
 

Riemannian Geometries on Spaces of Plane Curves

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Michor, Peter W., and David Bryant Mumford. 2006. Riemannian
geometries on spaces of plane curves. Journal of the European
Mathematical Society 8(1): 1-48.

Published Version doi:10.4171/JEMS/37

Accessed February 18, 2015 6:04:19 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3637111

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28932571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/3637111&title=Riemannian+Geometries+on+Spaces+of+Plane+Curves
http://dx.doi.org/10.4171/JEMS/37
http://nrs.harvard.edu/urn-3:HUL.InstRepos:3637111
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


ar
X

iv
:m

at
h/

03
12

38
4v

3 
 [

m
at

h.
D

G
] 

 2
2 

Fe
b 

20
06

RIEMANNIAN GEOMETRIES ON SPACES OF PLANE CURVES

PETER W. MICHOR, DAVID MUMFORD

Abstract. We study some Riemannian metrics on the space of smooth regu-
lar curves in the plane, viewed as the orbit space of maps from S1 to the plane
modulo the group of diffeomorphisms of S1, acting as reparameterizations.
In particular we investigate the metric for a constant A > 0:

GA
c (h, k) :=

∫

S1
(1 + Aκc(θ)2)〈h(θ), k(θ)〉|c′(θ)| dθ

where κc is the curvature of the curve c and h, k are normal vector fields to
c. The term Aκ2 is a sort of geometric Tikhonov regularization because, for
A = 0, the geodesic distance between any 2 distinct curves is 0, while for
A > 0 the distance is always positive. We give some lower bounds for the
distance function, derive the geodesic equation and the sectional curvature,
solve the geodesic equation with simple endpoints numerically, and pose some
open questions. The space has an interesting split personality: among large
smooth curves, all its sectional curvatures are ≥ 0, while for curves with high
curvature or perturbations of high frequency, the curvatures are ≤ 0.

1. Introduction

This paper arose from the attempt to find the simplest Riemannian metric on
the space of 2-dimensional ‘shapes’. By a shape we mean a compact simply con-
nected region in the plane whose boundary is a simple closed curve. By requiring
that the boundary curve has various degrees of smoothness, we get not just one
space but a whole hierarchy of spaces. All these spaces will include, however, a
core, namely the space of all shapes with C∞ boundary curves. We expect that
the most natural shape spaces will arise as the completions of this core space in
some metric hence we take this core as our basic space. Note that it is the orbit
space

Be(S
1,R2) = Emb(S1,R2)/Diff(S1)

of the space of all C∞ embeddings of S1 in the plane, under the action by compo-
sition from the right by diffeomorphisms of the circle. The space Emb(S1,R2) is
a smooth manifold, in fact an open subset of the Fréchet space C∞(S1,R2), and
it is the total space of a smooth principal bundle with base Be(S

1,R2)
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In fact, most of our results carry over to the bigger orbit space of immersions
mod diffeomorphisms:

Bi(S
1,R2) = Imm(S1,R2)/Diff(S1).

This action is not quite free (see 2.4 and 2.5), hence this orbit space is an orbifold
(see 2.5) and not quite a manifold. There is the slightly smaller space Immf

(see 2.1) of immersed curves where diffeomorphisms act freely, the total space of
a principal fiber bundle with a natural connection admitting parallel transport.
Existence of horizontal curves, however, holds also in the big space Imm (see 2.5)
which will be one of the weapons in our hunt for geodesics on Bi.

The second author was led to study the space Be from its relevance to computer
vision. To understand an image of the world, one needs to identify the most salient
objects present in this image. In addition to readily quantifiable properties like
color and area, objects in the world and their projections depicted by 2D images
possess a ‘shape’ which is readily used by human observers to distinguish, for
example, cats from dogs, BMW’s from Hondas, etc. In fact people are not puzzled
by what it means to say two shapes are similar but rather find this a natural
question. This suggests that we construct, on some crude level, a mental metric
which can be used to recognize familiar objects by the similarity of their shapes
and to cluster categories of related objects like cats. Incidentally, immersions also
arise in vision when a 3D object partially occludes itself from some viewpoint,
hence its full 2D contour has visible and invisible parts which, together, form an
immersed curve in the image plane.

It is a central problem in computer vision to devise algorithms by which com-
puters can similarly recognize and cluster shapes. Many types of metrics have been
proposed for this purpose [7]. For example, there are L1-type metrics such are the
area of the symmetric difference of the interiors of two shapes. And there are
L∞-type metrics such as the Hausdorff metric: the maximum distance of points
on either shape from the points on the other or of points outside one shape from
points outside the other. These metrics will come up below, but the starting point
of this investigation was whether one could use the manifold structure on the space
of shapes and define an L2-type metric by introducing a Riemannian structure on
the space.

Such questions have also arisen in Teichmüller theory and string theory, where
the so-called Weil-Peterssen metric on the space of shapes (also called the ‘universal
Teichmüller space) has been much studied. In a second part of this paper, we will
compare our metric to this remarkable (homogeneous!) metric.

In this paper, we sought the absolutely simplest Riemannian metric that the
space Bi supports. The most obvious Diff(S1)-invariant weak Riemannian metric
on the space of immersions is the H0-metric:

G0
c(h, k) =

∫

S1

〈h(θ), k(θ)〉|c′(θ)| dθ
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where c : S1 → R2 is an embedding defining a point in Be and h, k are vector fields
along the image curve, defining two tangent vectors to Imm(S1,R2) at c. This in-
duces a Diff(S1)-invariant weak Riemannian metric on the space of all immersions
and on Emb(S1,R2), and for the latter space it induces a weak Riemannian metric
on the base manifold Be.

Surprisingly, the Riemannian distance defined as the infimum of the arclength of
paths connecting two points in Be(S

1,R2) turns out to be 0, see 3.10! This seems
to be one of the first examples where this purely infinite dimensional phenomenon
actually appears.

Motivated by the proof of this result 3.10 we are led to consider the invariant
Riemannian metric 3.2.6 for a constant A > 0:

GAc (h, k) :=

∫

S1

(1 +Aκc(θ)
2)〈h(θ), k(θ)〉|c′(θ)| dθ

where κc(θ) is the curvature of c at c(θ). We will argue that this induces a
reasonable metric on Be(S

1,R2), as the infimum of arclengths of paths connecting
distinct points is always positive. Another reason is that the length function
ℓ : Be(S

1,R2) → R≥0 has the following Lipschitz estimate 3.3.2 with respect to
this Riemannian distance:

√
ℓ(C1) −

√
ℓ(C0) ≤

1

2
√
A

distBe

GA(C1, C2).

In fact, one can bound the Fréchet distance between two curves in terms of this
metric (see 3.5). The completion of the space of smooth curves in this metric
contains all curves for whose curvature exists weakly as a finite signed measure
(e.g. piecewise C2 curves) and is contained in the space of Lipschitz maps from S1

to R2 modulo a suitable equivalence relation, see 2.11.

The geodesic equation for the metric GA on Emb(S1,R2) and on Be(S
1,R2)

can be found in 4.1.1: It is a highly non-linear partial differential equation of order
4 with degenerate symbol, but which nonetheless seems to have a hypoelliptic lin-
earization. If A = 0, the equation reduces to a non-linear second order hyperbolic
PDE, which gives a well defined local geodesic spray. For any A, the sectional
curvature on Be(S

1,R2) has an elegant expression which can be found in 4.6.2
and 4.6.4. It is non-negative if A = 0 and, for general A, becomes strictly negative
only if the curve has large curvature or the plane section has high frequency. Of
course we would have liked to solve the problem of existence and uniqueness of
geodesics for A > 0. We can, however, translate the minimization of path length
in our metric into an anisotropic Plateau-like problem: In 3.12 we show that a
curve projects onto a geodesic in Be(S

1,R2) if and only if its graph in [0, 1] × R
2

is a surface with given boundary at {0}×R2 and {1}×R2 which is critical for the
anisotropic area functional 3.12.3.

In 5.1 we determine the geodesic running through concentric circles and the
equation for Jacobi vector fields along this geodesic. The solution of the ordinary
differential equation 5.1.1 describing this geodesic can be written in terms of elliptic
functions. This geodesic is no longer globally minimizing when the radius of the
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circles is large compared to
√
A and has conjugate points when it hits this positive

curvature zone. In 5.2 we study geodesics connecting arbitrary distant curves,
hence requiring long translations. The middle part of such geodesics appear to
be approximated by a uniformly translating ‘cigar’-like curve with semi-circular
ends of radius

√
A connected by straight line segments parallel to the direction of

translation. These figures were found by numerically minimizing a discrete form
of the energy functional 3.12.1.

Finally, in 5.3 and 5.4, we have some further pictures of geodesics. First we
examine the formation of singularities when a small perturbation is propagated
forward and A = 0. Then we look at some geodesic triangles in Be whose vertices
are ellipses with the same eccentricity and center but different orientations. For
various values of A, we find that these triangles have angle sums greater and less
than π.

2. The manifold of immersed closed curves

2.1. Conventions. It is often convenient to use the identification R2 ∼= C, giving
us:

x̄y = 〈x, y〉 + i det(x, y), det(x, y) = 〈ix, y〉.
We shall use the following spaces of C∞ (smooth) diffeomorphisms and curves,
and we give the shorthand and the full name:

Diff(S1), the regular Lie group ([6], 38.4) of all diffeomorphisms S1 → S1 with
its connected components Diff+(S1) of orientation preserving diffeomor-
phisms and Diff−(S1) of orientation reversing diffeomorphisms.

Diff1(S
1), the subgroup of diffeomorphisms fixing 1 ∈ S1. We have diffeomorphi-

cally Diff(S1) = Diff1(S
1) × S1 = Diff+

1 (S1) × (S1
⋊ Z2).

Emb = Emb(S1,R2), the manifold of all smooth embeddings S1 → R2. Its tangent
bundle is given by T Emb(S1,R2) = Emb(S1,R2) × C∞(S1,R2).

Imm = Imm(S1,R2), the manifold of all smooth immersions S1 → R2. Its tangent
bundle is given by T Imm(S1,R2) = Imm(S1,R2) × C∞(S1,R2).

Immf = Immf (S
1,R2), the manifold of all smooth free immersions S1 → R2,

i.e., those with trivial isotropy group for the right action of Diff(S1) on
Imm(S1,R2).

Be = Be(S
1,R2) = Emb(S1,R2)/Diff(S1), the manifold of 1-dimensional con-

nected submanifolds of R2, see 2.3.

Bi = Bi(S
1,R2) = Imm(S1,R2)/Diff(S1), an infinite dimensional ‘orbifold’; its

points are, roughly speaking, smooth curves with crossings and multi-
plicities, see 2.5.

Bi,f = Bi,f (S
1,R2) = Immf (S

1,R2)/Diff(S1), a manifold, the base of a principal
fiber bundle, see 2.4.3.
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We want to avoid referring to a path in our infinite dimensional spaces like Imm
or Be as a curve, because it is then a ‘curve of curves’ and confusion arises when
you refer to a curve. So we will always talk of paths in the infinite dimensional
spaces, not curves. Curves will be in R2. Moreover, if t 7→ (θ 7→ c(t, θ)) is a
path, its t-th curve will be denoted by c(t) = c(t, ). By ct we shall denote the
derivative ∂tc, and cθ = ∂θc.

2.2. Length and curvature on Imm(S1,R2). The volume form on S1 induced
by c is given by

(1) vol : Emb(S1,R2) → Ω1(S1), vol(c) = |cθ| dθ
and its derivative is

(2) d vol(c)(h) =
〈hθ, cθ〉
|cθ|

dθ.

We shall also use the normal unit field

nc = i
cθ
|cθ|

.

The length function is given by

(3) ℓ : Imm(S1,R2) → R, ℓ(c) =

∫

S1

|cθ| dθ

and its differential is

dℓ(c)(h) =

∫

S1

〈hθ, cθ〉
|cθ|

dθ = −
∫

S1

〈
h,
cθθ
|cθ|

− 〈cθθ, cθ〉
|cθ|3

cθ

〉
dθ(4)

= −
∫

S1

〈h, κ(c).icθ〉dθ = −
∫

S1

〈h, nc〉κ(c) vol(c)

The curvature mapping is given by

(5) κ : Imm(S1,R2) → C∞(S1,R), κ(c) =
det(cθ, cθθ)

|cθ|3
=

〈icθ, cθθ〉
|cθ|3

and is equivariant so that κ(c ◦ f) = ±κ(c) ◦ f for f ∈ Diff±(S1). Its derivative is
given by

(6) dκ(c)(h) =
〈ihθ, cθθ〉
|cθ|3

+
〈icθ, hθθ〉
|cθ|3

− 3κ(c)
〈hθ, cθ〉
|cθ|2

.

With some work, this can be shown to equal:

(7) dκ(c)(h) =
〈h, cθ〉
|cθ|2

κθ +
〈h, icθ〉
|cθ|

κ2 +
1

|cθ|
( 1

|cθ|
( 〈h, icθ〉

|cθ|
)
θ

)
θ
.

To verify this, note that both the left and right hand side are equivariant with re-
spect to Diff(S1), hence it suffices to check it for constant speed parametrizations,
i.e. |cθ| is constant and cθθ = κ|cθ|icθ. By linearity, it is enough to take the 2 cases
h = aicθ and h = bcθ. Substituting these into formulas (6) and (7), the result is
straightforward.



6 PETER W. MICHOR, DAVID MUMFORD

2.3. The principal bundle of embeddings Emb(S1,R2). We recall some basic
results whose proof can be found in [6]:

(A) The set Emb(S1,R2) of all smooth embeddings S1 → R2 is an open subset
of the Fréchet space C∞(S1,R2) of all smooth mappings S1 → R2 with the C∞-
topology. It is the total space of a smooth principal bundle π : Emb(S1,R2) →
Be(S

1,R2) with structure group Diff(S1), the smooth regular Lie group group of
all diffeomorphisms of S1, whose base Be(S

1,R2) is the smooth Fréchet manifold
of all submanifolds of R2 of type S1, i.e., the smooth manifold of all simple closed
curves in R2. ([6], 44.1)

(B) This principal bundle admits a smooth principal connection described by the
horizontal bundle whose fiber Nc over c consists of all vector fields h along c such
that 〈h, cθ〉 = 0. The parallel transport for this connection exists and is smooth.
([6], 39.1 and 43.1)

See 2.4.3 for a sketch of proof of the first part in a slightly more general situation.
See also 3.2.2 and 3.2.3 for the horizontal bundle Nc. Here we want to sketch the
use of the second part. Suppose that t 7→ (θ 7→ c(t, θ)) is a path in Emb(S1,R2).
Then π ◦ c is a smooth path in Be(S

1,R2). Parallel transport over it with initial
value c(0, ·) is a now a path f in Emb(S1,R2) which is horizontal, i.e., we have
〈ft, fθ〉 = 0. This argument will play an important role below. In 2.5 below we
will prove this property for general immersions.

2.4. Free immersions. The manifold Imm(S1,R2) of all immersions S1 → R2

is an open set in the manifold C∞(S1,R2) and thus itself a smooth manifold. An
immersion c : S1 → R2 is called free if Diff(S1) acts freely on it, i.e., c ◦ ϕ = c for
ϕ ∈ Diff(S1) implies ϕ = Id. We have the following results:

(1) If ϕ ∈ Diff(S1) has a fixed point and if c ◦ ϕ = c for some immersion c then
ϕ = Id. This is ([2], 1.3).

(2) If for c ∈ Imm(S1,R2) there is a point x ∈ c(S1) with only one preimage then
c is a free immersion. This is ([2], 1.4). There exist free immersions without such
points: Consider a figure eight consisting of two touching ovals, and map S1 to
this by first transversing the upper oval 3 times and then the lower oval 2 times.
This is a free immersion.

(3) The manifold Bi,f (S
1,R2). ([2], 1.5) The set Immf (S

1,R2) of all free im-
mersions is open in C∞(S1,R2) and thus a smooth submanifold. The projection

π : Immf (S
1,R2) → Immf (S

1,R2)

Diff(S1)
=: Bi,f (S

1,R2)

onto a Hausdorff smooth manifold is a smooth principal fibration with structure
group Diff(S1). By ([6], 39.1 and 43.1) this fibration admits a smooth principal
connection described by the horizontal bundle with fiber Nc consisting of all vector
fields h along c such that 〈h, cθ〉 = 0. This connection admits a smooth parallel
transport over each each smooth curve in the base manifold.
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We might view Immf (S
1,R2) as the nonlinear Stiefel manifold of parametrized

curves in R2 and consequently Bi,f (S
1,R2) as the nonlinear Grassmannian of

unparametrized simple closed curves.

Sketch of proof. See also [2] for a slightly different proof with more details. For
c ∈ Immf (S

1,R2) and s = (s1, s2) ∈ V(c) ⊂ C∞(S1,R × S1) consider

ϕc(s) : S1 → R
2, ϕc(s)(θ) = c(s2(θ)) + s1(s2(θ)).nc(s2(θ))

where V(c) is a C∞-open neighborhood of (0, IdS1) in C∞(S1,R × S1) chosen in
such a way that:

• s2 ∈ Diff(S1) for each s ∈ V(c).
• ϕc(s) is a free immersion for each s ∈ V(c).
• For (s1, s2) ∈ V(c) and α ∈ Diff(S1) we have (s1, s2 ◦ α) ∈ V(c).

Obviously ϕc(s1, s2)◦α = ϕc(s1, s2◦α) and s2 is uniquely determined by ϕc(s1, s2)
since this is a free immersion. Thus the inverse of ϕc is a smooth chart for the man-
ifold Immf (S

1,R2). Moreover, we consider the mapping (which will be important
in section 4 below)

ψc : C∞(S1, (−ε, ε)) → Immf (S
1,R2), Q(c) := ψc(C

∞(S1, (−ε, ε)))
ψc(f)(θ) = c(θ) + f(θ)nc(θ) = ϕc(f, IdS1)(θ),

π ◦ ψ : C∞(S1, (−ε, ε)) → Bi,f (S
1,R2),

where ε is small. Then (an open subset of) V(c) splits diffeomorphically into

C∞(S1, (−ε, ε)) × Diff S1

and thus its image under ϕc splits into Q(c)×Diff(S1). So the inverse of π ◦ψc is
a smooth chart for Bi,f (S

1,R2). That the chart changes induced by the mappings
ϕc and ψc contructed here are smooth is shown by writing them in terms of
compositions and projections only and applying the setting of [6]. �

2.5. Non free immersions. Any immersion is proper since S1 is compact and
thus by ([2], 2.1) the orbit space Bi(S

1,R2) = Imm(S1,R2)/Diff(S1) is Hausdorff.
Moreover, by ([2], 3.1 and 3.2) for any immersion c the isotropy group Diff(S1)c
is a finite cyclic group which acts as group of covering transformations for a finite
covering qc : S1 → S1 such that c factors over qc to a free immersion c̄ : S1 → R2

with c̄◦qc = c. Thus the subgroup Diff1(S
1) of all diffeomorphisms ϕ fixing 1 ∈ S1

acts freely on Imm(S1,R2). Moreover, for each c ∈ Imm the submanifold Q(c)
from the proof of 2.4.3 (dropping the freeness assumption) is a slice in a strong
sense:

• Q(c) is invariant under the isotropy group Diff(S1)c.
• If Q(c) ◦ ϕ ∩ Q(c) 6= ∅ for ϕ ∈ Diff(S1) then ϕ is already in the isotropy

group ϕ ∈ Diff(S1)c.
• Q(c) ◦Diff(S1) is an invariant open neigbourhood of the orbit c ◦Diff(S1)

in Imm(S1,R2) which admits a smooth retraction r onto the orbit. The
fiber r−1(c ◦ ϕ) equals Q(c ◦ ϕ).
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Note that also the action

Imm(S1,R2) × Diff(S1) → Imm(S1,R2) × Imm(S1,R2), (c, ϕ) 7→ (c, c ◦ ϕ)

is proper so that all assumptions and conclusions of Palais’ slice theorem [8] hold.
This results show that the orbit space Bi(S

1,R2) has only very simple singular-
ities of the type of a cone C/{e2πk/n : 0 ≤ k < n} times a Fréchet space. We
may call the space Bi(S

1,R2) an infinite dimensional orbifold. The projection
π : Imm(S1,R2) → Bi(S

1,R2) = Imm(S1,R2)/Diff(S1) is a submersion off the
singular points and has only mild singularities at the singular strata. The normal
bundle Nc mentioned in 2.3 is well defined and is a smooth vector subbundle of
the tangent bundle. We do not have a principal bundle and thus no principal
connections, but we can prove the main consequence, the existence of horizontal
paths, directly:

Proposition. For any smooth path c in Imm(S1,R2) there exists a smooth path
ϕ in Diff(S1) with ϕ(0, ) = IdS1 depending smoothly on c such that the path e
given by e(t, θ) = c(t, ϕ(t, θ)) is horizontal: et⊥eθ.

Proof. Let us write e = c ◦ ϕ for e(t, θ) = c(t, ϕ(t, θ)), etc. We look for ϕ as the
integral curve of a time dependent vector field ξ(t, θ) on S1, given by ϕt = ξ ◦ ϕ.
We want the following expression to vanish:

〈∂t(c ◦ ϕ), ∂θ(c ◦ ϕ)〉 = 〈ct ◦ ϕ+ (cθ ◦ ϕ)ϕt, (cθ ◦ ϕ)ϕθ〉
= (〈ct, cθ〉 ◦ ϕ)ϕθ + (〈cθ, cθ〉 ◦ ϕ)ϕθ ϕt

=
(
(〈ct, cθ〉 + 〈cθ, cθ〉 ξ) ◦ ϕ

)
ϕθ.

Using the time dependent vector field ξ = − 〈ct,cθ〉
|cθ|2 and its flow ϕ achieves this. �

2.6. The manifold of immersions with constant speed. Let Imma(S
1,R2)

be the space of all immersions c : S1 → R2 which are parametrized by scaled arc
length, so that |cθ| is constant.

Proposition. The space Imma(S
1,R2) is a smooth manifold. There is a diffeo-

morphism Imm(S1,R2) = Imma(S
1,R2) × Diff+

1 (S1) which respects the splitting
Diff(S1) = Diff+

1 (S1)⋉ (S1 ⋉Z2). There is a smooth action of the rotation and re-
flection group S1⋉Z2 on Imma(S

1,R2) with orbit space Imma(S
1,R2)/(S1⋉Z2) =

Bi(S
1,R2).

Proof. For c ∈ Imm(S1,R2) we put

σc ∈ Diff1(S
1), σc(θ) = exp

(2πi
∫ θ
1
|c′(u)|du∫

S1 |c′(u)|du
)

α : Imm(S1,R2) → Imma(S
1,R2), α(c)(θ) := c(σ−1

c (θ)).

By the fundamentals of manifolds of mappings [6] the mapping α is smooth from
Imm(S1,R2) into itself and we have α ◦ α = α.
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Now we show that Imma(S
1,R2) is a manifold. We use the notation from the

proof of 2.4.3 with the freeness assumption dropped. For c ∈ Imma(S
1,R2) we

use the following mapping as the inverse of a chart:

C∞(S1, (−ε, ε)) × S1 →
⋃

θ∈S1

Q(c( +θ))
α−→ Imma(S

1,R2),

(f, θ) 7→ ψc( +θ)(f( +θ)) 7→ α(ψc( +θ)(f( +θ)))

The chart changes are smooth: If for (fi, θi) ∈ C∞(S1, (−ε, ε)) × S1 we have
α(ψc1( +θ1)(f1( +θ1))) = α(ψc2( +θ2)(f2( +θ2))) then the initial points agree
and both curves are equally oriented so that c1(θ + θ1) + f1(θ + θ1)nc1(θ + θ1) =
c2(ϕ(θ) + θ2) + f2(ϕ(θ) + θ2)nc2(ϕ(θ) + θ2) for all θ. From this one can express
(f2, θ2) smoothly in terms of (f1, θ1).

For the latter assertion one has to show that a smooth path through e1 in Q(c1)
is mapped to a smooth path in Diff1(S

1). This follows from the finite dimensional
implicit function theorem. The mapping α is now smooth into Imma(S

1,R2)
and the diffeomorphism Imm(S1,R2) → Imma(S

1,R2) × Diff1(S
1) is given by

c 7→ (α(c), σc) with inverse (e, ϕ) 7→ e ◦ ϕ−1. Only the group S1 ⋉ Z2 of rotations
and reflections of S1 then still acts on Imma(S

1,R2) with orbit space Bi(S
1,R2).

The rest is clear. �

2.7. Tangent space, length, curvature, and Frenet-Serret formulas on

Imma(S
1,R2). A smooth curve t 7→ c( , t) ∈ Imm(S1,R2) lies in Imma(S

1,R2)
if and only if |∂θc|2 = |cθ|2 is constant in θ, i.e., ∂θ|cθ|2 = 2〈cθ, cθθ〉 = 0. Thus
h = ∂t|0c ∈ Tc Imm(S1,R2) = C∞(S1,R2) is tangent to Imma(S

1,R2) at the foot
point c if and only if 〈hθ, cθθ〉 + 〈hθθ, cθ〉 = 〈hθ, cθ〉θ = 0, i.e., 〈hθ, cθ〉 is constant
in θ. For c ∈ Imma(S

1,R2) the volume form is constant in θ since |cθ| = ℓ(c)/2π.
Thus for the curvature we have

κ : Imma(S
1,R2) → C∞(S1,R), κ(c) =

( 2π

ℓ(c)

)3

det(cθ, cθθ) =
( 2π

ℓ(c)

)3

〈icθ, cθθ〉

and for the derivative of the length function we get

dℓ(c)(h) =

∫

S1

〈hθ, cθ〉
|cθ|

dθ =
(2π)2

ℓ(c)
〈hθ(1), cθ(1)〉.

Since cθθ is orthogonal to cθ we have (Frenet formulas)

cθθ =
( 2π

ℓ(c)

)2

〈icθ, cθθ〉icθ =
ℓ(c)

2π
κ(c)icθ,

cθθθ =
ℓ(c)

2π
κ(c)θ icθ +

ℓ(c)

2π
κ(c)icθθ =

ℓ(c)

2π
κ(c)θ icθ −

(ℓ(c)
2π

)2

κ(c)2cθ.

The derivative of the curvature thus becomes:

dκ(c)(h) = −2
( 2π

ℓ(c)

)2

〈hθ, cθ〉κ(c) +
( 2π

ℓ(c)

)3

〈icθ, hθθ〉
)
.
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2.8. Horizontality on Imma(S
1,R2). Let us denote by Imma,f (S

1,R2) the
splitting submanifold of Imm consisting of all constant speed free immersions.
From 2.6 and 2.4.3 we conclude that the projection Imma,f (S

1,R2) → Bf (S
1,R2)

is principal fiber bundle with structure group S1 ⋉ Z2, and it is a reduction of
the principal fibration Immf → Bf . The principal connection described in 2.4.3
is not compatible with this reduction. But we can easily find some principal
connections. The one we will use is described by the horizontal bundle with fiber
Na, c consisting of all vector fields h along c such that 〈hθ, cθ〉θ = 0 (tangent to
Imma) and 〈h(1), cθ(1)〉 = 0 for 1 ∈ S1 (horizontality). This connection admits
a smooth parallel transport; but we can even do better, beyond the principal
bundle, in the following proposition whose proof is similar and simpler than that
of proposition 2.5.

Proposition. For any smooth path c in Imma(S
1,R2) there exists a smooth curve

ϕc in S1 with ϕc(0) = 1 depending smoothly on c such that the path e given by
e(t, θ) = c(t, ϕc(t)θ) is horizontal: et(1)⊥eθ(1). �

2.9. The degree of immersions. Recall that the degree of an immersion c :
S1 → R2 is the winding number with respect to 0 of the tangent c′ : S1 → R2.
Since this is invariant under isotopies of immersions, the manifold Imm(S1,R2)

decomposes into the disjoint union of the open submanifolds Immk(S1,R2) for

k ∈ Z according to the degree k. We shall also need the space Immk
a(S

1,R2) of all
immersions of degree k with constant speed.

2.10. Theorem.

(1) The manifold Immk(S1,R2) of immersed curves of degree k contains the

subspace Immk
a(S

1,R2) as smooth strong deformation retract.

(2) For k 6= 0 the manifold Immk
a(S

1,R2) of immersed constant speed curves
of degree k contains S1 as a strong smooth deformation retract.

(3) For k 6= 0 the manifold Bki (S
1,R2) := Immk(S1,R2)/Diff+(S1) is con-

tractible.

Note that for k 6= 0 Immk is invariant under the action of the group Diff+(S1)
of orientation preserving diffeomorphism only, and that any orientation reversing
diffeomorphism maps Immk to Imm−k.

The nontrivial S1 in Immk appears in 2 ways: (a) by rotating each curve around
c(0) so that c′(0) rotates. And (b) also by acting S1 ∋ β 7→ (c(θ) 7→ c(βθ)). The
two corresponding elements a and b in the fundamental group are then related by
ak = b which explains our failure to describe the topological type of B0

i .

Proof. (1) is a consequence of 2.6 since Diff+
1 (S1) is contractible.

The general proof is inspired by the proof of the Whitney-Graustein theorem,
[9], [4], [3]. We shall view curves here as 2π-periodic plane-valued functions. For
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any curve c we consider its center of mass

C(c) = Center(c) :=
1

ℓ(c)

∫ 2π

0

c(u) |c′(u)| du ∈ R
2

which is invariant under Diff(S1). We shall also use α(c) = c′(0)/|c′(0)|.
The case k 6= 0. We first embedd S1 into Imm(S1,R2) in the following way. For
α ∈ S1 ⊂ C = R

2 and k 6= 0 we but eα(θ) = α.eikθ/ik, a circle of radius 1/|k|
transversed k-times in the direction indicated by the sign of k. Note that we have
Center(eα) = 0 and e′α(0) = α.

Since the isotopies to be constructed later will destroy the property of having
constant speed, we shall first construct a smooth deformation retraction A : [0, 1]×
Immk → Immk

1,0 onto the subspace Immk
1,0 of unit speed degree k 6= 0 curves with

center 0.

Let c : R → R2 be an arbitrary constant speed immersion of degree k, period
2π, and length ℓ(c). Let sc(v) =

∫ v
0 |c′(u)| du be the arc-length function of c and

put

A(c, t, u) =
(
1 − t+ t

2π

ℓ(c)

)
.
(
c
(
(1 − t)u+ t.s−1

c ( ℓ(c)2π u)
)
− t.C(c)

)
.

Then Ac is an isotopy between c and c1 := A(c, 1, ) depending smoothly on c.
The immersion c1 has unit speed, length 2π, and Center(c1) = 0. Moreover, for
the winding number w0 around 0 we have:

w0(c
′
1|[0,2π]) = deg(c1) = deg(c) = k = deg(eα(c)) = w0(e

′
α(c)|[0,2π]).

Thus Immk contains the space Immk
1,0 of unit speed immersions with center of

mass 0 and degree k as smooth strong deformation retract.

For c ∈ Immk
1,0 a unit speed immersion with center 0 we now construct an

isotopy t 7→ H1(c, t, ) between c and a suitable curve eα. It will destroy the unit

speed property, however. For d arg = −xdy+ydx√
x2+y2

we put:

ϕc(u) :=

∫

c′|[0,u]

d arg, so that c′(u) = c′(0) eiϕc(u),

α(c) :=
1

2π

∫ 2π

0

(ϕc(v) − kv)dv,

ψc(t, u) := (1 − t)ϕc(u) + t(ku+ α(c)),

h(c, t, u) :=

∫ u

0

eiψc(t,v)dv − u

2π

∫ 2π

0

eiψc(t,v)dv,

H1(c, t, u) := c′(0)
(
h(c, t, u) − Center(h(c, t, )

)

Then H1(c, t, u) is smooth in all variables, 2π-periodic in u, with center of mass
at 0, H1(1, c, u) equals one the eα’s, and H1(0, c, u) = c(u). But H1(c, t, )
is, however, no longer of unit speed in general. And we still have to show that
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t 7→ h(c, t, ) (and consequently H1) is an isotopy.

∂uh(c, t, u) = eiψc(t,u) − 1

2π

∫ 2π

0

eiψc(t,v)dv,

∣∣∣ 1

2π

∫ 2π

0

eiψc(t,v)dv
∣∣∣ ≤ 1.(4)

If the last inequality is strict we have ∂uh(t, u) 6= 0 so that h is an isotopy. If
we have equality then ψc(t, v) is constant in v which leads to a contradiction as
follows: If k 6= 0 then ψc(t, 2π)−ψc(t, 0) = 2πk so it cannot be constant for any t.

Let us finally check how this construction depends on the choice of the base
point c(0). We have:

ϕc(β+ )(u) = ϕc(β + u) − ϕc(β),

α(c(β+ )) = α(c) + kβ − ϕc(β),

ψc(β+ )(t, u) = ψc(t, u+ β) − ϕc(β),

h(c(β+ ), t, u) = e−iϕc(β)(h(c, t, β + u) − h(c, t, β)),

H1(c(β+ ), t, u) = H1(c, t, β + u).

Let us now deform H1 back into Immk
1,0. For c ∈ Immk

1,0 we consider

H2(c, t, u) := A(1, H1(c, t, ), u),

H3(c, t, u) := H2(c, t, u+ ϕH2(c)(t)),

where the ϕf for a unit speed path f is from proposition 2.8, so that H3(c) is a hor-
izontal path of unit speed curves of length 2π, (i.e., ∂tH

3(c, t, 0)⊥∂u|0H3(c, t, u)).

The isotopy A reacts in a complicated way to rotations of the parameter,
but we have A(c(β+ ), 1, u) = A(c, 1, 2π

ℓ(c)sc(β) + u). Thus H3(c( +β), t, u) =

H3(c, t, u+ β), so H3 is equivariant under the rotation group S1 ⊂ Diff(S1). For

k 6= 0 we get an equivariant smooth strong deformation retract within Immk
1,0 onto

the subset {eα : α ∈ S1} ⊂ Immk
1,0 which is invariant under the rotation group

S1 ⊂ Diff(S1). It factors to a smooth contraction on Bki . This proves assertions
(2 ) and (3 ) for k 6= 0. �

2.11 Bigger spaces of ‘immersed’ curves. We want to introduce a larger
space containing Bi(S

1,R2), which is complete in a suitable metric. This will
serve as an ambient space which will contain the completion of Bi(S

1,R2). Let
Cont(S1,R2) be the space of all continuous functions c : S1 → R2. Instead of a
group operation and its associated orbit space, we introduce an equivalence relation
on Cont(S1,R2). Define a subset R ⊂ S1 × S1 to be a monotone correspondence
if it is the image of a map

x→ (h(x) mod 2π, k(x) mod 2π), where

h, k : R → R are monotone non-decreasing continuous functions such that

h(x+ 2π) ≡ h(x) + 2π, k(x+ 2π) ≡ k(x) + 2π.



RIEMANNIAN GEOMETRIES ON SPACES OF PLANE CURVES 13

In words, this is an orientation preserving homeomorphism from S1 to S1 which
is allowed to have intervals where one or the other variable remains constant
while the other continues to increase. (These correspondences arise naturally in
computer vision in comparing the images seen by the right and left eyes, see [1].)
Then we define the equivalence relation on Cont(S1,R2) by c ∼ d if and only if
there is a monotone correspondence R such that for all θ, ϕ ∈ R, c(θ) = d(ϕ).
It is easily seen that any non-constant c ∈ Cont(S1,R2) is equivalent to an c1
which is not constant on any intervals in S1 and that for such c1’s and d1’s, the
equivalence relation amounts to c1 ◦h ≡ d1 for some homeomorphism h of S1. Let
Bconti (S1,R2) be the quotient space by this equivalence relation. We call these
Fréchet curves.

The quotient metric on Bconti (S1,R2) is called the Fréchet metric, a variant of
the Hausdorff metric mentioned in the Introduction, both being L∞ type metrics.
Namely, define

d∞(c, d) = inf
monotone corresp.R

(
sup

(θ,ϕ)∈R
|c(θ) − d(ϕ)|

)

= inf
homeomorph.h:S1→S1

‖c ◦ h− d‖∞.

It is straightforward to check that this makes Bconti (S1,R2) into a complete metric
space.

Another very natural space is the subset Blipi (S1,R2) ⊂ Bconti (S1,R2) given by
the non-constant Lipschitz maps c : S1 → R2. The great virtue of Lipschitz maps
is that their images are rectifiable curves and thus each of them is equivalent to
a map d in which θ is proportional to arclength, as in the previous section. More
precisely, if c is Lipschitz, then cθ exists almost everywhere and is bounded and
we can reparametrize by:

h(θ) =

∫ θ

0

|cθ|dθ
/∫ 2π

0

|cθ|dθ,

obtaining an equivalent d for which |dθ| ≡ L/2π. This d will be unique up to
rotations, i.e. the action of S1 in the previous section.

This subspace of rectifiable Fréchet curves is the subject of a nice compactness
theorem due to Hilbert, namely that the set of all such curves in a closed bounded
subset of R2 and whose length is bounded is compact in the Fréchet metric. This
can be seen as follows: we can lift all such curves to specific Lipschitz maps c whose
Lipschitz constants are bounded. This set is an equicontinuous set of functions by
the bound on the Lipschitz constant. By the Ascoli-Arzela theorem the topology
of pointwise convergence equals then the topology of uniform convergence on S1.
So this set is a closed subset in a product of S1 copies of a large ball in R2; this
product is compact. The Fréchet metric is coarser than the uniform metric, so our
set is also compact.
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3. Metrics on spaces of curves

3.1 Need for invariance under reparametrization. The pointwise metric on
the space of immersions Imm(S1,R2) is given by

Gc(h, k) :=

∫

S1

〈h(θ), k(θ)〉dθ.

This Riemannian metric is not invariant under reparameterizations of the variable
θ and thus does not induce a sensible metric on the quotient space Bi(S

1,R2).
Indeed, it induces the zero metric since for any two curves C0, C1 ∈ Bi(S

1,R2)
the infimum of the arc lengths of curves in Imm(S1,R2) which connect embeddings
c0, c1 ∈ Imm(S1,R2) with π(ci) = Ci turns out to be zero. To see this, take any
c0 in the Diff(S1)-orbit over C0. Take the following variation c(θ, t) of c0: for θ
outside a small neighborhood U of length ε of 1 in S1, c(θ, t) = c0(θ). If θ ∈ U ,
then the variation for t ∈ [0, 1/2] moves the small part of c0 so that c(θ, 1/2) for θ
in U takes off C0, goes to C1, traverses nearly all of C1, and returns to C0. Now
in the orbit through c(·, 1/2), reparameterize in such a way that the new curve is
diligently traversing C1 for θ /∈ U , and for θ ∈ U it travels back to C0, runs along
C0, and comes back to C1. This reparametrized curve is then varied for t ∈ [1/2, 1]
in such a way, that the part for θ ∈ U is moved towards C2. It is clear that the
length of both variations is bounded by a constant (depending on the distance
between C0 and C1 and the lengths of both C0 and C1) times ε.

3.2. The simplest Riemannian metric on Bi. Let h, k ∈ C∞(S1,R2) be two
tangent vectors with foot point c ∈ Imm(S1,R2). The induced volume form is
vol(c) = 〈∂θc, ∂θc〉1/2 dθ = |cθ|dθ. We consider first the simple H0 weak Riemann-
ian metric on Imm(S1,R2):

(1) Gc(h, k) :=

∫

S1

〈h(θ), k(θ)〉|c′(θ)| dθ

which is invariant under Diff(S1). This makes the map π : Imm(S1,R2) →
Bi(S

1,R2) into a Riemannian submersion (off the singularities of Bi(S
1,R2))

which is very convenient. We call this the H0-metric.

Now we can determine the bundle N → Imm(S1,R2) of tangent vectors which
are normal to the Diff(S1)-orbits. The tangent vectors to the orbits are Tc(c ◦
Diff(S1)) = {g.cθ : g ∈ C∞(S1,R)}. Inserting this for k into the expression (1) of
the metric we see that

Nc = {h ∈ C∞(S1,R2) : 〈h, cθ〉 = 0}(2)

= {aicθ ∈ C∞(S1,R2) : a ∈ C∞(S1,R)}
= {bnc ∈ C∞(S1,R2) : b ∈ C∞(S1,R)},

where nc is the normal unit field along c.
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A tangent vector h ∈ Tc Imm(S1,R2) = C∞(S1,R2) has an orthonormal de-
composition

h = h⊤ + h⊥ ∈ Tc(c ◦ Diff+(S1)) ⊕Nc where

h⊤ =
〈h, cθ〉
|cθ|2

cθ ∈ Tc(c ◦ Diff+(S1)),(3)

h⊥ =
〈h, icθ〉
|cθ|2

icθ ∈ Nc,

into smooth tangential and normal components.

Since the Riemannian metric G on Imm(S1,R2) is invariant under the action
of Diff(S1) it induces a metric on the quotient Bi(S

1,R2) as follows. For any
C0, C1 ∈ Bi, consider all liftings c0, c1 ∈ Imm such that π(c0) = C0, π(c1) = C1

and all smooth curves t 7→ (θ 7→ c(t, θ)) in Imm(S1,R2) with c(0, ·) = c0 and
c(1, ·) = c1. Since the metric G is invariant under the action of Diff(S1) the
arc-length of the curve t 7→ π(c(t, ·)) in Bi(S

1,R2) is given by

Lhor
G (c) := LG(π(c(t, ·))) =

∫ 1

0

√
Gπ(c)(Tcπ.ct, Tcπ.ct) dt =

∫ 1

0

√
Gc(c⊥t , c

⊥
t ) dt

=

∫ 1

0

(∫

S1

〈 〈ct, icθ〉
|cθ|2

icθ,
〈ct, icθ〉
|cθ|2

icθ

〉
|cθ| dθ

) 1
2
dt

=

∫ 1

0

(∫

S1

〈ct, nc〉2|cθ| dθ
) 1

2
dt(4)

=

∫ 1

0

(∫

S1

〈ct, icθ〉2
dθ

|cθ|
) 1

2
dt

The metric on Bi(S
1,R2) is defined by taking the infimum of this over all paths c

(and all lifts c0, c1):

distBi

G (C1, C2) = inf
c
Lhor
G (c).

Unfortunately, we will see below that this metric is too weak: the distance that it
defines turns out to be identically zero! For this reason, we will mostly study in
this paper a family of stronger metrics. These are obtained by the most minimal
change in G. We want to preserve two simple properties of the metric: that it
is local and that it has no derivatives in it. The standard way to strengthen the
metric is go from an H0 metric to an H1 metric. But when we work out the
natural H1 metric, picking out those terms which are local and do not involve
derivatives leads us to our chosen metric.

We consider next the H1 weak Riemannian metric on Imm(S1,R2):

(5) G1
c(h, k) :=

∫

S1

(
〈h(θ), k(θ)〉 +A

〈hθ, kθ〉
|cθ|2

)
|cθ| dθ.

which is invariant under Diff(S1). Thus π : Imm(S1,R2) → Bi(S
1,R2) is again

a Riemannian submersion off the singularities of Bi(S
1,R2). We call this the

H1-metric on Bi.
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To understand this metric better, we assume h = k = a icθ

|cθ| + b cθ

|cθ| . Moreover,

for any function f(θ), we write fs = fθ

|cθ| for the derivative with respect to arc

length. Then:

hs =
hθ
|cθ|

= (aics + bcs)s = (as + κb)ics + (bs − κa)cs.

Therefore:

G1
c(h, h) =

∫

S1

(
a2 + b2 +A(as + κb)2 +A(bs − κa)2

)
ds

=

∫

S1

(
a2(1 +Aκ2) +Aa2

s

)
+ 2Aκ(asb− bsa) +

(
b2(1 +Aκ2) +Ab2s

)
ds

Letting T1 and T2 be the differential operators T1 = I + Aκ2 − A( dds)
2, T2 =

A(κs + 2κ d
ds), then integrating by parts on S1, we get:

G1
c(h, h) =

∫

S1

(
T1(a).a+ 2T2(a).b+ T1(b).b

)
ds.

Note that T1 is a positive definite self-adjoint operator on functions on c, hence it
has an inverse given by a Green’s function which we write T−1

1 . Completing the
square and using that T1 is self-adjoint, we simplify the metric to:

G1
c(h, h)=

∫

c

(
T1(a).a−T−1

1 (T2(a)).T2(a)+T1

(
b+T−1

1 (T2(a))
)
.
(
b+T−1

1 (T2(a))
))
ds.

If we fix a and minimize this in b, we get the bundle N 1 → Imm(S1,R2) of
tangent vectors which are G1-normal to the Diff(S1)-orbits. In other words:

N 1
c = {h ∈ C∞(S1,R2) : h = aics + bcs, b = −T−1

1 (T2(a))}
and on horizontal vectors of this type:

G1
c(h, h) =

∫

c

(
(1 +Aκ2)a2 +Aa2

s

)
ds−

∫

c

T−1
1 (T2(a)).T2(a)ds.

If we drop terms involving as, say because we assume |as| is small, then what
remains is just the integral of (1 + Aκ2)a2 plus the integral of T−1

1 (κsa)κsa. The
second is a non-local regular integral operator, so dropping this we are left with
the main metric of this paper:

GAc (h, h) =

∫

c

(1 +Aκ2)a2ds, h = aics

which we call the H0
κ-metric with curvature weight A. For further reference, on

Imm(S1,R2), for a constant A ≥ 0, it is given by

(6) GAc (h, k) :=

∫

S1

(1 +Aκc(θ)
2)〈h(θ), k(θ)〉|c′(θ)| dθ

which is again invariant under Diff(S1). Thus π : Imm(S1,R2) → Bi(S
1,R2) is

again a Riemannian submersion off the singularities. Note that for this metric (6),
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the bundle N ⊂ T Imm(S1,R2) is the same as for A = 0, as described in (2). The
arc-length of a curve t 7→ π(c(t, ·)) in Bi(S

1,R2) is given by the analogon of (4)

Lhor
GA(c) := LGA(π(c(t, ·))) =

∫ 1

0

√
GAπ(c)(Tcπ.ct, Tcπ.ct) dt =

∫ 1

0

√
GAc (c⊥t , c

⊥
t ) dt

=

∫ 1

0

(∫

S1

(1 +Aκ2
c)〈ct, nc〉2|cθ| dθ

) 1
2
dt(7)

=

∫ 1

0

(∫

S1

(1 +Aκ2
c)〈ct, icθ〉2

dθ

|cθ|
) 1

2
dt

The metric on Bi(S
1,R2) is defined by taking the infimum of this over all paths c

(and all lifts c0, c1):

distBi

GA(C1, C2) = inf
c
Lhor
GA(c).

Note that if a path π(c) in Bi(S
1,R2) is given, then one can choose its lift to a

path c in Imm(S1,R2) to have various good properties. Firstly, we can choose the
lift c(0, ) of the inital curve to have a parametrization of constant speed, i.e. if
its length is ℓ, then |cθ|(θ, 0) = ℓ/2π for all θ ∈ S1. Secondly, we can make the
tangent vector to c everywhere horizontal, i.e. < ct, cθ >≡ 0, by 2.5. Thirdly, we
can reparametrize the coordinate t on the path of length L so that the path is
traversed at constant speed, i.e.

∫

S1

(1 +Aκ2
c) < ct, icθ >

2 dθ/|cθ| ≡ L2, for all 0 ≤ t ≤ 1.

3.3. A Lipschitz bound for arc length in GA. We apply the Cauchy-Schwarz
inequality to the derivative 2.2.4 of the length function along a path t 7→ c(t, ):

∂tℓ(c) = dℓ(c)(ct) = −
∫

S1

κ(c)〈ct, nc〉|cθ|dθ ≤
∣∣∣
∫

S1

κ(c)〈ct, nc〉|cθ|dθ
∣∣∣

≤
(∫

S1

12|cθ|dθ
) 1

2
(∫

S1

κ(c)2〈ct, nc〉2|cθ|dθ
) 1

2

≤ ℓ(c)
1
2

1√
A

(∫

S1

(1 +Aκ(c)2)〈ct, nc〉2|cθ|dθ
) 1

2

Thus

∂t(
√
ℓ(c)) =

∂tℓ(c)

2
√
ℓ(c)

≤ 1

2
√
A

(∫

S1

(1 +Aκ(c)2)〈ct, nc〉2|cθ|dθ
) 1

2

and by using (3.2.7) we get

√
ℓ(c1) −

√
ℓ(c0) =

∫ 1

0

∂t(
√
ℓ(c)) dt

≤ 1

2
√
A

∫ 1

0

(∫

S1

(1 +Aκ(c)2)〈ct, nc〉2|cθ|dθ
) 1

2

dt

=
1

2
√
A
Lhor
GA(c).(1)



18 PETER W. MICHOR, DAVID MUMFORD

If we take the infimum over all paths connecting c0 with the Diff(S1)-orbit through
c1 we get:

Lipschitz continuity of
√
ℓ : Bi(S

1,R2) → R≥0. For C0 and C1 in Bi(S
1,R2) =

Imm(S1,R2)/Diff(S1) we have for A > 0:

(2)
√
ℓ(C1) −

√
ℓ(C0) ≤

1

2
√
A

distBi

GA(C1, C2).

3.4. Bounding the area swept by a path in Bi. Secondly, we want to bound
the area swept out by a path starting from C0 to reach any curve C1 nearby
in our metric. First we use the Cauchy-Schwarz inequality in the Hilbert space
L2(S1, |cθ(t, θ)|dθ) to get
∫

S1

1.|ct(t, θ)‖cθ(t, θ)|dθ = 〈1, |ct|〉L2 ≤

≤ ‖1‖L2‖ct‖L2 =
(∫

S1

|cθ(t, θ)| dθ
) 1

2
(∫

S1

|ct(t, θ)|2|cθ(t, θ)| dθ
) 1

2
.

Now we assume that the variation c(t, θ) is horizontal, so that 〈ct, cθ〉 = 0. Then
LGA(c) = Lhor

GA(c). We use this inequality and then the intermediate value theorem
of integral calculus to obtain

Lhor
GA(c) = LGA(c) =

∫ 1

0

√
GAc (ct, ct) dt

=

∫ 1

0

(∫

S1

(1 +Aκ(c)2)|ct(t, θ)|2|cθ(t, θ)| dθ
) 1

2
dt

≥
∫ 1

0

(∫

S1

|ct(t, θ)|2|cθ(t, θ)| dθ
) 1

2
dt

≥
∫ 1

0

(∫

S1

|cθ(t, θ)| dθ
)− 1

2
∫

S1

|ct(t, θ)‖cθ(t, θ)| dθ dt

=
(∫

S1

|cθ(t0, θ)| dθ
)− 1

2
∫ 1

0

∫

S1

|ct(t, θ)‖cθ(t, θ)| dθ dt

for some intermediate value 0 ≤ t0 ≤ 1,

=
1√

ℓ(c(t0, ·))

∫

[0,1]×S1

| det dc(t, θ)| dθ dt.

Area swept out bound. If c is any path from C0 to C1, then

(1)

(
area of the region swept
out by the variation c

)
≤ max

t

√
ℓ(c(t, ·)) · Lhor

GA(c).

This result enables us to compare the double cover Bor
i (S1,R2) of our metric

space Bi(S
,R2) consisting of oriented unparametrized curves to the fundamental
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Figure 1. Two distinct immersions of S1 in the plane whose
underlying currents are equal. One curve is solid, the other
dashed.

space of geometric measure theory. Note that there is a map h1 from Bor
i to the

space of 1-currents D′
1 given by:

< h1(c mod Diff+(S1)), ω >=

∫

S1

c∗ω, c ∈ Imm(S1,R2).

The image h1(C) is, in fact, closed. For any C, define the integer-valued measur-
able function wC on R2 by:

wC((x, y)) = winding number of C around (x, y).

Then it is easy to see that, as currents, h1(C) = ∂(wCdxdy), hence ∂h1(C) = 0.

Although h1 is obviously injective on the space Be, it is not injective on Bi as
illustrated in Figure 1 below. The image of this mapping lies in the basic subset
I1,c ⊂ D′

1 of closed integral currents, namely those which are both closed and
countable sums of currents defined by Lipschitz mappings ci : [0, 1] → R2 of finite
total length. Integral currents carry what is called the flat metric, which, for closed
1-currents, reduces (by the isoperimetric inequality) to the area distance

(2) d♭(C1, C2) =

∫∫

R2

|wC1 − wC2 |dxdy.

To connect this with our ‘area swept out bound’, note that if we have any path
c in Imm(S1,R2) joining C1 and C2, this path defines a 2-current w(c) such that
∂w(c) = h1(C1) − h1(C2) and

∫

R2

|w(c)| dxdy ≤
∫ 1

0

∫

S1

| det c|dθdt

which is what we are calling the area swept out. But ∂(wC1 − wC2) = h1(C1) −
h1(C2) too, so w(c) = wC1 − wC2 . Thus

(3) d♭(C1, C2) ≤ min
all paths c joining C1,C2

[
area swept out by c

]

Finally, we recall the fundamental compactness result of geometric measure
theory in this simple case: the space of integral 1-currents of bounded length is
compact in the flat metric. This implies that our ‘area swept out bound’ above
has the Corollary:

Corollary.
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(4) If {Cn} is any Cauchy sequence in Bi for the metric distGA , then {h1(Cn)}
is a Cauchy sequence in I1,c on which length is bounded.

(5) Hence h1 extends to a continuous map from the completion Bi of Bi in
the metric GA to I1,c.

3.5. Bounding how far curves move in small paths in Bi. We want to
bound the maximum distance a curve C0 can move on any path whose length is
small in GA metric. Fix the initial curve C0 and let ℓ be its length. The result is:

Maximum distance bound. Let ǫ < min{2
√
Aℓ, ℓ3/2}/8 and consider η =

4(ℓ3/4A−1/4 + ℓ1/4)
√
ǫ. Then for any path c starting at C0 whose length is ǫ, the

final curve lies in the tubular neighborhood of C0 of width η. More precisely, if we
choose the path c(t, θ) to be horizontal, then maxθ |c(0, θ) − c(1, θ)| < η.

Proof. For all of this proof, we assume the path in Bi has been lifted to a
horizontal path c ∈ Imm(S1,R2) with |cθ|(θ, 0) ≡ ℓ/2π, so that 〈ct, cθ〉 ≡ 0,
and also

∫
S1(1 + Aκ2

c)|ct|2|cθ| dθ ≡ ǫ2. The first step in the proof is to refine
the Lipschitz bound on the length of a curve to a local estimate. Note that by
horizontality

∂

∂t

√
|cθ| =

< cθt, cθ >

2|cθ|3/2
= −< ct, cθθ >

2|cθ|3/2
= −< ct, icθ >

2|cθ|
κc |cθ|1/2 = ∓ 1

2κc |ct||cθ|1/2

hence ∫

S1

( ∂
∂t

√
|cθ|
)2
ds ≤ ǫ2

4A
.

Now we make the key definition:

|̃cθ|(t, θ) = min
0≤t1≤t

|cθ|(t1, θ).

Note that the t-derivative of |̃cθ| is either 0 or equal to that of |cθ| and is ≤ 0.
Thus we have:

∫

S1

(√ ℓ

2π
−
√
|̃cθ|(1, θ)

)
dθ ≤

∫ 1

0

∫

S1

− ∂

∂t

√
|̃cθ|dθdt

≤
∫ 1

0

∫

S1

∣∣∣ ∂
∂t

√
|cθ|
∣∣∣dθdt

≤
∫ 1

0

(∫

S1

dθ
)1/2

·
(∫

S1

∣∣∣ ∂
∂t

√
|cθ|
∣∣∣
2

dθ
)1/2

dt

≤
√

2π · ǫ

2
√
A
.

To make use of this inequality, let E =
{
θ : |̃cθ|(1, θ) ≤

(
1 − (Aℓ)−1/4

√
ε
)
ℓ/2π

}
.

Our assumption on ε gives (Aℓ)−1/4√ε < 1/2, hence on S1\E we have |̃cθ| > ℓ/4π.
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On E we have also (|̃cθ|)1/2 ≤ (1 − (Aℓ)−1/4
√
ε/2)

√
ℓ/2π. Combining this with

the previous inequality, we get (where µ(E)is the measure of E):

µ(E)
1

2
√

2π
(
ℓ

A
)1/4

√
ε ≤

√
2π · ε

2
√
A
, hence µ(E) ≤ 2π

√
ε

(Aℓ)1/4
< π.

We now use the lower bound on |cθ| on S1 − E to control c(1, θ) − c(0, θ):
∫

S1−E
|c(1, θ) − c(0, θ)| dθ ≤

∫ 1

0

∫

S1−E
|ct| dθdt

≤
√

2π ·
∫ 1

0

(∫

S1−E
|ct|2dθ

)1/2

dt

≤
√

2π√
ℓ

4π

∫ 1

0

(∫

S1−E
|ct|2|cθ|dθ

)1/2

dt ≤ 2
√

2π√
ℓ

· ε

Again, introduce a small exceptional set F =
{
θ
∣∣ θ /∈ E and |c(1, θ) − c(0, θ)| ≥

ℓ1/4
√
ε
}
. By the inequality above, we get:

µ(F ) · ℓ1/4√ε ≤ 2
√

2πε√
ℓ

, hence µ(F ) ≤ 2
√

2π
√
ε

ℓ3/4
< π.

The last inequality follows from the second assumption on ε. Knowing µ(E) and
µ(F ) gives us the lengths |c(0, E)| and |c(0, F )| in R2. But we need the lengths
|c(1, E)| and |c(1, F )| too. We get these using the fact that the whole length of C1

can’t be too large, by 3.3:
√
|C1| ≤

√
ℓ+

ε

2
√
A
, hence

|C1| ≤ ℓ+ 2ε

√
ℓ

A
≤ ℓ+

√
ε · ℓ

3/4

A1/4
.

On S1 \ E we have |̃cθ| > (1 − (Aℓ)−1/4
√
ε)ℓ/2π, thus we get

|c(1, E ∪ F )| = |C1| − |c(1, S1 \ (E ∪ F ))|

≤ ℓ+
√
ε · ℓ

3/4

A1/4
−
(
1 −

√
ε

(Aℓ)1/4

) ℓ

2π

(
2π − µ(E ∪ F )

)

≤ √
ε ·
(
3
ℓ3/4

A1/4
+
√

2ℓ1/4
)

Finally, we can get from c(0, θ) to c(1, θ) by going via c(0, θ′) and c(1, θ′) where
θ′ ∈ S1 \ (E ∪ F ) 6= ∅. Thus

max
θ

|c(0, θ) − c(1, θ)| ≤ |c(0, E ∪ F )| + ℓ1/4
√
ε+ |c(E ∪ F, 1)|

≤ 4(ℓ3/4A−1/4 + ℓ1/4)
√
ε �

Combining this bound with the Lipschitz continuity of the square root of arc
length, we get:
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3.6. Corollary. For any A > 0, the map from Bi(S
1,R2) in the distGA metric to

the space Bconti (S1,R2) in the Fréchet metric is continuous, and, in fact, uniformly
continuous on every subset where the length ℓ is bounded. In particular, distGA

is a separating metric on Bi(S
1,R2). Moreover, the completion Bi(S

1,R2) of

Bi(S
1,R2) in this metric can be identified with a subset of Blipi (S1,R2).

If we iterate this bound, then we get the following:

3.7. Corollary. Consider all paths in Bi joining curves C0 and C1. Let L
be the length of such a path in the distGA metric and let ℓmin, ℓmax be the mini-
mum and maximum of the arc lengths of the curves in this path. Then there are
parametrizations c0, c1 of C0 and C1 such that:

max
θ

|c0(θ) − c1(θ)| ≤ 50 max(LF ∗,
√
ℓmaxLF ∗), where

F ∗ = max
( 1√

ℓmin

,

√
ℓmax

A

)
.

To prove this, you need only break up the path into a minimum number of pieces
for which the maximum distance bound 3.5 holds and add together the estimates
for each piece. We will only sketch this proof which is straightforward. The
constant 50 is just what comes out without attempting to optimize the bound.
The second option for bound, 50

√
ℓmaxLF ∗ is just a rephrasing of the bound

already in the theorem for short paths. If the path is too long to satisfy the
condition of the theorem, we break the path at intermediate curves Ci of length

ℓi such that each begins a subpath with length εi = min(
√
Aℓi, ℓ

3/2
i )/8 and which

don’t overlap for more than 2:1. Thus
∑

i εi ≤ 2L. Then apply the maximum
distance bound 3.5 to each piece, letting ηi be the bound on how far points move
in this subpath or any parts thereof and verify:

ηi ≤ 2
√

2ℓi ≤ 16
√

2εiF
∗,

from which we get what we need by summing over i.

3.8. A final Corollary shows that if we parametrize any path appropriately, we
get explicit equicontinuous continuity bounds on the parametrization depending
only on L, ℓmax and ℓmin. This is a step towards establishing the existence of weak
geodesics. The idea is this: instead of the horizontal parametrization 〈ct, cθ〉 ≡ 0,
we parametrize each curve at constant speed |cθ| ≡ ℓ(t)/2π where ℓ(t) is the length
of the tth curve and ask only that 〈ct, cθ〉(0, t) ≡ 0 for some base point 0 ∈ [0, 2π],
see 2.8. Then we get:

Corollary. If a path c(t, θ), 0 ≤ t ≤ 1 satisfies

|cθ(θ, t)| ≡ ℓ(t)/2π for all θ, t

〈ct, cθ〉(0, t) ≡ 0 for all t and
∫

Ct

(1 +Aκ2
Ct

)|〈ct, icθ〉|2dθ/|cθ| ≡ L2 for all t,
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then

|c(t1, θ1) − c(t2, θ2)| ≤
ℓmax

2π
|θ1 − θ2| + 7(ℓ3/4max/A

1/4 + ℓ1/4max)
√
L(t1 − t2)

whenever |t1 − t2| ≤ min(2
√
Aℓmin, ℓ

3/2
min)/(8L).

Proof. We need to compare the constant speed parametrization here with the
horizontal parametrization – call it c∗ – used in the maximum distance bound 3.5.
Under the horizontal parametrization, let the point (t1, θ1) on Ct1 correspond to

(t2, θ
∗
1) on Ct2 , i.e. c(t2, θ

∗
1) = c∗(t2, θ1). Let C = (ℓ

3/4
max/A1/4 + ℓ

1/4
max). Then we

know from 3.5 that

|c(t1, θ1) − c(t2, θ
∗
1)| ≤ 4C

√
L(t1 − t2).

To compare θ1 and θ∗1 , we use the properties of the set E in the proof of 3.5 to
estimate:

(θ∗1 − θ1)ℓ2
2π

=

∫ θ1

0

|c∗θ(t2, ϕ)|dϕ− θ1ℓ2
2π

≥
(
1 −

√
L(t1 − t2)

(Aℓ1)1/4

)
(θ1 − µ(E))

ℓ1
2π

− θ1ℓ2
2π

≥ −2ℓ1

√
L(t1 − t2)

(Aℓ1)1/4
− |ℓ1 − ℓ2| and similarly

((2π − θ∗1) − (2π − θ1))ℓ2
2π

=

∫ 2π

θ1

|c∗θ(t2, ϕ)|dϕ− (2π − θ1)ℓ2
2π

≥ −2ℓ1

√
L(t1 − t2)

(Aℓ1)1/4
− |ℓ1 − ℓ2|

Combining these and using the Lipschitz property of length, we get:

|θ∗1 − θ1|ℓ2
2π

≤ 2C
√
L(t1 − t2) + 2|

√
ℓ1 −

√
ℓ2|
√
ℓmax

≤ 2C
√
L(t1 − t2) +

√
ℓmax

L(t1 − t2)√
A

≤ 5

2
C
√
L(t1 − t2)

Thus, finally:

|c(t1, θ1) − c(t2, θ2)| ≤ |c(t1, θ1) − c(t2, θ
∗
1)|+

+ |c(t2, θ∗1) − c(t2, θ1)| + |c(t2, θ1) − c(t2, θ2)|

≤ 4C
√
L(t1 − t2) +

5

2
C
√
L(t1 − t2) +

ℓmax

2π
|θ1 − θ2|. �

3.9. One might also ask whether the maximum distance bound 3.5 can be strength-
ened to assert that the 1-jets of such curves C must be close to the 1-jets of C0.
The answer is NO, as is easily seen from looking a small wavelet-type perturbations
of C0. Specifically, calculate the length of the path: c(t, θ) = c0(θ) + t · af(θ/a) ·
i(c0)θ(θ), 0 ≤ t ≤ 1 where f(x) is an arbitrary C2 function with compact support
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and a is very small. We claim the length of this path is O(
√
a), while the 1-jet at

the point θ = 0 of the final curve of the path approaches (1 + if ′0)(c0)θ(0).

We sketch the proof, which is straightforward. Let Ca,t be the curves on this
path. Then sup |ct| = O(a), sup |κCa,t

| = O(1/a), A ≤ |cθ| ≤ B for suitable

A,B > 0 and ℓ(support(ct)) = O(a). Then the integral
∫
S1(1 + Aκ2

c)(ct, icθ)
2 dθ
|cθ|

breaks up into 2 pieces, the first being O(a2), the second being O(1) and the
integral vanishing outside an interval of length O(a). Thus the total distance is
O(

√
a).

3.10. The H0-distance on Bi(S
1,R2) vanishes. Let c0, c1 ∈ Imm(S1,R2)

be two immersions, and suppose that t 7→ (θ 7→ c(t, θ)) is a smooth curve in
Imm(S1,R2) with c(0, ·) = c0 and c(1, ·) = c1.

The arc-length for the H0-metric of the curve t 7→ π(c(t, ·)) in Bi(S
1,R2) is

given by 3.2.7 as

(1) Lhor
G0 (c) =

∫ 1

0

(∫

S1

〈ct, icθ〉2
dθ

|cθ|
)1

2
dt

Theorem. For c0, c1 ∈ Imm(S1,R2) there exists always a path t 7→ c(t, ·) with
c(0, ·) = c0 and π(c(1, ·)) = π(c1) such that Lhor

G0 (c) is arbitrarily small.

Heuristically, the reason for this is that if the curve is made to zig-zag wildly,
say with teeth at an angle α, then the length of the curve goes up by a factor
1/ cos(α) but the normal component of the motion of the curve goes down by the
factor cos(α) – and this normal component is squared, hence it dominates.

Proof. Take a path c(t, θ) in Imm(S1,R2) from c0 to c1 and make it horizontal
using 2.5 so that that 〈ct, cθ〉 = 0; this forces a reparametrization on c1.

Now let us view c as a smooth mapping c : [0, 1]× [0, 1] → R2. We shall use the
piecewise linear reparameterization (ϕ(t, θ), θ) of the square shown above, which
for 0 ≤ t ≤ 1/2 deforms the straight line into a zig-zag of height 1 and period n/2
connecting the two end-curves, and then removes the teeth for 1/2 ≤ t ≤ 1. In
detail: Let c̃(t, θ) = c(ϕ(t, θ), θ) where

ϕ(t, θ) =





2t(2nθ − 2k) for 0 ≤ t ≤ 1/2, 2k
2n ≤ θ ≤ 2k+1

2n

2t(2k + 2 − 2nθ) for 0 ≤ t ≤ 1/2, 2k+1
2n ≤ θ ≤ 2k+2

2n

2t− 1 + 2(1 − t)(2nθ − 2k) for 1/2 ≤ t ≤ 1, 2k
2n ≤ θ ≤ 2k+1

2n

2t− 1 + 2(1 − t)(2k + 2 − 2nθ) for 1/2 ≤ t ≤ 1, 2k+1
2n ≤ θ ≤ 2k+2

2n .

Then we get c̃θ = ϕθ.ct + cθ and c̃t = ϕt.ct where

ϕθ =





+4nt

−4nt

+4n(1 − t)

−4n(1 − t)

, ϕt =





4nθ − 4k

4k + 4 − 4nθ

2 − 4nθ + 4k

−(2 − 4nθ + 4k)

.
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Figure 2. The reparametrization of a path of curves used to
make its length arbitrarily small.

Also, 〈ct, cθ〉 = 0 implies 〈c̃t, ic̃θ〉 = ϕt.|ct|.|cθ| and |c̃θ| = |cθ|
√

1 + ϕ2
θ(|ct|/|cθ|)2.

Thus

Lhor(c̃) =

∫ 1

0

(∫ 1

0

〈c̃t, ic̃θ〉2
dθ

|c̃θ|
) 1

2
dt =

∫ 1

0

(∫ 1

0

ϕ2
t |ct|2|cθ|√

1 + ϕ2
θ(

|ct|
|cθ| )

2
dθ
) 1

2
dt =

=

∫ 1
2

0

(
n−1∑

k=0

(∫ 2k+1
2n

2k
2n

(4nθ − 4k)2|ct(ϕ, θ)|2|cθ(ϕ, θ)|√
1 + (4nt)2( |ct(ϕ,θ)|

|cθ(ϕ,θ)|)
2

dθ+

+

∫ 2k+2
2n

2k+1
2n

(4k + 4 − 4nθ)2|ct(ϕ, θ)|2|cθ(ϕ, θ)|√
1 + (4nt)2( |ct(ϕ,θ)|

|cθ(ϕ,θ)|)
2

dθ
))

1
2

dt+

+

∫ 1

1
2

(
n−1∑

k=0

(∫ 2k+1
2n

2k
2n

(2 − 4nθ + 4k)2|ct(ϕ, θ)|2|cθ(ϕ, θ)|√
1 + (4n)2(1 − t)2( |ct(ϕ,θ)|

|cθ(ϕ,θ)|)
2

dθ+

+

∫ 2k+2
2n

2k+1
2n

(2 − 4nθ + 4k)2|ct(ϕ, θ)|2|cθ(ϕ, θ)|√
1 + (4n)2(1 − t)2( |ct(ϕ,θ)|

|cθ(ϕ,θ)|)
2

dθ
))

1
2

dt

The function |cθ(ϕ, θ)| is uniformly bounded above and away from 0, and |ct(ϕ, θ)|
is uniformly bounded. Thus we may estimate

n−1∑

k=0

∫ 2k+1
2n

2k
2n

(4nθ − 4k)2|ct(ϕ, θ)|2|cθ(ϕ, θ)|√
1 + (4nt)2( |ct(ϕ,θ)|

|cθ(ϕ,θ)|)
2

dθ
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≤ O(1)

n−1∑

k=0

∫ 1
2n

0

4n2θ2|ct(ϕ(t, 2k
2n + θ), 2k

2n + θ)|2√
1 + (4nt)2|ct(ϕ(t, 2k

2n + θ), 2k
2n + θ)|2

dθ

We estimate as follows. Fix ε > 0. First we split of the integral
∫ ε
t=0

which is
O(ε) uniformly in n; so for the rest we have t ≥ ε. The last sum of integrals is
now estimated as follows: Consider first the set of all θ such that |ct(ϕ(t, 2k

2n +

θ), 2k
2n + θ)| < ε which is a countable disjoint union of open intervals. There

we get the estimate O(1).n.4n2.ε2(θ3/3)|θ=1/2n
θ=0 = O(ε), uniformly in n. On the

complementary set of all θ where |ct(ϕ(t, 2k
2n +θ), 2k

2n +θ)| ≥ ε we use also t ≥ ε and

estimate by O(1).n.4n2. 1
4nε2 .(θ

3/3)|θ=1/2n
θ=0 = O( 1

ε2n ). The other sums of integrals

can be estimated similarly, thus Lhor(c̃) goes to 0 for n → ∞. It is clear that
one can approximate ϕ by a smooth function without changing the estimates
essentially. �

3.11. Non-smooth curves in the completion of Bi. We have seen in 3.6
that the completion of Bi in the metric GA lies in the space of Lipschitz maps
c : S1 → R

2 mod monotone correspondences, that is, rectifiable Fréchet immersed
curves. But how big is it really? We cannot answer this, but we show, in this
section, that certain non-smooth curves are in the completion. To be precise, if
c is rectifiable, then we can assume c is parametrized at constant speed |cθ| ≡
L/2π where L is the length of the curve. Therefore cθ = (L/2π)eiα(θ) for some
measurable function α(θ) giving the orientation of the tangent line at almost every
point. We will say that a rectifiable curve c is 1-BV if the function α is of bounded
variation. Note that this means that the derivative of α exists as a finite signed
measure, hence the curvature of c – which is (2π/L)α′ – is also a finite signed
measure. In particular, there are a countable set of ‘vertices’ on such a curve,
points where α has a discontinuity and the measure giving its curvature has an
atomic component. Note that α has left and right limits everywhere and vertices
can be assigned angles, namely α+(θ) − α−(θ).

Theorem. All 1-BV rectifiable curves are in the completion of Bi with respect to
the metric GA.

Proof. This is proven using the following lemma:

Lemma. Let c(t, θ), 0 < t ≤ 1 be an open path of smooth curves c(t) and let
α(t, θ) = arg(cθ(θ, t)). Assume that

(1) the length of all curves c(t) is bounded by C1,
(2) |ct| ≤ C2, for all (t, θ),
(3) For all t, the total variation in θ of α(θ, t) is bounded by C3 and
(4) the curvature of c(t) satisfies |κc(t)(θ, t)| ≤ C4/t for all θ.

Then the length of this path is bounded by C2(
√
C1 + 2

√
AC3C4).
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To prove the lemma, let st be arc length on c(t) and estimate the integral:
∫

c(t)

(1 +Aκ(c(t))(t, θ)2)〈ct,
icθ
|cθ|

〉2|cθ|dθ ≤ C2
2

(
C1 +A

∫

c(t)

κ2
c(t)dst

)

= C2
2

(
C1 +A

∫

c(t)

κc(t)
dα

dst
dst
)

≤ C2
2

(
C1 +A

C4

t
C3

)
.

Taking the square root of both sides and integrating from 0 to 1, we get the result.

We apply this lemma to the simplest possible smoothing of a 1-BV rectifiable
curve c0:

c(t, θ) =
1√
2πt

∫

R

c0(θ − ϕ)e−ϕ
2/2t2dϕ =

1√
2πt

∫

R

c0(ϕ)e−(θ−ϕ)2/2t2dϕ, 0 < t ≤ 1.

Note that t is the standard deviation of the Gaussian, not the variance. We assume
c0 has a constant speed parametrization and c′0 = (L/2π)eiα as above, where α′ is
a finite signed measure. Thus:

cθ =
L

(2π)3/2t

∫

R

eiα(θ−ϕ)−ϕ2/2t2dϕ

cθθ =
iL

(2π)3/2t

∫

R

eiα(ϕ)−(θ−ϕ)2/2t2α′(dϕ)

Moreover, using the second expression for the convolution and the heat equation
for the Gaussian, we see that ct = tcθθ. We now estimate:

|cθ| ≤ L/2π, hence length(Ct) ≤ L

|cθθ| ≤
L

(2π)3/2t

∫

S1

∑

n

e−(θ−ϕ−nL)2/2t2 |α′|(dϕ)

≤ sup
x

(∑

n

e−(x−nL)2/2t2
)L · Var(arg(c′0))

(2π)3/2t
= O(1/t),

∫

S1

|cθθ|dθ ≤
L

2π

(∫

R

1√
2πt

e−θ
2/2t2dθ

)(∫

S1

|α′(dϕ)|
)

=
L

2π
Var(arg(c′0))

|ct| = t|cθθ| = O(1).

To finish the proof, all we need to do is get a lower bound on |cθ|. However,
|cθ| can be very small if the curve c0 has corners with small angles. In fact, c0 can
even double back on itself, giving a ‘corner’ with angle π. We need to treat this
as a special case. When all the vertex angles of c0 are less than π, we can get a
lower bound for |cθ| as follows. We start with the estimate:

|cθ(θ)| =
∣∣∣ 1√

2πt

∫

R

eiα(θ−ϕ)−ϕ2/2t2dϕ
/
eiα(θ)

∣∣∣

≥
∣∣∣ 1√

2πt

∫

R

cos(α(θ − ϕ) − α(θ))e−ϕ
2/2t2dϕ

∣∣∣
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We break up the integral over R into 3 intervals (−∞, θ−δ/2], [θ−δ/2, θ+δ/2], [θ+
δ/2,+∞) for a suitable δ. If t is sufficiently small, the integral of the Gaussian
over the first and third intervals goes uniformly to 0 and, on the middle interval,
goes to 1. Thus it suffices to estimate the cos in the middle interval. We use a
remark on BV functions:

Lemma. For any BV function f(x) and any C > 0, there is a δ > 0 such that on
every interval I of length less than δ, either f |I has a single jump of size ≥ C or
max(f |I) − min(f |I) ≤ C.

In fact, let C − ε be the size of the largest jump in f less than C and break up
the domain of f into intervals Ji on each of which the variation of f is less than
ǫ/2, big jumps being on their boundaries. If δ is less than the minimum of the
lengths of the Ji, we get what we want.

Now let π−β be the largest vertex angle of the curve c0. Using the last lemma,
choose a δ so that on every interval I in the θ-line of length less than δ, either I
contains a single vertex with exterior angle ≥ β/3 or maxα|I − minα|I ≤ β/3.
Now if there is no vertex in [θ− δ/2, θ+ δ/2], then |α(θ−ϕ)−α(θ)| ≤ β/3 on this
interval and our lower bound is:

|cθ(θ)| ≥ cos(β/3) − o(t).

On the other hand , if there is such a vertex, say at θ̄, then α varies by at most
β/3 in [θ − δ/2, θ̄), jumps by at most π − β at θ̄ and then varies by at most β/3
on (θ̄, θ + δ/2]. Assume θ < θ̄ (the case θ > θ̄ is similar). Then:

cos(α(θ−ϕ)−α(θ)) ≥
{

cos(β/3), if ϕ ∈ (θ − θ̄, θ + δ/2]

cos(π − β + β/3) = − cos(2β/3), if ϕ ∈ [θ − δ/2, θ − θ̄)

Thus:

|cθ(θ)| ≥ 1
2 (cos(β/3) − cos(2β/3)) − o(t).

hence, if t is sufficiently small, we get a uniform lower bound on |cθ|. Since
|κCt

| ≤ |cθθ|/|cθ|2, we get the required upper bound both on |κCt
| and on the

variation of αCt
, i.e.

∫
S1 |κCt

| and all the requirements of the lemma are satisfied.

If c0 has a vertex with angle π, we need to add an extra argument. c0 certainly
has at most a finite number of such vertices and we can construct a new curve
by drawing a circle of radius t around each of these vertices and letting c

(t)
0 be

the curve which follows c0 until it hits one of these circles and then replaces the

vertex with a circuit around the circle: see Figure 3. Each of the curves c
(t)
0 is in

the completion of Bi by the previous argument and the path formed by the c
(t)
0 ’s

also has finite length, hence c0 is in the completion. We omit the details which
are straightforward.

3.12. The energy of a path as ‘anisotropic area’ of its graph in R3.

Consider a path t 7→ c(t, ·) in the manifold Imm(S1,R2). It projects to a path π◦c



RIEMANNIAN GEOMETRIES ON SPACES OF PLANE CURVES 29

Figure 3. Approximating 1−BV curves with zero angle vertices
by curves with positive angle vertices.

in Bi(S
1,R2) whose energy is

EGA(π ◦ c) = 1
2

∫ b

a

GAπ(c)(Tcπ.ct, Tcπ.ct) dt

= 1
2

∫ b

a

GAc (c⊥t , c
⊥
t ) dt = 1

2

∫ b

a

∫

S1

(1 +Aκ(c)2)〈c⊥t , c⊥t 〉|cθ| dθ dt

= 1
2

∫ b

a

∫

S1

(1 +Aκ(c)2)

〈 〈ct, icθ〉
|cθ|2

icθ,
〈ct, icθ〉
|cθ|2

icθ

〉
|cθ| dθ dt

= 1
2

∫ b

a

∫

S1

(1 +Aκ(c)2)〈ct, icθ〉2
dθ

|cθ|
dθdt(1)

If the path c is horizontal, i.e., it satisfies 〈ct, cθ〉 = 0. Then 〈ct, icθ〉 = |ct|.|cθ| and
we have

(2) Ehor
GA (c) = 1

2

∫ b

a

∫

S1

(1 +Aκ(c)2)|ct|2|cθ| dθ dt, 〈ct, cθ〉 = 0

which is just the usual energy of c.

Let c(t, θ) = (x(t, θ), y(t, θ)) be still horizontal and consider the graph

Φ(t, θ) = (t, x(t, θ), y(t, θ)) ∈ R
3.

We also have |xtyθ − xθyt| = | det(ct, cθ)| = |ct|.|cθ| and for the vector product
Φt × Φθ = (xtyθ − xθyt,−yθ, xθ), so we get

|Φt × Φθ|2 = (xtyθ − xθyt)
2 + y2

θ + x2
θ = (x2

θ + y2
θ)(x

2
t + y2

t + 1) = |cθ|2(|ct|2 + 1).

We express now Ehor(c) as an integral over the immersed surface S ⊂ R3 param-
eterized by Φ in terms of the surface area dµS = |Φt × Φθ| dθ dt as follows:

Ehor
GA (c) = 1

2

∫ b

a

∫

S1

(1 +Aκ(c)2)
|ct|2|cθ|
|Φt × Φθ|

|Φt × Φθ| dθ dt

= 1
2

∫

[a,b]×S1

(1 +Aκ(c)2)
|ct|2√
|ct|2 + 1

dµS
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Next we want to express the integrand as as a function γ of the unit normal
nS = (Φt × Φθ)/|Φt × Φθ|. Let e0 = (1, 0, 0), then the absolute value of the
t-component n0

S of the unit normal nS is

|n0
S | := |〈e0, nS〉| =

|ct|√
|ct|2 + 1

, and
|ct|2√
|ct|2 + 1

=
|n0
S |2√

1 − |n0
S |2

.

Thus for horizontal c (i.e., with ct⊥cθ) we have

Horizontal energy as anisotropic area.

(3) Ehor

GA (c) = 1
2

∫

[a,b]×S1

(1 +Aκ(c)2)
|n0
S |2√

1 − |n0
S |2

dµS

Here the final expression is only in terms of the surface S and does not depend
on the curve c being horizontal. This anisotropic area functional has to be mini-
mized in order to prove that geodesics exists between arbitrary curves (of the same
degree) in Bi(S

1,R2). Thus we are led to the

Question. For immersions c0, c1 : S1 → R2 does there exist an immersed surface
S = (ins[0,1], c) : [0, 1]× S1 → R×R2 such that the functional (3) is critical at S?

A first step is:

Bounding the area. For any path [a, b] ∋ t 7→ c(t, ) the area of the graph
surface S = S(c) is bounded as follows:

(4) Area(S) =

∫

[a,b]×S1

dµS ≤ 2Ehor

GA (c) + max
t
ℓ(c(t, ))(b − a)

Proof. Writing the unit normal nS = (n0
S , n

1
S , n

2
S) ∈ S2 according to the coordi-

nates (t, x, y) we have

|n1
S | + |n2

S| +
|n0
S |2√

1 − |n0
S |2

≥ |n1
S |2 + |n2

S |2 + |n0
S |2 = 1

Since |n1
S |dµS is the area element of the projection of S onto the (t, y)-plane we

have

Area(S) =

∫

[a,b]×S1

dµS ≤
∫

[a,b]×S1

(1 +Aκ(c)2)
(
|n1
S | + |n2

S | +
|n0
S |2√

1 − |n0
S |2
)
dµS

≤ 2Ehor
GA(c) + max

t
ℓ(c(t, ))(b − a). �
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4. Geodesic equations and sectional curvatures

4.1. Geodesics on Imm(S1,R2). The energy of a curve t 7→ c(t, ·) in the space
Imm(S1,R2) is

EGA(c) = 1
2

∫ b

a

∫

S1

(1 +Aκ2
c)〈ct, ct〉|cθ| dθ dt.

By calculating its first variation, we get the equation for a geodesic:

Geodesic Equation.

(1)
(
(1 +Aκ2)|cθ| · ct

)
t
=
(−1 +Aκ2

2
· |ct|

2

|cθ|
· cθ +A

(κ|ct|2)θ
|cθ|2

· icθ
)
θ
.

Proof. From 2.2 we have

κ(c)s =
〈icsθ, cθθ〉

|cθ|3
+

〈icθ, csθθ〉
|cθ|3

− 3κ
〈csθ, cθ〉
|cθ|2

.

and

cθθ =
〈cθθ, cθ〉
|cθ|2

cθ +
〈cθθ, icθ〉
|cθ|2

icθ

=
|cθ|θ
|cθ|

cθ + κ(c)|cθ|icθ.

Now we compute

∂s|0E(c) = 1
2∂s|0

∫ b

a

∫

S1

(1 +Aκ2)〈ct, ct〉|cθ| dθ dt

=

∫ b

a

∫

S1

(
Aκκs|cθ‖ct|2 + (1 +Aκ2)〈cst, ct〉|cθ| +

1 +Aκ2

2
|ct|2

〈csθ, cθ〉
|cθ|

)
dθdt

=

∫ b

a

∫

S1

(
Aκ〈icsθ, cθθ〉

|ct|2
|cθ|2

+Aκ〈icθ, csθθ〉
|ct|2
|cθ|2

− 3Aκ2〈csθ, cθ〉
|ct|2
|cθ|

−
〈
cs,
(
(1 +Aκ2)|cθ|ct

)
t
+
(1 +Aκ2

2

|ct|2
|cθ|

cθ
)
θ

〉)
dθdt

=

∫ b

a

∫

S1

(〈
cs, A

(
κ
|ct|2
|cθ|2

icθθ

)
θ

〉
+
〈
cs, A

(
κ
|ct|2
|cθ|2

icθ

)
θθ

〉
+
〈
cs, 3A

(
κ2 |ct|2

|cθ|
cθ

)
θ

〉

−
〈
cs,
(
(1 +Aκ2)|cθ|ct

)
t
+
(1 +Aκ2

2

|ct|2
|cθ|

cθ
)
θ

〉)
dθdt

=

∫ b

a

∫

S1

〈
cs,−

(
(1 +Aκ2)|cθ|ct

)
t
+ Fθ

〉
dθdt

where

F = Aκ
|ct|2
|cθ|2

icθθ +A(κ|ct|2)θ
icθ
|cθ|2

− 2Aκ|ct|2
|cθ|θicθ
|cθ|3

+Aκ
|ct|2
|cθ|2

icθθ+
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+ 3Aκ2 |ct|2
|cθ|

cθ −
1 +Aκ2

2

|ct|2
|cθ|

cθ

Substituting the expression for cθθ and simplifying, this reduces to

F =
−1 +Aκ2

2

|ct|2
|cθ|

cθ +A(κ|ct|2)θ
icθ
|cθ|2

which gives the required formula for geodesics.

Putting A = 0 in 4.1.1 we get the geodesic equation for the H0-metric on
Imm(S1,R2)

(2)
(
|cθ|ct

)
t
= −1

2

( |ct|2cθ
|cθ|

)
θ

4.2 Geodesics on Bi(S
1,R2). We may also restrict to geodesics which are per-

pendicular to the orbits of Diff(S1), i.e. 〈ct, cθ〉 ≡ 0, obtaining the geodesics in
the quotient space Bi(S

1,R2). To write this in the simplest way, we introduce the
‘velocity’ a by setting ct = iacθ/|cθ| (so that |ct|2 = a2). When we substitute this
into the above geodesic equation, the equation splits into a multiple of cθ and a
multiple of icθ. The former vanishes identically and the latter gives:

(
(1 +Aκ2)|cθ|a

)
t

icθ
|cθ|

=
−1 +Aκ2

2
a2
( cθ
|cθ|
)
θ

+A
( (κa2)θ

|cθ|
)
θ

icθ
|cθ|

, or

(
(1 +Aκ2)|cθ|a

)
t
=

−1 +Aκ2

2
κ|cθ|a2 +A

( (κa2)θ
|cθ|

)
θ
.

If we use derivatives with respect to arclength instead of θ and write these with
the subscript s, so that fs = fθ/|cθ|, this simplifies. We need:

|cθ|t =
〈cθ, ctθ〉
|cθ|

= −〈cθθ, ct〉
|cθ|

= −a 〈cθθ, icθ〉|cθ|2
= −aκ|cθ|

which gives us a simple form for the equation for geodesics on Bi(S
1,R2):

(1)
(
(1 +Aκ2)a

)
t
=

1 + 3Aκ2

2
κa2 +A(κa2)ss.

Finally, we may expand the t-derivatives on the left hand side, using the formula
κt = aκ2 +ass noted in 2.2.7; we also collect all constraint equations that we chose
along the way:

(2)

0 = 〈ct, cs〉, ct = aics, κ = 〈css, ics〉

at =
1
2κa

2 +A
(
a2(κss − 1

2κ
3) + 4κsaas + 2κa2

s

)

1 +Aκ2
.

Handle this with care: Going to unit speed parametrization (so that fs is really
a holonomic partial derivative) destroys the first constraint ‘horizontality’. This
should be seen as a gauge fixing.
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4.3. Geodesics on Bi(S
1,R2) for A = 0. Let us now set A = 0. We keep looking

at horizontal geodesics, so that 〈ct, cθ〉 = 0 and ct = iacθ/|cθ| for a ∈ C∞(S1). We
use the functions a, s = |cθ|, and κ. We use equations from 4.2 but we do not use
the anholonomic derivative:

st = −aκs, at = 1
2κa

2, κt = aκ2 +
1

s

(aθ
s

)
θ

= aκ2 +
aθθ
s2

− aθsθ
s3

.(1)

We may assume that s|t=0 is constant. Let v(θ) = a(0, θ) be the initial value for
a. Then from equations (1) we get

st
s

= −aκ = −2
at
a

=⇒ log(sa2)t = 0

so that sa2 is constant in t,

(2) s(t, θ)a(t, θ)2 = s(0, θ)a(0, θ)2 = v(θ)2,

a smooth family of conserved quantities along the geodesic. This leads to the
substitutions

s =
v2

a2
, κ = 2

at
a2

which transform the last equation (1) to

(3) att − 4
a2
t

a
− a6aθθ

2v4
+
a6aθvθ
v5

− a5a2
θ

v4
= 0, a(0, θ) = v(θ),

a nonlinear hyperbolic second order equation. Note that (2) implies that wherever
v = 0 then also a = 0 for all t. For that reason, let us transform equation (3) into
a less singular form by substituting a = vb. Note that b = 1/

√
s. The outcome is

(4) (b−3)tt = −v
2

2
(b3)θθ − 2vvθ(b

3)θ −
3vvθθ

2
b3, b(0, θ) = 1.

4.4. The induced metric on Bi,f (S
1,R2) in a chart. We also want to compute

the curvature of Bi(S
1,R2) in this metric. For this, we need second derivatives

and the most convenient way to calculate these seems to be to use a local chart.
Consider the smooth principal bundle π : Immf (S

1,R2) → Bi,f (S
1,R2) with

structure group Diff(S1) described in 2.4.3. We shall describe the metric in the
following chart near C ∈ Bi,f (S

1,R2): Let c ∈ Immf (S
1,R2) be parametrized by

arclength with π(c) = C of length L, with unit normal nc. We assume that the
parameter θ runs in the scaled circle S1

L below. As in the proof of 2.4.3 we consider
the mapping

ψ : C∞(S1
L, (−ε, ε)) → Immf (S

1
L,R

2), Q(c) := ψ(C∞(S1
L, (−ε, ε)))

ψ(f)(θ) = c(θ) + f(θ)nc(θ) = c(θ) + f(θ)ic′(θ),

π ◦ ψ : C∞(S1
L, (−ε, ε)) → Bi,f (S

1,R2),

where ε is so small that ψ(f) is an embedding for each f . By 2.4.3 the mapping
(π ◦ ψ)−1 is a smooth chart on Bi,f (S

1
L,R

2). Note that:

ψ(f)′ = c′ + f ′ic′ + fic′′ = (1 − fκc)c
′ + f ′ic′

ψ(f)′′ = c′′ + f ′′ic′ + 2f ′ic′′ + fic′′′ = −(2f ′κc + fκ′c)c
′ + (κc + f ′′ − fκ2

c)ic
′
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nψ(f) =
1√

(1 − fκc)2 + f ′2

(
(1 − fκc)ic

′ − f ′c′
)
,

Tfψ.h = h.ic′ ∈ C∞(S1,R2) = Tψ(f) Immf (S
1
L,R

2)

=
h(1 − fκc)√

(1 − fκc)2 + f ′2
nψ(f) +

hf ′

(1 − fκc)2 + f ′2ψ(f)′,

(Tfψ.h)
⊥ =

h(1 − fκc)√
(1 − fκc)2 + f ′2

nψ(f) ∈ Nψ(f),

κψ(f) =
1

((1 − fκc)2 + f ′2)3/2
〈iψ(f)′, ψ(f)′′〉

=
κc + f ′′ − 2fκ2

c − ff ′′κc + f2κ3
c + 2f ′2κc + ff ′κ′c

((1 − fκc)2 + f ′2)3/2

Let GA denote also the induced metric on Bi,f (S
1
L,R

2). Since π is a Riemannian
submersion, Tψ(f)π : (Nψ(f), G

A
ψ(f)) → (Bi,f (S

1
L,R

2), GAπ(ψ(f))) is an isometry.

Then we compute for f ∈ C∞(S1
L, (−ε, ε)) and h, k ∈ C∞(S1

L,R)

((π ◦ ψ)∗GA)f (h, k) = GAπ(ψ(f))

(
Tf (π ◦ ψ)h, Tf(π ◦ ψ)k

)

= GAψ(f)

(
(Tfψ.h)

⊥, (Tfψ.k)
⊥
)

=

∫

S1
L

(1 +Aκ2
ψ(f))

〈
(Tfψ.h)

⊥, (Tfψ.k)
⊥
〉
|ψ(f)′| dθ

=

∫

S1
L

(1 +Aκ2
ψ(f))

hk(1 − fκc)
2

√
(1 − fκc)2 + f ′2

dθ

This is the expression from which we have to compute the geodesic equation in
the chart on Bi,f (S

1
L,R

2).

4.5. Computing the Christoffel symbols in Bi,f (S
1
L,R

2) at C = π(c). We
have to compute second derivatives in f of the expression of the metric in 4.2. For
that we expand the two main contributing expressions in f to order 2, where we
put κ = κc.

κψ(f) =

= (1 − 2fκ+ f2κ2 + f ′2)−3/2(κ+ f ′′ − 2fκ2 − ff ′′κ+ f2κ3 + 2f ′2κ+ ff ′κ′)

= κ+ (f ′′ + fκ2) + (f2κ3 + 1
2f

′2κ+ ff ′κ′ + 2ff ′′κ) +O(f3)

(1 − fκ)2(1 − 2fκ+ f2κ2 + f ′2)−1/2 = 1 − fκ− 1
2f

′2 +O(f3)

Thus

(1 +Aκ2
ψ(f))

(1 − fκc)
2

√
(1 − fκc)2 + f ′2

= 1 +Aκ2 + 2Af ′′κ+Afκ3 − fκ−
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− 1
2f

′2 +Af2κ4 +A1
2f

′2κ2 + 2Aff ′κκ′ +Af ′′2 + 4Aff ′′κ2

and finally

(1) GAf (h, k) = ((π ◦ ψ)∗GA)f (h, k) =

=

∫

S1
L

hk
(
(1 +Aκ2) + (2Af ′′κ+Afκ3 − fκ) + − 1

2f
′2

+A(4ff ′′κ2 + f2κ4 + 1
2f

′2κ2 + 2ff ′κκ′ + f ′′2) +O(f3)
)
dθ.

We differentiate the metric

dGA(f)(l)(h, k) =

∫

S1
L

hk
(
2Al′′κ+ (Aκ3 − κ)l + 4Alf ′′κ2 + 4Afl′′κ2+

+ 2Aflκ4 + (Aκ2 − 1)f ′l′ + 2Alf ′κκ′ + 2Afl′κκ′ + 2Af ′′l′′ +O(f2)
)
dθ

and compute the Christoffel symbol

− 2GAf (Γf (h, k), l) = −dGA(f)(l)(h, k) + dGA(f)(h)(k, l) + dGA(f)(k)(l, h)

=

∫

S1
L

l
(
(Aκ3 − κ+ 2Aκκ′f ′ + 4Aκ2f ′′ + 2Aκ4f)kh

+ (2Aκ+ 4Aκ2f + 2Af ′′)(h′′k + hk′′)

+ (Aκ2f ′ − f ′ + 2Aκκ′f)(h′k + hk′) +O(f2)
)
dθ

−
∫

S1
L

(
l′(Aκ2f ′hk − f ′hk + 2Aκκ′fhk)

+ l′′(2Aκhk + 4Aκ2fhk + 2Af ′′hk) +O(f2)
)
dθ

=

∫

S1
L

l
(
(Aκ3 − κ− 2Aκ′′)hk − 4Aκ′(h′k + hk′) − 4Aκh′k′

+ (−2Af (4)− f ′′ + 2Aκ4f − 6Aκ′2f − 6Aκκ′′f − 10Aκκ′f ′ +Aκ2f ′′)hk

− (2f ′ + 4Af ′′′ + 12Aκκ′f + 6Aκ2f ′)(h′k + hk′)

− 2(4Aκ2f + 2Af ′′)h′k′ +O(f2)
)
dθ.

Thus

GAf (Γf (h, k), l) =

=

∫

S1
L

l
(
(1
2κ− 1

2Aκ
3 +Aκ′′)hk + 2Aκ′(h′k + hk′) + 2Aκh′k′

− (−Af (4) − 1
2f

′′ +Aκ4f − 3Aκ′2f − 3Aκκ′′f − 5Aκκ′f ′ + 1
2Aκ

2f ′′)hk

+ (f ′ + 2Af ′′′ + 6Aκκ′f + 3Aκ2f ′)(h′k + hk′)

+ (4Aκ2f + 2Af ′′)h′k′ +O(f2)
)
dθ.

At the center of the chart, for f = 0, we get

GA0 (Γ0(h, k), l) =
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=

∫

S1
L

l
(
(1
2κ− 1

2Aκ
3 +Aκ′′)hk + 2Aκ′(h′k + hk′) + 2Aκh′k′

)
dθ

=

∫

S1
L

l
((1

2κ− 1
2Aκ

3 +Aκ′′)hk + 2Aκ′(h′k + hk′) + 2Aκh′k′

1 +Aκ2

)
(1 +Aκ2) dθ

= GA0

( (1
2κ− 1

2Aκ
3 +Aκ′′)hk + 2Aκ′(h′k + hk′) + 2Aκh′k′

1 +Aκ2
, l
)

so that

(2) Γ0(h, k) =
(1
2κ− 1

2Aκ
3 +Aκ′′)hk + 2Aκ′(h′k + hk′) + 2Aκh′k′

1 +Aκ2
.

Letting h = k = ft, this leads to the geodesic equation, valid at f = 0:

ftt =
(1
2κ− 1

2Aκ
3 +Aκ′′)f2

t + 4Aκ′ftf ′
t + 2Aκ(f ′

t)
2

1 +Aκ2
.

If we substitute a for ft and at for ftt, this is the same as the previous geodesic
equation derived in 4.2 by variational methods. There is a subtle point here,
however: why is it ok to identify the second derivatives at and ftt with each other?

To check this let c(θ) + (ta1(θ) + t2

2 a2(θ))ic
′(θ) be a 2-jet in our chart. Then if we

reparametrize the nearby curves by substituting θ − t2

2 a1a
′
1 for θ, letting

c(t, θ) = c(θ − t2

2 a1a
′
1) + (ta1(θ − t2

2 a1a
′
1) +

t2

2
a2(θ − t2

2 a1a
′
1))ic(θ − t2

2 a1a
′
1)

′

≡ c(θ) − ( t
2

2 a1a
′
1)c

′(θ) + (ta1(θ) +
t2

2
a2(θ))ic

′(θ) mod t3

then 〈c′, ct〉 ≡ 0 mod t2, hence this 2-jet is horizontal and 〈ctt, ic′〉 ≡ a2 mod t
as required.

4.6. Computation of the sectional curvature in Bi,f (S
1
L,R

2) at C. We now
go further. We use the following formula which is valid in a chart:

2Rf(m,h,m, h) = 2GAf (Rf (m,h)m,h) =(1)

= −2d2GA(f)(m,h)(h,m) + d2GA(f)(m,m)(h, h) + d2GA(f)(h, h)(m,m)

− 2GA(Γ(h,m),Γ(m,h)) + 2GA(Γ(m,m),Γ(h, h))

The sectional curvature at the two-dimensional subspace Pf (m,h) of the tangent
space which is spanned by m and h is then given by:

(2) kf (P (m,h)) = −
GAf (R(m,h)m,h)

‖m‖2‖h‖2 −GAf (m,h)2
.

We compute this directly for f = 0. From the expansion up to order 2 of GAf (h, k)
in 4.5.1 we get:

(3)
1

2!
d2GA(0)(m, l)(h, k) =

∫

S1
L

hk

(
− 1

2m
′l′+

+A
(
2(ml′′ +m′′l)κ2 +mlκ4 + 1

2m
′l′κ2 + (ml′ +m′l)κκ′ +m′′l′′

))
dθ
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Thus we have:

− d2GA(0)(m,h)(h,m) + 1
2d

2GA(0)(m,m)(h, h) + 1
2d

2GA(0)(h, h)(m,m) =

= −2

∫

S1
L

hm
(
− 1

2m
′h′+

+A
(
2(mh′′ +m′′h)κ2 +mhκ4 + 1

2m
′h′κ2 + (mh′ +m′h)κκ′ +m′′h′′

))
dθ

+

∫

S1
L

hh
(
− 1

2m
′2 +A

(
4mm′′κ2 +m2κ4 + 1

2m
′2κ2 + 2mm′κκ′ +m′′2

))
dθ

+

∫

S1
L

mm
(
− 1

2h
′h′ +A

(
4hh′′κ2 + hhκ4 + 1

2h
′h′κ2 + 2hh′κκ′ + h′′h′′

))
dθ

=

∫

S1
L

(
1
2 (Aκ2 − 1)(mh′ −m′h)2 +A(mh′′ −m′′h)2

)
dθ.

For the second part of the curvature we have

−G0(Γ0(h,m),Γ0(m,h)) +G0(Γ0(m,m),Γ0(h, h)) =

=

∫

S1
L

−
(
(1
2κ− 1

2Aκ
3 +Aκ′′)hm+ 2Aκ′(h′m+m′h) + 2Aκh′m′

)2 dθ

1 +Aκ2

+

∫

S1
L

(
(1
2κ− 1

2Aκ
3 +Aκ′′)m2 + 4Aκ′mm′ + 2Aκm′2

)

(
(1
2κ− 1

2Aκ
3 +Aκ′′)h2 + 4Aκ′hh′ + 2Aκh′

2
) dθ

1 +Aκ2

=

∫

S1
L

(
(Aκ2 −A2κ4 + 2A2κκ′′ − 4A2κ′

2
)(mh′ −m′h)2

) dθ

1 +Aκ2

Thus we get

R0(m,h,m, h) = GA0 (R0(m,h)m,h) =

=

∫

S1
L

(
1
2 (Aκ2 − 1)(mh′ −m′h)2 +A(mh′′ −m′′h)2

)
dθ

+

∫

S1
L

(
(Aκ2 −A2κ4 + 2A2κκ′′ − 4A2κ′

2
)(mh′ −m′h)2

) dθ

1 +Aκ2

Letting W = mh′ − hm′ be the Wronskian of m and h and simplifying, we have:

(4)

R0(m,h,m, h) =

=

∫

S1
L

(−(Aκ2 − 1)2 + 4A2κκ′′ − 8A2κ′2

2(1 +Aκ2)

)
W 2dθ +

∫

S1
L

AW ′2dθ

What does this formula say? First of all, if supp(m) ∩ supp(h) = ∅, the sectional
curvature in the plane spanned by m and h is 0. Secondly, we can divide the curve
c into two parts:

c+A = set of points where κκ′′ < 2(κ′)2 +
(
A−1−κ2

2

)2

c−A = set of points where κκ′′ > 2(κ′)2 +
(
A−1−κ2

2

)2
.



38 PETER W. MICHOR, DAVID MUMFORD

Note that if A is sufficiently small, c−A = ∅ and even if A is large, c−A need not

be non-empty. But if supp(m), supp(h) ⊂ c−A, the sectional curvature is always

negative. The interesting case is when supp(m), supp(h) ⊂ c+A. We may introduce
the self-adjoint differential operator on L2(S1):

Sf = f ′′ +
(Aκ2 − 1)2 − 4A2κκ′′ + 8A2κ′2

2A(1 +Aκ2)
f

so that R = −A〈SW,W 〉. The eigenvalues of S tend to −∞, hence S has a
finite number of positive eigenvalues. If we take, for example, m = 1 and h
such that h′ is in the span of the positive eigenvalues, the corresponding sectional
curvature will be positive. In general, the condition that the sectional curvature
be positive is that the Wronskian W have a sufficiently large component in the
positive eigenspace of S. The special case where c is the unit circle may clarify
the picture: then

Sf = f ′′ +
(A− 1)2

2A(1 +A)
f

and the eigenfunctions are linear combinations of sine’s and cosine’s. It is easy
to see that for any A, a plane spanned by m and h of pure frequencies k and l
will have positive curvature if and only if k and l are sufficiently near each other
(asymptotically |k − l| < |A− 1|/

√
A+ a2), hence ‘beat’ at a low frequency.

4.7. The sectional curvature for the induced H0-metric on Bi,f (S
1
L,R

2)
in a chart. In the setting of 4.2 we have for f ∈ C∞(S1

L, (−ε, ε)) and h, k ∈
C∞(S1

L,R)

G0
f (h, k) = ((π ◦ ψ)∗G0)f (h, k) = G0

π(ψ(f))

(
Tf(π ◦ ψ)h, Tf (π ◦ ψ)k

)
(1)

= G0
ψ(f)

(
(Tfψ.h)

⊥, (Tfψ.k)
⊥
)

=

∫

S1
L

hk(1 − fκc)
2

√
(1 − fκc)2 + f ′2

dθ

At the center of the chart described in 4.4, i.e., for f = 0, the Christoffel symbol
4.5.2 for A = 0 becomes

(2) Γ0(h, k) = 1
2κchk

The curvature 4.6.4 at f = 0 for A = 0 becomes

R0(m,h,m, h) = G0(R0(m,h)m,h) =

= − 1
2

∫

S1
L

(h′m− hm′)2 dθ = − 1
2

∫

S1
L

W (m,h)2 dθ(3)

and the sectional curvature k0(P (m,h)) from 4.5.2 for A = 0 and f = 0 is non-
negative.

In the full chart 4.2, starting from the metric 4.6.1, we managed to compute
the full geodesic equation not just for f = 0 but for general f , so long as A = 0.
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The outcome is

Γf(h, h) =
κch

2

1 − fκc
+

− 1
2κc(1 − fκc)h

2 + (1
2h

2f ′′ + 2hh′f ′)(
(1 − fκc)2 + f ′2)

− κch
2f ′2

(1 − fκc)
(
(1 − fκc)2 + f ′2

) +
3
2κc(1 − fκc)h

2f ′2 − 3
2h

2f ′2f ′′
(
(1 − fκc)2 + f ′2)2 .(4)

The geodesic equation is thus

ftt = − κcf
2
t

1 − fκc
− − 1

2κc(1 − fκc)f
2
t + (1

2f
2
t fθθ + 2ftftθfθ)(

(1 − fκc)2 + fθ
2
)

+
κcf

2
t fth

2

(1 − fκc)
(
(1 − fκc)2 + fθ

2
) −

3
2κc(1 − fκc)f

2
t fθ

2 − 3
2f

2
t fθ

2fθθ(
(1 − fκc)2 + fθ

2
)2 .(5)

For A > 0 we were unable to get the analogous result.

5. Examples and numerical results

5.1. The geodesics running through concentric circles. The simplest pos-
sible geodesic in Bi is given by the set of all circles with common center. Let Cr be
the circle of radius r with center the origin. Consider the path of such circles Cr(t)
given by the parametrization c(t, θ) = r(t)eiθ , where r(t) is a smooth increasing
function r : [0, 1] → R>0. Then κc(t, θ) = 1/r(t). If we vary r then the horizontal
energy and the variation of this curve are

Ehor
GA (c) =

1

2

∫ 1

0

∫

S1

(
1 +A/r2

)
r2t r dθ dt

∂s|s=0E
hor
GA (c) =

∫ 1

0

∫

S1

(
1 +

A

r2

)
rs

(
−rtt −

(1 −A/r2)

2(r +A/r)
r2t

)
r dθ dt

so that c is a geodesic if and only if

(1) rtt +
(1 −A/r2)

2(r +A/r)
r2t = 0.

Also the geodesic equation 4.1.1 reduces to (1) for c of this form.

The solution of (1) can be written in terms of the inverse of a complete elliptic
integral of the second kind. More important is to look at what happens for small
and large r. As r → 0, the ODE reduces to:

rtt −
r2t
2r

= 0

whose general solution is r(t) = C(t− t0)2 for some contants C, t0. In other words,
at one end, the path ends in finite time with the circles imploding at their common
center. Note that r′ → 0 as r → 0 but not fast enough to prevent the collapse.
On the other hand, as r → ∞, the ODE becomes:

rtt +
r2t
2r

= 0
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whose general solution is r(t) = C(t− t0)
2/3 for some constants C, t0. Thus at the

other end of the geodesic, the circles expand forever but with decreasing speed.

An interesting point is that this geodesic has conjugate points on it, so that it
is a extremal path but not a local minimum for length over all intervals. This is a
concrete reflection of the collapse of the metric when A = 0. To work this out, take

any f(θ) such that
∫ 2π

0 fdθ = 0 and any function a(t). Then X = f(θ)a(t)∂/∂r
is a vector field along the geodesic, i.e. a family of tangent vectors to Be at each
circle Cr(t) normal to the tangent to the geodesic. Its length is easily seen to be:

‖X‖2
Cr(t)

=
(
r(t) +

A

r(t)

)
a(t)2

∫ 2π

0

f(θ)2dθ.

We need to work out its covariant derivative:

∇ d
dt

(X) = f(θ)at
∂

∂r
+ ΓCr

(
rt
∂

∂r
, f(θ)a

∂

∂r

)
.

Using a formula for the Christoffel symbol which we get from 4.2.2 by polarizing,
and noting that κ ≡ 1/r, κs ≡ 0, we get:

∇ d
dt

(X) = f(θ)at
∂

∂r
+ f(θ)art

( 1 −A/r2

2(r +A/r)

) ∂
∂r

= f(θ)
(
r +A/r

)−1/2
((
r +A/r

)1/2
a
)
t

∂

∂r
.

(This formula also follows from the fact that the vectors (r +A/r)−1/2∂/∂r have
length independent of t, hence covariant derivative zero.) Jacobi’s equation is
therefore:

(2) f(θ)
(
r +A/r

)−1/2
((
r +A/r

)1/2
a
)
tt

∂

∂r
+R

(
X, rt

∂

∂r

)(
rt
∂

∂r

)
= 0,

where R is the curvature tensor. For later purposes, it is convenient to write this
eqation using r as the independent variable along the geodesic rather than t and
think of a as a function of r. Note that for any function b along the geodesic,
bt = brrt and

btt = brrr
2
t + brrtt =

(
brr −

(1 −A/r2)

2(r +A/r)
br
)
r2t .

Then a somewhat lengthy bit of algebra shows that:

(
r +A/r

)− 1
2
((
r +A/r

) 1
2 a
)
tt

=
(
r +A/r

)− 1
4
((
r +A/r

) 1
4 a
)
rr
r2t + F (r)ar2t ,

where F (r) = − 5

16

(1 −A/r2

r +A/r

)2

+
A

2r3(r +A/r)
.

To work out the structure of R in this case, use the fact that the circles Cr
and the vector field ∂/∂r are invariant under rotations. This means that the map
f 7→ R(∂/∂r, f∂/∂r)(∂/∂r) has the two properties: it commutes with rotations
and it is symmetric. The only such maps are diagonal in the Fourier basis, i.e.
there are real constants λn such that

R
(
∂/∂r,

{cos(nθ)∂/∂r
sin(nθ)∂/∂r

)
(∂/∂r) = λn

{cos(nθ)∂/∂r
sin(nθ)∂/∂r

.
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To evaluate λn, we take the inner product with cos(nθ) (or sin(nθ) and use our
calculation of R0(m,h,m, h) in section 4.6 to show:
〈
R
( ∂
∂r
, cos(nθ)

∂

∂r

)
(
∂

∂r
), cos(nθ)

∂

∂r

〉
= R0

( ∂
∂r
, cos(nθ)

∂

∂r
,
∂

∂r
, cos(nθ)

∂

∂r

)

=

∫ 2π

0

(
− (1 −A/r2)2

2(1 +A/r2)
W 2 +AW ′2

)
rdθ

where

W = 1.
d

ds
cos(nθ) = −n sin(nθ)

r
and W ′ =

d

ds
W = −n2 cos(nθ)

r2
.

Simplifying, this gives:

λn‖ cos(nθ)
∂

∂r
‖2 =

∫ 2π

0

(
− (1 −A/r2)2

2(r +A/r)
n2 sin2(nθ) +

A

r3
n4 cos2(nθ)

)
dθ

= − (1 −A/r2)2

2(r +A/r)
n2π +

A

r3
n4π

hence

λn = − (1 −A/r2)2

2(r +A/r)2
· n2 +

A

r3(r +A/r)
· n4.

Thus forX = cos(nθ)an(t)∂/∂r, if we combine everything, Jacobi’s equation reads:

(3)

(
r +A/r

)− 1
4
((
r +A/r

) 1
4 an

)
rr

=

=
(
− (1 −A/r2)2

2(r +A/r)2
(n2 − 5

8 ) +
A

r3(r +A/r)
(n4 − 1

2 )
)
an.

Calling the right hand side the potential of Jacobi’s equation, we can check that
for each n, the potential is positive for small r, negative for large r and it has one
zero, approximately at

√
2An for large n. Thus, for small r, these perturbations

diverge from the geodesic of circles. For large r, if we write bn =
(
r +A/r

)1/4
an,

then Jacobi’s equation approaches:

(bn)rr ≈ −n
2 − 0.625

2r2
bn.

This is solved by bn = cxλ + c′xλ
′

where λ, λ′ are solutions of λ2 − λ = −(n2 −
0.625)/2. For n = 1, λ, λ′ are real and bn has no zeros; but for n > 1, λ, λ′ have
an imaginary part, say iγn, and

bn ≈ √
r
(
c cos(γn log(r)) + c′ sin(γ log(r))

)

with infinitely many zeros.

Figure 4 shows the solution for n = 3 which approaches 0 as r → 0. The first
zero of this solution is about 10.77

√
A, making it a conjugate point of r = 0. For

other n, the first such conjugate point appears to be bigger, so we conclude: on any
segment 0 < r1 < r2 < 10.77

√
A, the geodesic of circles is locally (and presumably

globally) minimizing.
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The Jacobi vector field and Jacobi potential for a triangular perturbation; 1st conj pt = 10.77 \sqrt(A)

Figure 4. The potential in the Jacobi ODE and its solution for
an infinitesimal triangular perturbation of the circles in the geo-
desic of concentric circles. Note the first conjugate point at
10.77

√
A.

5.2. The geodesic connecting two distant curves. For any two distant curves
C1, C2, one can construct paths from one to the other by (a) changing C1 to some
auxiliary curve D near C1, (b) translating D without modifying it to a point near
C2 and (c) changing the translated curve D to C2. If C1 and C2 are very far
from each other, the energy of the translation will dominate the energy required
to modify them both to D. Thus we expect that a geodesic between distant curves
will aymptotically utilize a curve D which is optimized for least energy translation.
To find such curves D, heuristically we may argue that it should be a curve such
that the path given by all its translates in a fixed direction is a geodesic.

Such geodesics can be found as special cases of the general geodesic. We fix
e = (1, 0) as the direction of translation and assume that the path {D + te} is a
geodesic. We need to express this geodesic up to order O(t2) in the chart used in
section 4.4. Let c(s) be arc length parametrization ofD and θ(s) be the orientation
of D at point c(s), i.e. cs = cos(θ) + i sin(θ). Then a little calculation shows that
if we reparametrize nearby curves via s̃ = s− 〈e, cs〉t, then the path of translates
in direction e is just:

c(s̃) + te = c(s) +
(
t〈e, ics〉 +

t2

2
〈e, cs〉2κ+O(t3)

)
ics

= c(s) +
(
− sin(θ(s))t +

t2

2
cos2(θ(s)κ) +O(t3)

)
ics.
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Thus, in the notation of 4.2, a = − sin(θ), hence as = − cos(θ)κ and, moreover,
at = cos2(θ)κ. Substituting this in the geodesic formula 4.2.1, we get

(1 +Aκ2) cos2(θ)κ =

=
κ sin2(θ)

2
+A

(
(κss −

κ3

2
) sin2(θ) + 4 cos(θ) sin(θ)κκs + 2κ3 cos2(θ)

)
.

Since κ = θs, this becomes, after some manipulation, a singular third order equa-
tion for θ(s):

θsss = 4 cot(θ)θsθss + (1
2 − cot2(θ))θs(θ

2
s − 1

A ).

One solution of this equation is θ(s) ≡ 1√
A

, i.e. a circle of radius
√
A. In fact, this

seems to be the only simple closed curve which solves this equation. However, if
we drop smoothness, a weak solution of this equation is given by the C1, piecewise
C2-curve made up of 2 semi-circles of radius

√
A joined by 2 straight line segments

parallel to the vector e and separated by the distance 2
√
A (as in figure 5). Note

that such ‘cigar’-shaped curves can be made with line segments of any length.

Figure 5. On the top, the geodesic joining circles of radius 1 at
distance 3 apart with A = .1 (using 20 time samples and a 40-gon
for the circle). On the bottom, the geodesic joining 2 ‘random’
shapes of size about 1 at distance 5 apart with A = .25 (using 20
time samples and a 48-gon approximation for all curves). In both
cases the middle curve which is highlighted.

A numerical approach to minimize Ehor
G1 (c) for variations c with initial and end

curves circles at a certain distance produced the two such geodesics shown in Figure
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Figure 6. The forward integration of the geodesic equation when
A = 0, starting from a straight line in the direction given by a
smooth bump-like vector field. Note that two corner like singu-
larities with curvature going to ∞ are about to form.

5. Note that the middle curve is indeed close to such a ‘cigar’-shape. However, the
width of this shape is somewhat greater than 2

√
A: this is presumably because

the endcurves of this path are not sufficiently far apart. Thus experiments as well
as the theory suggest strongly that geodesics joining any two curves sufficiently
far apart compared to their size asymptotically approach a constant ‘cigar’-shaped
C1-intermediate curve made up of 2 semi-circles of radius

√
A and 2 parallel line

segments. We conjecture that this is true.

5.3 The growth of a ‘bump’ on a straight line, when A = 0. We have seen
above that the geodesic spray is locally well-defined when A = 0. To understand
this spray and see whether it appears to have global solutions, we take that the
initial curve contains a segment with curvature identically zero, i.e. contains a line
segment, and that the initial velocity a is set to a smooth function with compact
support contained in this segment. For simplicity, we take the velocity a to be a
cubic B-spline, i.e. a piecewise cubic which is C2 with 5 non-C3 knots approximat-
ing a Gaussian blip. The result of integrating is shown in Figure 6. Note several
things: first, where the curvature is zero, the curve moves with constant veloc-
ity if we follow the orthogonal trajectories. Secondly, where the curve is moving
opposite to its curvature (like an expanding circle, the part in the middle), it is
deccelerating; but where it is moving with its curvature (like a contracting circle,
the parts on the 2 ends), it is accelerating. This acceleration in the 2 ends, creates
higher and higher curvature until a corner forms. In the figure, the simulation is
stopped just before the curvature explodes. In the middle, the curve appears to
be getting more and more circular. As the corners form, the curve is approaching
the boundary of our space. Perhaps, with the right entropy condition, one can
prolong the solution past the corners with a suitable piecewise C1-curve.

Although this calculation assumes A = 0, one will find very similar geodesics
when A is much smaller than 1/κ2, 1/(κs log(a)s) and κ/κss, so that the dominant
terms in the geodesic equation are those without an A. In other words, geodesics
between large smooth curves are basically the same as those with A = 0.
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5.4 Several geodesic triangles in Be. We have examined dilations, translations
and the evolution of blips. We look next at rotations. To get a pure rotational
situation, we consider ellipses centered at (0, 0) with the same eccentricity 3 and
maximum radius 1, but differently oriented. We take 3 such ellipses, with orien-
tations differing by 60◦ and 120◦ degrees. Joining each pair by a geodesic, we get
a triangle in Be.

We wanted to examine whether along the geodesic joining 2 such ellipses (a) one
ellipse rotates into the other or (b) the initial ellipse shrinks towards a circle, while
the final ellipse grows, independently of one another. It turns out that, depending
on the value of A, both can happen. Note that we get similar geodesics by either
changing A or making the ellipses smaller or larger with A held fixed. For each
A, we get an absolute distance scale with unit 1/

√
A and, if the ellipses are bigger

than this, (b) dominates, while, if smaller, (a) dominates.

The results are shown in Figure 7. We have taken the three values A = 1, 0.1
and 0.01. For each value, on the top, we show the geodesic joining 2 of the ellipses
as a sequence of curves in their common ambient R2. Below this, we show the triple
of geodesics as a triangle, by displaying the intermediate curves as small shapes
along lines joining the ellipses. This Euclidean triangle is being used purely for
display, to indicate that the computed structure is a triangle in Be. Note that for
A = 1, the intermediate shapes are very close to ellipses, whose axes are rotating;
while for A = 0.01, the bulges in one ellipse shrink while those of the other grow.

We can also compute the angles in Be between the sides of this triangle. They
work out to be 34◦ when A = 1, i.e. the angle sum for the triangle is 102◦, much less
than π radians, showing strong negative sectional curvature in the plane containing
this triangle. But if A = 0.1 or 0.01, the angle is 77◦ and 69◦ respectively, giving
more than π radians in the triangle. Thus the sectional curvature is positive for
such small values of A.

5.5 Notes on the numerical simulations. All simulations in this paper were
carried out in MatLab. The forward integration for the geodesic equation for
A = 0 was carried out by the simplest possible finite difference scheme. This seems
very stable and reliable. Solving for the geodesics was done using the MatLab
minimization routine fminunc using both its medium and large scale modes. This,
however, was quite unstable due to discretization artifacts. A general path between
two curves was represented by a matrix of points in R2, approximating each curve
by a polygon and sampling the path discretely. The difficulty is that when the
polygons have very acute angles, the discretization tends to be highly inaccurate
because of the high curvature localized at one vertex. Initially, in order to minimize
the number of variables in the problem, we tried to use small numbers of samples
and higher order accurate discrete approximations to the derivatives. In all these
attempts, the discrete approximation “cheated” by finding minima to the energy
of the path with polygons with very small angles. The only way we got around this
was to use first order accurate expressions for the derivatives and relatively large
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Figure 7. Top Row: Geodesics in three metrics joining the same
two ellipses. The ellipses have eccentricity 3, the same center and
are at 60◦ degree angles to each other. At left, A = 1; in middle
A = 0.1; on right A = 0.01. Bottom Row: Geodesic triangles in
Be formed by joining three ellipses at angles 0, 60 and 120 degrees,
for the same three values of A. Here the intermediate shapes are
just rotated versions of the geodesic in the top row but are laid
out on a plane triangle for visualization purposes.

numbers of samples (e.g. 48 points on each curve, 20 samples along the geodesic,
hence 2 × 20 × 48 = 1920 variables in the expression for the energy.

Another problem is that the energy only depends on the path of unparametrized
curves and is independent of the parametrization. To solve this, we added a term
to the energy which is minimized by constant speed parametrizations. This still
leaves a possibly wandering basepoint, and we added ǫ times another term which
asked that all points on each curve should move as normally as possible. In
practice, if the initialization was reasonable, this term was not needed. The final
discrete energy that was minimized was this. Let xi,j be the ith sample point on
the jth curve Cj . For each (i, j), estimate the sum of the squared curvature of Cj
plus the squared acceleration of the parametrization by:

k(i, j) = 1
2

( 1

‖xi−1,j − xi,j‖4
+

1

‖xi,j − xi+1,j‖4

)
· ‖xi−1,j − 2xi,j + xi+1,j‖2.

(The harmonic mean of the segment lengths is used here to further force the
parametrization to be uniform.) Then, for each (i, j), the four triangles t = {a =
(i, j), b = (i ± 1, j), c = (i, j ± 1)} around (i, j) are considered and the energy is
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taken to be:
∑

i,j,t

( 〈(xa − xb), (xa − xc)
⊥〉2 + ǫ〈(xa − xb), (xa − xc)〉2
‖xa − xb‖

)
(1 +Ak(a)).

We make no guarantees about the accuracy of this simulation! The results, how-
ever, seem to be stable and reasonable.
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