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A Bayesian Treatment of the Stereo Correspondence Problem
Using Half-Occluded Regions

Peter N. Belhumeur
Division of Applied Sciences
Harvard University

Abstract

A half-occluded region in a stereo pair is a set of
pizels in one image representing poinils in space visi-
ble to that camera or eye only, and not to the other.
These occur typically as parts of the background imme-
diately to the left and right sides of nearby occluding
objects, and are present in most natural scenes. Previ-
ous approaches 1o stereo either ignored these unmatch-
able points or attempted to weed them out in a second
pass. Our algorithm incorporates them from the start
as a strong clue to depth discontinuities. Psychophysi-
cal evidence suggests that the human visual system also
exploits these clues. We start by deriving a measure
for goodness of fit and a prior based on a simplified
model of objects in space, which leads to an energy
functional depending both on the depth as measured
from a central “cyclopean” eye and on the regions of
points occluded from the left and right eye perspec-
tives. We minimize this using dynamic programming
along epipolar lines followed by annealing in both di-
mensions. Ezrperimenis indicate that this method is
very effective even in difficult scenes.

1 Introduction

Binocular stereo vision algorithms estimate 3-D
surfaces using a pair of images taken from different
views. The surfaces are estimated by finding match-
ing pixels in each image corresponding to the same
points on the 3-D surfaces, and from this comput-
ing depths. The task of finding the pairs of matching
pixels is known as the correspondence problem. This
problem is significantly complicated by the fact that,
due to occlusion, most scenes contain regions which
appear in only one of the two images. We call these
regions half-occluded, or unmatched. As an example,
Fig. 1 (as introduced and similarly motivated in [14])
shows regions in each image which have no match in
the other image due to the partial occlusion of the
plane by the sphere. It is hard to imagine a scene
in our every day world which does not produce un-
matched regions for our eyes: Look around you, clos-
ing and opening either of your eyes, and you will find
bits of background objects appearing and disappear-
ing at the edges of foreground objects. Although for
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at least 20 years people have been announcing “solu-
tions” to the correspondence problem, most past al-
gorithms did not accurately handle discontinuities in
depth and the resulting unmatched regions (e.g. Marr
& Poggio [12], Baker & Binford [3], Ohta & Kanade
[16],! Cernuschi-Frias et al. [6], etc.). These algo-
rithms were forced either to constrain their environ-
ments so that occlusion was uncommon, or to accept
solutions which either smoothed over the depth dis-
continuities or produced spurious matches for the pix-
els which did not, in fact, match anything. Yet, there
is psychophysical evidence that the human visual sys-
tem exploits half-occlusion as a positive clue to depth,
rather than a hindrance. Nakayama & Shimojo [14]
and Anderson [1] have found compelling evidence that
the unmatched regions aid in determining depth in the
human visual system.

Lately the idea has been discussed that the “line
processes” (i.e. a binary random process) introduced
to solve the segmentation problem (Geman & Geman
[8} and Mumford & Shah [13]) should be used to ex-
plicitly represent discontinuities in depth (see for in-
stance Yuille [19]). What makes stereo different, how-
ever, is that in addition to identifying edges in the
image, across which the smoothness prior for depth
should be suspended due to a discontinuity, you must
also identify whole regions of unmatched pixels caused
by occlusion. This calls for a different type of prior,
or resulting “energy” functional.

The point of this paper is to re-examine the prob-
lem of binocular stereo and the phenomenon of oc-
clusion from a Bayesian perspective. To do this, we
make a prior model of the world consisting of mul-
tiple occluding objects of varying shapes, sizes, and
distances. On the basis of this model, we derive an
energy functional whose minimization gives the maxi-
mum a posteriori (MAP) estimate of the depth from a
pair of stereo images in which unmatched regions are
used to determine depth discontinuities. Other groups
are also investigating algorithms designed to deal ex-
plicitly with the problem of occlusion (e.g. Geiger et
al. [7] and Jones {10]), but our approach is character-
ized by the use of an energy functional based on a 3-D

1Both the papers of Ohta & Kanade and Baker & Binford
mention the fact that discontinuities in depth cause problems,
but neither seem to include a mechanism for explicitly identify-
ing the unmatched pixels and preventing them from interfering
with the algorithm.



prior, as well a simple formalism resulting from the
application of dynamic programming to disparity in
cyclopean coordinates. The particular version of our
algorithm presented in this paper bases its matches
purely on image intensity. It would be easy to mod-
ify it to use edges, texture features, etc. to locate
matching pixels. But the fact that it works so well us-
ing intensity alone, which others assert is inadequate,
suggests to us that our energy functional method is
very effective.

The first section of the paper discusses psychophysi-
cal evidence that the human visual system exploits un-
matched points in its perception of depth. The second
section develops binocular camera geometry, introduc-
ing the concept of cyclopean coordinates, disparity
and its relation to distance. The third section intro-
duces a Bayesian framework allowing for possibility of
occlusion which balances how well a particular solution
follows the data with the solution’s a priori likelihood.
The fourth section heuristically extends many of the
paper’s concepts to two dimensions (2-D). Several re-
sults using a new two-pass optimization method are
presented which demonstrate the effectiveness of the
algorithm.

SCENE: SPHERE PARTIALLY
OCCLUDES PLANE

HALF-OCCLUDED
REGIONS VISIBLE
IN ONLY ONE IMAGE

1
|
1
]
|
|
|

\
§ RIGHT CAMERA

Figure 1

2 Half-Occluded Regions in the Hu-
man Visual System

Psychologists have recently found striking experi-
mental demonstrations that the human visual system
uses unmatched regions to determine depth both with
and without confirming evidence from matched re-
gions. First, Nakayama & Shimojo [14] have produced
several stereograms which demonstrate the formation
of a subjective occluding contour induced by the addi-
tion of unpaired dots. Second, Anderson [1] has found
that the “strength of contrast”? of unmatched regions
plays a role in disambiguating the correspondence of
matchable regions.

2 4Strength of contrast” as used here means a measure of how
much the unmatched region differs in intensity from the possible
matched regions.
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Following in this vein of inquiry, we have created
stereograms which demonstrate that the presence of
unpaired dots alone can dramatically alter the per-
ceived depth. Figure 2 shows a triptych of three
part stereograms®. When the top stereogram is fused,
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the shapes and thin vertical bars are seen in differ-
ent frontal parallel depth planes behind the occluding
thick vertical bars. The middle stereogram is iden-
tical to the top, except two right-eye-only dots have
been added. However, when the middle stereogram is
fused, the shapes and thin vertical bars are now seen
in the same depth plane. The two unpaired dots force
the perceived depth of the thin bars back into the
plane of the shapes. The unpaired dots are perceived
as being, from the left eyes perspective, in the “oc-
cluded shadow” of the center thick vertical bar. Con-
sequently, the perceived depth plane of the thin bars
is pushed back to the point where the unpaired dots
lie in the “occluded shadow” of the center bar. The
bottom stereogram is identical to the middle, except
the unpaired dots have been moved far enough to the
right so that it would be impossible to interpret the
dots as being in the “occluded shadow” of the center
thick vertical bar. When fused, the perceived depths
are now the same as in the top stereogram.

3 Binocular Stereo Geometry

Let us assume that we have two pinhole cameras
with focal length f whose optical axes are parallel
and separated by a distance b (see Fig. 3). A point
(or a small patch) p on the surface of an object in
3-D space is projected through the focal points and
onto the image plane of the cameras. The brightness
of each point projected onto the image planes creates
image functions I; and I, in the left and right planes,
respectively. Next, let us create an imaginary cyclo-
pean image plane in the same manner, placing its fo-

3The left and center images of each row are for uncrossed-
fusers; the center and right images are for crossed-fusers.



cal point on the baseline half-way between the original
two focal points. We look now at a horizontal plane

POINT p

b
FOCAL
POINTS
IMAGE
PLANES X X,
Figure 3

through the focal points. It intersects the three im-
age planes in what are called epipolar lines, which we
denote by X;, X,, and X, with coordinates z; € X,
z, € X;,and z € X, respectively. The coordinates of
the epipolar lines run right to left, so that when a point
in the world moves from left to right, its coordinates
in the image planes increase.

When the same point is visible from all three eyes
it is easy to check that 2 = (2; + 2,)/2. Thus, we can
relate the coordinates of points projected onto all three
image planes by a positive disparity function d(z) via

;=2 +d(z) and z, = z — d(z). (1)
The distance D(x) from the middle focal point to a
point p on the surface of an object can be related to
the disparity d(z) by
fb

2d(z)

where 6, defined in Fig. 3, is assumed ~ 7/2.

Now suppose a surface point is not visible to all
three eyes. How are we to define d(«) and D(z)? The
simplest thing to do is to let D(z) be the distance
from the cyclopean focal point to the nearest surface
point, and define d(z) = fb/2D(z). But if this patch
is occluded from the perspective of the left or right
eye (or camera), the image values I;(z — d(z)) and
I (z+d(z)) will not be related to the light reflected off
this patch. To see when this patch is visible from both
eyes, it is convenient to introduce a morphologically

filtered version d*(z) of d(z) as
()

d*(z) = max(d(z + a) — |a|).
Graphically, d* is constructed by taking the graph of
d, and letting each peak cast shadows at 45° to the
left and right. Thus |d*(z) — d*(y)| < |z — y|, and
|(d*)'(z)] < 1. To interpret d* in terms of occlusion,
let us say that a point p is mutually visible to both
eyes if the triangle formed by p, the left focal point,
and the right focal point is free of obstructing objects.
This means that p 1s also visible to the cyclopean eye.
It is easy to see that:

D(z) ~ (2)
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Proposition 1 d*(z) = d(z) if and only if the point
p visible to the cyclopean eye in direction z 1s mutually
visible to the left and right eyes.

Thus the function d*(z) tracks the mutually visible
points. We call O C X the closure of the set of z such
that d*(z) > d(z), i.e. the set of points not mutually
visible. These will be in general the unmatched pixels,
unless a point p is visible from both eyes even though
some smaller object lies in the triangle formed by p,
the left focal point, and the right focal point. (This
unusual possibility, usually referred to as the “double
nail illusion,” is discussed in §4.) The most common
way for unmatched pixels to arise is for d(x) to jump
discontinuously as it tracks visible points from points
on one surface to points on a new surface. Here ]d’S:c)|
is infinite, so near such a point we must have d*(z) >
d(z). We call B C O the set of points where d(z)
jumps discontinuously, or “breaks.”

4 The Bayesian Approach

Following the approach introduced by many, and
applied specifically to stereo by Cooper [5], we seek
to estimate the distance function D(z) probabilisti-
cally by choosing the D(z) = D(x) which maximizes
the probability of D(z), given the observed left and
right image functions, P(D(z)|[;,I,). This condi-
tional probability can be reformulated using Bayes
rule as

I, 1,|D(z)) P(D(z))

P(Il ) Ir) (4)

P\, 1) = £

4.1 Finding the data term P(I},I,|D(z))

Following the analysis of Cernuschi-Frias et al. [6],
we can compute our data term P(I;, I.|D(z)) as fol-
lows. Assume we are given a scene of objects in 3-D
space with Lambertian illumination (i.e. an object’s
brightness is independent of the viewing angle). We
can label points on the surfaces of objects by elements
of a set P. To each point p € P, there is a bright-
ness y(p). Define f;: X; — P and f,: X, — P to be
the maps which take points in the image planes to
the point on the surface of the closest (visible) ob-
ject. The brightness of a visible point once projected
into the image plane is corrupted by noise. Assuming
additive Gaussian white noise as in [6], image func-
tions can be written as Ij(x;) = y(fi(2z1)) + n1(z:) and
I(zr) = y(fr(z+)) + na(z,) where n; and 7, are in-
dependent identically distributed Gaussian noise pro-
cesses having mean zero and variance v2. To make
this consistent with later sections, let us discretize X
as the sets of points {ké} where —N < k < N and §
is the distance between points in X. So, d(z) becomes
d(ké) = di where d € R®*M*1. Let us discretize X; and
X, similarly as the sets k; and k,, respectively. Then
the joint likelihood of the image functions I; and I,



having their associated intensities, given fi,fr,y and
2 .
v, is

P(L(ki8), I (ke8| fis frr 1y V) = (5)

e exp{5h iy ko=on Ar(ked) + Milkid)}
where
Ai(kid) = [Diki6) —y(fiki8)]* and
Ar(k8) = (ko) = 1o (kO
However, the brightness function 7y is unknown.

Therefore, if a point is mutually visible in both 1m-
ages let us approximate ¥ with its maximum likeli-
hood estimator (MLE) 4. Here, ki6 = k6 + di and
k.6 = k6 — dy (up to round-off, and ignoring correc-
tions for the derivative of d), so that the MLE ¥ is

8 = 35 (k8 = HEH B EEE =0,

But, what if a point is half-occluded? Differing from
[6], let us approximate A, (k.6) and Aqi(k18) by the
variance v2. With the above approximations Eq. 5
becomes to
P(I,(ki6), L (k. 6)|d, %,v%) =

1
W

(6)

e~ {Em +Eo}

where

Em =53 Yksgo [ (kr8) — 11(1515)]2 and
Eo = #{k: k6 € 0}}.

These expressions differ from past approaches in that
a distinction is made here between points that are mu-
tually visible and those that are half-occluded.

4.2 Finding the 1-D Prior P(D(z))

Assume the plane is filled with a stationary
isotropic distribution of random shapes, 1.e. we have
some procedure for generating individual random
shapes and we “seed” them into the plane by a Poisson
distribution of random points (see Serra’s discussion
[17], Ch. 13). We call this the “forest prior,” because
it leads to a world with a more or less uniform set
of objects forever stretching in all directions.* Call
these shapes S (so S C R?), and label points on sur-
face of the shapes as elements of a set P. Randomly
choose an z-axis X (corresponding to a line in the im-
age plane) and a perpendicular y-axis (corresponding
to the cyclopean optical axis). Place the focal point
at a distance f along the y-axis from z = 0. For all
z € X, let I, be the directed line segment starting
at (z,0), passing through the focal point (0, f), and
stopping at the first point p € P with which it collides.
Let D(z) be the distance along l; from the focal point

4 An alternative, which we call the “vista prior”, assumes as
you look further away that the expected size of objects gets
bigger and that smaller objects become invisible.
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to the point p: D(z) can be thought of as a stochastic
process in z. Let Dy = D(k&) where —N < k < N.

We want to find an approximation to the probabil-
ity measure P(D_y, ..., DN) describing the stochastic
process D(z). In order to come up with a usable ap-
proximation to the true P, we shall simplify by assum-
ing Dy to be Markov,

P(Di41|Dj ¢ j < k) = P(Di41|Dy)- (M

This assumption is unrealistic in several ways. First,
because objects surfaces are often smooth, local inter-
actions must exist beyond Diy1, Dg-1 Si.e. nearest
neighbors). And second, because partially occluded
objects tend to disappear and reappear, highly non-
local interactions must also be present. Nevertheless,
it would seem that much of the force of the prior is
still captured even when using the Markov assump-

tion. With it, we can rewrite P(D_n,..., Dn) as
N-1
P(D_N,...,Dy) = H P(Dg41|Dy)P(D-N)-
k==N+1

8

If we extended the directed line segments I (Euz
to infinity, they would intersect the front surfaces of
the shapes at points ¢ € @. Let us assume that these
points @Q are distributed along the extended [ as Pois-
son points with mean density p. Then, the distance
from the focal point to the first point in Q is the ran-
dom variable Dy. The law for Dy, is given by the “free
path” distribution

P(Dy = z) = pe=F**

with expected value (D) = 1/p.

To compute P(Dy41|Dx) we need to consider that
points whose distances are given by Dy and Dg41 may
lie on the same or different objects, leading to three
disjoint cases:

)

o Case 1 : Dyyy < Di®, implying the shape struck
by i, is partially occluded by a closer shape (with
respect to the cyclopean focal point) struck by
le+1 (Fig. 4).

e Case 2: Dyy1 > Dy, implying the shape struck
by I, ends, partially occluding a farther shape
struck by le41.

o Case 3 : Dipy1 ~ Dg, implying that the shape
struck by Iy continues and is struck also by lg41.

While there is no room here to give the deriva-
tions for the probability measures for the three dis-
joint cases, detailed heuristic derivations can be found
in [4]. Nonetheless, using the above stated assump-
tions we arrive at the following approximations.

P(Diy1 = zp41, Cl|Dg = 25) = Me-pz;‘:“/?s
(10)

5The symbols < and > as used here mean the difference in
distance is on the order of the expected size of shapes.




CASE 1

CASE 2

CASE 3

Ik+1 Iks1

X X X

Figure 4

P(Dg41 = zp41, C2|Dy = zp) =
%(3—922/23)p6'0(3k+1—2k)

(11)

where s = fo /6 and where & is the expected size of the
orthographic projection of shapes onto the cyclopean
axis.

To deal with Case 3 properly is not easy. The desire
to use a family of isotropic random shapes in the plane
and, yet, come up with a good Markov approximation
for the first intercept process Dy, presents an inherent
conflict. While there are many possibilities, our first
pass avoids this complication by simply assuming that
the function D(z) between & = k6 and z = (k + 1)6
is the graph of Brownian motion. This assumption
enforces a “smoothness” constraint over the contour
of the shapes (Marr & Poggio [11]) to give

(12)

P(Diyr = 2k41, C3|Dg = ) =
—(s41 =2k )2y

(1- z_k)e—pzz/Zs 1 Zaizd
$

e
;;21razk6/f

where « is the rate of diffusion of Brownian motion.
4.3 From Probability to Energy

As we explained at the beginning of §3, we want to
find the D(x) = D(z) that maximizes P(D(2)|I, I.).
Due to the monotonicity of logarithm, this is the same
as minimizing what is called the “energy” functional

E(D(z)) = ~log{P(D(){L,, I,,)}. (13)
Combining the results of §4.1 and §4.2 and making

a series of rearrangements and simplifications (see [4]),
we come up with and energy of the form:

E({Dx},B)=Em+Eo + Es + Ep + Ex

where

2
Eym = 355 Yisgo {I,(k& + 513&,‘) — I (ké - 5‘%)}
Eo = #1{k: k6 € O}

_ (Dry1—Dy)*f
Es = ZkégB 2:11),‘;

Ep = Ekaesz{'% [Diy1 — D)+ &}
Ex =Y, %3¢ + 4(D_n + Dy)

and where & = log{f3ps?/276%a)/2.

(14)
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5 A 2-D Energy Functional

Up until now, the energy functional has only been
developed in 1-D along selected epipolar lines. How-
ever, the solutions along epipolar lines are not inde-
pendent; in fact, there are strong smoothness con-
straints (Marr & Poggio [11], Baker & Binford [3],
Ohta & Kanade [16]) binding epipolar lines. If we al-
low the solution along each epipolar line to influence
its neighbors, we should produce much more robust
solutions.

Furthermore, our algorithm on individual lines has
been based on the ordering constraint: If points z; and
i on the same epipolar line in the left image match
points z, and y, on an epipolar line in the right image,
then z; 1s to the left of y; if and only if 2, is the left
of y- (Baker [2]). It is well known that this sometimes

RIGHT IMAGE

LEFT IMAGE

Figure 5

fails. The so-called “double nail illusion” is an exam-
ple. In this illusion, there are two nails, one behind
the other from the perspective of the cyclopean eye.
This violates the ordering constraint, but nonetheless
this constraint is asserted by the mind and produces
a false percept of 2 nails side by side, rather than the
true percept of one nail behind another. What does
not seem to be well-known is that violations of the
ordering constraint are present in most natural scenes
and are handled correctly by the brain. These vio-
lations take place at the top and bottom of nearby
objects occluding the background. Figure 5 shows the
scene from Fig. 1 as seen in the left and right images.
In this figure, point B is a point at the very top of
the nearby shaded object, while point A is a point in
the background directly behind it from the viewpoint
of the cyclopean eye. (The small triangular outline
marks points in the plane visible to both eyes.) A and
B are on the same epipolar line {. But from the left
eye’s perspective, A is to the left of B, and from the
right eye’s perspective, it is to the right.

In our experiments, we have found that single
epipolar line algorithms, which enforce the ordering
constraint, typically give erratic results at the top and
bottom of occluding objects. It would seem logical
that the human brain succeeds in finding the correct
matchings of A and B by propagating the unambiguous
match of background points on epipolar lines above !
down to A and the unambiguous match of points on
the shaded object on epipolar lines below I up to B.
"To accomplish this matching computationally requires
more than the reconstruction of the cyclopean depth



D(z): It requires that the matched points be actively
grouped into multiple planes at varying depths (as in
transparency effects and the 2.1D sketch [15]%). Our
present implementation does not take this second step,
but implements the first step of employing vertical
continuity constraints to improve the reconstruction
of D(z).

We heuristically extend to 2-D the properties evi-
dent in the 1-D energy functional. The matching will
now be done for the grid of points {(ié,56)} where
—N<i<Nand-M<j<Mina2- image plane
X CR2 The disparity and distance functions are d; ;
and D; ;, respectively. The set O C {(i8, j6)} are the
points corresponding to 2-D regions occluded in one
of the two images. The set BT is to be the set of (i, j
such that D(z,y) has a discontinuity between (16, j6
and ((i+1)8, j6); the set BY is the same for vertically
separated points (i8,j6) and (6, (j + 1)6). Let us in-
troduce horizontal and vertical binary line processes

18 and IV, respectively: the line process lfy{] has value

1for (3,7) € B¥, and is 0 otherwise; IX]- has value 1 for
(3,5) € BY, and is 0 otherwise. The energy functional
can then be extended to 2-D as
B(4{D. ), B*Y) =
Ey+Eo+Egs+Evs+Enp+ Eve+Ex

where

(15)

Ey = 4—11/72 i6,j86)g0 LZ¥
§1% 35 €0y

EO = #{(11] (:D _ )2( - y
i1, =D )2 (11
Egs =Y 2aDJ.,£-a :L—
(Di,j41=Di, ;)-8 )
Evs = Y j) 5abuss

Egp = %Z(i’j) {£|Diy1,5 — Dijl+ k} I{'Ijj
Evp = %QZ(.‘,J-) {£1Dij+1— Dl + 6}
Ex = eD; ;

2s
and where

2
Wiy = {06 + o, 5) - TGt - o559}

6 Results

To optimize our energy functional, we propose a
two-pass optimization method using a combination of
dynamic programming and simulated annealing [8].
First, we minimize the 1-D energy functional along
each epipolar lines. After discretizing the disparity
with subpixel fineness, we use dynamic programming
as first used for stereo algorithms by Henderson et al.
9] and popularized by Baker & Binford [3]) to find the
1-D optimum solution of the energy functional of Eq.

6 A dramatic example can be seen if you stare at the words
on this page and place your index finger a couple of inches in
front of the paper. Your mind reconstructs the continuous flat
surface of the page although no matching points are present
behind the finger!

14. We use the solutions along each epipolar line as an
initial condition for minimizing the 2-D energy func-
tional of Eq. 15. We use simulated annealing started
at a “low” temperature for minimizing the 2-D func-
tional. The idea is to start in the neighborhood of the

9-D optimum solution D(z) and use a descent method
with a small and decreasing random element in order
to jar free from small local minima. Empirically, we
have found this method to be very effective.

To test our algorithm, we used real data and pur-
posefully chose difficult scenes with occlusions. Fig-
ure 6 is a stereo pair of a man’s profile. The result-
ing depth map, Fig. 9.a, was found using dynamic
programming along selected epipolar lines of the 1-D
energy functional alone. The depth map took 20 sec-
onds to generate on a Sun SPARCstation 1+. Notice
the detail around the ear and the contour of the neck
meeting the shoulders. Also notice the erratic results
at the top of the head which we believe are a result of
;ht)e ordering constraint being violated (as explained in

4).

Figure 7 is a stereo pair of a cardboard R and a
Rubik’s cube. The resulting depth map, Fig. 9.b, was
found using the full two-step method. The depth map
took 3 minutes to generate on a Sun SPARCstation
1+. It finds the Rubik’s cube and the coffee cup it
rests on, and it even finds the gradual slope of the
table on which the R and the coffee cup rest. However,
it has trouble with the upper left corner of the of the
Rubik’s cube. Interestingly, when this stereo pair is
viewed in a stereoscope, the viewer also has trouble
segmenting the the cube from the background.

Figure 8 is a stereo pair of a postcard taped to a
wooden 2-by-4. The first depth map, Fig. 9.c, was
found in the same manner as Fig. 9.a using only the
1-D energy. The second depth map, Fig. 9.d, was
found in the same manner as Fig. 9.b using both the
1-D and 2-D energies. Notice that the algorithm is
able to segment the wooden 2-by-4 from the back-
ground, even though there is only a faint vertical edge.

Acknowledgements

We are indebted to Ken Nakayama for his many ideas
and inspirations. We thank Alan Yuille, James Clark,
Robert Hewes, Tai-Sing Lee, Navin Saxena, and Jessica
Marshall for their much needed insights.



Figure 6

Figure9 a) b)

512

References

[1]
(2]

3]

7

(8]

8]

[10]

(11]
(12]

(13]

[14]

(15]

[16]

(17

(18]

[19]

B. Anderson, Personal Communication, October 1991.

H. H. Baker, Depth from edge and intensity based stereo,
PhD thesis, University of Illinois, Urbanba Illinois, 1982.
H. H. Baker and T. O. Binford, “Depth from edge and
intensity based stereo,” in Proc. of 7th IJCAI 1981, vol. 2,
pp. 631-636.

P. N. Belhumeur, D. Mumford, “A Bayesian treatment of
the stereo correspondence problem using half-occluded re-
gions,” Technical Report no. 91-21, Harvard Robotics Lab,
December 1991.

B. Cernuschi-Frias, P. N. Belhumeur, and D. B. Cooper,
“Estimating and recognizing parameterized 3-D objects us-
ing a moving camera,” Proc. IEEE Conf. CVPR, San Fran-
cisco, CA, June 1985, pp. 167-171.

B. Cernuschi-Frias, D. B. Cooper, Y. P. Hung, and P. N.
Belhumeur, “Toward a model-based Bayesian theory for es-
timating and recognizing parameterized 3-D objects using
two or more images taken from different positions,” IEEE
Trans. Pattern Anal. Machine Intell., November 1989, pp.
1028-1052.

D. Geiger, B. Ladendorf, and A. Yuille, “Occlusions and
binocular stereo,” submitted to EECV, 1991.

S. Geman and D. Geman, “Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images,”
IEEE Transactions, AMI 6, pp. 721~741, 1984.

R. L. Henderson, W. J. Miller, C.B. Grosch, “Auto-
matic stereo recognition of man-made targets,” Soc. Photo-
Optical Instrumentation Engineers, vol. 186, August 1979.
D. Jones, Computational Models of Binocular Vision, PhD
dissertation, Dept. of Computer Science, Stanford Univ.,
1991.

D. Marr and T. Poggio, “Cooperative computation of
stereo disparity,” Science 194, pp. 283-287, 1976.

D. Marr and T. Poggio, “A theory of human stereo vision,”
MIT AI Lab Memo 451, 1979.

D. Mumford and J. Shah, “Boundary detection by min-
imizing functionals,” Proc. IEEE CVPR Conf., vol. 22,
1985.

K. Nakayama and S. Shimojo, “Da Vinci stereopsis: depth
and subjective occluding contours from unpaired image
points,” Vision Res. Vol. 30, No. 11, 1990, pp. 1811-1825.
M. Nitzberg and D. Mumford, The 2.1D sketch, in Proc. of
3rd IEEE International Conference on Computer Vision,
1990, pp. 138-144.

Y. Ohta and T. Kanade, “Stereo by intra- and inter-
scanline search using dynamic programming,” IEEE
Trans. Pattern Anal. Machine Intell., pp. 139-154, March
1985.

J. Serra, Image Analysis and Mathematical Morphology,
Academic Press, Inc., London, 1982.

N. Yokoya, “Stereo surface reconstruction by multiscale-
multistage regularization,” ETL Tech. Report TR-90-45,
Tsukuba Science City, 1990.

A. Yuille, “Energy functions for early vision and analog
networks,” Biological Cybernetics, vol. 61, pp. 115-123,
1989.



