi
 polynomials over Q`0) 
arries over verbatimto the 
ase of Dieudonn�e modules when k is perfe
t of positive 
hara
teristi
 (with
hara
teristi
 polynomials 
omputed over the fra
tion �eld of W (k)).Thus, in 
ase k has positive 
hara
teristi
 ` and is perfe
t, the same arguments(with some minor modi�
ations, due to the repla
ement of Q`0 by the fra
tion �eld42



of W (k) with k not ne
essarily equal to F`) 
arry over to give analogous resultsfor the `up to isogeny' Dieudonn�e module D(A) = D(A[`1℄)[1=`℄. More pre
isely,if F0 denotes the fra
tion �eld of W (k), then D(A) is a free module over K 
Q F0and for any f 2 End0k(A) whi
h 
ommutes with the a
tion of K, the K 
Q F0-linear endomorphism of D(A) indu
ed by f has 
hara
teristi
 polynomial in K[T ℄.Also, this polynomial is equal to the 
hara
teristi
 polynomial 
omputed above onthe `0-adi
 Tate modules of A for `0 6= `. Of 
ourse, the same 
on
lusions applyto the `dual' Dieudonn�e module, sin
e dualizing a linear map does not a�e
t its
hara
teristi
 polynomial.Now suppose that k = E is a �nite extension of Q` and that A has potentiallygood redu
tion. Let F be a �nite Galois extension of E over whi
h A has goodredu
tion, and let A denote the N�eron model of A over OF . We obtain 
ommutinga
tions (in the `invert isogenies' 
ategory) of K and Gal(F=E) exa
tly as in the 
aseof `-divisible groups (using the N�eron mapping property instead of Tate's theorem),with Gal(F=E) a
ting on the right. Now 
hange this Galois a
tion, by lettingg 2 Gal(F=E) instead a
t as g�1 under the right a
tion. This gives a left a
tionof K[Gal(F=E)℄ on A=kF over the natural a
tion of Gal(F=E) on kF , 
omposedwith inversion in the Galois group. Again using powers of the absolute Frobeniusmorphism to `
an
el' out the semilinearity, we obtain a map of Q-algebras� : K[WE ℄! End0kF A=kF = (EndkF A=kF )
Z Q:Note that �jWF is unrami�ed and sends FrobF to the kF -Frobenius endomorphismof A=kF .For `0 6= `, V`0(A=kF ) is a module over (K 
Q Q`0)[WE ℄ using �. Also, we use� to make D0(A=kF [`1℄)[1=`℄ a module over (W (kF ) 
Z` K)[WE ℄. We re
all thefollowing well-known result. Sin
e we do not know a referen
e, we give a proof.Lemma B.4.1. For `0 6= `, there is an isomorphism of (K 
Q Q`0)[WE ℄-modulesV`0(A) �= V`0(A=kF ). Likewise, there is an isomorphism of (K
QQ`)[WE ℄-modulesWDQ`(V`(A)) �= D0(A=kF [`1℄)[1=`℄
W (kF ) Q`.Proof. The `-adi
 
ase is exa
tly our `
on
rete' formulation of the de�nition ofWDin the potentially Barsotti-Tate 
ase (as a little 
he
king will show). Now 
onsider`0 6= `. There is an obvious isomorphism of the underlying groups of `0-powertorsion geometri
 points on A and A=kF . Consider more spe
i�
ally the `redu
tion'morphism r : A(Q`) = A(Z`)! A(F`)(an isomorphism on `0-power torsion). From the generi
 �ber des
ent data forA=F down to A=E , we get (via the N�eron property) a semilinear right a
tion ofg 2 Gal(F=E) on A=OF , denoted by [g℄. We also have the 
anoni
al absoluteFrobenius morphism � on A�OF kF .For any g 2 WE and any point y 2 A(F`), [g�1℄ Æ �m Æ y is another su
h point,where g indu
es the mth power of absolute Frobenius on F`. What we need to
he
k is that for su
h g and m,[g�1℄ Æ �m Æ r(x) = r(x Æ g)for all x 2 A(Q`). The point is that under the identi�
ationA(Q`) = HomSpe
(E)(Spe
(Q`); A) = HomSpe
(OF )(Spe
(Z`);A) = A(Z`);43



the translation of the usual a
tion of GE on A(Q`) into an a
tion on A(Z`) requiresuse of the generi
 �ber des
ent data isomorphisms (extended to A via the N�eronproperty). It is easy to 
he
k that for y 2 A(Z`) and g 2 GE , [g�1℄ Æ y Æ g 2 A(Z`)is the image of y under the a
tion of GE on A(Q`).For any su
h y, with g 2 WE indu
ing the mth power of absolute Frobenius onF`, we need to show that[g�1℄ Æ �m Æ r(y) = r([g�1℄ Æ y Æ g);where we regard r as a fun
tion on A(Z`). This 
learly redu
es us to showing thatfor any map of OF -s
hemes y : Spe
(Z`)! A with redu
tion y : Spe
(F`)! A=kFover kF , and any OE-automorphism g of Z` indu
ing the mth power of absoluteFrobenius on F`, �m Æ y is equal to the redu
tion of the semilinear map y Æ g. Butthe redu
tion of y Æ g is y Æ Frobm̀, so by the `universal 
ommutativity' of absoluteFrobenius on F`-s
hemes, we're done. �Proposition B.4.2. Let A=E be an abelian variety with potentially good redu
tion,K � Q of �nite degree over Q, and � : K ! End0E(A) a Q-algebra map. For `0 6= `,the representations WDQ`(�A;`) and �A;`0 jWE 
K Q`0 are semisimple and arise asthe base 
hanges of a 
ommon semisimple (K
QQ)[WE ℄-module (ne
essarily �niteand free over K
QQ). Also, for any � in K dividing `, �A;� is Barsotti-Tate overany �nite extension F=E su
h that WDK�(�A;�) is unrami�ed over F .Proof. Let F=E be a �nite Galois extension over whi
h A a
quires good redu
tion.By Lemma B.4.1, we need to 
ompare the (K 
Q Q`)[WE ℄-moduleD0(A=kF [`1℄)[1=`℄
W (kF ) Q`and the (K 
Q Q`0)[WE ℄-module V`0(A=kF )
Q`0 Q`0 . By our earlier observations,these are free modules over K 
Q Q` and K 
Q Q`0 respe
tively, and for ea
h g 2WE , the 
hara
teristi
 polynomial of g (over K 
QQ` and K 
QQ`0 respe
tively)under all of these representations is the same 
ommon polynomial Pg 2 K[T ℄(vastly more general 
omparison theorems for 
hara
teristi
 polynomials in �etaleand 
rystalline 
ohomology, at least for K = Q, follow from [29, Thm 2(2)℄).To see the semisimpli
ity in all 
ases, we �rst 
laim that it suÆ
es to 
he
ksemisimpli
ity as WF -representations. Indeed, if L is any �eld of 
hara
teristi
 0and G is any group with H a �nite index subgroup, an L[G℄-module with �niteL-dimension whi
h is semisimple as an L[H℄-module is ne
essarily semisimple asan L[G℄-module. To prove this, we just need to show that for L[G℄-modules V andW with �nite L-dimension, the natural map Ext1L[G℄(V;W ) ! Ext1L[H℄(V;W ) isinje
tive. But if we repla
e H by a �nite index subgroup whi
h is normal in G, thisis indenti�ed with the restri
tion mapH1(G; V � 
LW )! H1(H;V � 
LW );whi
h is inje
tive be
auseH1(G=H; V �
LW ) is an L-ve
tor spa
e killed by [G : H℄.Viewing our WE-representation spa
es as WF -representation spa
es, all are un-rami�ed and we just need to 
he
k that the a
tion of �(FrobF ) on A=kF is annihi-lated (in the `up to isogeny' 
ategory) by a separable polynomial over K, or evenover Q. Sin
e �(FrobF ) is the a
tion of the kF -Frobenius morphism on the abelianvariety A=kF , the `semisimpli
ity' here is due to Weil. Here is the proof, for whi
h44



we may assume K = Q. LetQP eii 2 Q[T ℄ be the 
hara
teristi
 polynomial PFrobF ,with Pi irredu
ible. For `0 6= `, QP eii (�(FrobF )) kills V`0(A=kF ), so it is the zeroendomorphism of A=kF . Ea
h simple abelian subvariety of A=kF is preserved underthe kF -Frobenius morphism �(FrobF ), soQPi(�(FrobF )) kills ea
h su
h subvariety(by simpli
ity and the fa
t that K = Q). Sin
e A=kF is isogenous to a produ
t ofsu
h subvarieties, QPi(�(FrobF )) = 0 in End0kF (A=kF ).Now we 
he
k that our semisimple WE-representation spa
es are base 
hangesof semisimple (K 
Q Q)[WE ℄-modules, ne
essarily �nite and free over K 
Q Q.The resulting (K
QQ)[WE ℄-modules are all isomorphi
, as one sees by 
omparing
hara
teristi
 polynomials of all g 2 WE (whi
h lie in K[T ℄). This readily yieldsthe last part of the Proposition as well, sin
e when WDK�(�A;�) is unrami�ed oversome �nite extension F=E, then the same 
learly holds for all primes of K over` (by a 
onsideration of semisimpli
ity and 
hara
teristi
 polynomials), so for any`0 6= `, V`0(A) is unrami�ed over F ; by the N�eron-Ogg-Shafarevi
h 
riterion, A=Fthen has good redu
tion.Consider an extension L=K of 
hara
teristi
 0 �elds with K algebrai
ally 
losed(e.g., K = Q, L = Q` or Q`0), G a �nitely generated group (su
h as WE=IF ), andV a semisimple L[G℄-module with �nite L-dimension. Assume that all g 2 G a
twith 
hara
teristi
 polynomial in K[T ℄. The above setup is just a `�nite produ
t'of this setting, repla
ing K and L by Kn and Ln for some n � 1 and repla
ing Vby V 
K Kn where we use n �eld automorphisms K �= K to de�ne K ! Kn. We
laim that there exists a (ne
essarily unique up to isomorphism) semisimple K[G℄-module V0 with �nite K-dimension su
h that all g 2 G have the same 
hara
teristi
polynomials on V0 as on V (whi
h implies that V0 
K L �= V as L[G℄-modules andso �nishes the proof). Sin
e G is �nitely generated, if we pi
k a basis of V over Lthen there exists a �nitely generated extension �eld K 0=K inside of L and a K 0[G℄-module V 0 with �nite K 0-dimension su
h that V 0 
K0 L �= V as L[G℄-modules. Infa
t, we 
an even �nd a �nite type K-subalgebra R0 � K 0 and an R0[G℄-moduleM 0whi
h is �nite and free as an R0-module su
h that M 0 
R0 L �= V . Ea
h g 2 G has
hara
teristi
 polynomial on M 0 equal to the 
hara
teristi
 polynomial of g on V ,whi
h lies in K[T ℄. By the Nullstellensatz there exists a K-algebra map R0 ! K,so if we de�ne V0 = (M 0 
R0 K)ss, we're done. �Note that by a theorem of Grothendie
k [25, Exp. IX, Cor 5.10℄, �A;` be
omesBarsotti-Tate over F if and only if A a
quires good redu
tion over F (for a simplerexposition of the proof of Grothendie
k's theorem if one assumes potentially goodredu
tion, see the proof of [5, Thm 5.3℄).Corollary B.4.3. Suppose that f is a weight two newform with 
oeÆ
ients in anumber �eld K. Let � �= 
0v�v denote the 
orresponding automorphi
 representa-tion. For ea
h prime � of K, let��;� : GQ ! GL2(K�)denote the asso
iated Galois representation. If �j` and �` is not spe
ial, then ��;�jG`is Barsotti-Tate over any extension of Q` su
h that WD(�`)jIF is trivial (su
h anF exists). Also, for any embedding Q ! Q` indu
ing the pla
e � on K � Q(and so indu
ing an embedding K� ! Q` as K-algebras), there is a Q`[W`℄-moduleisomorphism Q` 
QWD(�`) �=WD(��;�jG`):45



Proof. If K0 � K denotes the sub�eld generated by the q-expansion 
oeÆ
ientsof f and � lies over �0 in K0, then ��;� ' K� 
K0�0 ��;�0 , so we may supposeK = K0. In this 
ase, the Ei
hler-Shimura 
onstru
tion provides an abelian varietyAf = A=Q with an a
tion of an order in O so that �A;� �= ��;� for all primes � anddimA = [K : Q℄. Choose any `0 6= ` and pi
k a K-algebra map Q ! K 
Q Q.De�ne �` = (K 
Q Q)
QWD(�`). By [3, Thm A℄,�A;`0 jW` 
Q`0 Q`0 �= �` 
Q Q`0as (K 
Q Q`0)[W`℄-modules. We want to 
onstru
t a (K 
Q Q`)[W`℄-module iso-morphism WDQ`(�A;`jG`) �= �` 
Q Q`:But this is immediate from Proposition B.4.2. �Referen
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