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Abstract

Here shape space is either the manifold of simple closed smooth unparameterized curves in R2 or is the orbifold of immersions
from S1 to R2 modulo the group of diffeomorphisms of S1. We investigate several Riemannian metrics on shape space: L2-metrics
weighted by expressions in length and curvature. These include a scale invariant metric and a Wasserstein type metric which
is sandwiched between two length-weighted metrics. Sobolev metrics of order n on curves are described. Here the horizontal
projection of a tangent field is given by a pseudo-differential operator. Finally the metric induced from the Sobolev metric on
the group of diffeomorphisms on R2 is treated. Although the quotient metrics are all given by pseudo-differential operators, their
inverses are given by convolution with smooth kernels. We are able to prove local existence and uniqueness of solution to the
geodesic equation for both kinds of Sobolev metrics.

We are interested in all conserved quantities, so the paper starts with the Hamiltonian setting and computes conserved momenta
and geodesics in general on the space of immersions. For each metric we compute the geodesic equation on shape space. In the
end we sketch in some examples the differences between these metrics.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction—multiple Riemannian metrics on the space of curves

Both from a mathematical and a computer vision point of view, it is of great interest to understand the space of
simple closed curves in the plane. Mathematically, this is arguably the simplest infinite-dimensional truly nonlinear
space. From a vision perspective, one needs to make human judgements like ‘such-and-such shapes are similar, but
such-and-such are not’ into precise statements. The common theory which links these two points of view is the study
of the various ways in which the space of simple closed curves can be endowed with a Riemannian metric. From a
vision perspective, this converts the idea of similarity of two shapes into a quantitative metric. From a mathematical
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perspective, a Riemannian metric leads to geodesics, curvature and diffusion and, hopefully, to an understanding of the
global geometry of the space. Much work has been done in this direction recently (see for example [10,13,15,16,24]).
The purpose of the present paper is two-fold. On the one hand, we want to survey the spectrum of Riemannian metrics
which have been proposed (omitting, however, the Weil–Peterson metric). On the other hand, we want to develop
systematically the Hamiltonian approach to analyzing these metrics.

Next, we define the spaces which we will study and introduce the notation we will follow throughout this paper.
To be precise, by a curve we mean a C∞ simple closed curve in the plane. The space of these will be denoted Be . We
will consider two approaches to working with this space. In the first, we use parametrized curves and represent Be as
the quotient:

Be
∼= Emb

(
S1,R2)/Diff

(
S1)

of the smooth Fréchet manifold of C∞ embeddings of S1 in the plane modulo the group of C∞ diffeomorphisms of
S1. In this approach, it is natural to consider all possible immersions as well as embeddings, and thus introduce the
larger space Bi as the quotient of the space of C∞ immersions by the group of diffeomorphisms of S1:

Emb
(
S1,R2

) −→ Emb
(
S1,R2

)
/Diff

(
S1
) ∼= Be

∩ ∩ ∩
Imm

(
S1,R2

) −→ Imm
(
S1,R2

)
/Diff

(
S1
) ∼= Bi

In the second approach, we use the group of diffeomorphisms Diff(R2) of the plane, where, more precisely, this is
either the group of all diffeomorphisms equal to the identity outside a compact set or the group of all diffeomorphisms
which decrease rapidly to the identity. Let � be the unit circle in the plane. This group has two subgroups, the
normalizer and the centralizer of � in Diff(R2):

Diff0(R2,�) ⊂ Diff(R2,�) ⊂ Diff(R2)

‖ ‖
{ϕ | ϕ|� ≡ id�} {ϕ | ϕ(�)=�}

Let i ∈ Emb(S1,R2) be the basepoint i(θ) = (sin(θ), cos(θ)) carrying S1 to the unit circle �. The group Diff(R2)

acts on the space Emb(S1,R2) of embeddings by composition on the left. The action on the space of embeddings
is transitive (e.g., choose an isotopy between two embedded circles, transform and extend its velocity field into a
time-dependent vector field with compact support on R2 and integrate it to a diffeomorphism). Diff0(R2,�) is the
subgroup which fixes the base point i. Thus we can represent Emb(S1,R2) as the coset space Diff(R2)/Diff0(R2,�).

Furthermore Diff0(R2,�) is a normal subgroup of Diff(R2,�), and the quotient of one by the other is nothing other
than Diff(�), the diffeomorphism group of the unit circle. So Diff(�) acts on the coset space Diff(R2)/Diff0(R2,�)

with quotient the coset space Diff(R2)/Diff(R2,�). Finally, under the identification of Diff(R2)/Diff0(R2,�) with
Emb(S1,R2), this action is the same as the previously defined one of Diff(S1) on Emb(S1,R2). This is because if
c= ϕ ◦ i ∈ Emb(S1,R2), and ψ ∈Diff(R2,�) satisfies ψ(i(θ))= i(h(θ)), h ∈Diff(S1), then the action of ψ carries
ϕ to ϕ ◦ψ and hence c to ϕ ◦ψ ◦ i = ϕ ◦ i ◦ h= c ◦ h.

All the spaces and maps we have introduced can be combined in one commutative diagram:

Diff(R2)

↓
Diff(R2)/Diff0(R2,�)

≈−→ Emb(S1,R2) ⊂ Imm(S1,R2)

↓ ↓ ↓
Diff(R2)/Diff(R2,�)

≈−→ Be ⊂ Bi

See [13] and [8] for the homotopy type of the spaces Imm(S1,R2) and Bi .
What is the infinitesimal version of this? We will use the notation X(R2) to denote the Lie algebra of Diff(R2), i.e.,

either the space of vector fields on R2 with compact support or the space of rapidly decreasing vector fields. As for
any Lie group, the tangent bundle T Diff(R2) is the product Diff(R2)× X(R2) by either right or left multiplication.
We choose right so that a tangent vector to Diff(R2) at ϕ is given by a vector field X representing the infinitesimal
curve ϕ �→ ϕ(x, y)+ εX(ϕ(x, y)).

Fix ϕ ∈Diff(R2) and let it map to c= ϕ ◦ i ∈ Emb(S1,R2) and to the curve C = Im(c)⊂R2 on the three levels of
the above diagram. A tangent vector to Emb(S1,R2) at c is given by a vector field Y to R2 along the map c, and the
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vertical map of tangent vectors simply takes the vector field X defined on all of R2 and restricts it to the map c, i.e.,
it takes the values Y(θ)=X(c(θ)). Note that if c is an embedding, a vector field along c is the same as a vector field
on its image C. A tangent vector to Be at the image curve C is given by a vector field Y along C modulo vector fields
tangent to C itself. The vertical map on tangent vectors just takes the vector field X along c and treats it modulo vector
fields tangent to c. However, it is convenient to represent a tangent vector to Be or Bi at C not as an equivalence class
of vector fields along C but by their unique representative which is everywhere normal to the curve C. This makes
TCBi the space of all normal vector fields to C ⊂R2.

In both approaches, we will put a Riemannian metric on the top space, i.e., Imm(S1,R2) or Diff(R2), which
makes the map to the quotient Bi or to a coset space of Diff(R2) into a Riemannian submersion. In general, given
a diffeomorphism f :A→ B with a surjective tangent map and a metric Ga(h, k) on A, f is a submersion if it has
the following property: first split the tangent bundle to A into the subbundle T A� tangent to the fibres of f and

its perpendicular T A⊥ with respect to G (called the horizontal bundle). Then, under the isomorphisms df :T A⊥a
≈→

T Bf (a), the restriction of the A-metric to the horizontal subbundle is required to define a metric on T Bb , independent
of the choice of the point a ∈ f−1(b) in the fiber. In this way we will define Riemannian metrics on all the spaces
in our diagram above. Submersions have a very nice effect on geodesics: the geodesics on the quotient space B are
exactly the images of the geodesics on the top space A which are perpendicular at one, and hence at all, points to the
fibres of the map f (or, equivalently, their tangents are in the horizontal subbundle).

On Diff(R2), we will consider only right invariant metrics. These are given by putting a positive definite inner
product G(X,Y ) on the vector space of vector fields to R2, and translating this to the tangent space above each
diffeomorphism ϕ as above. That is, the length of the infinitesimal curve ϕ �→ ϕ + εX ◦ ϕ is

√
G(X,X). Then the

map from Diff(R2) to any of its right coset spaces will be a Riemannian submersion, hence we get metrics on all these
coset spaces.

A Riemannian metric on Imm(S1,R2) is just a family of positive definite inner products Gc(h, k) where c ∈
Imm(S1,R2) and h, k ∈ C∞(S1,R2) represent vector fields on R2 along c. We require that our metrics will be invari-
ant under the action of Diff(S1), hence the map dividing by this action will be a Riemannian submersion. Thus we
will get Riemannian metrics on Bi : these are given by a family of inner products as above such that Gc(h, k)≡ 0 if h

is tangent to c, i.e., 〈h(θ), cθ (θ)〉 ≡ 0 where cθ := ∂θ c.
When dealing with parametrized curves or, more generally, immersions, we will use the following terminology.

Firstly, the immersion itself is usually denoted by:

c(θ) :S1→R2

or, when there is a family of such immersions:

c(θ, t) :S1 × I →R2.

The parametrization being usually irrelevant, we work mostly with arclength ds, arclength derivative Ds and the unit
tangent vector v to the curve:

ds = |cθ |dθ,

Ds = ∂θ/|cθ |,
v = cθ/|cθ |.

An important caution is that when you have a family of curves c(θ, t), then ∂θ and ∂t commute but Ds and ∂t do not
because |cθ | may have a t-derivative. Rotation through 90 degrees will be denoted by:

J =
(

0 −1
1 0

)
.

The unit normal vector to the image curve is thus

n= Jv.

Thus a Riemannian metric on Be or Bi is given by inner products GC(a, b) where a.n and b.n are any two vector
fields along C normal to C and a, b ∈ C∞(C,R). Another important piece of notation that we will use concerns
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directional derivatives of functions which depend on several variables. Given a function f (x, y) for instance, we will
write:

D(x,h)f or df (x)(h) as shorthand for ∂t |0f (x + th, y).

Here the x in the subscript will indicate which variable is changing and the second argument h indicates the direction.
This applies even if one of the variables is a curve C ∈ Bi and h is a normal vector field.

The simplest inner product on the tangent bundle to Imm(S1,R2) is:

G0
c(h, k)=

∫
S1

〈
h(θ), k(θ)

〉 · ds.

Since the differential ds is invariant under the action of the group Diff(S1), the map to the quotient Bi is a Riemannian
submersion for this metric. A tangent vector h to Imm(S1,R2) is perpendicular to the orbits of Diff(S1) if and only
if 〈h(θ), v(θ)〉 ≡ 0, i.e., h is a multiple a.n of the unit normal. This is the same sub-bundle as above, so that, for this
metric, the horizontal subspace of the tangent space is the natural splitting. Finally, the quotient metric is given by

G0
c(a · n,b · n)=

∫
S1

a.b.ds.

All the metrics we will look at will be of the form:

Gc(h, k)=
∫
S1

〈Lh,k〉 · ds

where L is a positive definite operator on the vector-valued functions h :S1 → R2. The simplest such L is simply
multiplication by some function Φc(θ). However, it will turn out that most of the metrics involve L’s which are
differential or pseudo-differential operators. For these, the horizontal subspace is not the natural splitting, so the
quotient metric on Be and Bi involves restricting Gc to different sub-bundles and this makes these operators somewhat
complicated. In fact, it is not guaranteed that the horizontal subspace is spanned by C∞ vectors (in the sense that the
full C∞ tangent space is the direct sum of the vertical subspace and the horizontal C∞ vectors). When dealing
with metrics on Diff(R2) and vertical subspaces defined by the subgroups above, this does happen. In this case, the
horizontal subspace must be taken using less smooth vectors.

In all our cases, L−1 will be a simpler operator than L: this is because the tangent spaces to Be or Bi are quotients
of the tangent spaces to the top spaces Diff or Imm where the metrics are most simply defined, whereas the cotangent
spaces to Be or Bi are subspaces of the cotangent spaces of the space ‘above’. The dual inner product on the cotangent
space is given by the inverse operator L−1 and in all our cases this will be an integral operator with a simple explicit
kernel. A final point: we will use a constant A when terms with different physical ‘dimensions’ are being added in the
operator L. Then A plays the role of fixing a scale relative to which different geometric phenomena can be expected.

Let us now describe in some detail the contents of this paper and the metrics. First, in Section 2, we introduce the
general Hamiltonian formalism. This is, unfortunately, more technical than the rest of the paper. First we consider
general Riemannian metrics on the space of immersions which admit Christoffel symbols. We express this as the
existence of two kinds of gradients. Since the energy function is not even defined on the whole cotangent bundle of
the tangent bundle we pull back to the tangent bundle the canonical symplectic structure on the cotangent bundle. Then
we determine the Hamiltonian vector field mapping and, as a special case, the geodesic equation. We determine the
equivariant moment mapping for several group actions on the space of immersions: the action of the reparametrization
group Diff(S1), of the motion group of R2, and also of the scaling group (if the metric is scale invariant). Finally the
invariant momentum mapping on the group Diff(R2) is described.

Section 3 is then devoted to applying the Hamiltonian procedure to almost local metrics: these are the metrics in
which L is multiplication by some function Φ . Let 	c =

∫
S1 ds be the length of the curve c and let

κc(θ)= 〈
n(θ),Ds(v)(θ)

〉= 〈Jcθ , cθθ 〉/|cθ |3
be the curvature of c at c(θ). Then for any auxiliary function Φ(	, κ), we can define a weighted Riemannian metric:

GΦ
c (h, k)=

∫
S1

Φ
(
	c, κc(θ)

) · h(θ)k(θ) · ds.
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The motivation for introducing weights is simply that, for any 2 curves in Bi , the infimum of path lengths in the G0

metric for paths joining them is zero, see [13,14]. For all these metrics, the horizontal subspace is again the set of
tangent vectors a(θ)n(θ), so the metric on Bi is simply

GΦ
c (a · n,b · n)=

∫
S1

Φ
(
	c, κc(θ)

)
a(θ)b(θ) · ds.

We will determine the geodesic equation, the momenta and the sectional curvature for all these metrics. The formula
for sectional curvature is rather complicated but for special Φ , it is quite usable.

We will look at several special cases. The weights

Φ(	, κ)= 1+Aκ2

were introduced and studied in [13]. As we shall see, this metric is also closely connected to the Wasserstein metric
on probability measures (see [1]), if we assign to a curve C the probability measure given by scaled arc length. We
show that it is sandwiched between the conformal metric G	−1

and GΦW where ΦW = 	−1 + 1
12	κ2. Weights of the

form

Φ(	, κ)= f (	)

were studied in [10] and independently by [19]. The latter are attractive because they give metrics which are confor-
mally equivalent to G0. These metrics are a borderline case between really stable metrics on Be and the metric G0

for which path length shrinks to 0: for them, the infimum of path lengths is positive but at least some paths seem to
oscillate wildly when their length approaches this infimum. Another very interesting case is:

Φ(	, κ)= 	−3 +A|κ|2	−1

because this metric is scale-invariant.
A more standard approach to strengthening G0 is to introduce higher derivatives. In Section 4, we follow the

Sobolev approach which puts a metric on Imm(S1,R2) by:

Gimm,n
c (h, k)=

∫
S1

n∑
i=0

〈
Di

sh,Di
sk
〉
ds =

∫
S1

〈Lh,k〉ds, where L=
n∑

i=0

(−1)iD2i
s .

However, the formulas we get are substantially simpler and L−1 has an elegant expression is we take the equivalent
metric:

Gimm,n
c (h, k)=

∫
S1

(〈h, k〉 +A.
〈
Dn

s h,Dn
s k
〉)

ds =
∫
S1

〈Lh,k〉ds, where L= I + (−1)nAD2n
s .

We apply the Hamiltonian procedure to this metric. Here the horizontal space of all vectors in the tangent space
T Imm(S1,R2) which are Gimm,n-orthogonal to the reparametrization orbits, is very different from the natural splitting
in Section 3. The decomposition of a vector into horizontal and vertical parts involves pseudo-differential operators,
and thus also the horizontal geodesic equation is an integro-differential equation. However, its inverse L−1 is an
integral operator whose kernel has a simple expression in terms of arc length distance between 2 points on the curve
and their unit normal vectors.

For this metric, we work out the geodesic equation and prove that the geodesic flow is well posed in the sense that
we have local existence and uniqueness of solutions in Imm(S1,R2) and in Bi . Finally we discuss a little bit a scale
invariant version of the metric Gimm,n. For the simplest of these metrics, the scaling invariant momentum along a geo-
desic turns out to be the time derivative of log(	). At this time, we do not know the sectional curvature for this metric.
Sobolev metrics of type Hn are also studied in [11], in particular in view of the completion of the space of curves.

In Section 5, we start with the basic right invariant metrics on Diff(R2) which are given by the Sobolev Hn-inner
product on X(R2).

Hn(X,Y )=
∑

i,j�0,i+j�n

Ai+j n!
i!j !(n− i − j)!

∫ ∫
R2

〈
∂i
x∂

j
y X, ∂i

x∂
j
y Y

〉
dx1 dx2

=
∫ ∫

R2
〈LX,Y 〉dx.dy, where L= (1−A�)n, �= ∂2

x + ∂2
y .
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These metrics have been extensively studied by Miller, Younes and Trouvé and their collaborators [5,15,16,21]. Since
these metrics are right invariant, all maps to coset spaces Diff(R2)→Diff(R2)/H are submersions. In particular, this
metric gives a quotient metric on Emb(S1,R2) and Be which we will denote by G

diff,n
c (h, k). In this case, the inverse

L−1 of the operator defining the metric is an integral operator with a kernel given by a classical Bessel function
applied to the distance in R2 between 2 points on the curve. We will derive the geodesic equations: they are all in the
same family as fluid flow equations. We prove well-posedness of the geodesic equation on Emb(S1,R2) and on Be .
Although there is a formula of Arnold [4] for the sectional curvature of any right-invariant metric on a Lie group, we
have not computed sectional curvatures for the quotient spaces.

In Section 6, we study two examples to make clear the differences between the various metrics. The first example
is the geodesic formed by the set of all concentric circles with fixed center. We will see how this geodesic is complete
when the metric is reasonably strong, but incomplete in most ‘borderline’ cases. The second example takes a fixed
‘cigar-shaped’ curve C and compares the unit balls in the tangent space TCBe given by the different metrics.

2. The Hamiltonian approach

In our previous papers, we have derived the geodesic equation in our various metrics by setting the first variation
of the energy of a path equal to 0. Alternately, the geodesic equation is the Hamiltonian flow associated to the first
fundamental form (i.e., the length-squared function given by the metric on the tangent bundle). The Hamiltonian
approach also provides a mechanism for converting symmetries of the underlying Riemannian manifold into conserved
quantities, the momenta. We first need to be quite formal and lay out the basic definitions, esp. distinguishing between
the tangent and cotangent bundles rather carefully: The former consists of smooth vector fields along immersions
whereas the latter is comprised of 1-currents along immersions. Because of this we work on the tangent bundle and
we pull back the symplectic form from the contangent bundle to T Imm(S1,R2). We use the basics of symplectic
geometry and momentum mappings on cotangent bundles in infinite dimensions, and we explain each step. See [12],
Section 2, for a detailed exposition in similar notation as used here.

2.1. The setting

Consider as above the smooth Fréchet manifold Imm(S1,R2) of all immersions S1→R2 which is an open subset
of C∞(S1,R2). The tangent bundle is T Imm(S1,R2) = Imm(S1,R2) × C∞(S1,R2), and the cotangent bundle is
T ∗ Imm(S1,R2)= Imm(S1,R2)×D(S1)2 where the second factor consists of pairs of periodic distributions.

We consider smooth Riemannian metrics on Imm(S1,R2), i.e., smooth mappings

G : Imm
(
S1,R2)×C∞

(
S1,R2)×C∞

(
S1,R2)→R,

(c, h, k) �→Gc(h, k), bilinear in h, k,

Gc(h,h) > 0 for h �= 0.

Each such metric is weak in the sense that Gc , viewed as bounded linear mapping

Gc :Tc Imm
(
S1,R2)= C∞

(
S1,R2)→ T ∗c Imm

(
S1,R2)=D(S1)2

,

G :T Imm
(
S1,R2)→ T ∗ Imm

(
S1,R2),

G(c,h) = (
c,Gc(h, . )

)
,

is injective, but can never be surjective. We shall need also its tangent mapping

T G :T
(
T Imm

(
S1,R2))→ T

(
T ∗ Imm

(
S1,R2)).

We write a tangent vector to T Imm(S1,R2) in the form (c,h; k, 	) where (c,h) ∈ T Imm(S1,R2) is its foot point,
k is its vector component in the Imm(S1,R2)-direction and where 	 is its component in the C∞(S1,R2)-direction.
Then T G is given by

T G(c,h; k, 	)= (
c,Gc(h, . ); k,D(c,k)Gc(h, . )+Gc(	, . )

)
.

Moreover, if X = (c,h; k, 	) then we will write X1 = k for its first vector component and X2 = 	 for the second
vector component. Note that only these smooth functions on Imm(S1,R2) whose derivative lies in the image of G in
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the cotangent bundle have G-gradients. This requirement has only to be satisfied for the first derivative, for the higher
ones it follows (see [9]). We shall denote by C∞G (Imm(S1,R2)) the space of such smooth functions.

We shall always assume that G is invariant under the reparametrization group Diff(S1), hence each such metric
induces a Riemann-metric on the quotient space Bi(S

1,R2)= Imm(S1,R2)/Diff(S1).
In the sequel we shall further assume that the weak Riemannian metric G itself admits G-gradients with respect to

the variable c in the following sense:

Dc,mGc(h, k)=Gc(m,Hc(h, k))=Gc(Kc(m,h), k) where

H,K : Imm
(
S1,R2)×C∞

(
S1,R2)×C∞

(
S1,R2)→ C∞

(
S1,R2),

(c, h, k) �→Hc(h, k),Kc(h, k)

are smooth and bilinear in h, k.

Note that H and K could be expressed in (abstract) index notation as gij,kg
kl and gij,kg

il . We will check and compute
these gradients for several concrete metrics below.

2.2. The fundamental symplectic form on T Imm(S1,R2) induced by a weak Riemannian metric

The basis of Hamiltonian theory is the natural 1-form on the cotangent bundle T ∗ Imm(S1,R2) given by:

Θ :T
(
T ∗ Imm

(
S1,R2))= Imm

(
S1,R2)×D(S1)2 ×C∞

(
S1,R2)×D(S1)2→R,

(c,α;h,β) �→ 〈α,h〉.
The pullback via the mapping G :T Imm(S1,R2)→ T ∗ Imm(S1,R2) of the 1-form Θ is then:

(G∗Θ)(c,h)(c, h; k, 	)=Gc(h, k).

Thus the symplectic form ω = −dG∗Θ on T Imm(S1,R2) can be computed as follows, where we use the constant
vector fields (c,h) �→ (c,h; k, 	):

ω(c,h)

(
(k1, 	1), (k2, 	2)

)=−d(G∗Θ)
(
(k1, 	1), (k2, 	2)

)|(c,h)

=−D(c,k1)Gc(h, k2)−Gc(	1, k2)+D(c,k2)Gc(h, k1)+Gc(	2, k1)

=Gc

(
k2,Hc(h, k1)−Kc(k1, h)

)+Gc(	2, k1)−Gc(	1, k2). (1)

2.3. The Hamiltonian vector field mapping

Here we compute the Hamiltonian vectorfield gradω(f ) associated to a smooth function f on the tangent space
T Imm(S1,R2), that is f ∈ C∞G (Imm(S1,R2)×C∞(S1,R2)) assuming that it has smooth G-gradients in both factors.
See [9], Section 48. Using the explicit formulas in Section 2.2, we have:

ω(c,h)

(
gradω(f )(c,h), (k, 	)

)= ω(c,h)

((
gradω

1 (f )(c,h),gradω
2 (f )(c,h)

)
, (k, 	)

)
=Gc

(
k,Hc

(
h,gradω

1 (f )(c,h)
))−Gc

(
Kc

(
gradω

1 (f )(c,h),h
)
, k
)

+Gc

(
	,gradω

1 (f )(c,h)
)−Gc

(
gradω

2 (f )(c,h), k
)
.

On the other hand, by the definition of the ω-gradient we have

ω(c,h)

(
gradω(f )(c,h), (k, 	)

)= df (c,h)(k, 	)=D(c,k)f (c,h)+D(h,	)f (c,h)

=Gc

(
gradG

1 (f )(c,h), k
)+Gc

(
gradG

2 (f )(c,h), 	
)

and we get the expression of the Hamiltonian vectorfield:

gradω
1 (f )(c,h)= gradG

2 (f )(c,h),

gradω
2 (f )(c,h)=−gradG

1 (f )(c,h)+Hc

(
h,gradG

2 (f )(c,h)
)−Kc

(
gradG

2 (f )(c,h),h
)
.

Note that for a smooth function f on T Imm(S1,R2) the ω-gradient exists if and only if both G-gradients exist.
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2.4. The geodesic equation

The geodesic flow is defined by a vector field on T Imm(S1,R2). One way to define this vector field is as the
Hamiltonian vector field of the energy function

E(c,h)= 1

2
Gc(h,h), E : Imm

(
S1,R2)×C∞

(
S1,R2)→R.

The two partial G-gradients are:

Gc

(
gradG

2 (E)(c,h), 	
)= d2E(c,h)(	)=Gc(h, 	),

gradG
2 (E)(c,h)= h,

Gc

(
gradG

1 (E)(c,h), k
)= d1E(c,h)(k)= 1

2
D(c,k)Gc(h,h)= 1

2
Gc

(
k,Hc(h,h)

)
,

gradG
1 (E)(c,h)= 1

2
Hc(h,h).

Thus the geodesic vector field is

gradω
1 (E)(c,h)= h,

gradω
2 (E)(c,h)= 1

2
Hc(h,h)−Kc(h,h)

and the geodesic equation becomes:{
ct = h,

ht = 1
2Hc(h,h)−Kc(h,h)

or ctt = 1
2Hc(ct , ct )−Kc(ct , ct )

This is nothing but the usual formula for the geodesic flow using the Christoffel symbols expanded out using the first
derivatives of the metric tensor.

2.5. The momentum mapping for a G-isometric group action

We consider now a (possibly infinite-dimensional regular) Lie group with Lie algebra g with a right action g �→ rg

by isometries on Imm(S1,R2). If X(Imm(S1,R2)) denotes the set of vector fields on Imm(S1,R2), we can specify
this action by the fundamental vector field mapping ζ :g→ X(Imm(S1,R2)), which will be a bounded Lie algebra
homomorphism. The fundamental vector field ζX,X ∈ g is the infinitesimal action in the sense:

ζX(c)= ∂t |0rexp(tX)(c).

We also consider the tangent prolongation of this action on T Imm(S1,R2) where the fundamental vector field is given
by

ζ T Imm
X : (c,h) �→ (

c,h; ζX(c),D(c,h)(ζX)(c)=: ζ ′X(c,h)
)
.

The basic assumption is that the action is by isometries,

Gc(h, k)= ((
rg
)∗

G
)
c
(h, k)=Grg(c)

(
Tc

(
rg
)
h,Tc

(
rg
)
k
)
.

Differentiating this equation at g = e in the direction X ∈ g we get

0=D(c,ζX(c))Gc(h, k)+Gc

(
ζ ′X(c,h), k

)+Gc

(
h, ζ ′X(c, k)

)
. (2)

The key to the Hamiltonian approach is to define the group action by Hamiltonian flows. To do this, we define the
momentum map j :g→ C∞G (T Imm(S1,R2),R) by:

jX(c,h)=Gc

(
ζX(c),h

)
.

Equivalently, since this map is linear, it is often written as a map

J :T Imm
(
S1,R2)→ g′,

〈
J (c,h),X

〉= jX(c,h).
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The main property of the momentum map is that it fits into the following commutative diagram and is a homomor-
phism of Lie algebras:

H 0(T Imm)
i C∞G (T Imm,R)

gradω

X(T Imm,ω) H 1(T Imm)

g

j ζ T Imm

where X(T Imm,ω) is the space of vector fields on T Imm whose flow leaves ω fixed. We need to check that:

ζX(c)= gradω
1 (jX)(c,h)= gradG

2 (jX)(c,h),

ζ ′X(c,h)= gradω
2 (jX)(c,h)=−gradG

1 (jX)(c,h)+Hc

(
h, ζX(c)

)−Kc

(
ζX(c),h

)
.

The first equation is obvious. To verify the second equation, we take its inner product with some k and use:

G
(
k,gradG

1 (jX)(c,h)
)=D(c,k)jX(c,h)=D(c,k)Gc

(
ζX(c),h

)+Gc

(
ζ ′X(c, k), h

)
=Gc

(
k,Hc

(
ζX(c),h

))+Gc

(
ζ ′X(c, k), h

)
.

Combining this with (2), the second equation follows. Let us check that it is also a homomorphism of Lie algebras
using the Poisson bracket:

{jX, jY }(c,h)= djY (c,h)
(
gradω

1 (jX)(c,h),gradω
2 (jX)(c,h)

)
= djY (c,h)

(
ζX(c), ζ ′X(c,h)

)
=D(c,ζX(c))Gc

(
ζY (c), h

)+Gc

(
ζ ′Y
(
c, ζX(x)

)
, h
)+Gc

(
ζY (c), ζ ′X(c,h)

)
=Gc

(
ζ ′Y
(
c, ζX(c)

)− ζ ′X
(
c, ζY (c)

)
, h
)

by (2)

=Gc

([ζX, ζY ](c), h
)=Gc

(
ζ[X,Y ](c), h

)= j[X,Y ](c).
Note also that J is equivariant for the group action, by the following arguments: For g in the Lie group let rg be

the right action on Imm(S1,R2), then T (rg) ◦ ζX ◦ (rg)−1 = ζAd(g−1)X . Since rg is an isometry the mapping T (rg) is
a symplectomorphism for ω, thus gradω is equivariant. Thus jX ◦ T (rg)= jAd(g)X plus a possible constant which we
can rule out since jX(c,h) is linear in h.

By Emmy Noether’s theorem, along any geodesic t �→ c(t, . ) this momentum mapping is constant, thus for any
X ∈ g we have〈

J (c, ct ),X
〉= jX(c, ct )=Gc

(
ζX(c), ct

)
is constant in t .

We can apply this construction to the following group actions on Imm(S1,R2).

• The smooth right action of the group Diff(S1) on Imm(S1,R2), given by composition from the right: c �→ c ◦ ϕ

for ϕ ∈Diff(S1). For X ∈X(S1) the fundamental vector field is then given by

ζDiff
X (c)= ζX(c)= ∂t |0

(
c ◦ FlXt

)= cθ .X

where FlXt denotes the flow of X. The reparametrization momentum, for any vector field X on S1 is thus:

jX(c,h)=Gc(cθ .X,h).

Assuming the metric is reparametrization invariant, it follows that on any geodesic c(θ, t), the expression
Gc(cθ .X, ct ) is constant for all X.

• The left action of the Euclidean motion group M(2)=R2 � SO(2) on Imm(S1,R2) given by c �→ eaJ c+B for
(B, eaJ ) ∈R2 × SO(2). The fundamental vector field mapping is

ζ(B,a)(c)= aJc+B.

The linear momentum is thus Gc(B,h),B ∈ R2 and if the metric is translation invariant, Gc(B, ct ) will be con-
stant along geodesics. The angular momentum is similarly Gc(Jc,h) and if the metric is rotation invariant, then
Gc(Jc, ct ) will be constant along geodesics.
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• The action of the scaling group of R given by c �→ erc, with fundamental vector field ζa(c)= a.c. If the metric is
scale invariant, then the scaling momentum Gc(c, ct ) will also be invariant along geodesics.

2.6. Metrics and momenta on the group of diffeomorphisms

Very similar things happen when we consider metrics on the group Diff(R2). As above, the tangent space to
Diff(R2) at the identity is the vector space of vector fields X(R2) on R2 and we can identify T Diff(R2) with the
product Diff(R2)×X(R2) using right multiplication in the group to identify the tangent at a point ϕ with that at the
identity. The definition of this product decomposition means that right multiplication by ψ carries (ϕ,X) to (ϕ◦ψ,X).
As usual, suppose that conjugation ϕ �→ ψ ◦ ϕ ◦ ψ−1 has the derivative at the identity given by the linear operator
Adψ on the Lie algebra X(R2). It is easy to calculate the explicit formula for Ad:

Adψ(X)= (Dψ ·X) ◦ψ−1.

Then left multiplication by ψ on Diff(R2)× X(R2) is given by (ϕ,X) �→ (ψ ◦ ϕ,Adψ(X)). We now want to carry
over the ideas of Section 2.5 replacing the space Imm(S1,R2) by Diff(R2) and the group action there by the right
action of Diff(R2) on itself. The Lie algebra g is therefore X(R2) and the fundamental vector field ζX(c) is now the
vector field with value

ζX(ϕ)= ∂t |0
(
ϕ �→ ϕ ◦ exp(tX) ◦ ϕ−1)=Adϕ(X)

at the point ϕ. We now assume we have a positive definite inner product G(X,Y ) on the Lie algebra X(R2) and that we
use right translation to extend it to a Riemannian metric on the full group Diff(R2). This metric being, by definition,
invariant under the right group action, we have the setting for momentum. The theory of the last section tells us to
define the momentum mapping by:

jX(ϕ,Y )=G
(
ζX(ϕ),Y

)
.

Noether’s theorem tells us that if ϕ(t) is a geodesic in Diff(R2) for this metric, then this momentum will be constant
along the lift of this geodesic to the tangent space. The lift of ϕ(t), in the product decomposition of the tangent space
is the curve:

t �→ (
ϕ(t), ∂t (ϕ) ◦ ϕ−1(t)

)
hence the theorem tells us that:

G
(
Adϕ(t)(X), ∂t (ϕ) ◦ ϕ−1(t)

)= constant

for all X. If we further assume that Ad has an adjoint with respect to G:

G
(
Adϕ(X),Y

)≡G
(
X,Ad∗ϕ(Y )

)
then this invariance of momentum simplifies to:

Ad∗ϕ(t)

(
∂t (ϕ) ◦ ϕ−1(t)

)= constant

This is a very strong invariance and it encodes an integrated form of the geodesic equations for the group.

3. Geodesic equations and conserved momenta for almost local Riemannian metrics

3.1. The general almost local metric GΦ

We have introduced above the Φ-metrics:

GΦ
c (h, k) :=

∫
S1

Φ
(
	c, κc(θ)

)〈
h(θ), k(θ)

〉
ds.
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Since 	(c) is an integral operator the integrand is not a local operator, but the nonlocality is very mild. We call it
almost local. The metric GΦ is invariant under the reparametrization group Diff(S1) and under the Euclidean motion
group. Note (see [13], 2.2) that

D(c,h)	c =
∫
S1

〈hθ , cθ 〉
|cθ | dθ =

∫
S1

〈
Ds(h), v

〉
ds =−

∫
S1

〈
h,Ds(v)

〉
ds =−

∫
S1

κ(c)〈h,n〉ds,

D(c,h)κc = 〈Jhθ , cθθ 〉
|cθ |3 + 〈Jcθ ,hθθ 〉

|cθ |3 − 3κ(c)
〈hθ , cθ 〉
|cθ |2 = 〈

D2
s (h), n

〉− 2κ
〈
Ds(h), v

〉
.

We compute the GΦ -gradients of c �→GΦ
c (h, k):

D(c,m)G
Φ
c (h, k)=

∫
S1

(
∂1Φ(	, κ).D(c,m)	c.〈h, k〉 + ∂2Φ(	, κ).D(c,m)κc.〈h, k〉

+Φ(	, κ).〈h, k〉〈.Ds(m), v
〉)

ds

=−
∫
S1

κc〈m,n〉ds ·
∫
S1

∂1Φ(	, κ)〈h, k〉ds

+
∫
S1

(
∂2Φ(	, κ)

(〈
D2

s (m),n
〉− 2κ

〈
Ds(m), v

〉)+Φ(	, κ)
〈
Ds(m), v

〉)〈h, k〉ds

=
∫
S1

Φ(	, κ)

〈
m,

1

Φ(	, κ)

(
−κc

(∫
∂1Φ(	, κ)〈h, k〉ds

)
n+D2

s

(
∂2Φ(	, κ)〈h, k〉n)

+ 2Ds

(
∂2Φ(	, κ)κ〈h, k〉v)−Ds

(
Φ(	, κ)〈h, k〉v))〉ds.

According to Section 2.1 we should rewrite this as

D(c,m)G
Φ
c (h, k)=GΦ

c

(
KΦ

c (m,h), k
)=GΦ

c

(
m,HΦ

c (h, k)
)
,

where the two GΦ -gradients KΦ and HΦ of c �→GΦ
c (h, k) are given by:

KΦ
c (m,h)=−

(∫
S1

κc〈m,n〉ds

)
∂1Φ(	, κ)

Φ(	, κ)
h+ ∂2Φ(	, κ)

Φ(	, κ)

(〈
D2

s (m),n
〉− 2κ

〈
Ds(m), v

〉)
h+ 〈

Ds(m), v
〉
h,

HΦ
c (h, k)= 1

Φ(	, κ)

(
−
(

κc

∫
∂1Φ(	, κ)〈h, k〉ds

)
n+D2

s

(
∂2Φ(	, κ)〈h, k〉n)

+ 2Ds

(
∂2Φ(	, κ)κ〈h, k〉v)−Ds

(
Φ(	, κ)〈h, k〉v)).

By substitution into the general formula of Section 2.4, this gives the geodesic equation for GΦ , but in a form which
does not seem very revealing, hence we omit it. Below we shall give the equation for the special case of horizontal
geodesics, i.e., geodesics in Bi .
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3.2. Conserved momenta for GΦ

According to Section 2.5 the momentum mappings for the reparametrization, translation and rotation group actions
are conserved along any geodesic t �→ c(t, . ):

Φ(	c, κc)〈v, ct 〉|cθ |2 ∈X(S1) reparametrization momentum∫
S1

Φ(	c, κc)ctds ∈R2 linear momentum

∫
S1

Φ(	c, κc)〈Jc, ct 〉ds ∈R angular momentum

Note that setting the reparametrization momentum to 0 and doing symplectic reduction there amounts exactly to
investigating the quotient space Bi(S

1,R2)= Imm(S1,R2)/Diff(S1) and using horizontal geodesics for doing so; a
horizontal geodesic is one for which 〈v, ct 〉 = 0; or equivalently it is GΦ -normal to the Diff(S1)-orbits. If it is normal
at one time it is normal forever (since the reparametrization momentum is conserved). This was the approach taken
in [13].

3.3. Horizontality for GΦ

The tangent vectors to the Diff(S1) orbit through c are Tc(c◦Diff(S1))= {X.cθ : X ∈ C∞(S1,R)}. Thus the bundle
of horizontal vectors is

Nc =
{
h ∈ C∞

(
S1,R2): 〈h,v〉 = 0

}= {
a.n ∈ C∞

(
S1,R2): a ∈ C∞

(
S1,R

)}
.

A tangent vector h ∈ Tc Imm(S1,R2)= C∞(S1,R2) has an orthonormal decomposition

h= h� + h⊥ ∈ Tc

(
c ◦Diff+

(
S1))⊕Nc where

h� = 〈h,v〉v ∈ Tc

(
c ◦Diff+

(
S1)),

h⊥ = 〈h,n〉n ∈Nc,

into smooth tangential and normal components, independent of the choice of Φ(	, κ). For the following result the
proof given in [13], 2.5, works without any change:

Lemma. For any smooth path c in Imm(S1,R2) there exists a smooth path ϕ in Diff(S1) with ϕ(0, . ) = IdS1

depending smoothly on c such that the path e given by e(t, θ)= c(t, ϕ(t, θ)) is horizontal: et⊥eθ .

Consider a path t �→ c(·, t) in the manifold Imm(S1,R2). It projects to a path π ◦ c in Bi(S
1,R2) whose energy is

called the horizontal energy of c:

Ehor
GΦ (c)=EGΦ (π ◦ c)= 1

2

b∫
a

GΦ
π(c)(Tcπ.ct , Tcπ.ct ) dt

= 1

2

b∫
a

GΦ
c

(
c⊥t , c⊥t

)
dt = 1

2

b∫
a

∫
S1

Φ(	c, κc)
〈
c⊥t , c⊥t

〉
ds dt,

Ehor
GΦ (c)= 1

2

b∫
a

∫
S1

Φ(	c, κc)〈ct , n〉2 dθ dt
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For a horizontal path this is just the usual energy. As in [13], 3.12, we can express Ehor(c) as an integral over the
graph S of c, the immersed surface S ⊂R3 parameterized by (t, θ) �→ (t, c(t, θ)), in terms of the surface area dμS =
|Φt ×Φθ |dθ dt and the unit normal nS = (n0

S, n1
S, n2

S) of S:

Ehor
GΦ (c)= 1

2

∫
[a,b]×S1

Φ(	c, κc)
|n0

S |2√
1− |n0

S |2
dμS.

Here the final expression is only in terms of the surface S and its fibration over the time axis, and is valid for any
path c. This anisotropic area functional has to be minimized in order to prove that geodesics exists between arbitrary
curves (of the same degree) in Bi(S

1,R2).

3.4. The horizontal geodesic equation

Let c(θ, t) be a horizontal geodesic for the metric GΦ . Then ct (θ, t) = a(θ, t).n(θ, t). Denote the integral of a
function over the curve with respect to arclength by a bar. Then the geodesic equation for horizontal geodesics is:

at = −1

2Φ

((−κΦ + κ2∂2Φ
)
a2 −D2

s

(
∂2Φ · a2)+ 2∂2Φ · aD2

s (a)

− 2∂1Φ · (κa) · a + (
∂1Φ · a2

) · κ)
This comes immediately from the formulas for H and K in the metric GΦ when you substitute m= h= k = a.n

and consider only the n-part. We obtain in this case:

Φ · 〈K,n〉 = −(κa).∂1Φ.a + ∂2Φ.D2
s (a).a + ∂2Φ.κ2a2 −Φκa2,

Φ · 〈H,n〉 = −(∂1Φa2
)
.κ +D2

s

(
∂2Φ.a2)+ ∂2Φ.κ2a2 −Φκa2

and the geodesic formula follows by substitution.

3.5. Curvature on Bi,f (S1,R2) for GΦ

We compute the curvature of Bi(S
1,R2) in the general almost local metric GΦ . We proceed as in [13], 2.4.3. We

use the following chart near C ∈ Bi(S
1,R2). Let c ∈ Immf (S1,R2) be parametrized by arclength with π(c)= C of

length L, with unit normal nc. We assume that the parameter θ runs in the scaled circle S1
L below.

ψ :C∞
(
S1

L, (−ε, ε)
)→ Immf

(
S1

L,R2), Q(c) :=ψ
(
C∞

(
S1

L, (−ε, ε)
))

,

ψ(f )(θ)= c(θ)+ f (θ)nc(θ)= c(θ)+ f (θ)ic′(θ),

π ◦ψ :C∞
(
S1

L, (−ε, ε)
)→ Bi,f

(
S1,R2),

where ε is so small that ψ(f ) is an embedding for each f . We have (see [13], 2.4.3)

ψ(f )′ = c′ + f ′ic′ + f ic′′ = (1− f κc)c
′ + f ′ic′,

ψ(f )′′ = c′′ + f ′′ic′ + 2f ′ic′′ + f ic′′′ = −(2f ′κc + f κ ′c
)
c′ + (

κc + f ′′ − f κ2
c

)
ic′,

nψ(f ) = 1√
(1− f κc)2 + f ′2

(
(1− f κc)ic

′ − f ′c′
)
,

Tf ψ.h= h.ic′ ∈ C∞
(
S1,R2)= Tψ(f ) Immf

(
S1

L,R2)
= h(1− f κc)√

(1− f κc)2 + f ′2
nψ(f ) + hf ′

(1− f κc)2 + f ′2
ψ(f )′,

(Tf ψ.h)⊥ = h(1− f κc)√
(1− f κc)2 + f ′2

nψ(f ) ∈Nψ(f ),
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κψ(f ) = 1

((1− f κc)2 + f ′2)3/2

〈
iψ(f )′,ψ(f )′′

〉
= κc +

(
f ′′ + f κ2

c

)+ (
f 2κ3

c + 1
2f ′2κc + ff ′κ ′c + 2ff ′′κc

)+O
(
f 3),

	
(
ψ(f )

)= ∫
S1

L

∣∣ψ(f )
∣∣dθ =

∫
S1

L

(
1− 2f κc + f 2κ2

c + f ′2
)1/2

dθ

=
∫
S1

L

(
1− f κc + f ′2

2
+O

(
f 3))dθ = L− f κc + 1

2
f ′2 +O

(
f 3)

where we use the shorthand g = ∫
S1

L
g(θ) dθ = ∫

S1
L
g(θ) ds. Let GΦ denote also the induced metric on Bi,f (S1

L,R2).

Since π is a Riemannian submersion, for f ∈ C∞(S1
L, (−ε, ε)) and h, k ∈ C∞(S1

L,R) we have(
(π ◦ψ)∗GΦ

)
f
(h, k)=GΦ

π(ψ(f ))

(
Tf (π ◦ψ)h,Tf (π ◦ψ)k

)
=GΦ

ψ(f )

(
(Tf ψ.h)⊥, (Tf ψ.k)⊥

)= ∫
S1

L

Φ
(
	
(
ψ(f )

)
, κψ(f )

) hk(1− f κc)
2√

(1− f κc)2 + f ′2
dθ.

We have to compute second derivatives in f of this. For that we expand the main contributing expressions in f to
order 2:

(1− f κ)2(1− 2f κ + f 2κ2 + f ′2
)−1/2 = 1− f κ − 1

2
f ′2 +O

(
f 3)

Φ(	, κ)=Φ(L,κc)+ ∂1Φ(L,κc)(	−L)+ ∂2Φ(L,κc)(κ − κc)+ ∂1∂2Φ(L,κc)(	−L)(κ − κc)

+ ∂2
1 Φ(L,κc)

2
(	−L)2 + ∂2

2 Φ(L,κc)

2
(κ − κc)

2 +O(3).

We simplify notation as κ = κc, Φ =Φ(L,κc), ((π ◦ψ)∗GΦ)f =GΦ
f etc. and expand the metric:

GΦ
f (h, k)=

∫
S1

L

hk

(
Φ − ∂1Φ.f κ + ∂2Φ.

(
f ′′ + f κ2)−Φ.f κ

+ 1

2
∂1Φ.f ′2 + ∂2Φ.

(
f 2κ3 + 1

2
f ′2κ + ff ′κ ′ + 2ff ′′κ

)
− ∂1∂2Φ.f κ

(
f ′′ + f κ2)+ ∂2

1 Φ

2
(f κ)2 + ∂2

2 Φ

2

(
f ′′ + f κ2)2

+ ∂1Φ.f κ.f κ − ∂2Φ.f κ.
(
f ′′ + f κ2)−Φ.

1

2
f ′2

)
dθ +O

(
f 3).

Note that G
ϕ
0 (h, k)= ∫

S1
L
hkΦ dθ . We differentiate the metric and compute the Christoffel symbol at the center f = 0

−2GA
0

(
Γ0(h, k), l

)=−dGA(0)(l)(h, k)+ dGA(0)(h)(k, l)+ dGA(0)(k)(l, h)

=
∫
S1

L

(
−∂1Φ.hκ.kl − ∂1Φ.h.kκ.l + ∂1Φ.hk

∫
lκ dθ1 − ∂2Φ

′′.hkl

− 2∂2Φ
′.h′kl − 2∂2Φ

′.hk′l − 2∂2Φ.h′k′l + ∂2Φ.hklκ2 −Φ.hklκ

)
dθ.

Thus

Γ0(h, k)= 1

2Φ

(
∂1Φ.(hκ.k + h.kκ)− κ∂1Φ.hk+ ∂2Φ

′′.hk + 2∂2Φ
′.h′k+ 2∂2Φ

′hk′ + 2∂2Φ.h′k′

− ∂2Φ.hkκ2 +Φ.hkκ
)
.
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Letting h= k = ft = a, this leads to the geodesic equation from Section 3.4. For the sectional curvature we use the
following formula which is valid in a chart:

2Rf (m,h,m,h)= 2GA
f

(
Rf (m,h)m,h

)
=−2d2GA(f )(m,h)(h,m)+ d2GA(f )(m,m)(h,h)+ d2GA(f )(h,h)(m,m)

− 2GA
(
Γ (h,m),Γ (m,h)

)+ 2GA
(
Γ (m,m),Γ (h,h)

)
.

The sectional curvature at the two-dimensional subspace Pf (m,h) of the tangent space which is spanned by m and h

is then given by:

kf

(
Pf (m,h)

)=− GΦ
f (R(m,h)m,h)

‖m‖2‖h‖2 −GΦ
f (m,h)2

.

We compute this directly for f = 0, using the expansion up to order 2 of GA
f (h, k) and the Christoffels. We

let W(θ1, θ2) = h(θ1)m(θ2) − h(θ2)m(θ1) so that its second derivative ∂2W(θ1, θ1) = W2(θ1, θ1) = h(θ1)m
′(θ1) −

h′(θ1)m(θ1) is the Wronskian of h and m. Then we have our final result for the main expression in the horizon-
tal sectional curvature, where we use

∫ = ∫
S1

L
, g = ∫

S1
L
g ds, and Φ1 = ∂1Φ etc. Also recall that the base curve is

parametrized by arc-length.

RΦ
0 (m,h,m,h)=GΦ

0

(
R0(m,h)m,h

)
=
∫ (

κ.Φ2 − Φ

2
+ Φ2.Φ

′′
2 − 2(Φ ′2)2 − (Φ2κ)2

2Φ

)
(θ1)W2(θ1, θ1)

2 dθ1

+
∫

Φ22(θ1)

2
W22(θ1, θ1)

2 dθ1

+
∫ (

Φ ′1Φ2

Φ
− Φ1Φ2Φ

′
1

Φ2

)
(θ1)W2(θ1, θ1)

∫
W(θ1, θ2)κ(θ2) dθ2 dθ1

+
∫ (

Φ1Φ2

Φ
−Φ12

)
(θ1)W22(θ1, θ1)

∫
W(θ1, θ2)κ(θ2) dθ2 dθ1

+
∫ ∫

Φ1(θ1)

2

(
1− Φ2.κ

Φ
(θ2)

)
W1(θ1, θ2)

2 dθ2 dθ1

+
∫ ∫ (

Φ2.κ
3 −Φ ′′2 .κ

4Φ
− κ2

4
+
(

Φ ′2.κ
2Φ

)′
+
(

κ2

8Φ

)
.Φ1

)
(θ1)Φ1(θ2)W(θ1, θ2)

2 dθ2 dθ1

+
∫ ∫ ∫ ((

Φ11

2
− Φ2

1

4Φ

)
(θ1)−Φ1(θ1)

Φ1

2Φ
(θ2)

)
κ(θ2)κ(θ3)W(θ1, θ2)W(θ1, θ3) dθ2 dθ1 dθ3

3.6. Special case: the metric GA

If we choose Φ(	c, κc)= 1+Aκ2
c then we obtain the metric used in [13], given by

GA
c (h, k)=

∫
S1

(
1+Aκc(θ)2)〈h(θ), k(θ)

〉
ds.

As shown in our earlier paper,
√

	 is Lipschitz in this metric and the metric dominates the Frechet metric.
The horizontal geodesic equation for the GA-metric reduces to

at = −
1
2κca

2 +A(a2(−D2
s (κc)+ 1

2κ3
c )− 4Ds(κc)aDs(a)− 2κcDs(a)2)

1+Aκ2
c

as found in [13], 4.2. Along a geodesic t �→ c(t, . ) we have the following conserved quantities:
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(
1+Aκ2

c

)〈v, ct 〉|cθ |2 ∈X
(
S1) reparametrization momentum∫

S1

(
1+Aκ2

c

)
ct ds ∈R2 linear momentum

∫
S1

(
1+Aκ2

c

)〈Jc, ct 〉ds ∈R angular momentum

For Φ(	, κ)= 1+Aκ2 we have ∂1Φ = 0, ∂2Φ = 2Aκ , ∂2
2 Φ = 2A, and the general curvature formula in Section 3.5

for the horizontal curvature specializes to the formula in [13], 4.6.4:

RΦ
0 (m,h,m,h)=

∫ (
− (1−Aκ2)2 − 4A2κκ ′′ + 8A2κ ′2

2(1+Aκ2)
W 2

2 +AW 2
22

)
dθ.

3.7. Special case: the conformal metrics

We put Φ(	(c), κ(c))=Φ(	(c)) and obtain the metric proposed by Menucci and Yezzi and, for Φ linear, indepen-
dently by Shah [19]:

GΦ
c (h, k)=Φ(	c)

∫
S1

〈h, k〉ds =Φ(	c)G
0
c(h, k).

All these metrics are conformally equivalent to the basic L2-metric G0. As they show, the infimum of path lengths in
this metric is positive so long as Φ satisfies an inequality Φ(	) � C.	 for some C > 0. This follows, as in [13], 3.4,
by the inequality on area swept out by the curves in a horizontal path ct = a.n:∫

|a|.ds �
(∫

a2. ds

)1/2

· 	1/2 �
(

	

Φ(	)

)1/2

· (GΦ(a, a)
)1/2

.

Area swept out

� max
t

(
	c(t,·)

Φ(	c(t,·))

)1/2

· (GΦ -path length
)
� GΦ -path length√

C
.

The horizontal geodesic equation reduces to:

at = κ

2
a2 − ∂1Φ

Φ
·
(

1

2

(∫
a2. ds

)
κ −

(∫
κ.a. ds

)
a

)
.

If we change variables and write b(s, t)=Φ(	(t)).a(s, t), then this equation simplifies to:

bt = κ

2Φ

(
b2 − ∂1Φ

Φ

∫
b2
)

Along a geodesic t �→ c(t, . ) we have the following conserved quantities:

Φ(	c)〈v, ct 〉
∣∣c′(θ)

∣∣2 ∈X
(
S1) reparametrization momentum

Φ(	c)

∫
S1

ct ds ∈R2 linear momentum

Φ(	c)

∫
S1

〈Jc, ct 〉ds ∈R angular momentum

For the conformal metrics, sectional curvature has been computed by Shah [19] using the method of local charts
from [13]. We specialize formula in Section 3.5 to the case that Φ(	, κ)=Φ(	) is independent of κ . Then ∂2Φ = 0.
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We also assume that h,m are orthonormal so that Φh2 =Φm2 = 1 and Φhm= 0. Then the sectional curvature at the
two-dimensional subspace P0(m,h) of the tangent space which is spanned by m and h is then given by:

k0
(
P0(m,h)

)=− GΦ
0 (R0(m,h)m,h)

‖m‖2‖h‖2 −GΦ
0 (m,h)2

= 1

2
Φ.W(h,m)2 + ∂1Φ

4Φ
.
(
m2κ2 + h2κ2

)+ 3(∂1Φ)2 − 2Φ∂2
1Φ

4Φ2

(
hκ2 +mκ2)

− ∂1Φ

2Φ

(
m′2 + h′2

)− (∂1Φ)2

4Φ3
κ2

which is the same as Eq. (11) in [19]. Note that the first line is positive while the last line is negative. The first term is
the curvature term for the H 0-metric. The key point about this formula is how many positive terms it has. This makes
it very hard to get smooth geodesics in this metric. For example, in the case where Φ(	)= c.	, the analysis of Shah
[19] proves that the infimum of GΦ path length between two embedded curves C and D is exactly the area of the
symmetric difference of their interiors: Area(Int(C)� Int(D)), but that this length is realized by a smooth path if and
only if C and D can be connected by ‘grassfire’, i.e., a family in which the length |ct (θ, t)| ≡ 1.

3.8. Special case: the smooth scale invariant metric GSI

Choosing the function Φ(	, κ)= 	−3 +Aκ2

	
we obtain the metric:

GSI
c (h, k)=

∫
S1

(
1

	3
c

+A
κ2
c

	c

)
〈h, k〉ds.

The beauty of this metric is that (a) it is scale invariant and (b) log(	) is Lipschitz, hence the infimum of path lengths
is always positive. Scale invariance is clear: changing c,h, k to λ · c,λ · h,λ · k changes 	 to λ · 	 and κ to κ/λ so the
λ’s in GSI cancel out. To see the second fact, take a horizontal path ct = a · n, 0 � t � 1, and abbreviate the lengths
of the curves in this path, 	c(t,·), to 	(t). Then we have:

∂ log	(t)

∂t
= 1

	(t)

∫
S1

κc(t,·)(θ) · a(θ, t) ds, hence

∣∣∣∣∂ log	(t)

∂t

∣∣∣∣= (∫
κ2a2ds

	(t)

)1/2

·
(∫

1 · ds

	(t)

)1/2

� 1√
A

(
GSI (a, a)

)1/2
, hence∣∣log

(
	(1)

)− log
(
	(0)

)∣∣� SI-path length/
√

A.

Thus in a path whose length in this metric is K , the lengths of the individual curves can increase or decrease at most
by a factor eK/

√
A. Now use the same argument as above to control the area swept out by such a path:∫
|a|ds �

(∫
a2 ds

)1/2

·
(∫

1 · ds

)1/2

�
(
	3GSI (a, a)

)1/2 · 	1/2 = 	2 ·GSI (a, a)1/2, hence

Area-swept-out � eK/
√

A	(0)2 ·K
which verifies the second fact. We can readily calculate the geodesic equation for horizontal geodesics in this metric
as another special case of the equation for GΦ :

at = −1

1+A(	κ)2

((−1+A(	κ)2)κa2

2
−A	2D2

s (κ)a2 − 2A	2κDs(a)2

− 4A	2Ds(κ)aDs(a)+ (
3+A(	κ)2)(aκ) · a − 3

2
(a2) · κ − A	2

2
(κa)2 · κ

)
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where the “overline” stands now for the average of a function over the curve, i.e.,
∫ · · ·ds/	. Since this metric is scale

invariant, there are now four conserved quantities, instead of three:

Φ(	, κ)〈v, ct 〉
∣∣c′(θ)

∣∣2 ∈X
(
S1) reparametrization momentum∫

S1

Φ(	, κ)ct ds ∈R2 linear momentum

∫
S1

Φ(	, κ)〈Jc, ct 〉ds ∈R angular momentum

∫
S1

Φ(	, κ)〈c, ct 〉ds ∈R scaling momentum

It would be very interesting to compute and compare geodesics in these special metrics.

3.9. The Wasserstein metric and a related GΦ -metric

The Wasserstein metric (also known as the Monge–Kantorovich metric) is a metric between probability measures
on a common metric space, see [1] and [2] for more details. It has been studied for many years globally and is defined
as follows: let μ and ν be 2 probability measures on a metric space (X,d). Consider all measures ρ on X×X whose
marginals under the 2 projections are μ and ν. Then:

dwass(μ, ν)= inf
ρ:p1,∗(ρ)=μ,p2,∗(ρ)=ν

∫ ∫
X×X

d(x, y) dρ(x, y).

It was discovered only recently by Benamou and Brenier [6] that, if X = Rn, this is, in fact, path length for a
Riemannian metric on the space of probability measures P . In their theory, the tangent space at μ to the space of
probability measures and the infinitesimal metric are defined by:

Tμ,P =
{

vector fields h=∇f completed in the norm
∫
|h|2dμ

}
where the tangent h to a family t �→ μ(t) is defined by the identity:

∂μ

∂t
+ div(h.μ)= 0.

In our case, we want to assign to an immersion c the scaled arc length measure μc = ds/	. This maps Bi to P . The
claim is that the pull-back of the Wasserstein metric by this map is intermediate between G	−1

and GΦW , where

ΦW(	, κ)= 	−1 + 1
12	κ2.

This is not hard to work out.

(1) Because we are mod-ing out by vector fields of norm 0, the vector field h is defined only along the curve c and its
norm is 	−1.

∫ ‖h‖2 ds.
(2) If we split h= av+bn, then the condition that h=∇f means that

∫
a.ds = 0 and the norm is 	−1.

∫
(a2+b2) ds.

(3) But moving c infinitesimally by h, scaled arc length parametrization of c must still be scaled arc length. Let
c(·, t) = c + th. Then this means |cθ |t = const. |cθ | at t = 0. Since |cθ |t = 〈ctθ , cθ 〉/|cθ |, this condition is the
same as 〈Ds(av + bn), v〉 = const., or Dsa − bκc = const.

(4) Combining the last 2 conditions on b, we get a formula for a in terms of b, namely a = K ∗ (bκc), where we
convolve with respect to arc length using the kernel K(x)= sign(x)/2− x/	, −	 � x � 	.

(5) Finally, since |K ∗ f |(x) � |K|.|f | = √	/12|f | for all f , it follows that

	−1.

∫
b2 ds � 	−1.

∫ (
a2 + b2)ds � 	−1.

∫ (
b2 + (	κ)2

12
.b2

)
ds

which sandwiches the Wasserstein norm between G	−1
and GΦW for ΦW = 	−1.(1+ (	κ)2/12).
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4. Immersion-Sobolev metrics on Imm(S1,R2) and on Bi

4.1. The Gimm,n-metric

We note first that the differential operator Ds = ∂θ|cθ | is anti-self-adjoint for the metric G0, i.e., for all h, k ∈
C∞(S1.R2) we have∫

S1

〈
Ds(h), k

〉
ds =

∫
S1

〈
h,−Ds(k)

〉
ds.

We can define a Sobolev-type weak Riemannian metric1 on Imm(S1,R2) which is invariant under the action of
Diff(S1) by:

Gimm,n
c (h, k)=

∫
S1

(〈h, k〉 +A.
〈
Dn

s h,Dn
s k
〉)
.ds =

∫
S1

〈
Ln(h), k

〉
ds where (3)

Ln(h) or Ln,c(h)= (
I + (−1)nA.D2n

s

)
(h). (4)

The interesting special case n = 1 and A→∞ has been studied by Trouvé and Younes in [21,24] and by Mio,
Srivastava and Joshi in [17,18]. In this case, the metric reduces to:

Gimm,1,∞
c (h, k)=

∫
S1

〈
Ds(h),Ds(k)

〉
.ds

which ignores translations, i.e., it is a metric on Imm(S1,R2) modulo translations. Now identify R2 with C, so that
this space embeds as follows:

Imm
(
S1,R2)/transl. ↪→ C∞

(
S1,C

)
c �−→ cθ .

Then Trouvé and Younes use the new shape space coordinates Z(θ) = √cθ (θ) and Mio et al. use the coordinates
Φ(θ) = log(cθ (θ))—with complex square roots and logs. Both of these unfortunately require the introduction of a
discontinuity, but this will drop out when you minimize path length with respect to reparametrizations. The wonderful
fact about Z(θ) is that in a family Z(t, θ), we find:

Zt = ct,θ

2
√

cθ

, so
∫
S1

|Zt |2 dθ = 1

4

∫ |ct,θ |2
|cθ |2 |cθ |dθ = 1

4

∫ ∣∣Ds(ct )
∣∣2 ds

so the metric becomes a constant metric on the vector space of functions Z. With Φ , one has
∫ |Φt |2 ds =∫ |Ds(ct )|2 ds, which is simple but not quite so nice. One can expect a very explicit representation of the space

of curves in this metric.
Returning to the general case, for each fixed c of length 	, the differential operator Ln,c is simply the constant coef-

ficient ordinary differential operator f �→ f + (−1)nA.f (2n) on the s-line modulo 	.Z. Thus its Green’s function is a
linear combination of the exponentials exp(λ.x), where λ are the roots of 1+ (−1)nA.λ2n = 0. A simple verification
gives its Green’s function (which we will not use below):

Fn(x)= 1

2n
·

∑
λ2n=(−1)n+1/A

λ

1− eλ	
eλx, 0 � x � 	.

1 There are other choices for the higher order terms, e.g., summing all the intermediate derivatives with or without binomial coefficients. These
metrics are all equivalent and the one we use leads to the simplest equations.
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This means that the dual metric Ǧ
imm,n
c = (G

imm,n
c )−1 on the smooth cotangent space C∞(S1,R2)∼=G0

c(Tc Imm(S1,

R2))⊂ T ∗c Imm(S1,R2)∼=D(S1)2 is given by the integral operator L−1 which is convolution by Fn with respect to
arc length s:

Ǧimm,n
c (h, k)=

∫ ∫
S1×S1

Fn(s1 − s2).
〈
h(s1), k(s2)

〉
.ds1 .ds2.

4.2. Geodesics in the Gimm,n-metric

Differentiating the operator Ds = 1
|cθ |∂θ with respect to c in the direction m we get −〈mθ ,cθ 〉

|cθ |3 ∂θ , or −〈Dsm,v〉Ds .
Thus differentiating the big operator Ln,c with respect to c in the direction m, we get:

D(c,m)Ln,c(h)= (−1)n+1A.

2n−1∑
j=0

D
j
s

〈
Ds(m), v

〉
D

2n−j
s (h). (5)

Thus we have

D(c,m)G
imm,n
c (h, k)

=A.

∫
S1

(−1)n+1
2n−1∑
j=0

〈
D

j
s 〈Dsm,v〉D2n−j

s (h), k
〉
ds +

∫
S1

〈
Ln(h), k

〉〈Dsm,v〉ds

=A.

∫
S1

2n−1∑
j=1

(−1)n+j+1〈〈Dsm,v〉D2n−j
s (h),D

j
s k
〉
ds +

∫
S1

〈h, k〉〈Dsm,v〉ds

=
∫
S1

〈
m,A.

2n−1∑
j=1

(−1)n+jDs

(〈
D

2n−j
s h,D

j
s k
〉
v
)−Ds

(〈h, k〉v)〉ds.

According to Section 2.1 we should rewrite this as

D(c,m)G
imm,n
c (h, k)=Gimm,n

c

(
Kn

c (m,h), k
)=Gimm,n

c

(
m,Hn

c (h, k)
)
,

and thus we find the two versions Kn and Hn of the Gn-gradient of c �→G
imm,n
c (h, k) are given by:

Kn
c (m,h)= L−1

n

(
(−1)n+1A.

2n−1∑
j=1

D
j
s 〈Dsm,v〉D2n−j

s (h)+ 〈Dsm,v〉h
)

(6)

and by

Hn
c (h, k)= L−1

n

(
A.

2n−1∑
j=1

(−1)n+jDs

(〈
D

2n−j
s h,D

j
s k
〉
v
)−Ds

(〈h, k〉v))

= L−1
n

(
A.

2n−1∑
j=1

(−1)n+j
〈
D

2n−j+1
s h,D

j
s k
〉
v+A.

2i∑
j=2

(−1)n+j−1〈D2n−j+1
s h,D

j
s k
〉
v

+A.

2n−1∑
j=1

(−1)n+j
〈
D

2n−j
s h,D

j
s k
〉
κcn− 〈Dsh, k〉v − 〈h,Dsk〉v− 〈h, k〉κcn

)

= L−1
n

(
−〈Ln(h),Dsk

〉
v− 〈

Dsh,Ln(k)
〉
v− 〈h, k〉κ(c)n+A.

2n−1∑
j=1

(−1)n+j
〈
D

2n−j
s h,D

j
s k
〉
κ(c)n

)
(7)

since Ds(v)= κ(c)n. By Section 2.4 the geodesic equation for the metric Gn is
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ctt = 1

2
Hn

c (ct , ct )−Kn
c (ct , ct ).

We expand it to get:

Ln(ctt )=−
〈
Ln(ct ),Ds(ct )

〉
v− |ct |2κ(c)

2
n− 〈

Ds(ct ), v
〉
ct

+ A

2
.

2n−1∑
j=1

(−1)n+j
〈
D

2n−j
s ct ,D

j
s ct

〉
κ(c)n

+ (−1)nA.

2n−1∑
j=1

D
j
s

(〈
Ds(ct ), v

〉
D

2n−j
s (ct )

)
(8)

From (5) we see that

(
Ln(ct )

)
t
−Ln(ctt )= dLn(c)(ct )(ct )= (−1)n+1A.

2n−1∑
j=0

D
j
s

〈
Ds(ct ), v

〉
D

2n−j
s (ct ),

so that a more compact form of the geodesic equation of the metric Gn is:

(
Ln(ct )

)
t
=−〈Ln(ct ),Ds(ct )

〉
v− |ct |2κ(c)

2
n− 〈

Ds(ct ), v
〉
Lnct

+ A

2
.

2n−1∑
j=1

(−1)n+j
〈
D

2n−j
s ct ,D

j
s ct

〉
κ(c)n

(9)

For n= 0 this agrees with [13], 4.1.2.

4.3. Existence of geodesics

Theorem. Let n � 1. For each k � 2n+ 1 the geodesic equation (8) has unique local solutions in the Sobolev space
of Hk-immersions. The solutions depend C∞ on t and on the initial conditions c(0, . ) and ct (0, . ). The domain of
existence (in t) is uniform in k and thus this also holds in Imm(S1,R2).

Proof. We consider the geodesic equation as the flow equation of a smooth (C∞) vector field on the H 2-open set
Uk ×Hk(S1,R2) in the Sobolev space Hk(S1,R2)×Hk(S1,R2) where Uk = {c ∈Hk: |cθ |> 0} ⊂Hk is H 2-open.
To see that this works we will use the following facts: By the Sobolev inequality we have a bounded linear embed-
ding Hk(S1,R2) ⊂ Cm(S1,R2) if k > m + 1

2 . The Sobolev space Hk(S1,R) is a Banach algebra under pointwise
multiplication if k > 1

2 . For any fixed smooth mapping f the mapping u �→ f ◦ u is smooth Hk → Hk if k > 0.
The mapping (c, u) �→ Ln,cu is smooth U × Hk → Hk−2n and is a bibounded linear isomorphism Hk → Hk−2n

for fixed c. This can be seen as follows (see Section 4.5 below): It is true if c is parametrized by arclength (look at
it in the space of Fourier coefficients). The index is invariant under continuous deformations of elliptic operators of
fixed degree, so the index of Ln,c is zero in general. But Ln,c is self-adjoint positive, so it is injective with vanishing
index, thus surjective. By the open mapping theorem it is then bibounded. Moreover (c,w) �→ L−1

n,c(w) is smooth

Uk ×Hk−2n→ Hk (by the inverse function theorem on Banach spaces). The mapping (c, f ) �→Dsf = 1
|cθ |∂θf is

smooth Hk ×Hm ⊃U ×Hm→Hm−1 for k � m, and is linear in f . Let us write Dcf =Dsf just for the remainder
of this proof to stress the dependence on c. We have v =Dcc and n= JDcc. The mapping c �→ κ(c) is smooth on the
H 2-open set {c: |cθ |> 0} ⊂Hk into Hk−2. Keeping all this in mind we now write the geodesic equation as follows:

ct = u=:X1(c, u),



Aut
ho

r's
   

pe
rs

on
al

   
co

py

P.W. Michor, D. Mumford / Appl. Comput. Harmon. Anal. 23 (2007) 74–113 95

ut = L−1
n,c

(
−〈Ln,c(u),Dc(u)

〉
Dc(c)− |ct |2κ(c)

2
JDc(c)−

〈
Dc(u),Dcc

〉
u

+ A

2
.

2n−1∑
j=1

(−1)n+j
〈
D

2n−j
c u,D

j
c u
〉
κ(c)JDc(c)+ (−1)nA.

2n−1∑
j=1

D
j
c

(〈
Dc(u),Dc(c)

〉
D

2n−j
c (u)

))
=:X2(c, u).

Now a term by term investigation of this shows that the expression in the brackets is smooth Uk×Hk→Hk−2n since
k − 2n � 1 > 1

2 . The operator L−1
n,c then takes it smoothly back to Hk . So the vector field X = (X1,X2) is smooth on

Uk ×Hk . Thus the flow Flk exists on Hk and is smooth in t and the initial conditions for fixed k.
Now we consider smooth initial conditions c0 = c(0, . ) and u0 = ct (0, . ) = u(0, . ) in C∞(S1,R2). Suppose

the trajectory Flkt (c0, u0) of X through these initial conditions in Hk maximally exists for t ∈ (−ak, bk), and the
trajectory Flk+1

t (c0, u0) in Hk+1 maximally exists for t ∈ (−ak+1, bk+1) with bk+1 < bk . By uniqueness we have
Flk+1

t (c0, u0)= Flkt (c0, u0) for t ∈ (−ak+1,bk+1). We now apply ∂θ to the equation ut = X2(c, u)= L−1
n,c( . . . ), note

that the commutator [∂θ ,L
−1
n,c] is a pseudo-differential operator of order −2n again, and write w = ∂θu. We obtain

wt = ∂θut = L−1
n,c∂θ ( . . . )+ [∂θ ,L

−1
n,c]( . . . ). In the term ∂θ ( . . . ) we consider now only the terms ∂2n+1

θ u and rename

them ∂2n
θ w. Then we get an equation wt(t, θ) = X̃2(t,w(t, θ)) which is inhomogeneous bounded linear in w ∈ Hk

with coefficients bounded linear operators on Hk which are C∞ functions of c,u ∈Hk . These we already know on
the interval (−ak, bk). This equation therefore has a solution w(t, . ) for all t for which the coefficients exists, thus
for all t ∈ (ak, bk). The limit limt↗bk+1 w(t, . ) exists in Hk and by continuity it equals ∂θu in Hk at t = bk+1. Thus
the Hk+1-flow was not maximal and can be continued. So (−ak+1, bk+1)= (ak, bk). We can iterate this and conclude
that the flow of X exists in

⋂
m�k Hm = C∞. �

4.4. The conserved momenta of Gimm,n

According to Section 2.5 the following momenta are preserved along any geodesic t �→ c(t, . ):〈
cθ ,Ln,c(ct )

〉∣∣cθ (θ)
∣∣ ∈X

(
S1) reparametrization momentum∫

S1

Ln,c(ct ) ds =
∫
S1

ct ds ∈R2 linear momentum

∫
S1

〈
Jc,Ln,c(ct )

〉
ds ∈R angular momentum

4.5. Horizontality for Gimm,n

h ∈ Tc Imm(S1,R2) is G
imm,n
c -orthogonal to the Diff(S1)-orbit through c if and only if

0=Gimm,n
c

(
h, ζX(c)

)=Gimm,n
c (h, cθ .X)=

∫
S1

X.
〈
Ln,c(h), cθ

〉
ds

for all X ∈X(S1). So the Gimm,n-normal bundle is given by

N n
c =

{
h ∈ C∞

(
S,R2): 〈Ln,c(h), v

〉= 0
}
.

The Gimm,n-orthonormal projection Tc Imm→N n
c , denoted by h �→ h⊥ = h⊥,Gn

and the complementary projection
h �→ h� ∈ Tc(c ◦Diff(S1)) are determined as follows:

h� =X(h).v where
〈
Ln,c(h), v

〉= 〈
Ln,c

(
X(h).v

)
, v
〉
.

Thus we are led to consider the linear differential operators associated to Ln.c
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L�c ,L⊥c :C∞
(
S1)→ C∞

(
S1),

L�c (f )= 〈
Ln,c(f.v), v

〉= 〈
Ln,c(f.n), n

〉
,

L⊥c (f )= 〈
Ln,c(f.v), n

〉=−〈Ln,c(f.n), v
〉
.

The operator L�c is of order 2n and also unbounded, self-adjoint and positive on L2(S1, |cθ |dθ) since∫
S1

L�c (f )g ds =
∫
S1

〈
Ln,c(f v), v

〉
g ds =

∫
S1

〈
f v,Ln,c(gv)

〉
ds =

∫
S1

f L�c (g) ds,

∫
S1

L�c (f )f ds =
∫
S1

〈
f v,Ln,c(f v)

〉
ds > 0 if f �= 0.

In particular, L�c is injective. L⊥c , on the other hand is of order 2n−1 and a similar argument shows it is skew-adjoint.
For example, if n= 1, then one finds that:

L�c =−A.D2
s +

(
1+A.κ2).I,

L⊥c =−2A.κ.Ds −A.Ds(κ).I.

Lemma. The operator L�c :C∞(S1)→ C∞(S1) is invertible.

Proof. This is because its index vanishes, by the following argument: The index is invariant under continuous defor-
mations of elliptic operators of degree 2n. The operator

L�c (f )= (−1)n
A

|cθ |2n
∂2n
θ (f )+ lower order terms

is homotopic to (1 + (−1)n∂2n
θ )(f ) and thus has the same index which is zero since the operator 1+ (−1)n∂2n

θ is
invertible. This can be seen by expanding in Fourier series where the latter operator is given by (f̂ (m)) �→ ((1 +
m2n)f̂ (m)), a linear isomorphism of the space of rapidly decreasing sequences. Since L�c is injective, it is also
surjective. �

To go back and forth between the ‘natural’ horizontal space of vector fields a.n and the Gimm,n-horizontal vector
fields {h | 〈Lh,v〉 = 0}, we only need to use these operators and the inverse of L�. Thus, given a, we want to find b

and f such that L(an+ bv)= f n, so that an+ bv is Gimm,n-horizontal. But this implies that

L⊥(a)=−〈L(an), v
〉= 〈

L(bv), v
〉= L�(b).

Thus if we define the operator Cc :C∞(S1)→ C∞(S1) by

Cc :=
(
L�c

)−1 ◦L⊥c ,

we get a pseudo-differential operator of order −1 (which is an integral operator), so that a.n + C(a).v is always
Gimm,n-horizontal. In particular, the restriction of the metric Gimm,n to horizontal vector fields hi = ai.n+ bi.v can
be computed like this:

Gimm,n
c (h1, h2)=

∫
S1

〈Lh1, h2〉.ds =
∫
S1

〈
L(a1.n+ b1.v), n

〉
.a2.ds

=
∫
S1

(
L�(a1)+L⊥(b1)

)
.a2.ds =

∫
S1

(
L� +L⊥ ◦C

)
a1.a2.ds.

Thus the metric restricted to horizontal vector fields is given by the pseudo-differential operator Lred = L� + L⊥ ◦
(L�)−1 ◦ L⊥. On the quotient space Bi , if we identify its tangent space at C with the space of normal vector fields
a.n, then:

G
imm,n
C (a1, a2)=

∫
C

(
L� +L⊥ ◦ (L�)−1 ◦L⊥

)
a1 · a2 · ds
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Now, although this operator may be hard to analyze, its inverse, the metric on the cotangent space to Bi , is simple.
The tangent space to Bi at a curve C is canonically the quotient of that of Imm(S1,R2) at a parametrization c of C,
modulo the subspace of multiples of v. Hence the cotangent space to Bi at C injects into that of Imm(S1,R2) at c

with image the linear functionals that vanish on v. In terms of the dual basis v̌, ň, these are multiples of ň. On the
smooth cotangent space C∞(S1,R2) ∼= G0

c(Tc Imm(S1,R2)) ⊂ T ∗c Imm(S1,R2) ∼= D(S1)2 the dual metric is given
by convolution with the elementary kernel Kn which is a simple sum of exponentials. Thus we need only restrict this
kernel to multiples a(s).ňc(s) to obtain the dual metric on Bi . The result is that:

Ǧn
c (a1, a2)=

∫ ∫
S1×S1

Kn(s1 − s2).
〈
nc(s1), nc(s2)

〉
.a1(s1).a2(s2) .ds1 ds2.

4.6. Horizontal geodesics

The normal bundle Nc mentioned in Section 4.5 is well defined and is a smooth vector sub-bundle of the tangent
bundle. But Imm(S1,R2)→ Bi(S

1,R2) = Imm/Diff(S1) is not a principal bundle and thus there are no principal
connections, but we can prove the main consequence, the existence of horizontal paths, directly:

Proposition. For any smooth path c in Imm(S1,R2) there exists a smooth path ϕ in Diff(S1) with ϕ(0, . ) = IdS1

depending smoothly on c such that the path e given by e(t, θ)= c(t, ϕ(t, θ)) is horizontal: 〈Ln,e(et ), eθ 〉 = 0.

Proof. Writing Dc instead of Ds we note that

Dc◦ϕ(f ◦ ϕ)= (fθ ◦ ϕ)ϕθ

|cθ ◦ ϕ|.|ϕθ | =
(
Dc(f )

) ◦ ϕ for ϕ ∈Diff+
(
S1).

So we have Ln,c◦ϕ(f ◦ ϕ)= (Ln,cf ) ◦ ϕ.
Let us write e= c ◦ ϕ for e(t, θ)= c(t, ϕ(t, θ)), etc. We look for ϕ as the integral curve of a time dependent vector

field ξ(t, θ) on S1, given by ϕt = ξ ◦ ϕ. We want the following expression to vanish:〈
Ln,c◦ϕ

(
∂t (c ◦ ϕ)

)
, ∂θ (c ◦ ϕ)

〉= 〈
Ln,c◦ϕ

(
ct ◦ ϕ + (cθ ◦ ϕ)ϕt

)
, (cθ ◦ ϕ)ϕθ

〉
= 〈

Ln,c(ct ) ◦ ϕ +Ln,c(cθ .ξ) ◦ ϕ, cθ ◦ ϕ
〉
ϕθ

= ((〈
Ln,c(ct ), cθ

〉+ 〈
Ln,c(ξ.cθ ), cθ

〉) ◦ ϕ
)
ϕθ .

Using the time dependent vector field ξ =− 1
|cθ | (L

�
c )−1(〈Ln,c(ct ), v〉) and its flow ϕ achieves this. �

If we write

ct = na + vb= (n, v)

(
a

b

)
then we can expand the condition for horizontality as follows:

Ds(ct )=
(
Dsa + κ(c)b

)
n+ (

Dsb− κ(c)a
)
v = (n, v)

(
Ds κ

−κ Ds

)(
a

b

)
,

Lc
n(ct )= ct + (−1)nA(n, v)

(
Ds κ

−κ Ds

)2n(
a

b

)
= ct + (−1)nA(n, v)

(
D2

s − κ2 Dsκ + κDs

−Dsκ − κDs D2
s − κ2

)n(
a

b

)
so that horizontality becomes

0= 〈
Ln,c(ct ), v

〉= 〈ct , v〉 + (−1)nA(0,1)

(
D2

s − κ2 Dsκ + κDs

−Dsκ − κDs D2
s − κ2

)n(
a

b

)
.
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We may specialize the general geodesic equation to horizontal paths and then take the v and n parts of the geodesic
equation. For a horizontal path we may write Ln,c(ct ) = ãn for ã(t, θ) = 〈Ln,c(ct ), n〉. The v part of the equation
turns out to vanish identically and then n part gives us (because nt is a multiple of v):

ãt =−|ct |2κ(c)

2
− 〈Dsct , v〉ã + Aκ(c)

2

2n−1∑
j=1

(−1)n+j
〈
D

2n−j
s ct ,D

j
s ct

〉
Note that applying Section 4.3 with horizontal initial vectors gives us local existence and uniqueness for solutions of
this horizontal geodesic equation.

4.7. A Lipschitz bound for arc length in Gimm,n

We apply the inequality of Cauchy–Schwarz to the derivative of the length function 	(c)= ∫ |cθ |dθ along a path
t �→ c(t, . ):

∂t	(c)= d	(c)(ct )=
∫
S1

〈ctθ , cθ 〉
|cθ | dθ =

∫
S1

〈
Ds(ct ), v

〉
ds

�
(∫

S1

∣∣Ds(ct )
∣∣2 ds

) 1
2 ·

(∫
S1

12 ds

) 1
2

�
√

	(c)
1

A
‖ct‖G1 �

√
	(c)C(A,n)‖ct‖Gn,

∂t

√
	(c)= ∂t	(c)

2
√

	(c)
� C(A,n)

2
‖ct‖Gn.

Thus we get

∣∣√	(c(1, . ))−√
	(c(0, . ))

∣∣� 1∫
0

∣∣∂t

√
	(c)

∣∣dt � C(A,n)

2

1∫
0

‖ct‖Gn dt = C(A,n)

2
LGn(c).

Taking the infimum of this over all paths t �→ c(t, . ) from c0 to c1 we see that for n � 1 we have the Lipschitz
estimate:∣∣√	(c1)−

√
	(c0)

∣∣� 1

2
distImm

Gn (c1, c0).

Since we have Lhor
Gn(c) � LGn(c) with equality for horizontal curves we also have:

If n � 1,
∣∣√	(C1)−√	(C0)

∣∣� 1

2
distBi

Gn(C1,C0)

4.8. Scale invariant immersion Sobolev metrics

Let us mention in passing that we may use the length of the curve to modify the immersion Sobolev metric so that
it becomes scale invariant:

Gimm,scal,n
c (h, k)=

∫
S1

(
	(c)−3〈h, k〉 + 	(c)2n−3A

〈
Dn

s (h),Dn
s (k)

〉)
ds

=
∫
S1

〈(
	(c)−3 + (−1)n	(c)2n−3AD2n

s

)
h, k

〉
ds.

This metric can easily be analyzed using the methods described above. In particular we note that the geodesic equation
on Imm(S1,R2) for this metric is built in a similar way than that for Gimm,n and that the existence theorem in
Section 4.3 holds for it. Note the conserved momenta along a geodesic t �→ c(t, . ) are:
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1

	(c)3

∫
S1

ct ds + (−1)n	(c)2n−3A

∫
S1

D2n
s (ct ) ds

= 1

	(c)3

∫
S1

ct ds ∈R2 linear momentum

1

	(c)3

∫
S1

〈Jc, ct 〉ds + (−1)n	(c)2n−3A

∫
S1

〈
Jc,D2n

s (ct )
〉
ds angular momentum

1

	(c)3

∫
S1

〈c, ct 〉ds + (−1)n	(c)2n−3A

∫
S1

〈
c,D2n

s (ct )
〉
ds scaling momentum

As in the work of Trouvé and Younes [21,24], we may consider the following variant.

Gimm,scal,n,∞
c (h, k)= lim

A→∞
1

A

∫
S1

〈(
	(c)−3 + (−1)n	(c)2n−3AD2n

s

)
h, k

〉
ds

= (−1)n	(c)2n−3
∫
S1

〈
D2n

s h, k
〉
ds.

It is degenerate with kernel the constant tangent vectors. The interesting fact is that the scaling momentum for
Gimm,scal,1,∞ is given by

− 1

	(c)

∫
S1

〈
c,D2

s (ct )
〉
ds = ∂t log	(c).

5. Sobolev metrics on Diff(R2) and on its quotients

5.1. The metric on Diff(R2)

We consider the regular Lie group Diff(R2) which is either the group Diffc(R2) of all diffeomorphisms with
compact supports of R2 or the group DiffS(R2) of all diffeomorphisms which decrease rapidly to the identity. The
Lie algebra is X(R2), by which we denote either the Lie algebra Xc(R

2) of vector fields with compact support or the
Lie algebra XS(R2) of rapidly decreasing vector fields, with the negative of the usual Lie bracket. For any n � 0, we
equip Diff(R2) with the right invariant weak Riemannian metric GDiff,n given by the Sobolev Hn-inner product on
Xc(R

2).

Hn(X,Y )=
∑

0�i,j�n
i+j�n

Ai+j n!
i!j !(n− i − j)!

∫
R2

〈
∂i
x1∂

j

x2X,∂i
x1∂

j

x2Y
〉
dx

=
∑

0�i,j�n
i+j�n

(−A)i+j n!
i!j !(n− i − j)!

∫
R2

〈
∂2i
x1∂

2j

x2 X,Y
〉
dx

=
∫
R2

〈LX,Y 〉dx where L= LA,n = (1−A�)n, �= ∂2
x1 + ∂2

x2 .

(We will write out the full subscript of L only where it helps clarify the meaning.) The completion of Xc(R
2) is

the Sobolev space Hn(R2)2. With the usual L2-inner product we can identify the dual of Hn(R2)2 with H−n(R2)2

(in the space of tempered distributions). Note that the operator L :Hn(R2)2 → H−n(R2)2 is a bounded linear op-
erator. On L2(R2) the operator L is unbounded self-adjoint and positive. In terms of Fourier transform we have
L̂A,nu(ξ) = (1+ A|ξ |2)nû. Let FA,n in the space of tempered distributions S ′(R2) be the fundamental solution (or
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Green’s function: note that we use the letter ‘F’ for ‘fundamental’ because ‘G’ has been used as the metric) of LA,n

satisfying LA,n(FA,n)= δ0 which is given by

FA,n(x)= 1

2π

∫
R2

ei〈x,ξ〉 1

(1+A|ξ |2)n dξ.

The functions FA,n are given by the classical modified Bessel functions Kr (in the notation, e.g., of Abramowitz and
Stegun [7] or of Matlab) by the formula:

FA,n(x)= 1

2nπ(n− 1)!A .

( |x|√
A

)n−1

Kn−1

( |x|√
A

)
and it satisfies (L−1u)(x)= ∫

R2 F(x− y)u(y) dy for each tempered distribution u. The function FA,n is Cn−1 except
that FA,1 has a log-pole at zero. At infinity, FA,n(x) is asymptotically a constant times xn−3/2e−x : these facts plus
much much more can be found in [7].

5.2. Strong conservation of momentum and ‘EPDiff’

What is the form of the conservation of momentum for a geodesic ϕ(t) in this metric, that is to say, a flow x �→
ϕ(x, t) on R2? We need to work out Ad∗ϕ first. Using the definition, we see:∫

R2

〈
LX,Ad∗ϕ(Y )

〉 := ∫
R2

〈
LAdϕ(X),Y

〉= ∫
R2

〈
(dϕ.X) ◦ ϕ−1,LY

〉
=

∫
R2

det(dϕ)〈dϕ.X,LY ◦ ϕ〉 =
∫
R2

〈
X,det(dϕ).dϕT .(LY ◦ ϕ)

〉
hence:

Ad∗ϕ(Y )= L−1(det(dϕ).dϕT .(LY ◦ ϕ)
)
.

Now the conservation of momentum for geodesics ϕ(t) of right invariant metrics on groups says that:

L−1
(

det(dϕ)(t).dϕ(t)t .

(
L

(
∂ϕ

∂t
◦ ϕ−1

)
◦ ϕ

))
is independent of t . This can be put in a much more transparent form. First, L does not depend on t , so we cross out
the outer L−1. Now let v(t)= ∂ϕ

∂t
◦ ϕ−1 ∈X(R2) be the tangent vector to the geodesic. Let u(t)= Lv(t), so that:

det(dϕ)(t).dϕ(t)t .
(
u(t) ◦ ϕ(t)

)
is independent of t . We should not think of u(t) as a vector field on R2: this is because we want 〈u,v〉 to make
invariant sense in any coordinates whatsoever. This means we should think of u as expanding to the differential form:

ω(t)= (
u1.dx1 + u2.dx2)⊗μ

where μ= dx1 ∧ dx2, the area form. But then:

ϕ(t)∗
(
ω(t)

)= 〈
dϕt .

(
u ◦ ϕ(t)

)
, dx

〉⊗ det(dϕ)(t).μ

so conservation of momentum says simply:

ϕ(t)∗ω(t) is independent of t

This motivates calling ω(t) the momentum of the geodesic flow. As we mentioned above, conservation of momentum
for a Riemannian metric on a group is very strong and is an integrated form of the geodesic equation. To see this, we
need only take the differential form of this conservation law. v(t) is the infinitesimal flow, so the infinitesimal form of
the conservation is:

∂

∂t
ω(t)+Lv(t)

(
ω(t)

)= 0



Aut
ho

r's
   

pe
rs

on
al

   
co

py

P.W. Michor, D. Mumford / Appl. Comput. Harmon. Anal. 23 (2007) 74–113 101

where Lv(t) is the Lie derivative. We can expand this term by term:

Lv(t)(ui)=
∑
j

vj .
∂ui

∂xj
,

Lv(t)

(
dxi

)= dvi =
∑
j

∂vi

∂xj
.dxj ,

Lv(t)(μ)= divv(t)μ,

Lv(t)

(
ω(t)

)= (∑
i,j

(
vj .

∂ui

∂xj
.dxi + uj .

∂vj

∂xi
.dxi

)
+ divv.

∑
i

uidxi

)
⊗μ.

The resulting differential equation for geodesics has been named EPDiff :

v = ∂ϕ

∂t
◦ ϕ−1, u= L(v)

∂ui

∂t
+
∑
j

(
vj .

∂ui

∂xj
+ uj .

∂vj

∂xi

)
+ divv.ui = 0

Note that this is a special case of the general equation of Arnold: ∂tu = − ad(u)∗u for geodesics on any Lie group
in any right (or left) invariant metric. The name ‘EPDiff’ was coined by Holm and Marsden and stands for ‘Euler–
Poincaré’, although it takes a leap of faith to see it in the reference they give to Poincaré.

5.3. The quotient metric on Emb(S1,R2)

We now consider the quotient mapping Diff(R2)→ Emb(S1,R2) given by ϕ �→ ϕ ◦ i as in Section 1. Since this
identifies Emb(S1,R2) with a right coset space of Diff(R2), and since the metric Gn

diff is right invariant, we can put
a quotient metric on Emb(S1,R2) for which this map is a Riemannian submersion. Our next step is to identify this
metric. Let ϕ ∈Diff(R2) and let c= ϕ ◦ i ∈ Emb(S1,R2). The fibre of this map through ϕ is the coset

ϕ.Diff0(S1,R2)= {ψ |ψ ◦ c≡ c}.ϕ.

whose tangent space is (the right translate by ϕ of) the vector space of vector fields X ∈ X(R2) with X ◦ c ≡ 0. This
is the vertical subspace. Thus the horizontal subspace is{

Y

∣∣∣ ∫
R2

〈LY,X〉dx = 0, if X ◦ c≡ 0

}
.

If we want Y ∈X(R2) then the horizontal subspace is 0. But we can also search for Y in a bigger space of vector fields
on R2. What we need is that LY = c∗(p(θ).ds), where p is a function from S1 to R2 and ds is arc length measure
supported on C. To make c∗(p(θ).ds) pair with smooth vector fields X(R2) in a coordinate invariant way, we should
interpret the values of p as 1-forms. Solving for Y , we have:

Y(x)=
∫
S1

F
(
x − c(θ)

)
.p(θ) ds

(where, to make Y a vector field, the values of p are now interpreted as vectors, using the standard metric on R2 to
convert 1-forms to vectors). Because F is not C∞, we have a case here where the horizontal subspace is not given
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by C∞ vector fields. However, we can still identify the set of vector fields in this horizontal subspace which map
bijectively to the C∞ tangent space to Emb(S1,R2) at c. Mapped to Tc Emb(S1,R2), the above Y goes to:

(Y ◦ c)(θ)=
∫
S1

F
(
c(θ)− c(θ1)

)
.p(θ1).

∣∣c′(θ1)
∣∣dθ1 =: (Fc ∗ p)(θ) where

Fc(θ1, θ2)= F
(
c(θ1)− c(θ2)

)= 1

2π

∫
R2

ei〈c(θ1)−c(θ2),ξ〉 1

(1+A|ξ |2)n dξ. (10)

Note that here, convolution on S1 uses the metric L2(S1, |c′(θ)|dθ) and it defines a self-adjoint operator for this
Hilbert space. Moreover, it is covariant with respect to change in parametrization:

Fc◦ϕ ∗ (f ◦ ϕ)= (Fc ∗ f ) ◦ ϕ.

What are the properties of the kernel Fc? From the properties of F , we see that Fc is Cn−1 kernel (except for log
poles at the diagonal when n= 1). It is also a pseudo-differential operator of order −2n+ 1 on S1. To see that let us
assume for the moment that each function of θ is a periodic function on R. Then

c(θ1)− c(θ2) =
1∫

0

cθ

(
θ2 + t (θ1 − θ2)

)
dt.(θ1 − θ2)=: c̃(θ1, θ2)(θ1 − θ2),

Fc(θ1, θ2) = 1

2π

∫
R2

ei(θ1−θ2)〈c̃(θ1,θ2),ξ〉 1

(1+A|ξ |2)n dξ

= 1

2π

∫
R

ei(θ1−θ2)η1

(∫
R

|c̃(θ1, θ2)|−2

(1+ A

|c̃(θ1,θ2)|2 (|η1|2 + |η2|2))n
dη2

)
dη1

=: 1

2π

∫
R

ei(θ1−θ2)η1 F̃c(θ1, θ2, η1) dη1

where we changed variables as η1 = 〈c̃(θ1, θ2), ξ 〉 and η2 = 〈J c̃(θ1, θ2), ξ 〉. So we see that Fc(θ1, θ2) is an elliptic
pseudo-differential operator kernel of degree −2n + 1 (the loss comes from integrating with respect to η2). The
symbol F̃c is real and positive, so the operator p �→ Fc ∗ p is self-adjoint and positive. Thus it is injective, and by an
index argument similar to the one in Section 4.5 it is invertible. The inverse operator to the integral operator Fc is a
pseudo-differential operator Lc of order 2n− 1 given by the distribution kernel Lc(θ, θ1) which satisfies

Lc ∗ Fc ∗ f = Fc ∗Lc ∗ f = f,

Lc◦ϕ ∗ (h ◦ ϕ)= (
(Lc ∗ h) ◦ ϕ

)
for all ϕ ∈Diff+

(
S1). (11)

If we write h= Y ◦ c, then we want to express the horizontal lift Y in terms of h and write Yh for it. The set of all
these Yh spans the horizontal subspace which maps isomorphically to Tc Emb(S1,R2). Now:

h= Y ◦ c= (
F ∗ (c∗(p.ds)

)) ◦ c= Fc ∗ p.

Therefore, using the inverse operator, we get p = Lc ∗ h and:

Yh = F ∗ (c∗(p.ds)
)= F ∗ (c∗((Lc ∗ h).ds

))
or

Yh(x)=
∫
S1

F
(
x − c(θ)

)∫
S1

Lc(θ, θ1)h(θ1)
∣∣c′(θ1)

∣∣dθ1
∣∣c′(θ)

∣∣dθ

and LYh = c∗((Lc ∗ h).ds). Thus we can finally write down the quotient metric

Gdiff,n
c (h, k)=

∫
R2

〈LYh,Yk〉dx
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=
∫
S1

〈
Lc ∗ h(θ),

∫
S1

F
(
c(θ)− c(θ1)

) ∫
S1

Lc(θ1, θ2)k(θ2) ds2 ds1

〉
ds

=
∫
S1

〈
Lc ∗ h(θ), k(θ)

〉
ds =

∫ ∫
S1×S1

Lc(θ, θ1)
〈
h(θ1), k(θ)

〉
ds1 ds. (12)

The dual metric on the associated smooth cotangent space Lc ∗C∞(S1,R2) is similarly:

Ǧdiff,n
c (p, q)=

∫ ∫
S1×S1

Fc(θ, θ1)
〈
p(θ1), q(θ)

〉
ds1 ds.

5.4. The geodesic equation on Emb(S1,R2) via conservation of momentum

A quite convincing but not rigorous derivation of this equation can be given using the fact that under a submersion,
geodesics on the quotient space are the projections of those geodesics on the total space which are horizontal at one
and hence every point. In our case, the geodesics on Diff(R2) can be characterized by the strong conservation of
momentum we found above: ϕ(t)∗ω(t) is independent of t . If X(t) is the tangent vector to the geodesic, i.e., the
velocity X(t) = ∂tϕ ◦ ϕ−1(t), then ω(t) is just LX(t) = c∗(p(θ, t).ds) = c∗(p(θ, t).|cθ (θ, t)|.dθ) considered as a
measure valued 1-form instead of a vector field.

When we pass to the quotient Emb(S1,R2), a horizontal geodesic of diffeomorphisms ϕ(t) with ϕ(0) = identity
gives a geodesic path of embeddings c(θ, t)= ϕ(t) ◦ c(0, θ). For these geodesic equations, it will be most convenient
to take as the momentum the 1-form p̃(θ, t)= p(θ, t).|cθ (θ, t)|, the measure factor dθ being constant along the flow.
We must take the velocity to be the horizontal vector field X(t)= F ∗ c(·, t)∗(p̃(θ, t).dθ). For this to be the velocity
of the path of maps c, we must have ct (θ, t)= X(c(θ), t) because the global vector field X must extend ct . To pair
p̃ and ct , we regard p̃ as a 1-form along c (the area factor having been replaced by the measure dθ supported on C).
The geodesic equation must be the differential form of the conservation equation:

ϕ(t)∗p̃(·, t) is independent of t

More explicitly, if dx stands for differentiating with respect to the spatial coordinates x, y, then this means:

dxϕ(t)T |c(θ,t)p̃(θ, t)= const.

We differentiate this with respect to t , using the identity:

∂tdxϕ(t)= dx

(
ϕt (t)

)= dx

(
X ◦ ϕ(t)

)= (
dx(X) ◦ ϕ(t)

) · dxϕ(t),

we get

0= dxϕ(t)T · ((dx(X)T ◦ c(θ, t)
) · p̃(θ, t)+ p̃t (θ, t)

)
.

Writing this out and putting the discussion together, we get the following form for the geodesic equation on
Emb(S1,R2):

ct (θ, t)=X(t) ◦ c(θ, t),

p̃t (θ, t)=−gradXt
(
c(θ, t), t

) · p̃(θ, t),

X(t)= F ∗ c(·, t)∗
(
p̃(θ, t).dθ

)
.

Note that X is a vector field on the plane: these are not closed equations if we restrict X to the curves. The gradient
of X requires that we know the normal derivative of X to the curves. Alternatively, we may introduce a second
vector-valued kernel on S1 depending on c by:

F ′c(θ1, θ2)= gradF
(
c(θ1)− c(θ2)

)
.

Then the geodesic equations may be written:

ct (θ, t)= (
Fc ∗ p̃

)
(θ, t)

p̃t (θ, t)=−〈p̃(θ, t),
(
F ′c ∗ p̃

)
(θ, t)

〉
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where, in the second formula, the dot product is between the two p̃’s and the vector value is given by F ′c.
The problem with this approach is that we need to enlarge the space Diff(R2) to include diffeomorphisms which

are not C∞ along some C∞ curve but have a mild singularity normal to the curve. Then we would have to develop
differential geometry and the theory of geodesics on this space, etc. It seems more straightforward to outline the direct
derivation of the above geodesic equation, along the lines used above.

5.5. The geodesic equation on Emb(S1,R2), direct approach

The space of invertible pseudo-differential operators on a compact manifold is a regular Lie group (see [3]), so we
can use the usual formula d(A−1) =−A−1.dA.A−1 for computing the derivative of Lc with respect to c. Note that
we have a simple expression for Dc,hFc, namely

Dc,hFc(θ1, θ2)= dF
(
c(θ1)− c(θ2)

)(
h(θ1)− h(θ2)

)= 〈
F ′c(θ1, θ2), h(θ1)− h(θ2)

〉
hence

Dc,	Lc(θ1, θ2)=−
∫

(S1)2

Lc(θ1, θ3)Dc,hFc(θ3, θ4)Lc(θ4, θ2) dθ3 dθ4

=−
∫

(S1)2

Lc(θ1, θ3)
〈(

F ′c(θ3, θ4), 	(θ3)
)〉

Lc(θ4, θ2) dθ3 dθ4

+
∫

(S1)2

Lc(θ1, θ4)
〈(

F ′c(θ4, θ3), 	(θ3)
)〉
Lc(θ3, θ2) dθ3 dθ4.

We can now differentiate the metric where θ = (θ1, θ2, . . . , θn) is the variable on (S1)n:

Dc,	G
diff,n(h, k)=

∫
(S1)2

Dc,	Lc(θ1, θ2)
〈
h(θ2), k(θ1)

〉
dθ

=
∫

(S1)4

〈−Lc(θ1, θ3)F
′
c(θ3, θ4)Lc(θ4, θ2)+Lc(θ1, θ4)F

′
c(θ4, θ3)Lc(θ3, θ2), 	(θ3)

〉〈
h(θ2), k(θ1)

〉
dθ.

We have to write this in the form

Dc,	G
diff,n
c (h, k)=Gdiff,n

c

(
	,Hc(h, k)

)=Gdiff,n
c

(
Kc(	,h), k

)
.

For Hc we use δ(θ5 − θ3)=
∫

Lc(θ5, θ6)Fc(θ6, θ3) dθ6 = (Lc ∗ Fc)(θ5, θ3) as follows:

Dc,	G
diff,n(h, k)=

∫
(S1)6

Lc(θ5, θ6)
〈
	(θ5),

(−Lc(θ1, θ3)F
′
c(θ3, θ4)Lc(θ4, θ2)

+Lc(θ1, θ4)F
′
c(θ4, θ3)Lc(θ3, θ2)

)
Fc(θ6, θ3)

〈
h(θ2), k(θ1)

〉〉
dθ.

Thus

Hc(h, k)(θ0)=
∫

(S1)4

(−Lc(θ1, θ3)F
′
c(θ3, θ4)Lc(θ4, θ2)

+Lc(θ1, θ4)F
′
c(θ4, θ3)Lc(θ3, θ2)

)
Fc(θ0, θ3)

〈
h(θ2), k(θ1)

〉
dθ.

Similarly we get

Dc,	G
diff,n(h, k)=

∫
(S1)6

Lc(θ6, θ5)
〈
Fc(θ1, θ6)

〈−Lc(θ1, θ3)F
′
c(θ3, θ4)Lc(θ4, θ2)

+Lc(θ1, θ4)F
′
c(θ4, θ3)Lc(θ3, θ2), 	(θ3)

〉
h(θ2), k(θ5)

〉
dθ
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so that

Kc(	,h)(θ0)=
∫

(S1)2

(−〈F ′c(θ0, θ1)Lc(θ1, θ2), 	(θ0)
〉+ 〈

F ′c(θ0, θ1)Lc(θ1, θ2), 	(θ1)
〉)

h(θ2) dθ.

By Section 2.4 the geodesic equation is given by

ctt (θ0)= 1

2
Hc(ct , ct )(θ0)−Kc(ct , ct )(θ0).

Let us rewrite the geodesic equation in terms of Lc ∗ ct . We have (suppressing the variable t and collecting all terms)

(Lc ∗ ct )t (θ0)=
∫
S1

Dc,ct Lc(θ0, θ1)ct (θ1) dθ1 +Lc ∗ ctt

= 1

2

∫
S1

(
F ′c(θ1, θ0)− F ′c(θ0, θ1)

)〈
Lc ∗ ct (θ0),Lc ∗ ct (θ1)

〉
dθ1.

Since the kernel F is an even function we get the same geodesic equation as above for the momentum p̃(θ, t) =
Lc ∗ ct = p(θ, t).|cθ |:

p̃t (θ0)=−
∫
S1

F ′c(θ0, θ1)
〈
p̃(θ0), p̃(θ1)

〉
dθ1. (13)

5.6. Existence of geodesics

Theorem. Let n � 1. For each k > 2n − 1
2 the geodesic equation (13) has unique local solutions in the Sobolev

space of Hk-embeddings. The solutions are C∞ in t and in the initial conditions c(0, . ) and ct (0, . ). The domain of
existence (in t) is uniform in k and thus this also holds in Emb(S1,R2).

An even stronger theorem, proving global existence on the level of Hk-diffeomorphisms on R2, has been proved
by [20,22,23].

Proof. Let c ∈Hk . We begin by checking that F ′c is a pseudo-differential operator kernel of order −2n+ 2 as we did
for Fc in Section 5.3:

c(θ1)− c(θ2)=: c̃(θ1, θ2)(θ1 − θ2),

gradF(x) = 1

2π

∫
R2

ei〈x,ξ〉 Jξ

(1+A|ξ |2)n dξ,

F ′c(θ1, θ2) = 1

2π

∫
R2

ei(θ1−θ2)〈c̃(θ1,θ2),ξ〉 Jξ

(1+A|ξ |2)n dξ

= 1

2π

∫
R

ei(θ1−θ2)η1

(∫
R

|c̃(θ1, θ2)|−3.J η

(1+ A

|c̃(θ1,θ2)|2 (|η1|2 + |η2|2))n
dη2

)
dη1

=: 1

2π

∫
R

ei(θ1−θ2)η1 F̃c(θ1, θ2, η1) dη1

where we changed variables as η1 = 〈c̃(θ1, θ2), ξ 〉 and η2 = 〈J c̃(θ1, θ2), ξ 〉. So we see that F ′c(θ1, θ2) is an elliptic
pseudo-differential operator kernel of degree −2n+ 2 (the loss of 1 comes from integrating with respect to η2). We
write the geodesic equation in the following way:

ct = Fc ∗ q =: Y1(c, q),

qt =
〈
q,F ′c ∗ q

〉= ∫
F ′c( . , θ)

〈
q(θ), q( . )

〉
dθ =: Y2(c, q).
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We start with c ∈Hk where k > 2n− 1
2 , in the H 2-open set Uk := {c: |cθ |> 0} ⊂Hk . Then q = Lc ∗ ct ∈Hk−2n+1

and F ′c ∗ q ∈Hk−1 ⊂Hk−2n+1. By the Banach algebra property of the Sobolev space Hk−2n+1 the expression (with
misuse of notation) Y2(c, q) = 〈q,F ′c ∗ q〉 ∈ Hk−2n+1. Since the kernel F is not smooth only at 0, all appearing
pseudo differential operators kernels are C∞ off the diagonal, thus are smooth mappings in c with values in the space
of operators between the relevant Sobolev spaces. Let us make this more precise. We claim that c �→ F ′c ∗ ( . ) ∈
L(Hk,Hk+2n−2) is C∞. Since the Sobolev spaces are convenient, we can (a) use the smooth uniform boundedness
theorem [9], 5.18, so that it suffices to check that for each fixed q ∈ Hk the mapping c �→ F ′c ∗ q is smooth into
Hk+2n−2. Moreover, by [9], 2.14, it suffices (b) to check that this is weakly smooth: Using the L2-duality between
Hk+2n−2 and H−k−2n+2 it suffices to check, that for each p ∈H−k−2n+2 the expression∫

p(θ1)
(
F ′c ∗ q

)
(θ1) dθ1

=
∫ ∫

p(θ1)

2π

∫
R

ei(θ1−θ2)η1

(∫
R

|c̃(θ1, θ2)|−3.J η

(1+ A

|c̃(θ1,θ2)|2 (|η1|2 + |η2|2))n
dη2

)
dη1q(θ2) dθ1 dθ2

is a smooth mapping Emb(S1,R2)→ R2. For that we may assume that c depends on a further smooth variable s.
Convergence of this integral depends on the highest order term in the asymptotic expansion in η, which does not
change if we differentiate with respect to s.

Thus the geodesic equation is the flow equation of a smooth vector field Y = (Y1, Y2) on Uk ×Hk−2n+1. We thus
have local existence and uniqueness of the flow Flk on Uk ×Hk−2n+1.

Now we consider smooth initial conditions c0 = c(0, . ) and q0 = q(0, . )= (Lc ∗ct )(0, . ) in C∞(S1,R2). Suppose
the trajectory Flkt (c0, q0) of Y through these initial conditions in Uk ×Hk+1−2n maximally exists for t ∈ (−ak, bk),
and the trajectory Flk+1

t (c0, u0) in Uk+1 × Hk+2−2n maximally exists for t ∈ (−ak+1, bk+1) with bk+1 < bk . By
uniqueness we have Flk+1

t (c0, u0)= Flkt (c0, u0) for t ∈ (−ak+1,bk+1). We now apply ∂θ to the equation qt = Y2(c, q),
note that the commutator q �→ [F ′c, ∂θ ]∗q = ∂th(F ′c ∗q)−F ′c ∗(∂θq) is a pseudo-differential operator of order−2n+2
again, and obtain

∂θqt =
∫ [

F ′c, ∂θ

]
( . , θ)

〈
q(θ), q( . )

〉
dθ +

∫
F ′c( . , θ)

〈
∂θq(θ), q( . )

〉
dθ

+
∫

F ′c( . , θ)
〈
q(θ), ∂θq( . )

〉
dθ

which is an inhomogeneous linear equation for w = ∂θq in Uk ×Hk+1−2n. By the variation of constant method one
sees that the solution w exists in Hk for as long as (c, q) exists in Uk × Hk+1−2n, i.e., for all t ∈ (−ak, bk). By
continuity we can conclude that w = ∂θq is the derivative in Hk+2−2n for t = bk+1, and thus the domain of definition
was not maximal. Iterating this argument we can conclude that the solution (c, q) lies in C∞ for t ∈ (−ak, bk). �
5.7. Horizontality for Gdiff,n

The tangent vector h ∈ Tc Emb(S1,R2) is G
diff,n
c -orthogonal to the Diff(S1)-orbit through c if and only if

0=Gdiff,n
c

(
h, ζX(c)

)= ∫
(S1)2

Lc(θ1, θ2)
〈
h(θ2), cθ (θ1)

〉
X(θ1) ds1 ds2

for all X ∈X(S1). So the Gdiff,n-normal bundle is given by

N diff,n
c = {

h ∈ C∞
(
S1,R2): 〈Lc ∗ h,v〉 = 0

}
.

Working exactly as in Section 4, we want to split any tangent vector into vertical and horizontal parts as h= h� + h⊥
where h� = X(h).v for X(h) ∈ X(S1) and where h⊥ is horizontal, 〈Lc ∗ h⊥, v〉 = 0. Then 〈Lc ∗ h,v〉 = 〈Lc ∗
(X(h)v), v〉 and we are led to consider the following operators:

L�c ,L⊥c :C∞
(
S1)→ C∞

(
S1),

L�c (f )= 〈
Lc ∗ (f.v), v

〉= 〈
Lc ∗ (f.n), n

〉
,

L⊥c (f )= 〈
Lc ∗ (f.v), n

〉=−〈Lc ∗ (f.n), v
〉
.
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The pseudo-differential operator L�c is unbounded, self-adjoint and positive on L2(S1, dθ) since we have∫
S1

L�c (f ).f dθ =
∫

(S1)2

〈
Lc(θ1, θ2)f (θ2)v(θ2), f (θ1).v(θ1)

〉
dθ = ‖f.v‖2

Gdiff,n > 0.

Thus L�c is injective and by an index argument as in Section 4.5 the operator L�c is invertible. Moreover, the operator
L⊥c is skew-adjoint. To go back and forth between the natural horizontal space of vector fields a.n and the Gdiff,n-
horizontal vectors, we have to find b such that Lc ∗ (a.n+ b.v)= f.n for some f . But then

L⊥c (a)=−〈Lc ∗ (a.n), v
〉= 〈

Lc ∗ (b.v), v
〉= L�c (b) thus b= (

L�c
)−1

L⊥c (a).

Thus a.n+ (L�c )−1L⊥c (a).v is always Gdiff,n-horizontal and is the horizontal projection of a.n+ b.v for any b.

Proposition. For any smooth path c in Imm(S1,R2) there exists a smooth path ϕ in Diff(S1) with ϕ(0, . ) = IdS1

depending smoothly on c such that the path e given by e(t, θ)= c(t, ϕ(t, θ)) is Gdiff,n-horizontal: 〈Lc ∗ et , eθ 〉 = 0.

Proof. Let us write e = c ◦ ϕ for e(t, θ)= c(t, ϕ(t, θ)), etc. We look for ϕ as the integral curve of a time dependent
vector field ξ(t, θ) on S1, given by ϕt = ξ ◦ ϕ. We want the following expression to vanish. In its computation the
equivariance of Lc under ϕ ∈Diff+(S1) from Section 5.3 (11) will play an important role.〈

Lc◦ϕ ∗
(
∂t (c ◦ ϕ)

)
, ∂θ (c ◦ ϕ)

〉= 〈
Lc◦ϕ ∗

(
ct ◦ ϕ + (cθ ◦ ϕ)ϕt

)
, (cθ ◦ ϕ)ϕθ

〉
= 〈(

(Lc ∗ ct ) ◦ ϕ
)+ ((

Lc ∗ (cθ .ξ)
) ◦ ϕ

)
, (cθ ◦ ϕ)ϕθ

〉
= ((〈

Lc ∗ ct , cθ

〉+ 〈
Lc ∗ (ξ.cθ ), cθ

〉) ◦ ϕ
)
ϕθ .

Using the time dependent vector field ξ =−(L�c )−1〈Lc ∗ ct , cθ 〉 and its flow ϕ achieves this. �
To write the quotient metric on Be , we want to lift normal vector fields a.n to a curve C to horizontal vector fields

on Emb(S1,R2). Substituting h= a.n+ (L�c )−1L⊥c (a).v, k = b.n+ (L�)−1L⊥(b).v in Section 5.3 (12), we get as
above:

G
diff,n
C (a, b)=

∫
C

(
L�c +L⊥c

(
L�c

)−1
L⊥c

)
(a).b ds.

The dual metric on the cotangent space is just the restriction of the dual metric on Emb(S1,R2) to the cotangent space
to Be and is much simpler. We simply set p = f.n, q = g.n and get:

Ǧ
diff,n
C (f, g)=

∫ ∫
C2

F
(
x(s)− x(s1)

)
.
〈
n(s), n(s1)

〉
.f (s)g(t).ds ds1

where x(s) ∈R2 stands for the point in the plane with arc length coordinate s and F is the Bessel kernel. Since these
are dual inner products, we find that the two operators, (a) convolution with the kernel F(x(s)− x(s1)).〈n(s), n(s1)〉
and (b) L�c +L⊥c (L�c )−1L⊥c are inverses of each other.

5.8. The geodesic equation on Be via conservation of momentum

The simplest way to find the geodesic equation on Be is again to specialize the general rule ϕ(t)∗ω(t)= cnst. to
the horizontal geodesics. Now horizontal in the present context, that is for Be , requires more of the momentum ω(t).
As well as being given by c∗(p(s).ds), we require the 1-form p to kill the tangent vectors v to the curve. If we identify
1-forms and vectors using the Euclidean metric, then we may say simply p(s)= a(s).n, where a is a scalar function
on C. But note that if you take the momentum as c∗(a(s)n(s) ds) and integrate it against a vector field X, then you
find: 〈

X,c∗
(
a(s)n(s) ds

)〉= ∫
C

a(s)
〈
X,n(s)

〉
ds =

∫
C

a(s).iX(dx ∧ dy)
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where iX is the ‘interior product’ or contraction with X taking a 2-form to a 1-form. Noting that 1-forms can be
integrated along curves without using any metric, we see that the 2-form along c defined by {a(s).(dx ∧ dy)c(s)} can
be naturally paired with vector fields so it defines a canonical measure valued 1-form. Therefore, the momentum for
horizontal geodesics can be identified with this 2-form.

If ϕ(x, t) is a horizontal geodesic in Diff(R2), then the curves Ct = image(c(·, t)) are given by Ct = ϕ(C0, t)

and the momentum is given by a(θ, t).(dx ∧ dy), where c(θ, t) parametrizes the curves Ct . Note that in order to
differentiate a with respect to t , we need to assign parameters on the curves Ct simultaneously. We do this in the
same way we did for almost local metrics: assume cθ is a multiple of the normal vector nC . But θ0 �→ ϕ(θ0, t) gives
a second map from C0 to Ct : in terms of θ , assume this is θ = ϕ̄(θ0, t). Then the conservation of momentum means
simply:

a
(
ϕ̄(θ0, t), t

)
.det(Dxϕ)

(
c(θ0,0), t

)
is independent of t.

Let X be the global vector field giving this geodesic, so that ϕt = X ◦ ϕ. Note that ϕ̄t = (〈X ◦ c, v〉/|cθ |) ◦ ϕ̄. Using
this fact, we can differentiate the displayed identity. Recalling the definition of the flow from its momentum and the
identifying TCBe with normal vector fields along C, we get the full equations for the geodesic:

Ct = 〈X,n〉 · n,

at =−〈X,v〉Ds(a)− div(X).a,

X = F ∗ c∗
(
a(s)n(s) ds

)
.

Note, as in the geodesic equations in Section 5.4, that we must use F to extend X to the whole plane. In this case, we
only need (a) the normal component of X along C, (b) its tangential component along C and (c) the divergence of X

along C. These are obtained by convolving a(s) with the kernels (which we give now in terms of arc-length):

Fnn
c (s1, s2)= F

(
c(s1)− c(s2)

)〈
n(s1), n(s2)

〉
ds2,

F vn
c (s1, s2)= F

(
c(s1)− c(s2)

)〈
v(s1), n(s2)

〉
ds2,

F div
c (s1, s2)=

〈
gradF

(
c(s1)− c(s2)

)
, n(s1)

〉
ds2.

Then the geodesic equations become:

Ct =
(
Fnn

c ∗ a
)
.n,

at =−
(
Fvn

c ∗ a
)
Ds(a)− (

F div
c ∗ a

)
.a.

Alternately, we may specialize the geodesic equation in Section 5.4 to horizontal paths. Then the v part vanishes
identically and the n part gives the last equation above. We omit this calculation.

6. Examples

6.1. The geodesic of concentric circles

All the metrics that we have studied are invariant under the motion group, thus the 1-dimensional submanifold of
Be consisting of all concentric circles centered at the origin is the fixed point set of the group of rotations around the
center. Therefore it is a geodesic in all our metrics. It is given by the map c(t, θ)= r(t)eiθ . Then cθ = ireiθ , vc = ieiθ ,
nc =−eiθ , 	(c)= 2πr(t), κc = 1

r
and ct = rt e

iθ =−rt .nc .
The parametrization r(t) can be determined by requiring constant speed σ , i.e., if the metric is G(h, k), then we

require Gc(ct , ct ) = r2
t Gc(nc, nc) = σ 2, which leads to

√
Gc(ct , ct ) dt = ±√Gc(nc, nc) dr . To determine when the

geodesic is complete as r→ 0 and r→∞, we merely need to look at its length which is given by:

∞∫
0

√
Gc(ct , ct ) dt =

∞∫
0

√
Gc(nc, nc) dr,

and we need to ask whether this integral converges or diverges at its two limits. Let us consider this case by case.
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The metric GΦ

The geodesic is determined by the equation:

GΦ(ct , ct )= 2πr ·Φ
(

2πr(t),
1

r(t)

)
· r2

t = σ 2.

Differentiating this with respect to t leads to the geodesic equation in the standard form rtt = r2
t f (r). It is easily

checked that all three invariant momentum mappings vanish: the reparametrization, linear and angular momentum.

Theorem. If Φ(2πr,1/r)≈ C1r
a (resp. C2r

b) as r→ 0 (resp.∞), then the geodesic of concentric circles is complete
for r→ 0 if and only a � −3 and is complete for r→∞ if and only if b � −3. In particular, for ϕ = 	k , we find

k = a = b and the geodesic is given by r(t)= const.t2/(k+3. For the scale invariant case Φ(	, κ)= 4π2

	3 + κ2

	
, we find

a = b=−3, the geodesic is given by r(t)= e
√

2σ t and is complete. Moreover, in this case, the scaling momentum 2rt
r

is constant in t along the geodesic.

The proof is straightforward.

The metric Gimm,n

Recall from Section 4.1 the operator Ln,c = I + (−1)nA.D2n
s . For c(t, θ)= r(t)eiθ Section 6.1 we have

Ln,c(ct )=
(

1+ (−1)n
A

r2n
∂2n
θ

)(
rt e

iθ
)= rt

(
1+ A

r2n

)
eiθ

which is still normal to cθ . So t �→ c(t, . ) is a horizontal path for any choice of r(t). Thus its speed is the square root
of:

Gimm,n(ct , ct )= 2πr ·
(

1+ A

r2n

)
· r2

t = σ 2.

For n= 1 this is the same as the identity for the metric with Φ(	, κ)= 1+Aκ2 which was computed in [13], 5.1. An
explanation of this phenomenon is in [13], 3.2.

Theorem. The geodesic of concentric circles is complete in the Gimm,n metric if n � 2. For n= 1, it is incomplete as
r→ 0 but complete if r→∞.

The metric Gdiff,n

To evaluate the norm of a path of concentric circles, we now need to find the vector field X on R2 gotten by
convolving the Bessel kernel with the unit normal vector field along a circle. Using circular symmetry, we find that:

X(x,y)= f (r)

(
x

r
,
y

r

)
rt ,(

I −A

(
∂rr + 1

r
∂r

))n

f = 0, except on the circle r = r0,

f ∈ C2n−2, everywhere, f (r0)= 1.

For n= 1, we can solve this and the result is the vector field on R2given by the Bessel functions I1 and K1:

X(x,y)=

⎧⎪⎨⎪⎩
I1(r/

√
A)

I1(r0/
√

A)
if r � r0,

K1(r/
√

A)

K1(r0/
√

A)
if r � r0.

Using the fact that the Wronskian of I1,K1 is 1/r , we find:

Gdiff,1(rtn, rtn)=
∫ 〈

(I −A�)X,X
〉
r2
t =

2πr2
t

K1(r/
√

A).I1(r/
√

A)
.
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Using the asymptotic laws for Bessel functions, one finds that the geodesic of concentric circles has finite length to
r = 0 but infinite length to r =∞.

For n > 1, it gets harder to solve for X. But lower bounds are not hard:

Gdiff,n(n,n)= inf
X,〈X,n〉≡1 on Cr

∫ 〈
(I −A�)nX,X

〉
� An. inf(

X,〈X,n〉≡1 on Cr
X→0, when x→∞

)
∫ 〈�n(X),X

〉=
def

M(r).

Then M(r) scales with r : M(r)=M(1)/r2n−2, hence the length of the path when the radius shrinks to 0 is bounded
below by

∫
0 dr/rn−1 which is infinite if n > 1. On the other hand, the metric Gdiff,n dominates the metric Gdiff,1 so

the length of the path when the radius grows to infinity is always infinite. Thus:

Theorem. The geodesic of concentric circles is complete in the Gdiff,n metric if n � 2. For n= 1, it is incomplete as
r→ 0 but complete if r→∞.

6.2. Unit balls in five metrics at a ‘cigar’-like shape

It is useful to get a sense of how our various metrics differ. One way to do this is to take one simple shape C and
examine the unit balls in the tangent space TCBe for various metrics. All of our metrics (except the simple L2 metric)
involve a constant A whose dimension is length-squared. We take as our base shape C a strip of length L, where
L √A, and width w, where w"√A. We round the two ends with semi-circles, as shown in on the top in Fig. 1.

As functions of a normal vector field a.n along C, the metrics we want to compare are:

(1) GA
C(a, a)= ∫

C
(1+Aκ2)a2.ds,

(2) G
imm,1
C (a, a)= infb

∫
C
(|a · n+ b · v|2 +A|Ds(a · n+ b · v)|2) ds,

(3) G
diff,1
C (a, a)= 1√

A
inf(R

2-vec.flds.X〈X,n〉=a
) ∫∫ R2(|X|2 +A|DX|2) dx dy,

(4) G
diff,2
C (a, a)= 1√

A
inf(R

2-vec.flds.X〈X,n〉=a
) ∫∫ R2(|X|2 + 2A|DX|2 +A2|D2X|2) dx dy.

Fig. 1. The cigarlike shape and their deformations.
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The term 1√
A

in the last 2 metrics is put there so that the double integrals have the same ‘dimension’ as the single
integrals. In this way, all the metrics will be comparable.

To compare the 4 metrics, we do not take all normal vector fields a.n along C. Note that C has an involution, which
flips the top and bottom edges. Thus we have even normal vector fields and odd normal vector fields. Examples are
shown in Fig. 1. We will consider two even and two odd normal vector field, described below, and normalize each
of them so that

∫
C

a2ds = 1. They are also shown in Fig. 1. They involve some interval I along the long axis of the
shape of length λ w. The interval determines a part It of the top part of C and Ib of the bottom.

(1) Let a ≡+1/
√

2λ along It and a ≡−1/
√

2λ along Ib , a zero elsewhere except we smooth it at the endpoints of I .
Call this odd vector field ϕ−.

(2) Fix a high frequency f and, on the same intervals, let a(x)=± sin(f.x)/
√

λ. Call this odd vector field ϕf .

(3) The third vector field is even and is defined by a(x)=
√

2
πw
〈n, ∂

∂x
〉 at the right end of the curve, being zero along

top, bottom and left end. Call this ϕx . The factor in front normalizes this vector field so that its L2 norm is 1.
(4) Finally, we define another even vector field by a =+1/

√
2λ on both It and Ib , zero elsewhere except for being

smoothed at the ends of I . Call this ϕ+.

The following table shows the approximate leading term in the norm of each of these normal vector fields a in each
of the metrics. By approximate, we mean the exact norm is bounded above and below by the entry times a constant
depending only on C and by leading term, we mean we ignore terms in the small ratios w/

√
A, λ/

√
A, see Table 1.

Thus, for instance:

GA(ϕx,ϕx)= 2

πw

∫
right end

(
1+Aκ2)〈n,

∂

∂x

〉2

ds = 2

πw

(
1+Aw−2)	(right end)Ave

(〈
n,

∂

∂x

〉2)
= (

1+Aw−2)≈A/w2.

The values of all the other entries under GA are clear because κ ≡ 0 in their support.
To estimate the other entries, we need to estimate the horizontal lift, i.e., the functions b or v. To estimate the norms

for Gimm,1, we take b= 0 in all cases except ϕx and then get

G
imm,1
C (a, a)= ‖a‖2

H 1
A

the first Sobolev norm. For a = ϕf , we simplify this, replacing the full norm by the leading term A(Ds(a))2 and

working this out. To compute Gimm,1(ϕx,ϕx), let k =
√

2
πw

be the normalizing factor and lift a.n along the right end

of C to the R2 vector field k. ∂
∂x

. This adds a tangential component which we taper to zero on the top and bottom of C

like k.e−x/
√

A. This gives the estimate in the table.
Finally, consider the 2 metrics Gdiff,k , k = 1,2. For these, we need to lift the normal vector fields along C to vector

fields on all of R2. For the two odd vector fields f = ϕ− and f = ϕf , we take v to be constant along the small vertical
lines inside C and zero in the extended strip −w � y � w,x /∈ I and we define v outside −w � y � w by:

v(x, y +w)= v(x,−y −w)= F(x, y)
∂

∂y
,

F̂ (ξ, η)= k
√

A(1+Aξ2)k−1/2.f̂ (ξ)

π(1+A(ξ2 + η2))k
.

Table 1

Function GA Gimm,1 Gdiff,1 Gdiff,2

ϕ− 1 1 1 1
ϕf 1 (

√
Af )2

√
Af (

√
Af )3

ϕ+ 1 1
√

A/w (
√

A/w)3

ϕx A/w2
√

A/w

√
A

w log(A/w2)

√
A/w
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We check the following:

(a) ((I −A�)kF )∧ = k
π

√
A(1+Aξ2)k−1/2f̂ (ξ) is independent of η hence support ((I −A�)kF )⊂ {y = 0}.

(b)
∫

F̂ dη= f̂ , hence F |y=0 = f .

Thus:

G
diff,k
C (f,f )≈ 1√

A

∫ ∫
R2

〈
(I −A�)kF,F

〉
dx dy = k

π

∫ (
1+Aξ2)k−1/2∣∣f̂ (ξ)

∣∣2 dξ = k

π
‖f ‖2

H
k−1/2
A

.

The leading term in the kth Sobolev norm of ϕf is (
√

Af )2k , which gives these entries in the table.
To estimate G

diff,1
C (ϕ+, ϕ+), we define v by extending ϕ+ linearly across the vertical line segments −w �

y � w,x ∈ I , i.e., to ϕ+(x)y/w. This gives the leading term now, as the derivative there is ϕ+/w. In fact for any
odd vector field a of L2-norm 1 and for which the derivatives are sufficiently small compared to w, the norm has the
same leading term:

G
diff,1
C (a, a)≈√A/w.

To estimate G
diff,2
C (ϕ+, ϕ+), we need a smoother extension across the interior of C. We can take

ϕ+(x).
3

2

(
y

w
− 1

3

(
y

w

)3)
.

Computing the square integral of the second derivative, we get the table entry G
diff,2
C (a, a)≈ (

√
A/w)3.

To estimate G
diff,k+1
C (ϕx,ϕx), we now take v to be

v = c(k,A,w)

[( |x|√
A

)k

Kk

( |x|√
A

)
∗ χD

]
∂

∂x
,

where D is the disk of radius w containing the arc making up the right hand end of C, and where c(k,A,w) is a
constant to be specified later. The function

1

2πk!A
( |x|√

A

)k

Kk

( |x|√
A

)
is the fundamental solution of (I −A�)k+1 and is C1 for k > 0 but with a log pole at 0 for k = 0. Thus:

(I −A�)k+1v = 2πk!Ac(k,A,w)χD.
∂

∂x

while, up to upper and lower bounds depending only on k, the restriction of v to the disk D itself is equal to
log(
√

A/w)c(0,A,w)w2 if k = 0 and simply c(k,A,w)w2 for k > 0. By symmetry v is also constant on the bound-
ary of D and thus v extends ϕx if we take c(0,A,w) = c0/ log(

√
A/w)w5/2 if k = 0 and c(k,A,w) = ck/w

5/2 if
k > 0 (constants ck depending only on k). Computing the Hk-norm of v, we get the last table entries.

Summarizing, we can say that the large norm of ϕx is what characterizes GA; the large norms of ϕ+ characterize
Gdiff; and the rate of growth in frequency of the norm of ϕf distinguishes all 4 norms.
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