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JOURNAL OF THEAMERICAN MATHEMATICAL SOCIETYVolume 00, Number 0, Pages 000{000S 0894-0347(XX)0000-0
MODULARITY OF CERTAIN POTENTIALLY BARSOTTI-TATEGALOIS REPRESENTATIONSBRIAN CONRAD, FRED DIAMOND, AND RICHARD TAYLOR

IntrodutionConjetures of Langlands, Fontaine and Mazur [22℄ predit that ertain Galoisrepresentations � : Gal(Q=Q)! GL2(Q`)(where ` denotes a �xed prime) should arise from modular forms. This applies inpartiular to representations de�ned by the ation of Gal(Q=Q) on the `-adi Tatemodule of an ellipti urve de�ned over Q, and so implies the Shimura-Taniyama-Weil onjeture.Wiles' breakthrough in [46℄, ompleted by [45℄ and extended in [12℄, providedresults of the form � modular ) � modularwhere � is the redution of �. These results were subjet to hypotheses on the loalbehavior of � at `, i.e., the restrition of � to a deomposition group at `, and toirreduibility hypotheses on �. In this paper, we build on the methods of [46℄, [45℄and [12℄ and relax the hypotheses on loal behavior. In partiular, we treat ertain`-adi representations whih are not semistable at `, but potentially semistable.We do this using results of [6℄, generalizing a theorem of Ramakrishna [32℄ (seeFontaine-Mazur [22, x13℄ for a slightly di�erent point of view). The results in [6℄show that ertain \potentially Barsotti-Tate" deformation problems are smooth, al-lowing us to de�ne ertain universal deformations for � with the neessary Galois-theoreti properties to apply Wiles' method. To arry out the proof that thesedeformations are indeed realized in the ohomology of modular urves (i.e., thatthe universal deformation rings are Heke algebras), we need to identify the orre-sponding ohomology groups and prove they have the modular-theoreti propertiesneeded to apply Wiles' method. As in [15℄ and [12℄, the identi�ation is madeby mathing loal behavior of automorphi representations and Galois represen-tations via the loal Langlands orrespondene (together with Fontaine's theoryat the prime `). We work diretly with ohomology of modular urves instead ofReeived by the editors Marh 21, 1998 and, in revised form, Sept 1, 1998.1991 Mathematis Subjet Classi�ation. Primary 11F80; Seondary 11G18.Key words and phrases. Heke algebra, Galois representation, modular urves.B.C. was supported by an N.S.F. Postdotoral Fellowship, and would like to thank The Institutefor Advaned Study for its hospitality. F.D. was at M.I.T. during part of the researh and reeivedsupport from an A.M.S. Centennial Fellowship, and for another part was visiting Universit�e deParis-Sud supported by the C.N.R.S. R.T. was supported by a grant from the N.S.F. All of theauthors are grateful to Centre �Emile Borel at the Institut Henri Poinar�e for its hospitality at thep-adi semester. 1997 Amerian Mathematial Soiety1



using the Jaquet-Langlands orrespondene, and we use the simpli�ation of [46℄provided by [13℄ and Fujiwara [23℄ independently.The main tehnial restrition in this paper is that we only treat representationswhih arise from `-divisible groups over ertain tamely rami�ed extensions of Q`.We do obtain suÆiently strong results here to give the following appliation:Theorem If E is an ellipti urve over Q with ondutor not divisible by 27, thenE is modular.Note that the hypothesis on the ondutor of E is satis�ed if and only if Eaquires semistable redution over a tamely rami�ed extension of Q3.Notation We �x an odd prime ` and algebrai losures Q, R = C, and Qp forall p. Choose embeddings of Q into C and Qp for all p, so we realize the Galoisgroup Gp = Gal(Qp=Qp) as a deomposition group inside of GQ = Gal(Q=Q). LetIp denote the inertia subgroup, Frobp 2 Gp=Ip the arithmeti Frobenius element,and Wp the Weil subgroup of Gp (i.e., the preimage of the subgroup of Gp=Ip ' bZgenerated by Frobp). We de�ne Fp to be the residue �eld of the valuation ring ofQp, and regard this as `the' algebrai losure of Fp. The order pn sub�eld of Fp isdenoted Fpn .For any �eld F of harateristi distint from ` and having a �xed hoie ofseparable losure Fs, with GF = Gal(Fs=F ) the resulting Galois group, de�ne� : GF ! Z�̀ to be the `-adi ylotomi harater. We let ! = � mod ` andlet ~! : GF ! Z�̀ denote its Teihm�uller lift. For any Z`[GF ℄-module V , de�neV (n) = V 
Z`�n for all n 2 Z. For a representation � ofGF and L=F a subextensionof Fs=F , let �jL denote the restrition �jGL .We will let �p;n denote the harater Ip ! W (Fpn)� obtained from the inverseof the reiproity map F� ! GabF of loal lass �eld theory, where F is the �eldof frations of W (Fpn). We write �n for �`;n, �n for ��1n , !n : I` ! F�̀n for theredution mod ` of �n and ~!n for the Teihm�uller lift of !n. Thus �1 = �, !1 = !,and ~!n satis�es �(`1=(`n�1)) = ~!n(�)`1=(`n�1);where `1=(`n�1) denotes any (`n � 1)th root of ` in Q` [36, x1.5, Prop 3℄.1. Deformation Algebras1.1. Potentially Barsotti-Tate representations. Fix a �nite extension K ofQ` in Q` with valuation ring O and residue �eld k. Let E be a harateristi 0 �eldomplete with respet to a disrete valuation, with valuation ring OE and residue�eld perfet of harateristi `. Consider a ontinuous representation� : GE ! GL(M);where M is a vetor spae of �nite dimension d over K. By a ontinuity andompatness argument, there exists an O-lattie L in M whih is stable under theation of GE .Sine all hoies of L are ommensurable, an argument using the method ofsheme-theoreti losure (see [33, x2.2-2.3℄) shows that if there exists an `-divisiblegroup �=OE with generi �ber representation L (as a Z`[GE ℄-module), then for anyhoie of L suh a � exists. In this ase, we say that � is Barsotti-Tate (over E).It is straightfoward to hek that for K 0=K a �nite extension, � is Barsotti-Tate ifand only if � 
K K 0 is Barsotti-Tate. We say that � is potentially Barsotti-Tate if2



there exists a �nite extension E0=E suh that �jGE0 is Barsotti-Tate, in whih asewe say � beomes Barsotti-Tate over E0.We remark that if E0 denotes the ompletion of the maximal unrami�ed extensionEun of E, so GE0 is identi�ed with the inertia group of E (beause the valuation ringof Eun is a henselian disrete valuation ring with algebraially losed residue �eld),then � is Barsotti-Tate if and only if �jIE = �jGE0 is Barsotti-Tate. To see this, �xa lattie L stable under � and let � denote the representation of GE on L. Applying[1, Ch 6, Prop. D4(b)℄ to eah torsion level, if �jIE is Barsotti-Tate (over E0) thenthere exists an `-divisible group � over the (perhaps non-omplete) valuation ringof Eun with generi �ber �jIE . Using [44, Thm 4℄ and �etale desent at eah torsionlevel, this desends to an `-divisible group over OE with generi �ber �, so � isBarsotti-Tate. The same theorem [44, Thm 4℄ shows that when � is Barsotti-Tateand we �x a hoie of GE-stable lattie L, the orresponding `-divisible group �=OEis anonially unique and admits a unique ation of O extending that on the generi�ber.Let � : GE ! AutO(L) be a potentially Barsotti-Tate representation, with L a�nite free O-module of rank d (so �
OK is potentially Barsotti-Tate). Suppose thatthe residue �eld of E is �nite (i.e., E is a �nite extension of Q`). In Appendix B, wereview (following ideas of Fontaine) how to attah to � a ontinuous representationWD(�) :WE ! GL(D);whereWE is the Weil group of E (i.e., the subgroup ofGE whih maps to an integralpower of Frobenius in the Galois group of the residue �eld) and D is a vetor spaeover Q` of dimension d. A disussion of various properties of this onstrution (e.g.,behavior with respet to tensor produts) is given in Appendix B. For example,if � has ylotomi determinant, then WD(�) has unrami�ed determinant sendingFrobE to jkE j, the size of the residue �eld of E.1.2. Types of loal deformations. Fix a ontinuous two-dimensional represen-tation � : G` ! GL(V )over k suh that Endk[G`℄ V = k. One then has a universal deformation ring RV;Ofor � (see Appendix A).An `-type is an equivalene lass of two-dimensional representations� : I` ! GL(D)over Q` with open kernel. For eah `-type � , we shall de�ne a ertain quotient RDV;Oof the omplete loal Noetherian O-algebra RV;O. This quotient will be a `Zariskilosure of ertain harateristi 0 points'.A deformation � of V to the the ring of integers O0 of a �nite extension of K inQ`, is said to be of type � if(1) � is Barsotti-Tate over F for any �nite extension F of Q` suh that � jIF istrivial;(2) the restrition of WD(�) to I` is equivalent to � ;(3) the harater ��1 det � is the Teihm�uller lift of the prime-to-` order har-ater !�1 det � : G` ! F�̀.We say that a prime ideal p of RV;O is of type � if there exists a �nite extensionK 0 ofK (with valuation ring O0) and a (neessarily loal) O-algebra homomorphismRV;O ! O0 with kernel p suh that the orresponding deformation is of type � . If p is3



of type � , then so is the deformation orresponding to any O-algebra homomorphismwith kernel p and values in some O0 as above.If there do not exist any prime ideals p of type � , we de�ne RDV;O = 0. Otherwise,de�ne RDV;O to be the quotient of RV;O by the intersetion of all p of type � . We saythat a deformation of � to R is weakly of type � if the assoiated loal O-algebramap RV;O ! R fators through the quotient RDV;O. We say that � is aeptable for� if RDV;O 6= 0 and if there is a surjetive loal O-algebra map O[[X℄℄� RDV;O. Moreonretely, if mD denotes the maximal ideal of RDV;O, then the surjetivity onditionis equivalent to dimkmD=(�; (mD)2) � 1.It is straightforward to hek (f. [9, Lemma 2.38℄) that the above notions arewell-behaved with respet to extension of the �eld K. In partiular, if K 0 is a�nite extension of K with valuation ring O0 and residue �eld k0, then O0 
O RDV;Ois naturally isomorphi to RDV
kk0;O0 and � is aeptable for � if and only if � isaeptable for �
k k0.We make the following onjetures, although they are onsiderably stronger thanthe results that will atually be important in the sequel. What is important for thesequel is only the question of whih `-types are aeptable for a given �jG` .Conjeture 1.2.1. A deformation � : G` ! GL(M) of � to O0 is weakly of type �if and only if it is of type � .Conjeture 1.2.2. Suppose that � = ~!i � ~!j. Then RDV;O 6= (0) if and only if�jI` 
k k is of one of the following three forms:� � !1+i �0 !j � and in the ase j � i mod ` � 1, � is peu-rami��e (in thesense of Serre [40℄),� � !1+j �0 !i � and in the ase j � i mod `� 1, � is peu-rami��e,� !1+fj�ig+(`+1)i2 � !`�fj�ig+(`+1)j2 , where fag denotes the unique integer inthe range from 0 to `� 2 ongruent to a modulo `� 1.In the �rst two of these three ases RDV;O �= O[[X℄℄ and so � is aeptable for �. Inthe last ase, if j � i mod `� 1, then RDV;O �= O[[X℄℄ and so � is aeptable for �.Conjeture 1.2.3. Suppose that � = ~!m2 � ~!`m2 where m 2 Z=(`2 � 1)Z andm = i+(`+1)j with i = 1; : : : ; ` and j 2 Z=(`� 1)Z. Then RDV;O 6= (0) if and onlyif �jI` 
k k is of one of the following four forms:� � !i+j �0 !1+j � and in the ase i = 2, � is peu-rami��e,� � !1+j �0 !i+j � and in the ase i = `� 1, � is peu-rami��e,� !1+m2 � !`(1+m)2 ,� !`+m2 � !1+`m2 ,In all these ases RDV;O �= O[[X℄℄ and so � is aeptable for �.It will be onvenient to say that a type � is strongly aeptable for �jG` if it isaeptable and if one of the following is true:4



� �jI` �= � !m �0 !n � for some m;n 2 Z=(` � 1)Z (and in the ase m �n + 1 mod ` � 1, � is peu-rami��e), and � is equivalent to ~!m�1 � ~!n or~!fm�ng+1+(n�1)(`+1)2 � ~!`(fm�ng+1)+(n�1)(`+1)2 .� �jI` 
k k �= !1+m2 � !`(1+m)2 for some m 2 Z=(`2 � 1)Z, and � �= ~!m2 � ~!`m2Note that in partiular we are onjeturing that we an suppress the assumption ofaeptability in the de�nition of strong aeptability. In setion 2 we shall explainwhat we know about these onjetures.1.3. Global Galois representations. Fix a �nite extension K of Q` in Q` withvaluation ring O, uniformizer � and residue �eld k, and a ontinuous global two-dimensional (over k) Galois representation� : GQ ! GL(V ):We shall suppose � satis�es the following hypotheses.� The determinant of �() is �1, where  denotes a omplex onjugation.� The restrition of � to Q(p(�1)(`�1)=2`) is absolutely irreduible.� The ondutor of � (see [40℄) divides the ondutor of all of its twists byk�-valued haraters.� The entralizer of �(G`) onsists only of salar matries.We remark that the third ondition is simply for onveniene and will be removedas an assumption from all our main theorems by an easy twisting argument. Let Sbe a �nite set of rational primes whih does not ontain `, and let � : I` ! GL(D)be an `-type whih is strongly aeptable for �jG` .We will say that a deformation � : GQ ! GL(M) of � to an objet R of C�O (seeAppendix A) is of type (S; �) if the following hold:� �jG` is weakly of type � .� If p 62 S [ f`g and the order of �(Ip) is not `, then �(Ip) �! �(Ip).� If p 62 S [ f`g and the order of �(Ip) is `, then M=M Ip is free of rank oneover R.� ��1 det � has �nite order prime to `.One heks that the subsets of deformations of type (S; �) satisfy the representabil-ity riterion in Appendix A. Note that when p 62 S [ f`g, �(Ip) has order `, andthe fourth ondition above holds, then �jIp is tame with det �jIp trivial, so if g 2 Itpis a topologial generator, then a lift �(g) of �(g) �xes a basis vetor if and only iftr�(g) = 1+det(�(g)) (whih is equivalent to (�(g)�1)2 = 0 in the present setting).We let RS;DV;O denote the universal type (S; �) deformation ring. We write simplyRV;O and RDV;O for the deformation rings assoiated to �jG` . Then RV;O, RDV;O andRS;DV;O are omplete loal Noetherian O-algebras with residue �eld k, well-behavedwith respet to �nite extension of K.1.4. Galois ohomology. We will let ad0 V denote the representation of GQ onthe trae zero endomorphisms of V . The trae pairing gives rise to a Galois equi-variant perfet pairing ad0 V 
k (ad0 V )(1)! k(1):If m denotes the maximal ideal of RDV;O, then there is a natural injetive map fromthe k-dual of m=(�;m2) to H1(Q`; ad0 V ). Using the trae pairing and a k-linear5



analogue of loal Poitou-Tate duality we get a surjetive mapH1(Q`; (ad0 V )(1))!m=(�;m2). We will denote the kernel of this map by H1D(Q`; ad0 V (1)). We willlet H1S;D(Q; (ad0 V )(1)) denote those lasses in H1(Q; (ad0 V )(1)) whih loalizetrivially at all primes in S, to an element of H1D(Q`; (ad0 V )(1)) at `, and to anelement of H1(Fp; ((ad0 V )(1))Ip) at all primes p 62 S [ f`g.Observe that for p 62 S[f`g with �(Ip) not of order `, the ondition �(Ip) �! �(Ip)for a deformation � of � to k[�℄ with det � = det � is equivalent to the splitting ofthe extension as a k[Ip℄-module. To see this, let � be suh a deformation of �, so�(g) = (1 + �(g))�(g) for g 2 Ip, with the oyle  representing an element ofH1(Ip; ad0 �). We need to hek that the ohomology lass of  is zero. Supposethat g; h 2 Ip and �(h) = 1. By our hypothesis on �, we have (h) = 0, and sine(gh) = �(g)(h)�(g)�1+ (g), it follows that (gh) = (g). Thus, we an view  asrepresenting an element of H1(�(Ip); ad0 �), and we must show that this elementis zero. By restrition-ination, H1(�(Ip); ad0 �) �= H1(G; (ad0 �)Iwp ), where Iwp iswild inertia at p and G = �(Ip)=�(Iwp ). Sine G is a �nite disrete quotient of thetame inertia group at p, G is a yli group. Let G(`) denote the `-Sylow subgroupand I(`)p the kernel of the map from Ip onto its maximal `-primary quotient. Byrestrition-ination we an identify  with an element ofH1(G(`); (ad0 �)I(`)p ). SineG(`) is a �nite yli group, the size of this H1 ohomology group is the same asthe size of the analogous H0 group, whih is H0(Ip; ad0 �).Without loss of generality, we may assume H0(Ip; ad0 �) 6= 0 (so G(`) 6= 0 also).After making a �nite extension of salars on k (whih we may do), �jIp is reduibleand is a non-trivial extension of � by itself, where � : Ip ! k� is some ontinuousharater. If � is non-trivial, then the ondutor N(�) of � is divisible by p2. Butif we twist � by a global harater GQ ! k� whose restrition to Ip is ��1 andwhih is unrami�ed at all other primes, then this twist of � has ondutor whihhas the same prime-to-p part as N(�) but has p-part equal to p. By our hypothesison the minimality of the ondutor of �, this is a ontradition. Thus, the aboveharater � must be trivial, so � is a non-trivial extension of 1 by 1. Sine ` 6= p,this fores � to be tame at p. The pro-yliity of tame inertia then fores �(Ip)to have order `, ontrary to hypothesis. Therefore, the original deformation � asa k[Ip℄-module extension lass of � by � must be the trivial extension, as desired.A similar argument (ending with the same analysis of H0(Ip; ad0 �)) proves theanalogue for (O=�n)[�℄-deformations of type (S; �) of a �xed O=�n-deformation of �of type (S; �) (this is needed in the proof of Lemma 1.4.2 below). With this noted,the usual alulations give rise to the following lemma (see for example setion 2of [9℄, espeially Corollary 2.43).Lemma 1.4.1. Suppose that � is aeptable for �jG` . Then RS;DV;O an be topologi-ally generated as an O-algebra bydimkH1S;D(Q; (ad0 V )(1)) +Xp2S dimkH0(Qp; (ad0 V )(1))elements.The proof of this lemma makes essential use of the assumption that � is aept-able for �jG` . More preisely, the aeptability hypothesis enables the loal ontri-bution at ` to `exatly anel' the loal ontribution (of dimH0(R; ad0 �) = 1) at1. 6



Now suppose that we are given a deformation � : GQ ! GL(M) of � of type(S; �) to O. Let �S;D : RS;DV;O ! O, �D : RDV;O ! O and � : RV;O ! O denote theorresponding homomorphisms. We let adM and ad0M denote the representationsof GQ on the endomorphisms and trae-zero endomorphisms ofM respetively. LetH1D(Q`; ad0M 
O K=O) denote the image ofHomO(ker �D=(ker �D)2;K=O) �! HomO(ker �=(ker �)2;K=O)�= H1(Q`; adM 
O K=O):It is easy to see that the image is in fat ontained inH1(Q`; ad0M 
O K=O) � H1(Q`; adM 
O K=O):We letH1S;D(Q; ad0M
OK=O) denote the set of elements ofH1(Q; ad0M
OK=O)whih loalise at ` to an element of H1D(Q`; ad0M 
O K=O) and at eah primep 62 S[f`g to an element ofH1(Fp; (ad0M
OK=O)Ip). Note that for any partiularx 2 H1(Q; ad0M 
O K=O), the onditions at the p 62 S [ f`g are automatiallysatis�ed for all but �nitely many p. Therefore, we an argue by passage to thediret limit from the torsion ases, using the usual alulations to get the followinglemma (see for example setion 2 of [9℄).Lemma 1.4.2. In the above situation we have an isomorphism of O-modulesHomO(ker �S;D=(ker �S;D)2;K=O) �= H1S;D(Q; ad0M 
O K=O):This isomorphism is ompatible with hange in S.Corollary 1.4.3. Suppose that p 62 S [ f`g, let S0 = S [ fpg and let �S0;D denotethe omposite RS0;DV;O ! RS;DV;O ! O. ThenlengthO(ker �S0;D)=(ker �S0;D)2� lengthO(ker �S;D)=(ker �S;D)2 + lengthO(ad0M)(1)Ip=(Frobp � 1)(ad0M)(1)Ip :In this orollary, the lengths involved ould a priori be in�nite, so the inequalityis understood to imply that if the right side is �nite, then so is the left side. In orderto see that the seond term on the right (whih might be in�nite) has the sameardinality as H1(Ip; ad0M 
O K=O)Gp (whih is what arises in the alulation),we just need to observe that ad0M(1) is (via the trae pairing) Cartier dual toad0M 
O K=O and for any �nite disrete Gp-module X with prime-to-p-powerorder n and Cartier dual X�, the Gp=Ip-equivariant pairing (via up produt)H1(Ip; X)�H0(Ip; X�)! H1(Ip; �n) = H1(Ip;Z=nZ) = (Z=nZ)(�1)is a perfet pairing. This follows from [37, Ch I, x3.5, Prop 17, Rem 4℄ and theproof of [37, Ch II, x5, Thm 1℄.2. Loal CalulationsIn this setion, we study loal deformation problems. Consider a ontinuoustwo-dimensional representation � : G` ! GL(V ) over k. Choose a sub�eld F � Q`with �nite degree over Q` and with absolute rami�ation index e = e(F ) � ` � 1.We write A for the valuation ring of F , and IF for the inertia subgroup of GF .A �nite disrete G`-module � : G` ! Aut(M) is alled A-at if there existsa �nite at ommutative group sheme G over A and a GF -module isomorphism�jGF ' G(Q`). In this ase, all subrepresentations and quotient representations are7



also A-at. If instead � is an inverse limit of �nite disrete G`-modules, we say that� is A-at if all �nite disrete quotients of � are A-at.2.1. A-ordinary deformations. Assume that � is reduible and Endk[G`℄ V = k,so � is isomorphi to a non-semisimple representation� ' � a!m �0  b!n�for some a; b 2 k�, m;n 2 Z=(`� 1) with a 6= b or m 6= n (where  x : G` ! k� isthe unique ontinuous unrami�ed harater sending Frob` to x 2 k�). If m 6= n+1or a 6= b, then dimkH1(G`; ( b!n)�1 a!m) = 1, so the non-split ondition impliesthat � is determined up to k[G`℄-module isomorphism by the spei�ation (andordering) of its diagonal haraters. See the disussion above [6, Thm 2.4.4℄ for moredetails on this. In the ase m = n+ 1, we assume � is peu rami��e. This onditionis automatially satis�ed if a 6= b, and it is satis�ed for a unique isomorphism lassof representations in the ase a = b.In this setion, we let F denote the unrami�ed extension of Q`(�`) of degree jk�j(so both diagonal haraters of � are trivial onGF ). We say that a deformationM of� to an objet R of C�O is A-ordinary if its determinant is ��, with � the Teihm�ullerlift of (det �)!�1 : G` ! k�, and there is an exat sequene of R[G`℄-modules0!M (�1) !M !M (0) ! 0with M (�1) and M (0) free of rank one over R, and IF ating via � on M (�1)and trivially on M (0). (Note that the G` ations on M (�1)=mR and M (0)=mR areneessarily via  a!m and  b!n respetively.) Using the riterion in Appendix A,one heks that there is a universal A-ordinary deformation of �, where in the asem = n+1 we also require that the twist of our deformations by ~!�n is Z`-at. Welet RA�ordV;O denote the universal A-ordinary deformation ring, anonially a quotientof RV;O.We shall now de�ne a subspae ofH1(G`; ad0 V ) denotedH1A�ord(G`; ad0 V ). LetW (0) denote the subspae of ad0 V onsisting of those trae-zero endomorphismspreserving the �ltration 0! V (�1) ! V ! V (0) ! 0(i.e., W (0) onsists of matries with lower left entry vanishing), and let W (�1) =Homk(V (0); V (�1)) � W (0) (i.e., the matries vanishing outside of the upper rightentry). There are thus anonial exat sequenes0 �!W (0) �! ad0 V �! Homk(V (�1); V (0)) �! 0; and0 �!W (�1) �!W (0) �! Homk(V (�1); V (�1)) �! 0:We de�ne a subspae C1 of H1(I`;W (�1)) as follows: If m 6= n + 1, we let C1 =H1(I`;W (�1)). If m = n + 1, then W (�1) �= k(1) as k[I`℄-modules and we de�neC1 to be the kernel of the mapH1(I`;W (�1)) �= H1(I`; k(1)) �= (Qun` )� 
 k ! k;where the seond isomorphism is the Kummer map and the last homomorphism isindued by the valuation onQun` . Let C2 denote the image of C1 inH1(I`;W (0)), letC3 denote the preimage of C2 in H1(G`;W (0)), and �nally, let H1A�ord(G`; ad0 V )be the image of C3 under the natural inlusion.8



Theorem 2.1.1. There is a surjetive homomorphism of O-algebrasO[[T ℄℄! RA�ordV;O :Proof. Letting m denote the maximal ideal RA�ordV;O , it suÆes to prove m=(�;m2)is at most one-dimensional over k. This is done by heking that the image ofHomk(m=(�;m2); k) in H1(G`; adV ) is ontained in H1A�ord(G`; ad0 V ), and thenomputing the dimension of this subspae. See the proof of [46, Prop 1.9(iii)℄ forthe ase m 6= n+1 (reall that �(G`) has trivial entralizer) and see [9, 2.4℄ for thease m = n+ 1 . �Now suppose that � : G` ! GL2(O0) is a deformation of � of type � , with� = ~!i � ~!j for some i and j. In this ase there is an `-divisible group � over Awith an ation of O0 suh that �jGF is isomorphi to the representation de�ned bythe ation of O0[GF ℄ on the Tate module of �:M = proj lim�[`n℄(Q`):The anonial onneted-�etale sequene for � gives rise to an exat sequene0!M0 !M !M�et ! 0of free O0-modules with an ation of GF .Lemma 2.1.2. The O0-modules M0 and M�et are eah free of rank one, and IFats via � on M0.Proof. First observe that it suÆes to prove that M�et 6= 0, for IF ats trivially onM�et and det �jIF = �.Suppose now that M�et = 0, so �[`℄ is onneted. Sine V �= M=�M has anonzero element �xed by GF , the same is true of(M=`M)[�℄ � �[`℄(Q`):Therefore there is a nontrivial map�`;F = (Z=`Z)=F ! �[`℄=F ! �[`℄:Sine �[`℄ is onneted and e = `�1, the shemati losure of the image is isomorphito �`;A. It follows that the Cartier dual of �[`℄ is not onneted.Now let �D denote the dual `-divisible group, and MD its Tate module. AsO0[GF ℄-modules, we haveMD �= HomZ`(M;Z`(1)) �= HomO0(M;O0(1))(the �rst isomorphism is anonial, the seond depends on a hoie of generator forthe di�erent of O0). We have just proved that �D[`℄ is not onneted, soMD;�et 6= 0.The lemma follows on observing that the �rst paragraph of the proof now appliesto MD, showing that IF ats via � on MD;0 6= 0. �We an now dedue the following from Theorem 2.1.1.Corollary 2.1.3. Suppose that � is reduible with Endk[G`℄ V = k. If � admitsa lifting of type � : I` ! GL(D) (i.e., if RDV;O 6= 0) with � �= ~!i � ~!j , then � isaeptable for �. 9



Proof. Let p be a prime ideal of RV;O of type � , so p is the kernel of a homomorphismRV;O ! O0 suh that the assoiated deformation to O0 is of type � . The lemma(along with [16, Prop 8.2℄ in ase m = n+1) shows this deformation is A-ordinary,so the map RV;O ! O0 fators through RA�ordV;O . Therefore the kernel of the mapRV;O ! RA�ordV;Ois ontained in the intersetion of all prime ideals p of type � . It follows that RDV;Ois a quotient of RA�ordV;O , hene a quotient of O[[T ℄℄. �2.2. A-at deformations. Now we return to the ase of arbitrary F with e � `�1.We no longer assume that � is reduible. We assume that V is A-at, with Gonneted and having onneted dual. Under these onditions, G is the unique �niteat A-group sheme with generi �ber isomorphi (as a GF -module) to �jGF , withG determined up to unique isomorphism (see [6, x2.1℄ for details; the onnetednessonditions ensure uniqueness when e = `� 1).LetM denote the (ontravariant) Dieudonn�e module of the losed �ber of G. Weassume that the anonial sequene of groups0!M=VM F!M =M=`M !M=FM ! 0is exat, where F and V denote the Frobenius and Vershiebung operators respe-tively. This exatness ondition is automatially satis�ed when G ' �[`℄ for �=A an`-divisible group, and so is an extremely natural ondition; also, it is needed in theresults we will require from [6℄ below.We now give the omplete list of isomorphism lasses of representations � sat-isfying the above onditions. (See Corollary 2.2.3 and Theorem 2.4.4 of [6℄.) Theirreduible � whih arise are absolutely irreduible and are exatly those ontinuous� : G` ! GL2(k) satisfying �jI` 
k �k ' !m2 � !`m2 , with em � e mod `2 � 1. Thereduible � whih arise an be written as non-semisimple representations� ' � a!m �0  b!n�for a; b 2 k�, m;n 2 Z=(` � 1) . The preise possibilities are as follows. Theremust exist an integer j satisfying 1 � j � e � 1, en � j mod ` � 1, ejj(` + 1) andm = n + 1 � j(` + 1)=e mod ` � 1. These onditions imply e6 j(` � 1), m 6= n, andfor ` � �1 mod 4 they also imply m 6= n + 1. For ` � �1 mod 4, the unique (upto isomorphism) non-split extensions of  b!n by  a!m for a; b 2 k� and n andm as above are exatly the � whih arise. For ` � 1 mod 4, we get the same list,exept that the ases with m = n + 1 (whih our preisely when e = (` + 1)=2,n = (` � 1)=2) and a = b are given by the unrami�ed k-twists the (unique up toisomorphism) non-split F`-representation of the form!(`�1)=2 
 �! �0 1�for whih � is peu-rami��e.The property of being A-at is losed under taking submodules, quotients and�nite produts, and sine Endk[G`℄ V = k for the representations listed above, thereis an assoiated universal A-at deformation ring RA�atV;O whih is a quotient ofRV;O. Consider also the �xed determinant harater � : G` ! O� of the form ��,10



with � the Teihm�uller lift of (det �)!�1 : G` ! k�. There is a universal deforma-tion of � whih is A-at with determinant �, and the universal deformation ring isnaturally a quotient of RA�atV;O whih we denote RA�at;�V;O . The main deformation-theoreti result we need in the loal theory is provided by Theorems 4.1.1 and 4.1.2of [6℄.Theorem 2.2.1. There are O-algebra isomorphismsRA�atV;O ' O[[T1; T2℄℄ and RA�at;�V;O ' O[[T ℄℄:Corollary 2.2.2. If � admits a lifting of type � : I` ! GL(D) (i.e., if RDV;O 6= 0)and � is trivial on the inertia group of F , then � is aeptable for �.Proof. Let p be a prime ideal of RV;O of type � , so p is the kernel of a homomorphismRV;O ! O0 suh that the assoiated deformation to O0 is of type � . Replaing O byO0 without loss of generality, the determinant � of this deformation is O�-valued,so our map RV;O ! O fators through RA�at;�V;O . Therefore the kernel of the mapRV;O ! RA�at;�V;Ois ontained in the intersetion of all prime ideals p of type � . It follows that RDV;Ois a quotient of RA�at;�V;O , whih, by the preeding theorem, is isomorphi to O[[T ℄℄.�2.3. Twisted A-at deformations. We now onsider a variant of the A-at de-formation problem. We still �x a �nite extension F=Q` with e(F ) � `�1 and studyertain deformations of a given � : G` ! GL2(k). However, instead of requiring�jGF to arise as the generi �ber of a �nite at A-group sheme, we �x a (rami�ed)quadrati harater  on GF and require that �jGF 
  is the generi �ber of a �-nite at A-group sheme. Moreover, we impose the same onnetedness/unipoteneonditions and the same exatness hypothesis on Dieudonn�e modules as above, andwe study those deformations of � whose  -twist is A-at (in the same sense asabove). In ontrast to the (untwisted) A-at setting, the ase ej(` � 1) an nowour, and we shall atually restrit our attention to this ase. In x4.2 of [6℄, it isexplained how the methods of [6℄ arry over to this setting. In partiular, under theabove hypotheses, Endk[G`℄ V = k, so there is a universal deformation ring RV;O for�. The property of the  -twist being A-at is preserved under taking submodules,quotients and �nite produts, so there is an assoiated quotient of RV;O, whih wedenote RA� 
atV;O . We an also onsider the quotient RA� 
at;�V;O representing suhdeformations with �xed determinant � = ��. Theorem 4.2.1 of [6℄ then gives:Theorem 2.3.1. Under the above hypotheses, there are O-algebra isomorphismsRA� 
atV;O ' O[[T1; T2℄℄ and RA� 
at;�V;O ' O[[T ℄℄:Corollary 2.3.2. Suppose that e(F )j(`� 1),  is a quadrati harater of GF and�
 is trivial on the inertia group of F . If � admits a lifting of type � : I` ! GL(D)(i.e., if RDV;O(�) 6= 0) and � 
  is A-at and satis�es the above onnetedness,unipotene and Dieudonn�e module hypotheses, then � is aeptable for �.11



3. Some Representations of Finite Groups3.1. Representations of GL2(Fp). Let us reall the lassi�ation of irreduible�nite-dimensional representations of GL2(Fp) over an algebraially losed �eld F ofharateristi zero. Any suh representation is isomorphi to one of the following,where we have �xed an embedding i : Fp2 ! M2(Fp) orresponding to a hoie ofFp-basis of Fp2 .� For any harater � : F�p ! F�, the representation � Æ det.� For any harater � : F�p ! F�, the representation sp� = sp 
 (� Ædet), where sp is the representation of GL2(Fp) on the spae of funtionsP1(Fp)! F with average value zero (with g 2 GL2(Fp) ating on a fun-tion through the usual ation of g�1 on P1(Fp)).� For any pair of haraters �1 6= �2 : F�p ! F�, the representation I(�1; �2)on the spae of funtions f : GL2(Fp)! F whih satisfyf �� a1 b0 a2 � g� = �1(a1)�2(a2)f(g);where g 2 GL2(Fp) ats on f through right multipliation of g on GL2(Fp).This representation is isomorphi to the representation indued from the fol-lowing harater on the subgroup of upper-triangular matries in GL2(Fp):� a1 b0 a2 � 7! �1(a1)�2(a2):� For any harater � : F�p2 ! F� with � 6= �p, a representation �(�) ofdimension p� 1 whih is haraterized by�(�)
 sp ' IndGL2(Fp)F�p2 �:The only isomorphisms between these representations are I(�1; �2) �= I(�2; �1) and�(�) �= �(�p). For onveniene, we inlude the harater table of GL2(Fp):
RepresentationConjugaylass of: � Æ det sp� I(�1; �2) �(�)� a 00 a � �(a)2 p�(a)2 (p+ 1)�1(a)�2(a) (p� 1)�(a)� a 10 a � �(a)2 0 �1(a)�2(a) ��(a)� a 00 b � 62 F�p �(ab) �(ab) �1(a)�2(b) + �1(b)�2(a) 0i() 62 F�p �(p+1) ��(p+1) 0 ��()� �(p)We reall also the lassi�ation of absolutely irreduible �nite-dimensional rep-resentations of GL2(F`) in harateristi `. We will let �n denote the naturalrepresentation of GL2(F`) on Symmn(F2̀) for eah n 2 Z�0. The semsimpliity of�n follows from that of �1, and for n � `�1 the representation �n is absolutely irre-duible (f. [8, Example 17.17℄). For m 2 Z=(`� 1)Z and 0 � n � `� 1, we will let12



�n;m denote �n 
 detm. These representations �n;m are mutually non-isomorphiand exhaust the isomorphism lasses of absolutely irreduible �nite-dimensionalrepresentations of GL2(F`) in harateristi `. The Brauer harater of �n;m isgiven by: � a 00 a � 7! (n+ 1)~a2m+n;� a 00 b � 62 F�̀ 7! ~am~bm(~an+1 � ~bn+1)=(~a� ~b);
i() 62 F�̀ 7! ~m(`+1)(~(n+1)` � ~n+1)=(~` � ~);where ~ indiates Teihm�uller lift. In fat, sine the �n;m are de�ned over F`, anyirreduible �nite-dimensional representation of GL2(F`) over a �eld k of hara-teristi ` is isomorphi to some �n;m 
F` k and so is absolutely irreduible. UsingBrauer haraters, one �nds:Lemma 3.1.1. Let L be a �nite free O-module with an ation of GL2(F`) suhthat V = L
O Q` is irreduible.(1) If V �= � Æ det with �(a) = ~am, then L
O k �= �0;m.(2) If V �= sp� with �(a) = ~am, then L
O k �= �`�1;m.(3) If V �= I(�1; �2) with �i(a) = ~ami (for distint mi 2 Z=(` � 1)Z), thenL
Ok has two Jordan-H�older subquotients: �fm1�m2g;m2 and �fm2�m1g;m1 ;where 0 < fmg < `� 1 and fmg � m mod `� 1.(4) If V �= �(�) with �() = ~i+(`+1)j where 1 � i � ` and j 2 Z=(`�1)Z, thenL
Ok has one or two Jordan-H�older subquotients: �i�2;1+j and �`�1�i;i+j.Both our unless i = 1 (when only the seond one ours) or i = ` (whenonly the �rst ours), and in either of these exeptional ases L 
O k �=�`�2;;1+j.3.2. Representations of GL2(Z=pnZ). We shall also need to onsider ertainrepresentations of GL2(Z=pnZ) for n > 1 whih generalize the representations �(�)for n = 1. Let � denote Frobp on A =W (Fp2), hoose an isomorphismM2(Zp) �= EndZp A = A�A�;and let $n denote the projetion GL(A)! G = GL2(Z=pnZ). Let m = [n=2℄ � 1and de�ne subgroups N � H of G as follows:N = $n �fx+ y� jx 2 1 + pnA; y 2 pn�mA g�H = $n �fx+ y� jx 2 A�; y 2 pmA g� :Thus [N : 1℄ = p2m and [G : H℄ = �(p2m). Note that N is normal in H and Hontains the enter of G.Again let F denote an algebraially losed �eld of harateristi 0. Suppose that� : A� ! F� is a harater of ondutor pn. We assume also that �=(� Æ �) hasondutor pn (or equivalently, no twist of � by a harater fatoring through thenorm A� ! Z�p has ondutor less than pn; see [24, x3.2℄). Sine the quotientgroup Fp2=Fp is of order p, this latter ondition implies that for any x 2 A� withx 6� x� mod pA, (�=� Æ�)(1+ pn�1x) 6= 1. If n is even, we de�ne a harater �� of13



H=N by ��(x+ y�) = �(x). If n is odd, we let �� denote the unique p-dimensionalrepresentation of H=N whose harater satis�estr��(x+ y�) = 8<: p�(x); if y � 0 mod pm+1A = pn�mA and x � x� mod pA;��(x); if y � 0 mod pm+1A = pn�mA and x 6� x� mod pA;0; if x+ y� is not onjugate to an element as above.Note that sine the above lass funtion satis�es htr��; tr��iH=N = 1, the existeneof suh a representation an be proved using Brauer's riterion [38, x11.1℄, and itis absolutely irreduible. Regarding �� as a representation of H, let �(�) denotethe �(pn)-dimensional representation IndGH ��. The isomorphism lass of �(�) isindependent of the hoie of isomorphism M2(Zp) �= EndZp A, sine any two suhisomorphisms di�er by onjugation by an element of GL2(Zp). So far, the onlyondutor hypothesis we have used is that � has ondutor dividing pn.Lemma 3.2.1. Suppose that n � 1 and �1 and �2 are a pair of haraters ofA� ! Q�̀ as above. Suppose that Li for i = 1; 2, is a free O-module with an ationof G = GL2(Z=pnZ) suh that Li 
O Q` is isomorphi to �(�i). Let B denotethe subgroup of G onsisting of matries whih mod p are upper triangular, and letC = A� \B = fx 2 A�jx � x� mod pg.(1) The restritions �(�i)jB are irreduible,(2) �(�1) ' �(�2), �2 2 f�1; �1 Æ � g;(3) �(�1)jB ' �(�2)jB , �2jC 2 f�1jC ; �1 Æ �jC g;(4) if p(p� 1) is not divisible by `, then Li 
O k is absolutely irreduible,(5) if �1 � �2 mod �, then L1 
O k and L2 
O k have isomorphi semisimpli-�ations.Proof. The seond assertion is proved by omputing h�(�1);�(�2)iG and showingthat this equals 1 if �2 = �1 or if �2 = �1 Æ�, and equals 0 otherwise. This uses thehypotheses on ondutors, as we now explain. Using Frobenius reiproity twieand [38, x7.3℄, we get h�(�1);�(�2)iG = Xg2Xh�g�1 ; ��2iHg ;where X is a set of double oset representatives for HnG=H, Hg = H \ gHg�1,and �g�1(z) = ��1(g�1zg). Note that 1 and � represent two distint double osets,and H� = �H, so H� = H. By omputing onjugay lasses in H=N and treatingseparately the ases where n is even or odd, we ompute thath��1 ; ��2iH = h��1 ; ��2iH=N = h�1; �2iA� :Sine ��� = ��Æ� and � 6= � Æ � for our haraters � = �i, the sum of the terms forg = 1 and g = � is 1 if �2 2 f�1; �1 Æ �g, and is 0 otherwise.For g 2 X not equivalent to 1 or �, we laim that h��1 ; ��2iHg = 0. It suÆesto onstrut h 2 H \ gNg�1 of the form h = 1+ pn�1(t� t�)+ pn�ms� for t 2 A�with t 6� t� mod pA and s 2 A, beause then on the subgroup of Hg generated byh, �g�1 is a diret sum of opies of the trivial representation (sine g�1hg 2 N) and��2 is a diret sum of opies of a non-trivial harater (the number of opies being1 when n is even and p when n is odd). This non-triviality follows from the fatthat on the subgroup in H=N generated by h, ��2 is a diret sum of opies of the1-dimensional representation whih sends h to�2(1 + pn�1(t� t�)) = (�2=�2 Æ �)(1 + pn�1t) 6= 1:14



Sine � and H normalize N , we may multiply g on the right by � or an element ofH without hanging gNg�1, and hene without loss of generality.To onstrut h, we write g = x+ y� and �rst multiply by � if neessary so thatx is not divisible by p and then multiply by x�1 2 H to get a representative ofthe form g = 1 + pru�, with u 6� 0 mod pA and r < m. Note that for r = 0, theinvertibility of 1+u� fores uu� 6� 1 mod pZp, beause det(x+y�) = Nx�Ny for allx; y 2 A, where N : A! Zp is the norm map. Now de�ne h = g(1+pn�r�1v�)g�1,where v 2 A� is hosen so that uv� 6� vu� mod pA (in whih ase we an taket = uv� when r 6= 0 and t = uv�=(1 � uu�) if r = 0). For the �rst and thirdassertions, after hanging the isomorphism M2(Zp) �= EndZp(A) we an supposethat � 2 B. Thus, for g 2 B, g 2 H \ B if and only if g 2 H and g 2 (H \B)� ifand only if g 2 H�. In partiular, if g 62 (H \B)[ (H \B)� then we an onstrutthe h as above and this also lies in B sine h � 1 mod p. Sine G = BH,�(�)jB �= IndBH\B(��jH\B):We an now run through the exat same alulation as before with B and H \ Breplaing G and H respetively. This settles the �rst and third assertions (notethat �1jC 6= �1 Æ �jC beause �1=�1 Æ � has ondutor pn and n � 2).If ` doesn't divide p(p � 1), so #B is not divisible by `, then the redutionsLi 
O k are also absolutely irreduible by [38, x15.5℄. The last assertion followssine the two representations have the same Brauer harater. �3.3. Duality. Let K, O, � and k be as above, and let O0 denote the valuation ringof K 0 = K(�0), where �02 = �. Suppose that V is a K-vetor spae with an ationof GL2(Z=pnZ) suh that V 
K Q` is one of the representations onsidered above,i.e., that n = 1 and V is absolutely irreduible, or that n > 1 and V 
K Q` isisomorphi to �(�) for some harater � : A� ! Q�̀ with ondutor pn suh that�=� Æ � also has ondutor pn. In eah ase, there is a nondegenerate pairing ( ; )on V suh that (gu; gv) =  (det g)(u; v);where  : (Z=pnZ)� ! K� is the entral harater of the representation (note that neessarily takes values in K sine V is absolutely irreduible). Equivalently,we have an isomorphism of representation spaes V ' V � 
 ( Æ det) in all ases.For n = 1, this is lear from the harater table, and for �(�) with n > 1, thisfollows from the analogous assertion for ��. More preisely, using the fat thatdet(x + y�) = xx� 2 Z�p for x + y� 2 H with y � 0 mod pm+1A for odd n, oneheks that �� �= ���Æ� 
 ( Æ det)jH, where  = �j(Z=pnZ)� (and then indut up toG, using that �(�) = �(� Æ �)).We will need the following lemma.Lemma 3.3.1. Suppose G is a �nite group whih ats absolutely irreduibly on a�nite dimensional K-vetor spae V . Let ( ; ) be a non-degenerate pairing on V suhthat (gu; gv) =  (g)(u; v) for some harater  : G! K�. Let V 0 = V 
KK(�1=2).Then there is a G-invariant O0-lattie L0 � V 0 whih is self-dual for ( ; ).Proof. First note that by Shur's lemma, the pairing is symmetri or alternating.Choose a G-invariant lattie L1 in V whih ontains its dual lattie L?1 . Then ( ; )indues a perfet pairing L1=L?1 � L1=L?1 ! K=O. Let X be a maximal isotropiG-submodule of L1=L?1 and replae L1 by L2, the preimage of X?. Using the15



maximality of X, one sees that L2 � L?2 � �L2. It is then easy to hek thatL0 = L?2 � �1=2L2 will suÆe. �4. Galois representations for modular forms.4.1. `-adi representations assoiated to modular forms. Now let us reallsome fats about the `-adi representations attahed to ertain automorphi repre-sentations of GL2(A), where A denotes the adele ring of Q. Reall that we have�xed embeddings of Q into C and into Qp for all p. Suppose that � �= 
0v�v is auspidal automorphi representation of GL2(A) suh that �1 is a lowest disreteseries representation of GL2(C) with trivial entral harater. Reall that the setof suh representations � is in one-to-one orrespondene with the set of weight twonewforms. The theory of Eihler and Shimura assoiates a ontinuous irreduibletwo-dimensional representation �� : GQ ! GL(V�)over Q` to � whih is haraterized as follows: For any prime p 6= ` suh that �p isunrami�ed, �� is unrami�ed at p and ��(Frobp) has harateristi polynomialX2 � tpX + psp;where tp denotes the eigenvalue of the Heke operatorTp = �GL2(Zp)� p 00 1 �GL2(Zp)�on �GL2(Zp)p , and sp denotes that ofSp = �GL2(Zp)� p 00 p �GL2(Zp)� :Let S(�) denote the set of primes p suh that �p is rami�ed, and let S be any�nite set of primes. Then the set of tp for p 62 S [ S(�) generate a number �eldover whih � is de�ned, and �� is de�ned over the losure of this �eld inside ofQ` (some �nite extension of Q`). If � and �0 are suh that the orrespondingeigenvalues tp and t0p oinide for all p 62 S [ S(�) [ S(�0), then in fat � = �0.For any automorphism � in G`, there is an automorphi representation denoted ��suh that ��� ' ��� .For any prime p, the loal Langlands orrespondene assoiates to �p a ertainontinuous semi-simple two-dimensional representation WD(�p) : Wp ! GL(D�p)over Q with disrete topology. Our onvention here is that WD(�p) is the restri-tion to Wp of �(�p) 
 j j�1, where �(�p) is as in [3℄ and we have identi�ed Q�pwith W abp by the Artin map (whih, with our onventions, sends p to a preimageof Frobp 2 Wp=Ip). Thus � 7! WD(�) establishes a bijetion between (a) iso-morphism lasses of irreduible admissible in�nite-dimensional representations ofGL2(Qp) de�ned over Q, and (b) isomorphism lasses of ontinuous semi-simplerepresentations Wp ! GL2(Q). The bijetion has the following properties:� If � is a ontinuous haraterQ�p ! Q�, thenWD(�
�Ædet) �=WD(�)
�.� The determinant of WD(�) is ���, where �� is the entral harater of �.16



A theorem of Carayol ([3, Thm. A℄, generalizing results of Langlands and Deligne)shows that Q` 
QWD(�p) �= (��jWp)ssfor p 6= `. If �` is not speial, then ��jG` is Barsotti-Tate over any �nite extensionF of Q` suh that WD(�`)jIF is trivial andQ` 
QWD(�`) �=WD(��jG`):For a proof of this last isomorphism, see Appendix B (note also that the isomor-phism of representations follows from the main theorem of [34℄).4.2. The loal Langlands orrespondene. We shall need to reall some prop-erties of the orrespondene � $ WD(�). Before doing so, we de�ne, for eahn � 0, open subgroups U0(pn) � U`(pn) � U1(pn) � U(pn)of GL2(Zp) as follows. We set� U0(pn) = $�1n �� � �0 � ��;� U`(pn) = $�1n �� � �0 a � j a 2 (Z=pnZ)� has `-power order�;� U1(pn) = $�1n �� � �0 1 ��;� U(pn) = ker$n;where$n denote the natural projetion GL2(Zp)! GL2(Z=pnZ). For V = U0(pn),U`(pn) or U1(pn) with n � 1, we let Up denote the Heke operator V � p 00 1 �Von �V . If V and V 0 are two suh subgroups with V 0 � V , then the operatorsdenoted Up are ompatible with the natural inlusion �V ! �V 0 .Lemma 4.2.1. There is an integer  = (�) � 0 suh thatdim�U1(pm) = maxf0;m� + 1gfor all m � 0.(1) If  = 0 and n > 0, then the harateristi polynomial of Up on �U0(pn) =�U1(pn) is Xn�1(X2 � tpX + psp), where tp (respetively, sp) is the eigen-value of Tp (respetively, Sp) on �GL2(Zp)p .(2) If  > 0 and n > 0, then the harateristi polynomial of Up on �U1(p+n)is Xn(X � up), where up is the eigenvalue of Up on �U1(p).With the above notation, we have the following well-known properties of theorrespondene �$WD(�).Lemma 4.2.2. (1) Suppose that  = 0. Then WD(�) is unrami�ed and theharateristi polynomial of Frobp on WD(�) is X2 � tpX + psp.(2) Suppose that  = 1. Let � denote the harater of Z�p de�ned by the ationof F�p �= U0(p)=U1(p) on �U1(p). Then WD(�)jIp �= 1 � � Æ �p;1. If � istrivial, then WD(�) �= �� �j j�1 where � is unrami�ed and �(Frobp) = up.If � is not trivial, then Frobp ats via up on WD(�)Ip.17



(3) Suppose that  > 1. Then  is the ondutor of WD(�). Moreover up 6= 0if and only if WD(�)Ip 6= 0, in whih ase Frobp ats via up on WD(�)Ip .Note that the only ase where (�) is not the ondutor of WD(�) is when(�) = 1 and the entral harater of � is unrami�ed. We refer to suh � as un-rami�ed speial representations. We let e(�) = 1 if WD(�) is unrami�ed speial,and e(�) = dimWD(�)Ip otherwise. In general, if � is an automorphi represen-tation as above and p 6= `, then dim �Ip� = e(�p).Corollary 4.2.3. The harateristi polynomial of Up on �U1(p(�p)+e(�p))p is of theform xf(x) where f(x) has degree e(�) and roots whih are `-adi units.We also have the following relationship between WD(�) and the ation ofGL2(Z=pnZ) �= GL2(Zp)=U(pn) on �U(pn).Lemma 4.2.4. (1) Suppose that � : F�p ! Q�. If hsp���Ædet;�U(p)iGL2(Fp) 6=0, then WD(�)jIp �= � Æ �p;1 � � Æ �p;1. Conversely if WD(�)jIp �=� Æ �p;1 � � Æ �p;1, then either �U(p) �= sp� � � Æ det and � is the twistof an unrami�ed representation, or �U(p) �= sp� and � is speial.(2) Suppose that �1 6= �2 : F�p ! Q�. If hI(�1; �2);�U(p)iGL2(Fp) 6= 0, thenWD(�)jIp �= (�1 Æ �p;1) � (�2 Æ �p;1). Conversely if WD(�)jIp �= (�1 Æ�p;1)� (�2 Æ �p;1), then �U(p) �= I(�1; �2).(3) Suppose that � : A� =W (Fp2)� ! Q� is as in x3.2 with ondutor pnA. Ifh�(�);�U(pn)iGL2(Z=pnZ) 6= 0, thenWD(�)jIp �= (�Æ�p;2)�(�ÆFrobpÆ�p;2).Conversely ifWD(�)jIp �= (�Æ�p;2)�(�ÆFrobpÆ�p;2), then �U(pn) �= �(�).These assertions follow from expliit desriptions of the loal Langlands orre-spondene. The �rst two parts an already be dedued from the properties listedabove, together with the lassi�ation of representations of GL2(Fp). For the thirdpart, see [24, x3℄. 5. Heke Algebras and Modules5.1. De�nition of Heke algebras. We use the notation of x1.3. In partiular,� : GQ ! GL(V )is absolutely irreduible, � is an `-type strongly aeptable for �jG` and S is a �niteset of primes not ontaining `. We suppose from now on that � is modular, meaningthere exist an automorphi representation as in x4 and a �nite extension K 0 of Ksuh that �� �= Q` 
O0 � for some deformation � of � to O0. We let NS denote theset of � suh that this holds for some � of type (S; �). We shall write RS for theuniversal deformation ring of type (S; �), and �S for the universal deformation.Let S(�) denote the set of primes p suh that p = ` or � is rami�ed at p. LetT (�) denote the set of primes p suh that p � �1 mod `, �jGp is irreduible and�jIp is reduible. We let ~TS denote the polynomial algebra over O generated bythe variables Tp and Sp for p 62 S [ S(�). We de�ne the Heke algebra TS as theimage of the O-algebra homomorphism~TS ! Y�2NSQ`;18



sending Tp 7! tp and Sp 7! sp in eah omponent. We let IS denote the kernel of~TS ! TS . We also let ~T0S denote the polynomial algebra over ~TS generated bythe variables Up for p 2 S, and let I 0S denote the ideal generated by IS and the setof Up for p 2 S.For eah prime p we will de�ne open subgroups VS;p, normal in US;p � GL2(Zp),an element wS;p 2 GL2(Qp) and a �nite-dimensional irreduible representation�S;p of US;p=VS;p over Q. For p 6= `, let p denote the ondutor of �jGp andep = dimk �Ip . If p 2 T (�), then p is even and we an hoose a harater �p :W (Fp2)� ! Q� of order prime to ` whose redution �p satis�es�jIp 
k F` �= �p Æ �p;2 � �p Æ Frobp Æ �p;2:� If p 62 S[T (�)[f`g then US;p = VS;p = U`(pp), wS;p = � 0 �1pp 0 � and�S;p = 1.� If p 2 S � T (�) then US;p = VS;p = U`(pp+ep), wS;p = � 0 �1pp+ep 0 �
and �S;p = 1.� If p 2 T (�) � S then US;p = GL2(Zp), VS;p = U(pp=2), wS;p = 1 and�S;p = �(�p).� If p 2 T (�) \ S then US;p = U0(p), VS;p = U(pp=2), wS;p = 1 and �S;p =�(�p)jUS;p=VS;p .� If p = `, then US;p = GL2(Z`), VS;p = U(`), wS;p = 1 and �S;p is8><>: � Æ det; if � �= � Æ !1 � � Æ !1 for some � : F�̀ ! Q�;I(�1; �2); if � �= �1 Æ !1 � �2 Æ !1 with �1 6= �2 : F�̀ ! Q�;�(�); if � �= � Æ !2 � �` Æ !2 with � 6= �` : F�̀2 ! Q�.We will set US = Qp US;p, and VS = Qp VS;p, wS = Qp wS;p and �S = 
p�S;p.We have de�ned wS for later use. The point of the de�nitions of US and �S is thefollowing lemma.Lemma 5.1.1. Suppose that �� �= Q` 
O0 � for some deformation � of � to thering of integers O0 of a �nite extension K 0 of K. Then � 2 NS if and only ifHomUS (�S; �1) 6= (0):In that ase, the eigenvalues of Up on HomUS (�S ; �1) for eah p 2 S are either 0or `-adi units, and the subspae on whih Up = 0 for all p 2 S is 1-dimensional.Proof. This follows from the results realled in the preeding setion together withthe analysis of possible lifts of �jGp for p 6= ` (see [4℄ and [15℄). In partiular thatanalysis shows that (�p) + e(�p) = p + ep. Moreover if p 62 T (�), p = (�p)and det �jIp has order prime to `, then �jIp satis�es the loal ondition at p in thede�nition of type (S; �). On the other hand, if p 2 T (�), then �U(pp=2)p as a modulefor GL2(Zp) is isomorphi to �(�p p) for some harater  p of `-power order. Notethat in that ase �(�p p)jU0(p) �= �(�p)jU0(p). �19



Corollary 5.1.2. The set NS is �nite, TS is �nitely generated as an O-moduleand the natural map TS 
O Q` ! Y�2NSQ`is an isomorphism.Proof. By the lemma, NS is �nite, from whih it follows thatTS is �nitely generatedover O. For � 2 NS and p 62 S [ S(�), let tp(�) denote the eigenvalue of Tp on�GL2(Zp)p . Choose any � 2 NS . For eah �0 2 NS distint from �, hoose a primep(�0) 62 S [ S(�) [ S(�0) with tp(�0)(�) 6= tp(�0)(�0). The elementY�0 6=�(Tp(�0) 
 1� 1
 tp(�0)(�0)) 2 TS 
O Q`maps to 0 in all omponents exept for the �th one, where it has non-zero image.This proves surjetivity. It now suÆes to show dimK TS 
O K � jNS j. LetK� � Q` denote the sub�eld of �nite degree over Q` whih is generated by thetp(�)'s for p 62 S [ S(�). Under the natural ation of GK � G` on the oeÆient�eld Q`, NS is stable. For � 2 GK , ��� = ��� ' �� if and only if � �xes K�, so theorbit of � under the ation of GK has size equal to [K� : K℄. Thus, if we sum overa set X of representatives for the GK-orbits in NS ,jNS j = X�2X[K� : K℄:
But the image of TS
OK in the �th fator Q` is K�, and using the GK-ation wesee that any element of TS
OK is determined by its image in the K�'s for � 2 X.Thus, dimK TS 
O K � jNS j. �5.2. The universal modular deformation. For eah � in NS , the universalproperty of the deformation ring RS provides an O-algebra homomorphism RS !Q` so that �� is the extension of salars of the universal deformation. The mapRS ! Y�2NSQ`has image TS sine RS is topologially generated by traes. We let �S denote theresulting surjetive O-algebra homomorphismRS ! TS :Note that whenever S � S0, we have a natural ommutative diagram of O-algebrahomomorphisms ~TS0 ! TS0  RS0# # #~TS ! TS  RS ;with all maps surjetive exept ~TS0 ! ~TS whih is injetive.20



5.3. De�nition of Heke modules. It is onvenient to �x an auxiliary primer 62 S(�) suh that no lift of � an be rami�ed at r (see Lemma 2 of [15℄). Thuswe have NS = NS[frg, so TS[frg �= TS . We also assume the �eld K is suÆientlylarge that it ontains all quadrati extensions of some �eld K0 suh that� � is de�ned over k0;� �;;p 
Q Q` is de�ned over K0 for eah p 2 T (�) [ f`g.For eah p 2 T (�)[f`g, we �x a lattieMp as in Lemma 3.3.1 for �;;p and a pairing( ; )p induing an isomorphismMp ! HomO(Mp;O(�p))of OU;;p-modules, where �p =  p Æ det,  p being the entral harater of �;;p.Letting MS denote the model 
p62SMp over O for �S , we have a pairing ( ; )S onMS whih indues an isomorphismMS ! HomO(MS ;O(�S))of OUS-modules, where �S =  S Æ det, where  S = 
p2S p.If U is an open ompat subgroup of GL2(A1) then we will let YU denote themodular urveGL2(Q)n((GL2(A1)=U)� (C�R)) �= GL2(Q)nGL2(A)=UU1;where U1 = O2(R)R�. We let XU denote its ompati�ation obtained by adjoin-ing usps. Reall that XU is not neessarily onneted (its onneted omponentsare in bijetion with Ẑ�= detU), and that XU has a model over Q. Our onventionfor the de�nition of this model is that YU (Q) is in anonial bijetion with theset of equivalene lasses of pairs (E;�), where E is an ellipti urve over Q and� : A �A ��! (proj limnE[n℄) 
Ẑ A. We onsider (E1; �1) � (E2; �2) if there isan isogeny � : E1 ! E2 suh that � Æ �1 = �2 Æ u for some u 2 U . The pointGL2(Q) � (xU; �) orresponds to the ellipti urve C=�� where �� = Z� � Z and� is de�ned by omposing x with the isomorphism obtained using (�; 1) as a basisover Ẑ for proj limnE[n℄.We obtain an admissible GL2(A1)-moduleH = inj limU H1(XU ;Q)where the limit is with respet to the natural maps on ohomology indued byXV ! XU whenever V � U . Then H deomposes as ��(B+� � B�� ) where eahB�� is a model for �. We reover eah H1(XU ;Q) from H as the subspae HU ofU -invariants.We let XS = XVS and onsider H1(XS ;O). We have natural ompatible ationson it of ~T0S , and GS = US=VS . If r is in S, then we de�ne LS to be the TS-moduleHomO[GS ℄(MS ; H1(XS;O))[I 0S ℄:(If I is an ideal in a ring R and M is an R-module, we write M [I℄ for the largestsubmodule of M whose annihilator ontains I.) If r is not in S, then we setLS = LS[frg.Lemma 5.3.1. The (TS 
O K)-module LS 
O K is free of rank two.21



Proof. We may assume r is in S and replae K by Q`. Writing H1(XS;Q`) as(H
QQ`)VS and deomposing H, we obtain an isomorphism of TS
OQ`-modulesLS 
O Q` �=M(B0� 
Q Q`)[IS ℄where B0� is the subspae of HomUS (�S ; B+� � B�� ) killed by Up for all p in S.By Lemma 5.1.1, this spae is two-dimensional whenever � is in NS . The lemmafollows, sine for p not in S [ S(�), the operators Tp and Sp at on B0� as tp andsp, respetively. �There is also a natural ation of GQ on LS ompatible with that of TS . This anbe de�ned, for example, via the isomorphism of HomZ`(H1(XS;Z`);Z`) with the `-adi Tate module of the Jaobian ofXS . Eah � 2 NS gives rise to a homomorphism��;S : TS ! Q` sending Tp 7! tp and Sp 7! sp. The resulting representation of GQon LS 
TS Q`(1) is isomorphi to ��, and we therefore have the following lemma:Lemma 5.3.2. There is an isomorphismLS 
O Q`(1) �= M�2NS V�of representations of GQ over TS 
O Q` �=L�2NS Q`.5.4. The main results. Reall that we are assuming � is as in x1.3 and that it ismodular. We de�ned NS and TS in x5.1, �S in x5.2 and LS in x5.3. We have notyet shown that these objets are non-trivial. We shall dedue the following lemmafrom related results in the literature in setion 6.Proposition 5.4.1. With the above notation and hypotheses, NS 6= ;.Our main result is the following theorem; we give the proof in the rest of thissetion, subjet to some propositions whih are proved in x6.Theorem 5.4.2. With the above hypotheses and notation, the following hold:(1) �S is an isomorphism;(2) TS is a omplete intersetion;(3) LS is free over TS.5.5. Redution to the ase S = ;. Following Wiles [46℄, we shall dedue theresult for arbitrary S from the result for S = ;.For eah p 62 S [ f`g, we de�ne an element �p 2 TS as follows:� If ep = 2, then �p = (p� 1)(T 2p � Sp(1 + p)2).� If ep = 1 and det � is unrami�ed at p, then �p = p2 � 1.� If ep = 1 and det � is rami�ed at p, then �p = p� 1.� If ep = 0 and p 2 T (�) then �p = p+ 1.� If ep = 0 and p 62 T (�) then �p = 1.If � is a �nite set of primes disjoint from S [ f`g, we let �� =Qp2� �p.The key proposition we prove in x6 for the indution step is the following:Proposition 5.5.1. (1) There exists a pairing h ; iS on LS whih indues anisomorphism LS ! HomO(LS ;O)of TS-modules. 22



(2) If S � S0 and ` 62 S0, then there exists a TS0-module homomorphismiS0S : LS ! LS0suh that iS;S0 
O k is injetive andjSS0iS0S LS = �S0�SLSwhere jSS0 is the adjoint of of iS0S with respet to the pairings h ; iS andh ; iS0 .Fix for the moment an element � of N;. Note that if part 1 or 2 of Theorem 5.4.2holds for some K suh that TS is de�ned, then it holds for all suh K, and similarlyfor part 3 provided LS is de�ned. We may therefore assume that K ontains theeigenvalues tp and sp for all p 62 S(�). Let pS denote the kernel of ��;S and JS theannihilator of pS in TS . De�neCS;� = LS=(LS [pS ℄ + LS [JS ℄):This is isomorphi to the okernel of the mapL[pS ℄! HomO(L[pS ℄;O)de�ned by the restrition of h ; iS . Thus CS;� has �nite length over O, and byProposition 5.5.1 we havelengthO CS[fpg;� = lengthO CS;� + 2 � lengthO(O=��;S(�p)):Sine ��;S(�p) is a unit times the determinant of Frobp � 1 on ad0 V�(1)Ip , wean ombine this with Theorem 2.4 of [13℄ and Corollary 1.4.3 to onlude thatTheorem 5.4.2 for all S follows from the speial ase S = ;.5.6. The ase of S = ;. We now turn to the proof of Theorem 5.4.2 in the aseS = ;. We will use the improvement on the method of Taylor and Wiles ([45℄)found by Diamond ([13℄) and Fujiwara ([23℄). We keep the above hypotheses andnotation, but only onsider �nite sets S of primes with the following properties. Ifp 2 S then� p 62 S(�),� p � 1 mod `,� �(Frobp) has distint eigenvalues �1;p and �2;p.One heks as in Lemma 2.44 of [9℄, that for eah p 2 S, the restrition to Gp ofthe universal deformation �S is equivalent to �S1;p � �S2;p for some haraters�Si;p : Gp ! R�S ;where the redution of �Si;p mod the maximal ideal of RS is unrami�ed and sendsFrobp to �i;p for i = 1; 2. The restritions �Si;pjIp are of the form �Si;p Æ !p;1 where!p;1 denotes the mod p ylotomi harater Ip ! (Z=pZ)�. We let �S =Qp2S �pwhere �p denotes the `-Sylow subgroup of (Z=pZ)�. We regard RS as an O[�S ℄-algebra by mapping �S1;p : �p ! R�Sfor eah p 2 S. This makes LS an O[�S ℄-module. We let aS denote the augmen-tation ideal of O[�S ℄. The last key result whose proof we postpone until x6 is thefollowing proposition: 23



Proposition 5.6.1. The O[�S ℄-module LS is free. The map �;;S : LS ! L;indues an isomorphism LS=aSLS ��! L;:We also need the following lemma, whih is proved exatly as Theorem 2.49 of[9℄ using Lemma 1.4.1.Lemma 5.6.2. There exists an integer r � 0 suh that for any integer n > 0, thereexists a �nite set of primes Sn disjoint from S(�) suh that(1) if p 2 Sn then p � 1 mod `n;(2) if p 2 Sn then �(Frobp) has distint eigenvalues;(3) #Sn = r;(4) RSn an be topologially generated by r elements as an O-algebra.We an then apply Theorem 2.1 of [13℄ to omplete the proof of Theorem 5.4.2in the ase S = ;. (See the proof of Theorem 3.1 of [13℄.)6. Cohomology of modular urvesIn this setion we will give the proofs of Propositions 5.4.1, 5.5.1 and 5.6.1.We maintain the notation of the preeding setion. In partiular, we onsider arepresentation � : GQ ! GL2(k) whih is irreduible and modular. Reall that ~TSis the polynomial algebra generated by the operators Tp and Sp for p not in S[S(�).We de�ne mS to be the kernel of the map ~TS ! k de�ned by Tp 7! tr(�(Frobp)),Sp 7! p�1 det(�(Frobp)). We onsider also the polynomial algebra ~T0S over ~TSgenerated by the operators Up for p 2 S, and the maximal ideal m0S generated bymS and the operators Up for p 2 S. Reall that sine � is irreduible, the maximalideals mS and m0S are not Eisenstein. (We say a maximal ideal m of ~TS or ~T0S isEisenstein if there exists an integer N > 0 suh that Tp� 2 2 m and Sp� 1 2 m forall p 2 S [ S(�) with p � 1 mod N ; see [14, Proposition 2℄, for example.)For n � 0, we let Ln denote the SL2(Z)-module Symmn Z2. Reall that if�1(N) � � � �0(N) for some N � 1 and S[S(�) ontains the set of prime divisorsof N , then there is a natural ation of ~TS on H1(�; Ln
M) for any O-module M .(See for example, [43, Chapter 8℄.)6.1. Preliminary Lemmas. The following is a onsequene of the results of Ribetand others (see [11, Corollary 1.2℄).Theorem 6.1.1. Suppose that 0 � n � `� 1 and �jI` is of the form� � !n+1 �0 1 � with � peu rami��e if n = 0, or� � !n+12 00 !(n+1)`2 �.Let N be any integer divisible by the ondutor of �, let � denote the group ofmatries � a b d � 2 �0(N) suh that d mod N has `-power order and let S be aset of primes suh that S [ S(�) ontains the set of prime divisors of N . Then mSontains the annihilator of H1(�; Ln
K), hene is in the support of H1(�; Ln
O)and H1(�; Ln 
 k). 24



Suppose that V is an open ompat subgroup of GL2(A1). We assume thatV is of the form Qp Vp with Vp � GL2(Zp) and that Vr � U1(r2) for some �xedprime r as in x5.3. Suppose that � is a �nite set of primes, and that for eah p in� we are given a �nitely generated O-module Mp with a left ation of Vp whih isontinuous for the disrete topology on Vp. We an then assoiate to the V -moduleM = 
pMp a loally onstant sheafFM = GL2(Q)n(GL2(A)�Mop)=V U1on YV . If r is in S, then we let YS = YUS and FS = F �MS , where �MS denotes theUS-module HomO(MS ;O). (See x5.1 and x5.3 for the de�nitions of US and MS .) Ifr is not in S, then we let YS = YS[frg and FS = FS[frg.If for all p 62 S [ S(�) we have Vp = GL2(Zp) and Vp ats trivially on M , thenthere is a natural ation of ~TS on the ohomology groupsH1 (YV ;FM) and H1(YV ;FM):Standard arguments yield the following useful tehnial result.Lemma 6.1.2. Suppose V , M and S are as above and let m be a non-Eisensteinmaximal ideal of ~TS with �nite residue �eld.(1) The map H1 (YV ;FM)m ! H1(YV ;FM)m is an isomorphism.(2) If M is free over O, then the natural mapH1(YV ;FM)m 
O k ! H1(YV ;FM
Ok)mis an isomorphism.(3) If 0 ! M 0 ! M ! M 00 ! 0 is an exat sequene of O[V ℄-modules, thenthe sequene0! H1(YV ;FM 0)m ! H1(YV ;FM)m ! H1(YV ;FM 00)m ! 0is exat.(4) If V 0 � V and satis�es the hypotheses above for S, thenH1(YV ;FM)m ! H1(YV 0 ;FM)Vmis an isomorphism.(5) If V ats trivially on M , thenH1(XV ;O)m 
OM ! H1(YV ;FM)mis an isomorphism.If in addition we have U1(pn) � Vp � U0(pn) for some n > 0 and Vp atstrivially on M for all p 2 S, then this ation extends naturally to an ation of ~T0S .Furthermore, the lemma holds for m = m0S . In partiular, ~T0S[frg ats onH1 (YS ;FS) and H1(YS ;FS)and the lemma yields natural isomorphismsH1 (YS ;FS)m ! H1(YS ;FS)m ! HomGS (MS ; H1(XS;O))mwhere m = m0S[frg. One an also hek that the natural mapLS = HomGS (MS ; H1(XS;O))[I 0S[frg℄! HomGS (MS ; H1(XS;O))mis an isomorphism, so we onlude: 25



Lemma 6.1.3. There are natural isomorphisms of ~T0S[frg-modulesH1 (YS ;FS)m �= H1(YS ;FS)m �= LSidentifying TS = TS[frg with the loalization at m of the image of ~T0S[frg inEndOH1(YS ;FS) (or EndOH1 (YS ;FS) ).6.2. Proof of Proposition 5.4.1. Suppose for the moment that 0 � n � ` � 1and �jI` is of the form� � !n+1 �0 1 � with � peu rami��e if n = 0, or� � !n+12 00 !(n+1)`2 �.Setting S = T (�) [ frg, we �nd that the group � = SL2(Z) \ US satis�es thehypotheses of Theorem 6.1.1. FurthermoreH1(YS ;FM) �= H1(�; Ln 
 k)as a ~T0S-module where M is the module for US;` = GL2(Z`) de�ned by the ationof GL2(F`) on Hom(Ln; k). Therefore mS is in the support of H1(YS ;FM). Onexamining the list of possible � whih an be onsidered strongly aeptable for �(see the de�nition after Conjeture 1.2.3), we see from Lemma 3.1.1 that M is aonstituent of HomO(MS ; k). It follows from Lemma 6.1.2 that mS is in the supportof H1(YS ;FS), so LS is non-zero and NS is non-empty. Moreover by twisting by apower of the Teihm�uller harater, we see that this holds without the assumptionon �jI` imposed in Theorem 6.1.1.Now hoose an automorphi representation � in NS . Then for eah p 2 T (�),��jIp is neessarily of the form�0p Æ �p;2 � �0p Æ Frobp Æ�p;2for some harater �0p of W (Fp2) suh that �0p = �p. Suppose now that O issuÆiently large that eah representation �(�0p) has a model M 0p over O, and setM 0frg =M` 
O Op2T (�)M 0p:It follows from Lemma 6.1.2 and the last part of Lemma 4.2.4 thatHomO[Gfrg℄(M 0frg; H1(Xfrg;O))mS �= H1(Y;;FM 0frg)mS 6= 0:Finally, sine M 0frg 
O k �= Mfrg 
 k by Lemma 3.2.1, we onlude from Lemma6.1.2 that mS is in the support ofH1(Yfrg;Ffrg) = H1(Y;;F;);hene N; is not empty.6.3. Proof of Proposition 5.5.1. We �rst de�ne the pairings h ; iS on LS indu-ing isomorphisms LS ! HomO(LS ;O)of TS-modules. We may assume r 2 S. We let WS denote the involution of YSde�ned by g 7! (det g)�1gwS , where wS was de�ned in x5.1. There is a naturalisomorphism of sheavesW �SFS ! FS(�S) = FS 
O F�SÆdet;26



where �S = �S jA�\US . (Reall that FS is assoiated to �MS = HomO(MS;O).) TheUS-equivariant perfet pairing hosen in x5.3 gives rise to one on �MS whih de�nesan isomorphism of sheaves FS(�S)! FMS . We thus obtain an isomorphismH1 (YS ;FS) ��! H1 (YS ;W �SFS) ��! H1 (YS ;FMS):The up produt gives rise to a pairingH1 (YS ;FMS)�H1(YS ;FS)! H2 (XS;O) �= O;whih de�nes an isomorphismH1 (YS ;FMS)! HomO(H1(YS ;FS);O):We thus obtain an isomorphismH1 (YS ;FS)! HomO(H1(YS ;FS);O);whih one an hek is ~T0S-linear. Loalizing at m and applying Lemma 6.1.3, weobtain the desired isomorphismLS ! HomO(LS ;O)of ~TS-modules, arising from an alternating pairing h ; iS on LS .Now we suppose p is a prime not in S [ f`g and we de�ne a homomorphismiS0S : LS ! LS0of TS0-modules where S0 = S [ fpg. We use the identity map if p = r, and thenwe an an assume r 2 S. We let �pn = � p�n 00 1 �p. Let ~T(p)S denote thepolynomial algebra over O generated by the variables Tq and Sq for q 62 S0 [ S(�)and Uq for q 2 S. We regard ~T(p)S as a subalgebra of both ~T0S and ~T0S0 , and letm(p)S = m0S \ ~T(p)S = m0S0 \ ~T(p)S .If 0 � n � ep, then g 7! g�pn de�nes a map YS0 ! YS and ��pnFS is anoniallyisomorphi to FS0. We also use �pn to denote the indued ~T(p)S -linear map onohomology H1(YS ;FS)! H1(YS0 ;FS0):Now onsider the mapiS0S : H1(YS ;FS)m(p)S ! H1(YS0 ;FS0)m(p)Sde�ned by� x 7! p�1x� �pTpx+ �p2Spx, if ep = 2;� x 7! p�1x� �pUpx, if ep = 1;� x 7! �1x, if ep = 0.Using Lemma 6.1.2 we an identify H1(YS ;FS)m(p)S with the TS0-module LS . Onethen heks that the image of iS0S is in H1(YS0 ;FS0)m(p)S [Up℄; whih an be identi�edwith the TS0-module LS0 . We thus obtain the desired map iS0S : LS ! LS0 .These are ompatible for varying p in the sense that iS0S[fpg Æ iS[fpgS = iS0S[fqg ÆiS[fqgS if S0 = S [ fp; qg for distint primes p; q 62 S [ f`g. We an thereforeindutively de�ne iS0S : LS ! LS0 if S � S0 and ` 62 S0.27



To omplete the proof of the proposition, we an assume S0 = S [ fpg. Firstonsider the alulation of jSS0iS0S . The assertion holds for p = r sine �r is a unitin TS . We an then assume r 2 S.In the ase ep = 2, one �nds that the adjoint of �pn is the trae mapH1 (YS0 ;FS0)! H1 (YS ;FS)with respet to �p2�n , whih we denote �tp2�n . After loalizing at m(p)S , we anompute the omposites �tpm�pn onH1(XS;O), for example. Finally, we are reduedto the alulation ofd(p;�Tp; Sp)0� T 2p � (p+ 1)Sp pTp p(p+ 1)pTp p(p+ 1) pS�1p Tpp(p+ 1) pS�1p Tp S�2p (T 2p � (p+ 1)Sp)
1A0� p�TpSp

1A
where d is the prime-to-` part of �(p2). The result is �d�p.The ase of ep = 1 is similar, exept that one gets �pUp(p2 � U�pUp) whereU�p = VS;p � 1 00 p �p VS;p. One then uses that

U�pUp = � 1; if �p is unrami�ed speial;p; if �p is prinipal series with ep = 1.Note that this also shows that Up is an automorphism of LS .In the ase ep = 0, one gets jSS0iS0S = p+1 if p 2 T (�) and jSS0iS0S = 1 if p =2 T (�).We now turn to the proof that LS 
O k ! LS0 
O k is injetive. Again we mayassume r 2 S and S0 = S [ fpg for some p 62 S [ f`g.First we treat the ase ep = 0. There is nothing to prove if p 62 T (�), and if p isin T (�) then the assertion is immediate from Lemma 6.1.2.The remaining ases of Proposition 5.5.1 follow from Lemma 6.1.2 and the lemmabelow, the �rst part of whih is essentially due to Ihara [27℄ and the seond toWiles [46℄. For the following lemma, we let V1(N) = Qq U1(qvq(N)), V0(N) =Qq U0(qvq(N)) and V (N) =Qq U(qvq(N)). We also let V1;0(N;N 0) denote V1(N) \V0(N 0) and V1(N;N 0) denote V1(N) \ V (N 0). We also use �p to denote the mapH1(XV ;FM)! H1(XV 0 ;FM) indued on ohomology (by the matrix �p) whenever�pV 0��1p � V and Vp ats trivially on M .Lemma 6.3.1. Suppose that D and N are relatively prime positive integers withN > 3 and p not dividing ND`. Let m = m� where � is a �nite set of primes on-taining those dividing NDp`. Suppose that M is a k[GL2(Z=DZ)℄-module, �nite-dimensional over k.(1) The map H1(XV1(N);FM)2m 1��p�! H1(XV1(Np);FM)mis injetive.(2) If s � 1 then0! H1(XV1(Nps�1);FM)m (��p;1)�! H1(XV1(Nps);FM)2m 1��p�! H1(XV1(Nps+1);FM)mis exat. 28



Proof. We �rst explain the proof of the seond part. Let V = ��1p V1(Nps)�p andL = H1(XV1(N;ps);FM)m. Then using Lemma 6.1.2, we see that we are required tohek the exatness of(0) �! LV1(Nps�1) �! LV � LV1(Nps) �! LV \V1(Nps);where the nontrivial maps are given by x 7! (�x; x) and (x; y) 7! x + y. Thusit suÆes to hek that V1(Nps�1) is generated by V1(Nps) and V , whih is astraightforward alulation.We now turn to the proof of the �rst part of the lemma. By Lemma 6.1.2, itsuÆes to show that if (x; y) is in the kernel ofH1(XV1(N);FM)2 1��p�! H1(XV1;0(N;p);FM)then x restrits to zero in H1(XV ;FM) for some open subgroup V � V1(N). How-ever we an rewrite this map asH1(�1(N);M)2 �! H1(�1(N) \ �0(p);M)with the map indued by 1 � � where � = � p 00 1 � 2 GL2(Z[1=p℄). Thus itsuÆes to show that if (x; y) is in the kernel, then there is a ongruene subgroup� � �1(N) with Resx = 0 in H1(�;M). Let � � SL2(Z[1=p℄) denote the subgroupof elements ongruent to � 1 �0 1 � modulo N . Then � is the amalgam of �1(N)and ��1�1(N)� over �1(N)\ �0(p) (see Serre [39, II.1.4℄). Thus we have an exatsequeneH1(�;M)! H1(�1(N);M)�H1(��1�1(N)�;M)! H1(�1(N) \ �0(p);M):(See [39, II.2.8℄.) Thus it suÆes to show that if x 2 H1(�; �) there is a ongruenesubgroup �0 � � with 0 = Resx 2 H1(�0;M). We may hoose a subgroup �0 of�nite index in � suh that Resx = 0, and sine � has the ongruene subgroupproperty [35℄, �0 will be a ongruene subgroup. �6.4. Proof of Proposition 5.6.1. For the rest of the setion, S will denote a �xedset of primes as in x5.6. We let s denote the ardinality of S. Reall that r is a�xed prime suh that no lift of � an be rami�ed at r. It is onvenient to hooseanother suh prime r0 and a harater  : (Z=r0Z)� ! O� of order greater than 2.For eah prime p, we de�ne open subgroups V1;p � V0;p � GL2(Zp) as follows:� V1;p = V0;p = Ufrg;p if p 62 S [ fr0g, where Ufr;r0g;p was de�ned in x5.1;� V1;p = U1(p) and V0;p = U`(p) if p 2 S;� V1;p = V0;p = U0(r02) if p = r0.We then set V1 = Qp V1;p and V0 = Qp V0;p, so V1 � V0 � Uf;g. We identifyU 0S=U 00;S with �S =Qp2S �p, where �p denotes the `-Sylow subgroup of (Z=pZ)�.Reall that we de�ned a representation �; of U; in x5.1. Now we let � = �; 
  �2r0where  r0 is the harater of U0(r02) ! (Z=r0Z)� gotten by omposing with  . If� is a Dirihlet harater and � is an automorphi representation, we write simply� � � for � 
 (�A Æ det) where �A is the harater of A�=Q�R� orresponding to�. The analogue of Lemma 5.1.1 for V1 and V0 is the following:29



Lemma 6.4.1. Suppose that ��� �= Q` 
O0 � for some deformation � of � to thering of integers O0 of a �nite extension K 0 of K.(1) The spae HomV0(�; �1) is non-zero if and only if � � 2 N;. In that asethe dimension is 3 � 2s.(2) The spae HomV1(�; �1) is non-zero if and only if the following hold:� � �  � is in NS for some harater � unrami�ed outside S;� (�p) � 1 for all p 2 S.In that ase the harater � is unique, and the spae has dimension 3 �2s�dwhere d is the number of primes dividing the ondutor of �.Proof. For part 1, we note that if p 2 S, (�p) � 1 and �p has unrami�ed entralharater, then ��� �1 is unrami�ed at p (using the above desription of the uni-versal deformation, or the analysis of loal lifts in [15℄). So if HomV0(�; �1) is notzero, then (�p) = 0 for eah p 2 S and it follows that HomUfr;r0g(�fr;r0g; (� �  )1)is not zero. Therefore � � 2 Nfr;r0g = N;. To ompute the dimension if � � 2 N;,one uses the lemmas in x4 to hek that
dimHomV0;p(�p; �p) = 8<: 3; if p = r2; if p 2 S1; otherwise.For part 2, we note that if p 2 S, then the entral harater ��p of �p has `-powerorder. We may therefore hoose a �nite order harater � of A� so that �2p = ��1�p .If HomV1(�; �1) is not zero, then neither is HomUS[fr;r0g(�S[fr;r0g; (� �  �)1), so� �  � is in NS[fr;r0g = NS . The uniqueness of � is lear and the dimensionalulation is similar to the one above. �Choose a model M for � over O. For i = 0; 1, we let Li = H1(YVi ;F �M)m where�M = HomO(M;O) and m is the kernel of the map~TS[fr;r0g ! kTp 7!  (p)�1 tr(�(Frobp))Sp 7!  (p)�2p�1 det(�(Frobp)):Lemma 6.1.2 lets us identify Li with HomO[Vi℄(M;H1(XV ;O))m for V � V1\ker�.Lemma 6.4.2. The O-rank of L0 is 3 � 2s#N;. The O-rank of L1 is 3 � 2s#NS.Proof. The �rst assertion follows from Lemma 6.4.1 and the argument of 5.3.1.Simliarly one �nds rankO L1 = X�02N0S dim(HomV1(�; �01));

where N0S is the set of automorphi representations as in part 2 of Lemma 6.4.1.Note that if � 2 NS , then for eah p in S, ��jIp is equivalent to a representation ofthe form �p � ��1p where � has `-power order. It follows that there are 2d twists of� in N0S , where d is the number of primes in S suh that �p is rami�ed. �30



There is also a natural ation �S on L1 ompatible with that of TS[fr;r0g; infat, the ation �p fators through the homomorphismYp2S(Z=pZ)� ! T�S[fr;r0gsending q�1 to the image of Sq for eah prime q 62 S suh that q � 1 mod N(�)r2`.The key lemma for the proof of Proposition 5.6.1 is the following:Lemma 6.4.3. The O[�S ℄-module L1 is free of rank equal to the O-rank of L0.Proof. Sine L0 is isomorphi to L�S1 , it suÆes to prove L1 is free over O[�S ℄.Sine L1 is an O[�S ℄-module summand of H1(YV1 ;F �M), it suÆes to prove thatH1(YV1 ;F �M) is free. Letting �i = GL2(Q) \ Vi, we haveH1(YV1 ;F �M) �= H1(�1; �M)as a module for �S �= �0=�1. Sine �1 and �2 are fundamental groups of onnetednon-ompat Riemann surfaes, they are free groups, so Hi(�1; A) = Hi(�1; A) = 0for i > 1 and any �0-module A. Note also that this holds for i = 0 and A = �M
O ksine  2 is non-trivial. Therefore H1(�1; �M) is torsion-free over O, and it suÆesto prove that Hi(�S ; H1(�1; �M)) = 0 for i > 0 (see [2, VI.8.10℄, for example), andthis is immediate from the Hohshild-Serre spetral sequene. �We now omplete the proof of Proposition 5.6.1. First note that the image of aSin R;;DV;O is trivial, so we have a surjetive map TS=aSTS ! T;. By Corollary 5.1.2,this map is an isomorphism after tensoring over O with Q`, hene after tensoringwith K. It follows that the rank of TS [aS ℄ is the same as that of T;. SettingbS = AnnO[�S ℄ aS , we also see that the rank of TS [bS ℄ is the same as that of thekernel of TS ! T;. Sine iS; (L;) � LS [aS ℄and iS; is injetive with torsion-free okernel (by Lemma 5.5.1), we onlude thatequality holds. Similarly we �nd that LS [bS ℄ = ker j;S . Furthermore, using thesurjetivity of jS; and the formula for j;SiS; , we onlude thatLS=(LS [bS ℄ + LS [aS ℄) ��! L;=#�S(L;):The �rst assertion of Proposition 5.6.1 now follows from Theorem 3 of [13℄, and theseond follows from surjetivity and omparison of ranks.7. Appliations7.1. Basi Results. Combining Theorem 5.4.2 with [12, Thm 5.3℄, we obtain thefollowing result.Theorem 7.1.1. Let K denote a �nite extension of Q` and k its residue �eld.Suppose that � : GQ ! GL2(K) is a ontinuous odd representation rami�ed at only�nitely many primes. Assume its redution, � : GQ ! GL2(k) is irreduible andmodular. Suppose also that ` 6= 2, that �jQ(p(�1)(`�1)=2`) is absolutely irreduible,and that at least one of the following holds:� the entralizer of �(G`) onsists only of salars, � is potentially Barsotti-Tate and the type of WD(�) is strongly aeptable for �jG` ,31



� there are haraters �1 and �2 of G` suh that �1jI` and �2jI` have �niteorder, �1� 6= �2 and �jG` ' ��1� �0 �2� :Then � is modular.Using the theorem, we will obtain the following strengthening of [12, Thm 5.4℄:Theorem 7.1.2. Let E=Q be an ellipti urve whose ondutor is not divisible by27. Then E is modular.Let us �rst reall some basi fats about an ellipti urve E over a �nite extensionF of Q`. If j(E) 62 OF , then E aquires multipliative redution over a quadratiextension of F . If j(E) 2 OF , then E aquires good redution over a �nite Galoisextension F 0=F with rami�ation degree dividing 6 if ` � 5, dividing 12 if ` = 3,and dividing 24 if ` = 2. In the ase of potentially good redution, the j-invariantof the redution of the N�eron model of E over OF 0 is the redution of j(E). Inpartiular, the notions of potentially good ordinary and potentially supersingularredution are well-de�ned and an be deteted from j(E) 2 F .Let �E;` denote the representation of GF on the Tate module of E, and assumethat E aquires good redution over the �nite extension F 0=F . Then �E;` 
Z` Q`is potentially Barsotti-Tate; in fat, this representation beomes Barsotti-Tate overF 0 and the representations WD(�E;`) and �E;`0 jWF for `0 6= ` are de�ned overQ (viewed as a sub�eld of Q`, Q`0) and are semisimple and isomorphi over thisommon sub�eld of de�nition (for a proof, see Proposition B.4.2).We need the following lemma:Lemma 7.1.3. Let ` be a prime and E an ellipti urve over Q`. Let � = �E;`
Z`Q`. (1) If E has potentially multipliative redution, then� � ��� �0 ��for some quadrati harater �.(2) If E has potentially good ordinary redution, then� ' ��~!j� �0 ~!�j��1�for some harater � suh that �jI` is trivial if ` � 3, and quadrati if` = 2.(3) If E has potentially supersingular redution, then � is irreduible.Proof. First, we onsider the ase in whih E is potentially ordinary. Let F be aGalois extension ofQ` over whih E aquires good ordinary redution. The `-powertorsion geometri points of the losed �ber of the N�eron model of E=F give rise toan unrami�ed quotient of �jF , so �jIF is of the form� � �0 1 � :32



Let v generate the line on whih IF ats via �. Sine IF is normal in G`, we see thatIF ats via � on �(g)v for any g 2 G`, so � is reduible. Moreover the representationhas the form � �1� �0 �2 �with �1jIF = �2jIF trivial. Sine �1jI` and �2jI` have order dividing the number ofroots of unity in Z�̀, they are of the required form.The ase of potentially multipliative redution is similar; split multipliativeredution is attained over a quadrati extension and the Tate model yields antrivial quotient in the split ase.There remains the ase in whih E is potentially supersingular. We will provethat if E has potentially good redution and � is reduible, then E is potentiallyordinary. Let F be a �nite extension of Q` suh that E=F has good redution.Sine � is reduible, we must have�E;`jGF � ��1 �0 �2� :The representation �E;` arises from the Tate module of an `-divisible group � overOF , so the same is true of �1 and �2 by [33, Prop 2.3.1℄. Clearly, the `-divisiblegroup over OF orresponding to eah �i has dimension 0 or 1, so it follows from [33,Thm 4.2.1℄ that eah �ijIF is either trivial or �jIF . Sine �1�2 = �, it follows thatone of the haraters is unrami�ed. By Tate's full faithfulness theorem [44, Thm 4℄,� has non-trivial onneted and �etale parts, so E=F has ordinary redution. �7.2. Modularity Results. We now prove the following weaker version of Theorem7.1.2:Theorem 7.2.1. Let E=Q be an ellipti urve suh that �E;3jQ(p�3) is absolutelyirreduible. If the ondutor of E is not divisible by 27, then E is modular.Proof. Reall that the modularity of � = �E;3 follows from results of Langlands andTunnell. If E has a quadrati twist with semistable redution over Q3, then E ismodular by Theorem 5.4 of [12℄, so suppose this is not the ase. Sine we assumethe ondutor of E is not divisible by 27 (so the `wild' part of the ondutor at 3is trivial), Lemma 7.1.3 shows that E aquires good supersingular redution overany extension L of Q3 with e(L) = 4, but not over any extension with e(L) = 2. Itfollows from xB.2 and Proposition B.4.2 that � =WD(�)jI3 has the form ~!22 � ~!62 ,where � = �E;3.We now laim that the entralizer of �jG3 onsists only of salars and thatWD(�)jI3 is strongly aeptable for �. Let F be a rami�ed quadrati extensionof Q3 and onsider the twist E0 of E=F by any rami�ed quadrati harater  ofGF . Considering �E0;`0 for any `0 6= 3, we see that E0 has good redution, whih issupersingular sine jE0 = jE . Therefore �jGF 
 arises from a loal-loal �nite atgroup sheme over OF and so satis�es the hypotheses in x2.3. The laim onerningthe entralizer follows, and � is aeptable by Theorem 2.3.2. To onlude strongaeptability, we need to know that if �jG3 ' E[3℄(Q3) is reduible, then the split-ting �eld is peu rami��e. One an ompute this splitting �eld to be Q3(p�3;�1=3),whih is peu rami��e beause 3jv3(�), or one an see the peu rami��e property byusing [6, Thm 4.2.2℄. �33



We shall use Wiles' argument swithing to ` = 5, where we have:Theorem 7.2.2. Let E=Q be an ellipti urve suh that �E;5jQ(p5) is absolutelyirreduible. If �E;5 is modular, then E is modular.Proof. Theorem 5.3 of [12℄ applies if E has a twist with semistable redution or,in view of Lemma 7.1.3, potentially ordinary redution at 5. We will show thatTheorem 7.1.1 applies even if E has potentially supersingular redution (but hasno twist with good redution). Making a quadrati twist if neessary, we an assumeE aquires good redution over a �eld F with e(F ) = 3. Note then (by xB.2 andProposition B.4.2) that � =WD(�) must be of the form ~!82 � ~!162 , where � = �E;5.Applying the results of x2.2, we onlude that the entralizer of � onsists only ofsalars and � is aeptable for �. Moreover, the list of possibilities in x2.2 showsthat �jI5 is isomorphi (over the algebrai losure of F5 in the �rst ase below) toone of the following:� !m2 � !5m2 for some m � 1 mod 8;� � !1�m �0 !m � for some m 2 f2; 3g, with � peu rami��e if m = 2.Appealing to Theorem 5.3 of [5℄, we an rule out the possibility that (over thealgebrai losure of F5) �jI5 �= !2 � !52 , and onlude that � is strongly aeptablefor �. �To remove the irreduibility hypothesis in Theorem 7.2.1, we need the followinglemma. We are grateful to Elkies for providing part of the proof (for details ofElkies' alulation, see the appendix of [17℄).Lemma 7.2.3. Suppose that E=Q is an ellipti urve suh that neither �E;5jQ(p5)nor �E;3jQ(p�3) is absolutely irreduible. Then jE 2 f0; (11=2)3; 5(29)3=25g, andE is modular.Proof. We divide the proof into four ases, aording to whether the representations�E;3 and �E;5 are reduible.Suppose �rst that both �E;3 and �E;5 are reduible. Then E gives rise to rationalpoints on X0(15), and as noted in [46℄, suh points are aounted for by elliptiurves with ondutor 50 (and j = 5(29)3=25), known to be modular.Now suppose that one of the representations, say �E;p, is irreduible, but itsrestrition to GF is not absolutely irreduible, where F is the appropriate qua-drati extension of Q. In the ase of p = 3, we see (taking into aount omplexonjugation) that the projetive image of �E;3 in PGL2(F3) �= S4 is isomorphi toZ=2Z � Z=2Z. It follows that the image of �E;3 has order 8 and that �E;3jK is infat reduible for some quadrati extension K of Q. In the ase of p = 5, we see(again using omplex onjugation) that �E;5jQ(p5) is reduible and the image of�E;5 has order 16.Consider the ase in whih the other of the two representations �E;q is reduible.The ase of p = 3, q = 5 is disussed in the �nal remark of [46℄, and the detailsare given in [12, Lemma 5.5℄. In that ase one �nds that E is isomorphi (overQ) to a modular ellipti urve of ondutor 338, with j = (11=2)3. We need toanalyze the situation with the roles of 3 and 5 interhanged. For larity, we repeatthe argument of [12, Lemma 5.5℄ with two arbitrary distint odd primes p and q,and then speialize to the ases (p; q) = (3; 5); (5; 3).34



Thus, our ellipti urve E=Q satis�es the properties that there is subgroup oforder q de�ned over Q and E[p℄(Q) ontains two lines whih are interhangedby the ation of GQ. We will now exhibit all suh E=Q as Q-rational points on asuitable urve and will thereby hek diretly that all suh E=Q are modular. De�nethe urve Y=Q to be the quotient of the smooth onneted aÆne urve Y (pq)=Q (inthe sense of [28, x3.1℄) by the subgroup of elementsg = �a b d� 2 GL2(Z=pqZ)for whih  � 0 mod p, and a � d � 0 mod q or b �  � 0 mod q. This is the oarsemoduli sheme attahed to the funtor \isomorphism lasses of ellipti urves Eover S with a yli order q subgroup C and an unordered pair of yli order psubgroups fL1; L2g suh that the natural map of S-group shemes L1�SL2 ! E[p℄is an isomorphism," for variable Q-shemes S.The omplex manifold assoiated to the base hange Y=C is a smooth onnetedopen Riemann surfae whih is naturally identi�ed with the quotient of the upperhalf plane in C by the ation of the group of elements g 2 SL2(Z) whose imagein GL2(Z=pqZ) satis�es the above ongruenes. The elements of Y (Q) orrespondto Q-isomorphism lasses of triples (E;C; fL1; L2g) with E=Q an ellipti urve, Ca GQ-stable subgroup of E[q℄(Q) with order q, and fL1; L2g a non-ordered set ofdistint lines in E[p℄(Q) suh that the set fL1; L2g is stable under the ation ofGal(Q=Q) on lines in E[p℄(Q).In order to determine theQ-rational points on Y , we �rst identify it with anotherurve. Let Y0(N)=Q denote the smooth geometrially onneted urve whih is theoarse moduli sheme for the funtor \isomorphism lasses of ellipti urves E overS with a yli subgroup C of order N" for variable Q-shemes S. If djN and(d;N=d) = 1, then there is a natural involution Wd : Y0(N) ! Y0(N) whih ongeometri points is given by sending (E;C) to (E=C[d℄; (E[d℄ + C)=C[d℄). Thisis ompatible with the involution Wd : Y0(d) ! Y0(d) via the natural projetionY0(N) ! Y0(d) (we should really write Wd;N for auray). We also note that ifej(N=d) and (e;N=de) = 1, then the operatorsWd andWe ommute, with ompositeWde.There is a natural map Y0(p2q)! Y arising from the map(E;C)! (E=C[p℄; C[pq℄=C[p℄; fC[p2℄=C[p℄; E[p℄=C[p℄g)on `points'. This is visibly Wp2 -invariant, so we get a natural map of smoothgeometrially onneted urves Y0(p2q)=Wp2 ! Y . One an hek that the map isan isomorphism by noting that the resulting map on omplex points is a bijetion.We will study Q-rational points on Y0(p2q)=Wp2 , and even its `ompati�ation'X0(p2q)=Wp2 , withWp2 ating on the smooth onneted proper urve X0(p2q)=Q inthe unique way extending the above ation on Y0(p2q). For p = 3, q = 5, one �ndsthat X0(45)=W9 is an ellipti urve of ondutor 15, and has at most four rationalpoints, all aounted for by modular ellipti urves with j = (11=2)3. For p = 5,q = 3, the resulting urve X = X0(75)=W25 is a urve of genus 3 whose rationalpoints were determined by Elkies as follows. The quotient E0 = X=W3 has genusone and exatly one rational usp. Elkies found an expliit Weierstrass equationfor E0 and onluded it is isomorphi to the ellipti urve of ondutor 15 denoted15-A3(B) [1; 1; 1;�5; 2℄ in the tables of Cremona [7℄. This urve has rank 0 anda torsion subgroup of order 8. One need only look in the �bers of X ! E0 over35



the 7 non-uspidal points in E0(Q) in order to �nd the rational points on Y . Bywriting the funtion �eld Q(X) as Q(E0)[T ℄=(T 2 � f) for an expliit f 2 Q(E0),Elkies omputed that the value of f at 6 of the points in E0(Q) is a non-squarein Q, and also that there is a single point in the geometri �ber on X over theremaining point. From this it follows that there is a unique non-uspidal point inX(Q); sine it is �xed by W3, it must arise from an ellipti urve over Q withomplex multipliation. One an also hek that j = 0 for suh a urve.Finally we rule out the possibility that both �E;3 and �E;5 are irreduible. Firstsuppose that E has potentially multipliative or potentially good ordinary redutionat 5. In that ase Lemma 7.1.3 shows that �E;5jG5 is reduible, so its semisimpli-�ation is isomorphi to !�� ��1 for some harater �. On the other hand, sine�E;5 is indued from GQ(p5), the ratio of the above haraters on G5 must be thequadrati harater trivial on GQ5(p5). This gives !�2 = !2, ontraditing the fatthat ! is not a square. We an therefore assume that E has potentially supersin-gular redution at 5. If E has a quadrati twist with good supersingular redution,then the order of �E;5(I5) is divisible by 24, ontraditing that �E;5(GQ) has order16. Otherwise, the order of �E;3(I5) (whih a priori divides 6) is divisible by 3,ontraditing that �E;3(GQ) has order 8. �We now omplete the proof of Theorem 7.1.2. Aording to Theorem 7.2.1, wemay suppose that �E;3jQ(p�3) is not absolutely irreduible. By Lemma 7.2.3, wemay assume �E;5jQ(p5) is absolutely irreduible. Wiles' argument using the HilbertIrreduibility Theorem shows that there is an ellipti urve E0 over Q suh that� �E0;5 � �E;5;� �E0;3jQ(p�3) is absolutely irreduible.Sine �E0;5 � �E;5, the ondutor of E0 is not divisible by 27. Therefore E0 ismodular by Theorem 7.2.1, so �E;5 � �E0;5 is modular. Therefore E is modular byTheorem 7.2.2.Finally, we reord the following strengthening of Theorem 7.2.2, immediate fromTheorem 7.1.2:Theorem 7.2.4. Let E=Q be an ellipti urve. If �E;5 is modular or �E;5jQ(p5) isnot absolutely irreduible, then E is modular.
Appendix A. Deformation theoryWe reall some general fats from the deformation theory of representations ofpro�nite groups. The basi results are due to Mazur [30℄, with improvements byRamakrishna [32℄, Faltings, deSmit and Lenstra [10℄.Let G be a pro�nite group, and let O be a loal Noetherian ring with residue �eldk. We give k the disrete topology. Suppose that V is a �nite-dimensional disretek-vetor spae with a ontinuous ation of G. We assume that Endk[G℄ V = k, andwe onsider deformations of the representationG �! Endk Vto ertain O-algebras. 36



We let C�O denote the ategory of loal topologial O-algebras A suh that thenatural map A! proj lima2UA A=ais a topologial isomorphism, where UA is the set of open ideals a 6= A suh thatA=a is Artinian. The basi theory of suh rings is developed in [26, Exp. VIIB ℄(where they are alled pseudoompat). For example, C�O is stable under formationof inverse limits and quotients by losed ideals. Also, if A is an objet of C�O, thenUA above is simply the set of open ideals. We let mA denote the maximal idealof A and kA the residue �eld. Note that we do not assume that kA = k. (In theappliations, O will be a omplete disrete valuation ring, and A will be a ompleteloal Noetherian O-algebra.)De�nition A deformation of V to A (an objet of C�O) is an isomorphism lassof A[G℄-modules D suh that D is free of �nite rank over A, kA
AD is isomorphito kA 
k V as a kA[G℄-module, and G! EndA(D) is ontinuous.We let FV (A) denote the set of deformations of V to A. If A! B is a morphismin C�O, then extension of salars de�nes a map FV (A) ! FV (B), allowing us toregard FV as a funtor from C�O to the ategory of sets. Aording to Theorem7.1 of [10℄, FV is representable on the full subategory of C�O whose objets haveresidue �eld k. The proof atually shows that FV is representable on C�O by anobjet RV;O with residue �eld k. We all RV;O the universal O-deformation ring ofV , and the anonial element of FV (RV;O) is alled the universal O-deformation ofV .If RV;O is Noetherian, then it represents FV on the ategory CO of ompleteloal Noetherian O-algebras, beause CO is a full subategory of C�O (as shown bythe proof of Proposition 2.4 of [10℄). This holds, for instane, if G is topologially�nitely generated.A.1. Change of rings. Suppose we are given another loal Noetherian ring O0 withmaximal ideal m0 and residue �eld k0, and a loal map O ! O0. Let V 0 = V 
k k0and note that Endk[G℄ V = k if and only if Endk0[G℄ V 0 = k0. For an objet B inC�O0 , we an identify FV (B) with FV 0(B), so we have a anonial bijetionHomC�O(RV;O; B)! HomC�O0 (RV 0;O0 ; B):For an objet A of C�O with residue �eld k, onsiderO0b
OA = proj limn>0;a2UA(O0=(m0)n)
O (A=a):Eah ring (O0=(m0)n)
O (A=a) is a loal Artinian ring with residue �eld k0 beauseA has residue �eld k. Thus by Exp. VIIB, 0.2 of [26℄, O0b
OA is an objet of C�O0 .The natural map A! O0 b
OA is ontinuous, and for any objet B of C�O, it induesa bijetion HomC�O0 (O0b
OA;B) �! HomC�O(A;B):It follows that O0b
ORV;O is the universal O0-deformation ring of V 0. Furthermore,the universal deformation is obtained by extending salars from RV;O. Analogousstatements are also true for the onstrution in the next setion.37



A.2. Restrited deformations. Suppose that for eah A in C�O, we are givena subset SV (A) of FV (A). We then have the following neessary and suÆientondition for SV to be a funtor represented by RV;O=I for some losed ideal I ofRV;O: for all A 2 C�O and D 2 FV (A), we have:(1) D 2 SV (A) if and only if D=a 2 SV (A=a) for all a 2 UA;(2) if a; b 2 UA, D=a 2 SV (A=a) and D=b 2 SV (A=b), thenD=(a \ b) 2 SV (A=(a \ b));(3) if A ! A0 is an inlusion of Artinian rings in C�O, then D 2 SV (A) if andonly if D 
A A0 2 SV (A0).The neessity of (1), (2) and (3) is easily veri�ed. The suÆieny is proved exatlyas in Proposition 6.1 of [10℄.Suppose we are given a loal Noetherian O-algebra O0 as in xA.1. Suppose thatSV is a restrition on deformations represented by RO;V =I for some losed ideal I,and that SV 0(B) = SV (B) for B 2 C�O0 . Then SV 0 is represented by O0 b
ORO;V =I,whih is naturally isomorphi to the quotient of RO0;V 0 by the losure of the idealgenerated by the image of I.Example A.2.1. This example is based on an observation of Ramakrishna [32℄.Suppose that k has positive harateristi and P is a property of �nite disrete G-modules whih is preserved under taking submodules, quotients and �nite produts.Suppose there is a �nite sub�eld k0 of k suh that V = k 
k0 V0 for some k0[G℄-module V0. For D 2 FV (A) = FV0(A), we let AD;0 denote the the image ofRV0;W (k0) ! A. We let D0 denote the orresponding element of FV0(AD;0). (Giventhe quotient topology, AD;0 is an objet of C�W (k0) with residue �eld k0. Sine themap AD;0 ! A is ontinuous, both spaes are Hausdor� and AD;0 is ompat, thetopology is the same as the subspae topology. This means that the set of a\AD;0for a 2 UA is a base of open ideals in AD;0.)De�ne SPV (A) as the set of D suh that D0=a has property P for all a in UAD;0 .One heks that SPV is independent of the hoie of k0 and satis�es (1), (2) and (3).If A itself is �nite, then SPV (A) is simply the set of D having property P . Note alsothat given O! O0 as in xA.1, we have SPV (B) = SPV 0(B) for B in C�O0 .Appendix B. Potentially Barsotti-Tate representationsB.1. De�nition of WD(�). Let K and E be �nite extensions of Q` inside of Q`,and let � : GE ! GL(M) be a ontinuous representation on a d-dimensional vetorspae M over K. We denote the valuation rings of K and E by O and OE respe-tively. Under ertain hypotheses on �, we will de�ne a ontinuous representationof the Weil group WD(�) :WE ! GL(D)on a d-dimensional Q`-vetor spae D and will investigate several properties. Also,in ase � is potentially Barsotti-Tate, we will give a more expliit desription of thisonstrution. This expliit desription will be used to prove several `independeneof `' properties in the ontext of ellipti urves and Jaobians of modular urves.Throughout this appendix, the oddness of ` is never needed.In [20℄, the notions of semistable, rystalline, potentially semistable, and poten-tially rystalline are de�ned for ontinuous representations of the Galois group of a38



harateristi 0 loal �eld with perfet residue �eld of harateristi ` (on a �nite-dimensional Q`-vetor spae). There are a number of rings (Bst; Bris; : : : ) thatare used there as well. We use these onepts below, and refer to [20℄ and thereferenes therein for omplete proofs of the basi fats we need. Although our pri-mary interest is in the ase of potentially Barsotti-Tate representations, the greatergenerality of potentially semistable representations is onvenient for making theinitial de�nition of the WD funtor and establishing some properties (e.g., behav-ior with respet to tensor produt onstrutions, whih an destroy the potentiallyBarsotti-Tate property).Consider � as above. Assume � is potentially semistable [20, 5.6.1, 5.6.8℄, whihis to say that for some �nite extension F=E, �jGF is semistable (this dependsonly on the underlying Q`[GE ℄-module of �). For example, sine Barsotti-Taterepresentations are rystalline [21, Thm 6.2℄, hene semistable, we an take any �whih is potentially Barsotti-Tate. This inludes any �nite order representation.By the very de�nition of semistability, the Q`-vetor spaeDst;F (M) = (Bst 
Q` M)GFis a vetor spae over the maximal unrami�ed subextension F0 of F (via ation onBst) of dimension equal to the Q`-dimension of M . By funtoriality, Dst;F (M) is amodule over F0
Q` K, and in fat is free of rank d. To see this, it suÆes to hekthat after applying the faithfully at extension of salars Bst
F0 we get a free rankd module over Bst 
Q` K. But this follows from [20, 5.6.7(iii), 5.6.8(ii)℄ (and thesemistability of � over F ).From the de�nitions, Dst;F (M) is equipped with a bijetive endomorphism �whih is semilinear with respet to the arithmeti Frobenius automorphism of F0and linear with respet to K. Also, if F=E is Galois then there is a anonialation of Gal(F=E) whih is semilinear with respet to F0 and linear with respetto K and whih ommutes with �. There are additional strutures (�ltration onF 
F0 Dst;F (M) and a monodromy operator) whih we ignore. If F 0=F is a �niteextension, then �jGF 0 is semistable and there is a natural isomorphismF 00 
F0 Dst;F (M)! Dst;F 0(M)of F 00
Q`K-modules whih respets the ation of Gal(F 0=E) if F 0 and F are Galoisover E.Suppose F=E is Galois, so Dst;F (M) is an (F0
Q`K)[Gal(F=E)℄-module with anautomorphism � whih ats semilinearly with respet to the F0-ation and linearlywith respet to the K[Gal(F=E)℄-ation. We de�ne an F0 
Q` K-linear ation ofWE as follows. For any g 2 WE , we let g at on Dst;F (M) as the produt of theommuting operators given by the ation of the image of g in Gal(F=E) and ��n,where the image of g in Gal(F`=F`) is the nth power of absolute Frobenius (not thenth power of the Frobenius relative to the residue �eld of E). Note that the ationof IF �WE is trivial, so WE ats ontinuously on Dst;F (M). Thus, Dst;F (M) is afree module of rank d over F0 
Q` K equipped with a ontinuous linear ation ofWE that ommutes with �. De�neWDK(�) = Dst;F (M)
F0
Q`K Q`:Clearly WDK(�) is of dimension d over Q` and the ation of K on � induesthe ation of K � Q` on WDK(�). When there is no risk of onfusion, we writeWD(�) in plae of WDK(�). 39



B.2. Properties of WD(�). If E0=E is a �nite extension, then WD(�jGE0 ) 'WD(�)jWE0 It follows trivially from the de�nitions (and properties of the funtorDst;F ) that the representation WD(�) admits as a �eld of de�nition any ommon�nite extension of F0 and K inside of Q` and that it is (up to isomorphism) inde-pendent of the hoie of F . Moreover, if K 0=K is a �nite extension (so � 
K K 0is potentially semistable if and only if � is), then for potentially semistable � wehave a anonial isomorphism WDK0(� 
K K 0) ' WDK(�) as Q`[WE ℄-modules.Consider ontinuous representations of GE on �nite-dimensional Q`-vetor spaes(it is automati that there is a �eld of de�nition of �nite degree over Q`). There isan obvious notion of potential semistability for these representations, and we havea well-de�ned funtor WD on the ategory of suh potentially semistable represen-tations on Q`-vetor spaes.By using [20, 1.5, 5.1.2℄, the funtor WDK on potentially semistable K[GE ℄-modules is exat and is naturally of formation ompatible with tensor produts(and hene exterior produts). The tensor produt ompatibility means that for�1; �2 two semistable representations of GE on �nite-dimensional K-vetor spaes,there is a anonial mapWD(�1)
Q` WD(�2)!WD(�1 
K �2)of Q`[WE ℄-modules whih is an isomorphism. Stritly speaking, [20℄ only onsidersases with K = Q`, but sine the Q`[GE ℄-module �0 underlying � gives rise to anatural isomorphism WDQ`(�0)
K
Q`Q` Q` �=WDK(�);we readily get the tensor produt ompatibility for WD = WDK . In the samemanner, we get ompatibility with the Hom funtor (and WD is even a funtorbetween tensor ategories).We mention two expliit examples. First, WD(�) is a 1-dimensional unrami�edrepresentation of WE over Q`, given by the harater that sends arithmeti Frobe-nius to jkE j, where kE is the residue �eld of E. For a proof, one is redued tothe ase E = K = Q`, where (by [20, 5.5.1, 5.6.3℄) it omes down to the assertionthat Dris(�) is 1-dimensional over Q` with � ating as multipliation by 1=`. ButBG`ris = Q` and there exists a non-zero t 2 Bris on whih G` ats as the ylotomiharater and �(t) = `t, so Dris(�) = Q` � 1=t has � ating as desired.The seond example is when � has �nite order (e.g., a �nite order harater withvalues in K�). In this ase, we laim that WD(�) ' �jWE 
K Q`. This is animmediate onsequene of the de�nitions, as we now explain. Take F=E to be thesplitting �eld of �, so �jGF is trivial (and hene rystalline). Sine BGFris = F0 (themaximal unrami�ed subextension of F ), on whih the ation of � orresponds tothe lifting of absolute Frobenius, we see that Dst;F (�) = F0 
Q` � with g 2 WEating as 1
 �(g). Thus, WDK(�) is naturally isomorphi to �jWE 
K Q`.B.3. The Potentially Barsotti-Tate Case. We give an alternate de�nition ofWD in the potentially Barsotti-Tate ase. This formulation, to be given in termsof Dieudonn�e modules, will be the means by whih we establish the desired resultsfor representations oming from ellipti urves and modular forms.Let � as above be potentially Barsotti-Tate, �x a �nite Galois extension F=E(with residue �eld kF ) over whih � beomes Barsotti-Tate, and �x a stable O-lattie L for �. This gives us an `-divisible group �=OF and by [44, Thm 4℄ there is40



a unique ation of O on � ompatible with the O-ation on the generi �ber. Thegeneri �ber desent data for �jGF down to � gives rise (via ontravariane of Speand Tate's full faithfulness theorem [44, Thm 4℄) to a right ation of Gal(F=E) on� over the right ation on Spe(OF ). This ommutes with the O-ation on �. Weget indued ations on the losed �ber �=kF .Let �E denote the kE-Frobenius endomorphism of the losed �ber, so this om-mutes with the other ations we just de�ned. Now suppose that g is in WE ,g 7! � 2 Gal(F=Q`) and g 7! FrobnE in WE=IE . Working in the ategory of `-divisible groups `up to isogeny', we an de�ne the ation of g on �=kF to be ���nE ,and thereby give �=kF the struture of a `right-module' over K[WE ℄.Let D(�) denote the (ontravariant) Dieudonn�e module of �=kF , as de�ned in[18, III, 1.2℄. Sine the Dieudonn�e funtor is ontravariant, it onverts right ationsinto left ations. Thus, D(�) is a free W (kF )-module of rank d � [K : Q`℄ suh thatD(�)
OK is a left module over K[WE ℄. De�ne D0(�) = HomW (kF )(D(�);W (kF )),and de�ne the Frob`-semilinear endomorphism �0 of D0(�)[1=`℄ to be the `semilin-ear transpose' of ��1 (i.e., �0(f) = � Æ f Æ ��1, with � the absolute Frobeniusendomorphism of W (kF )). De�ne a left semilinear ation of Gal(F=E) on D0(�)by g(f) = g Æ f Æ g�1, where g denotes the automorphism of W (kF ) indued by gand where we have used the previously de�ned semilinear left ation of Gal(F=E)on D(�). This ommutes with �0 on D0(�)[1=`℄. We de�ne a W (kF )-linear ationof WE in the usual manner (using powers of �0 to `anel' the semilinearity of theation of Gal(F=E)). Also, we let O at through its ation on D(�). We de�neWD0(�) = D0(�)
W (kF )
Z`O Q`as a Q`[WE ℄-module.This is our desired `onrete' de�nition ofWD(�) in the potentially Barsotti-Tatease (as the following Proposition will justify). Note that the Dieudonn�e module ofthe dual `-divisible group of � has underlying W (kF )-module D0(�) and Frobeniusendomorphism `�0.Due to the ompatibility of the Dieudonn�e module funtor with respet to basehange (e.g., Frobenius automorphisms of the base �eld), we an reover the Frobe-nius morphism of D(�) from the semilinear absolute Frobenius morphism of � andwe an likewise de�ne a semilinear left ation of Gal(F=E) on D(�) by using the`generi �ber desent data'. Putting these together gives an alternate formulationof the linear WE-ation on D in terms of suitable omposites of semilinear ations(of � and Gal(F=E)).Proposition B.3.1. For potentially Barsotti-Tate � as above, WD0(�) ' WD(�)as Q`[WE ℄-modules.Proof. Let �0 = HomQ`(�;Q`). Via �, this is a K[GE ℄-module. In [21, 6.6℄, thereis de�ned a natural isomorphism�� : D(�)[1=`℄! Dris(�0jGF ) = Dst;F (�0)as `�ltered modules'. In partiular, this map respets the W (kF ) 
Z` O-modulestrutures, as well as the absolute Frobenius maps on eah side. Beause the funtorDst;F ommutes with formation of duals, we are redued to heking that thisidenti�ation �� respets the left WE-ations. Looking bak at how the linear WE-ations have been de�ned in terms of the absolute Frobenius maps and semilinear41



Galois ations on eah side, it remains to show that the semilinear left ations ofGal(F=E) on D(�) and Dris(�0jGF ) are ompatible via ��.Choose any g 2 Gal(F=E). We have an OF -linear isomorphism � ' �g to thebase hange by g, satisfying the usual oyle ondition as we vary g. The induedisomorphism on the losed �ber, when ombined with the base hange ompatibilityof the Dieudonn�e module funtor, gives rise to the semilinear ation of g on D(�).Now using the funtoriality of the map �� with respet to a variable `-divisible groupover a �xed base OF , all we have to do is prove that this map is also funtorial withrespet to base hange of a �xed `-divisible group �.More preisely, onsider an extension of salars by a loal extension OF 0 of OF(e.g., an automorphism � of OF ) and hoose an embedding of algebrai losuresF ! F 0 over F ! F 0 (e.g., an element of GE over � 2 Gal(F=E)). This gives riseto a ontinuous group map GF 0 ! GF and a natural map Bris(F )! Bris(F 0) [19,4.2.5(d)℄. There is a `base hange diagram' whih we need to ommute. Namely,if �0 = � �OF OF 0 (so V`(�) = V`(�0) ompatibly with GF 0 ! GF ), then we havenatural maps D(�)! D(�0) andHomQ`[GF ℄(V`(�); Bris(F ))! HomQ`[GF 0 ℄(V`(�0); Bris(F 0)):We want these to be ompatible with the maps �� and ��0 .In view of the de�nition of the � maps, this �nally redues to the laim that theisomorphism [21, 6.4℄ is of formation ompatible with suh a base hange OF ! OF 0 .But this is a onsequene of the de�nitions (f. [18, III, 6.2℄ in the ase of `-divisiblegroups, and note that the `base hange' ompatibility of this is a onsequene ofhow the Dieudonn�e module funtor is de�ned). �B.4. Independene of �. Let A be an abelian variety over a �eld k. Suppose that(in ontrast to previous notation) K � Q is a number �eld with ring of integers Oand we are given an embeddingK ! End0k A = Endk(A)
Z Q(we use here endomorphisms in the `invert isogenies' ategory). If �0 is a prime of Olying over a prime `0 in Z distint from the harateristi of k, we let �A;�0 denotethe representation of Gk over K�0 de�ned by the Galois ation on the �0-adi Tatemodule V�0(A) of A, whih is (lim �A(ks)[�0n℄)
Qif the full integer ring ats on A and more generally is de�ned as the fator of the`0-adi Tate module orresponding to the fator ring K�0 of the ring K 
Q Q`0(whih ats on the usual `0-adi Tate module V`0(A)). The dimension of �A;�0 overK�0 is independent of �0 (equivalently, V`0(A) is free as a K 
Q Q`0 -module), andso this dimension is equal to 2 dimA=[K : Q℄. Moreover, for any f 2 End0k(A)whih ommutes with the ation of K, the K�0-linear ation of f on V�0(A) hasharateristi polynomial in K[T ℄ whih is independent of the hoie of prime �0of O. For proofs of these fats, see [42, Prop 11.9℄. The proof of [31, x19, Thm 4℄for Tate modules (and harateristi polynomials over Q`0) arries over verbatimto the ase of Dieudonn�e modules when k is perfet of positive harateristi (withharateristi polynomials omputed over the fration �eld of W (k)).Thus, in ase k has positive harateristi ` and is perfet, the same arguments(with some minor modi�ations, due to the replaement of Q`0 by the fration �eld42



of W (k) with k not neessarily equal to F`) arry over to give analogous resultsfor the `up to isogeny' Dieudonn�e module D(A) = D(A[`1℄)[1=`℄. More preisely,if F0 denotes the fration �eld of W (k), then D(A) is a free module over K 
Q F0and for any f 2 End0k(A) whih ommutes with the ation of K, the K 
Q F0-linear endomorphism of D(A) indued by f has harateristi polynomial in K[T ℄.Also, this polynomial is equal to the harateristi polynomial omputed above onthe `0-adi Tate modules of A for `0 6= `. Of ourse, the same onlusions applyto the `dual' Dieudonn�e module, sine dualizing a linear map does not a�et itsharateristi polynomial.Now suppose that k = E is a �nite extension of Q` and that A has potentiallygood redution. Let F be a �nite Galois extension of E over whih A has goodredution, and let A denote the N�eron model of A over OF . We obtain ommutingations (in the `invert isogenies' ategory) of K and Gal(F=E) exatly as in the aseof `-divisible groups (using the N�eron mapping property instead of Tate's theorem),with Gal(F=E) ating on the right. Now hange this Galois ation, by lettingg 2 Gal(F=E) instead at as g�1 under the right ation. This gives a left ationof K[Gal(F=E)℄ on A=kF over the natural ation of Gal(F=E) on kF , omposedwith inversion in the Galois group. Again using powers of the absolute Frobeniusmorphism to `anel' out the semilinearity, we obtain a map of Q-algebras� : K[WE ℄! End0kF A=kF = (EndkF A=kF )
Z Q:Note that �jWF is unrami�ed and sends FrobF to the kF -Frobenius endomorphismof A=kF .For `0 6= `, V`0(A=kF ) is a module over (K 
Q Q`0)[WE ℄ using �. Also, we use� to make D0(A=kF [`1℄)[1=`℄ a module over (W (kF ) 
Z` K)[WE ℄. We reall thefollowing well-known result. Sine we do not know a referene, we give a proof.Lemma B.4.1. For `0 6= `, there is an isomorphism of (K 
Q Q`0)[WE ℄-modulesV`0(A) �= V`0(A=kF ). Likewise, there is an isomorphism of (K
QQ`)[WE ℄-modulesWDQ`(V`(A)) �= D0(A=kF [`1℄)[1=`℄
W (kF ) Q`.Proof. The `-adi ase is exatly our `onrete' formulation of the de�nition ofWDin the potentially Barsotti-Tate ase (as a little heking will show). Now onsider`0 6= `. There is an obvious isomorphism of the underlying groups of `0-powertorsion geometri points on A and A=kF . Consider more spei�ally the `redution'morphism r : A(Q`) = A(Z`)! A(F`)(an isomorphism on `0-power torsion). From the generi �ber desent data forA=F down to A=E , we get (via the N�eron property) a semilinear right ation ofg 2 Gal(F=E) on A=OF , denoted by [g℄. We also have the anonial absoluteFrobenius morphism � on A�OF kF .For any g 2 WE and any point y 2 A(F`), [g�1℄ Æ �m Æ y is another suh point,where g indues the mth power of absolute Frobenius on F`. What we need tohek is that for suh g and m,[g�1℄ Æ �m Æ r(x) = r(x Æ g)for all x 2 A(Q`). The point is that under the identi�ationA(Q`) = HomSpe(E)(Spe(Q`); A) = HomSpe(OF )(Spe(Z`);A) = A(Z`);43



the translation of the usual ation of GE on A(Q`) into an ation on A(Z`) requiresuse of the generi �ber desent data isomorphisms (extended to A via the N�eronproperty). It is easy to hek that for y 2 A(Z`) and g 2 GE , [g�1℄ Æ y Æ g 2 A(Z`)is the image of y under the ation of GE on A(Q`).For any suh y, with g 2 WE induing the mth power of absolute Frobenius onF`, we need to show that[g�1℄ Æ �m Æ r(y) = r([g�1℄ Æ y Æ g);where we regard r as a funtion on A(Z`). This learly redues us to showing thatfor any map of OF -shemes y : Spe(Z`)! A with redution y : Spe(F`)! A=kFover kF , and any OE-automorphism g of Z` induing the mth power of absoluteFrobenius on F`, �m Æ y is equal to the redution of the semilinear map y Æ g. Butthe redution of y Æ g is y Æ Frobm̀, so by the `universal ommutativity' of absoluteFrobenius on F`-shemes, we're done. �Proposition B.4.2. Let A=E be an abelian variety with potentially good redution,K � Q of �nite degree over Q, and � : K ! End0E(A) a Q-algebra map. For `0 6= `,the representations WDQ`(�A;`) and �A;`0 jWE 
K Q`0 are semisimple and arise asthe base hanges of a ommon semisimple (K
QQ)[WE ℄-module (neessarily �niteand free over K
QQ). Also, for any � in K dividing `, �A;� is Barsotti-Tate overany �nite extension F=E suh that WDK�(�A;�) is unrami�ed over F .Proof. Let F=E be a �nite Galois extension over whih A aquires good redution.By Lemma B.4.1, we need to ompare the (K 
Q Q`)[WE ℄-moduleD0(A=kF [`1℄)[1=`℄
W (kF ) Q`and the (K 
Q Q`0)[WE ℄-module V`0(A=kF )
Q`0 Q`0 . By our earlier observations,these are free modules over K 
Q Q` and K 
Q Q`0 respetively, and for eah g 2WE , the harateristi polynomial of g (over K 
QQ` and K 
QQ`0 respetively)under all of these representations is the same ommon polynomial Pg 2 K[T ℄(vastly more general omparison theorems for harateristi polynomials in �etaleand rystalline ohomology, at least for K = Q, follow from [29, Thm 2(2)℄).To see the semisimpliity in all ases, we �rst laim that it suÆes to heksemisimpliity as WF -representations. Indeed, if L is any �eld of harateristi 0and G is any group with H a �nite index subgroup, an L[G℄-module with �niteL-dimension whih is semisimple as an L[H℄-module is neessarily semisimple asan L[G℄-module. To prove this, we just need to show that for L[G℄-modules V andW with �nite L-dimension, the natural map Ext1L[G℄(V;W ) ! Ext1L[H℄(V;W ) isinjetive. But if we replae H by a �nite index subgroup whih is normal in G, thisis indenti�ed with the restrition mapH1(G; V � 
LW )! H1(H;V � 
LW );whih is injetive beauseH1(G=H; V �
LW ) is an L-vetor spae killed by [G : H℄.Viewing our WE-representation spaes as WF -representation spaes, all are un-rami�ed and we just need to hek that the ation of �(FrobF ) on A=kF is annihi-lated (in the `up to isogeny' ategory) by a separable polynomial over K, or evenover Q. Sine �(FrobF ) is the ation of the kF -Frobenius morphism on the abelianvariety A=kF , the `semisimpliity' here is due to Weil. Here is the proof, for whih44



we may assume K = Q. LetQP eii 2 Q[T ℄ be the harateristi polynomial PFrobF ,with Pi irreduible. For `0 6= `, QP eii (�(FrobF )) kills V`0(A=kF ), so it is the zeroendomorphism of A=kF . Eah simple abelian subvariety of A=kF is preserved underthe kF -Frobenius morphism �(FrobF ), soQPi(�(FrobF )) kills eah suh subvariety(by simpliity and the fat that K = Q). Sine A=kF is isogenous to a produt ofsuh subvarieties, QPi(�(FrobF )) = 0 in End0kF (A=kF ).Now we hek that our semisimple WE-representation spaes are base hangesof semisimple (K 
Q Q)[WE ℄-modules, neessarily �nite and free over K 
Q Q.The resulting (K
QQ)[WE ℄-modules are all isomorphi, as one sees by omparingharateristi polynomials of all g 2 WE (whih lie in K[T ℄). This readily yieldsthe last part of the Proposition as well, sine when WDK�(�A;�) is unrami�ed oversome �nite extension F=E, then the same learly holds for all primes of K over` (by a onsideration of semisimpliity and harateristi polynomials), so for any`0 6= `, V`0(A) is unrami�ed over F ; by the N�eron-Ogg-Shafarevih riterion, A=Fthen has good redution.Consider an extension L=K of harateristi 0 �elds with K algebraially losed(e.g., K = Q, L = Q` or Q`0), G a �nitely generated group (suh as WE=IF ), andV a semisimple L[G℄-module with �nite L-dimension. Assume that all g 2 G atwith harateristi polynomial in K[T ℄. The above setup is just a `�nite produt'of this setting, replaing K and L by Kn and Ln for some n � 1 and replaing Vby V 
K Kn where we use n �eld automorphisms K �= K to de�ne K ! Kn. Welaim that there exists a (neessarily unique up to isomorphism) semisimple K[G℄-module V0 with �nite K-dimension suh that all g 2 G have the same harateristipolynomials on V0 as on V (whih implies that V0 
K L �= V as L[G℄-modules andso �nishes the proof). Sine G is �nitely generated, if we pik a basis of V over Lthen there exists a �nitely generated extension �eld K 0=K inside of L and a K 0[G℄-module V 0 with �nite K 0-dimension suh that V 0 
K0 L �= V as L[G℄-modules. Infat, we an even �nd a �nite type K-subalgebra R0 � K 0 and an R0[G℄-moduleM 0whih is �nite and free as an R0-module suh that M 0 
R0 L �= V . Eah g 2 G hasharateristi polynomial on M 0 equal to the harateristi polynomial of g on V ,whih lies in K[T ℄. By the Nullstellensatz there exists a K-algebra map R0 ! K,so if we de�ne V0 = (M 0 
R0 K)ss, we're done. �Note that by a theorem of Grothendiek [25, Exp. IX, Cor 5.10℄, �A;` beomesBarsotti-Tate over F if and only if A aquires good redution over F (for a simplerexposition of the proof of Grothendiek's theorem if one assumes potentially goodredution, see the proof of [5, Thm 5.3℄).Corollary B.4.3. Suppose that f is a weight two newform with oeÆients in anumber �eld K. Let � �= 
0v�v denote the orresponding automorphi representa-tion. For eah prime � of K, let��;� : GQ ! GL2(K�)denote the assoiated Galois representation. If �j` and �` is not speial, then ��;�jG`is Barsotti-Tate over any extension of Q` suh that WD(�`)jIF is trivial (suh anF exists). Also, for any embedding Q ! Q` induing the plae � on K � Q(and so induing an embedding K� ! Q` as K-algebras), there is a Q`[W`℄-moduleisomorphism Q` 
QWD(�`) �=WD(��;�jG`):45



Proof. If K0 � K denotes the sub�eld generated by the q-expansion oeÆientsof f and � lies over �0 in K0, then ��;� ' K� 
K0�0 ��;�0 , so we may supposeK = K0. In this ase, the Eihler-Shimura onstrution provides an abelian varietyAf = A=Q with an ation of an order in O so that �A;� �= ��;� for all primes � anddimA = [K : Q℄. Choose any `0 6= ` and pik a K-algebra map Q ! K 
Q Q.De�ne �` = (K 
Q Q)
QWD(�`). By [3, Thm A℄,�A;`0 jW` 
Q`0 Q`0 �= �` 
Q Q`0as (K 
Q Q`0)[W`℄-modules. We want to onstrut a (K 
Q Q`)[W`℄-module iso-morphism WDQ`(�A;`jG`) �= �` 
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