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1 Introduction

Let Mg,n be the moduli space of Riemann surfaces of genus g with n punctures.
From a complex perspective, moduli space is hyperbolic. For example, Mg,n

is abundantly populated by immersed holomorphic disks of constant curvature
−1 in the Teichmüller (=Kobayashi) metric.

When r = dimC Mg,n is greater than one, however, Mg,n carries no com-
plete metric of bounded negative curvature. Instead, Dehn twists give chains
of subgroups Zr ⊂ π1(Mg,n) reminiscent of flats in symmetric spaces of rank
r > 1.

In this paper we introduce a new Kähler metric on moduli space that exhibits
its hyperbolic tendencies in a form compatible with higher rank.

Definitions. Let (M, g) be a Kähler manifold. An n-form α is d(bounded) if
α = dβ for some bounded (n−1)-form β. The space (M, g) is Kähler hyperbolic
if:

1. On the universal cover M̃ , the Kähler form ω of the pulled-back metric g̃
is d(bounded);

2. (M, g) is complete and of finite volume;

3. The sectional curvature of (M, g) is bounded above and below; and

4. The injectivity radius of (M̃, g̃) is bounded below.

∗Research partially supported by the NSF. 1991 Mathematics Subject Classification: Pri-
mary 32G15, Secondary 20H10, 30F60, 32C17.
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Note that (2-4) are automatic if M is compact.
The notion of a Kähler hyperbolic manifold was introduced by Gromov.

Examples include compact Kähler manifolds of negative curvature, products of
such manifolds, and finite volume quotients of Hermitian symmetric spaces with
no compact or Euclidean factors [Gr].

In this paper we show:

Theorem 1.1 (Kähler hyperbolic) The Teichmüller metric on moduli space
is comparable to a Kähler metric h such that (Mg,n, h) is Kähler hyperbolic.

The bass note of Teichmüller space. The universal cover of Mg,n is the
Teichmüller space Tg,n. Recall that the Teichmüller metric gives norms ‖ · ‖T

on the tangent and cotangent bundles to Tg,n. The analogue of the lowest
eigenvalue of the Laplacian for such a metric is:

λ0(Tg,n) = inf
f∈C∞

0
(Tg,n)

∫
‖df‖2

T dV

/ ∫
|f |2 dV,

where dV is the volume element of unit norm.

Corollary 1.2 We have λ0(Tg,n) > 0 in the Teichmüller metric.

Proof. The Kähler metric h is comparable to the Teichmüller metric, so it
suffices to bound λ0(Tg,n, h). Since the Kähler form ω for h is d(bounded), say
ω = dθ, the volume form ωn = dη = d(θ ∧ ωn−1) is also d(bounded). Using the
Cauchy-Schwarz inequality we then obtain

〈f, f〉 =

∫
f2 ωn =

∫
f2 dη = −

∫
2f df ∧ η

≤ C〈f, f〉1/2〈df, df〉1/2.

The lower bound 〈df, df〉/〈f, f〉 ≥ 1/C2 > 0 follows, yielding λ0 > 0.

Corollary 1.3 (Complex isoperimetric inequality) For any compact com-
plex submanifold N2k ⊂ Tg,n, we have

vol2k(N) ≤ Cg,n · vol2k−1(∂N)

in the Teichmüller metric.

Proof. Passing to the equivalent Kähler hyperbolic metric h, Stokes’ theorem
yields:

vol2k(N) =

∫

N
ωk =

∫

∂N
θ ∧ ωk−1 = O(vol2k−1(∂N)),

since θ ∧ ωk−1 is a bounded 2k − 1 form.
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(These two corollaries also hold in the Weil-Petersson metric, since its Kähler
form is d(bounded) by Theorem 1.5 below.)

The Euler characteristic. Gromov shows the Laplacian on the universal
cover M̃ of a Kähler hyperbolic manifold M is positive on p-forms, so long
as p )= n = dimC M . The L2-cohomology of M̃ is therefore concentrated in
the middle dimension n. Atiyah’s L2-index formula for the Euler characteristic
(generalized to complete manifolds of finite volume and bounded geometry by
Cheeger and Gromov [CG]) then yields

signχ(M2n) = (−1)n.

In particular Chern’s conjecture on the sign of χ(M) for closed negatively curved
manifolds holds in the Kähler setting. See [Gr, §2.5A].

For moduli space we obtain:

Corollary 1.4 The orbifold Euler characteristic of moduli space satisfies
χ(Mg,n) > 0 if dimC Mg,n is even, and χ(Mg,n) < 0 if dimC Mg,n is odd.

This corollary was previously known by explicit computations. For example the
Harer-Zagier formula gives

χ(Mg,1) = ζ(1 − 2g)

for g > 2, and this formula alternates sign as g increases [HZ].

Figure 1. The cusp of moduli space in the Teichmüller and Weil-Petersson metrics.

Metrics on Teichmüller space. To discuss the Kähler hyperbolic metric
h = g1/" used to prove Theorem 1.1, we begin with the Weil-Petersson and
Teichmüller metrics.

Let S be a hyperbolic Riemann surface of genus g with n punctures, and let
Teich(S) ∼= Tg,n be its Teichmüller space. The cotangent space T∗

X Teich(S) is
canonically identified with the space Q(X) of holomorphic quadratic differentials
φ(z) dz2 on X ∈ Teich(S). The Weil-Petersson and the Teichmüller metrics
correspond to the norms

‖φ‖2
WP =

∫

X
ρ−2(z)|φ(z)|2 |dz|2 and

‖φ‖T =

∫

X
|φ(z)| |dz|2

3



on Q(X), where ρ(z)|dz| is the hyperbolic metric on X . The Weil-Petersson
metric is Kähler, but the Teichmüller metric is not even Riemannian when
dimC Teich(S) > 1.

To compare these metrics, consider the case of punctured tori with T1,1
∼=

H ⊂ C. The Teichmüller metric on H is given by |dz|/(2y), while the Weil-
Petersson metric is asymptotic to |dz|/y3/2 as y → ∞. Indeed, the Weil-
Petersson symplectic form is given in Fenchel-Nielsen length-twist coordinates
by ωWP = d! ∧ dτ , and we have ! ∼ 1/y while τ ∼ x/y. Compare [Mas].

The cusp of the moduli space M1,1 = H/SL2(Z) behaves like the surface
of revolution for y = ex, x < 0 in the Teichmüller metric; it is complete and
of constant negative curvature. In Weil-Petersson geometry, on the other hand,
the cusp behaves like the surface of revolution for y = x3, x > 0. The Weil-
Petersson metric on moduli space is convex but incomplete, and its curvature
tends to −∞ at the cusp. See Figure 1.

A quasifuchsian primitive for the Weil-Petersson form. Nevertheless the
Weil-Petersson symplectic form ωWP is d(bounded), and it serves as our point
of departure for the construction of a Kähler hyperbolic metric. To describe a
bounded primitive for ωWP, recall that the Bers embedding

βX : Teich(S) → Q(X) ∼= T∗
X Teich(S)

sends Teichmüller space to a bounded domain in the space of holomorphic
quadratic differentials on X (§2).

Theorem 1.5 For any fixed Y ∈ Teich(S), the 1-form

θWP(X) = −βX(Y )

is bounded in the Teichmüller and Weil-Petersson metrics, and satisfies d(iθWP) =
ωWP.

The complex projective structures on X are an affine space modeled on
Q(X), and we can also write

θWP(X) = σF (X) − σQF (X, Y ),

where σF (X) and σQF (X, Y ) are the Fuchsian and quasifuchsian projective
structures on X (the latter coming from Bers’ simultaneous uniformization of
X and Y ). The 1-form θWP is bounded by Nehari’s estimate for the Schwarzian
derivative of a univalent map (§7).

Theorem 1.5 is inspired by the formula

d(σF (X) − σS(X)) = −iωWP (1.1)

discovered by Takhtajan and Zograf, where the projective structure σS(X)
comes from a Schottky uniformization of X [Tak, Thm. 3], [TZ]; see also [Iv1].
The proof of (1.1) by Takhtajan and Zograf leads to remarkable results on the
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classical problem of accessory parameters. It is based on an explicit Kähler po-
tential for ωWP coming from the Liouville action in string theory. Unfortunately
Schottky uniformization makes the 1-form σF (X) − σS(X) unbounded.

Our proof of Theorem 1.5 is quite different and invokes a new duality for
Bers embeddings which we call quasifuchsian reciprocity (§6).

Theorem 1.6 Given (X, Y ) ∈ Teich(S)×Teich(S), the derivatives of the Bers
embeddings

DβX : TY Teich(S) → T∗
X Teich(S) and

DβY : TX Teich(S) → T∗
Y Teich(S)

are adjoint linear operators; that is, Dβ∗
X = DβY .

Using this duality, we find that dθWP(X) is independent of the choice of Y .
Theorem 1.5 then follows easily by setting Y = X.

In the Appendix we formulate a reciprocity law for general Kleinian groups,
and sketch a new proof of the Takhtajan-Zograf formula (1.1).

The 1/! metric. For any closed geodesic γ on S, let !γ(X) denote the length
of the corresponding hyperbolic geodesic on X ∈ Teich(S). A sequence Xn ∈
M(S) tends to infinity if and only if infγ !γ(Xn) → 0 [Mum]. This behavior
motivates our use of the reciprocal length functions 1/!γ to define a complete
Kähler metric g1/" on moduli space.

To begin the definition, let Log : R+ → [0,∞) be a C∞ function such that

Log(x) =

{
log(x) if x ≥ 2,

0 if x ≤ 1.

The 1/! metric g1/" is then defined, for suitable small ε and δ, by its Kähler
form

ω1/" = wWP − iδ
∑

"γ(X)<ε

∂∂ Log
ε

!γ
· (1.2)

The sum above is over primitive short geodesics γ on X ; at most 3|χ(S)|/2
terms occur in the sum.

Since g1/" is obtained by modifying the Weil-Petersson metric, it is useful to
have a comparison between ‖v‖T and ‖v‖WP based on short geodesics.

Theorem 1.7 For all ε > 0 sufficiently small, we have:

‖v‖2
T / ‖v‖2

WP +
∑

"γ(X)<ε

|(∂ log !γ)(v)|2. (1.3)

This estimate (§5) is based on a thick-thin decomposition for quadratic differ-
entials (§4).

Proof of Theorem 1.1. We can now outline the proof that h = g1/" is Kähler
hyperbolic and comparable to the Teichmüller metric.
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We begin by showing that any geodesic length function is almost plurihar-
monic (§3); more precisely,

‖∂∂(1/!γ)‖T = O(1).

This means the term ∂∂ Log(ε/!γ) in the definition (1.2) of ω1/" can be re-

placed by (∂ Log !γ) ∧ (∂ Log !γ) with small error. Using the relation between
the Weil-Petersson and Teichmüller metrics given by (1.3), we then obtain the
comparability estimate g1/"(v, v) / ‖v‖2

T . This estimate implies moduli space is
complete and of finite volume in the metric g1/", because the same statements
hold for the Teichmüller metric.

To show ω1/" is d(bounded), we note that d(iθ1/") = ω1/" where

θ1/" = θWP − δ
∑

"γ(X)<ε

∂ Log
ε

!γ
·

The first term θWP is bounded by Theorem 1.5, and the remaining terms are
bounded by basic estimates for the gradient of geodesic length.

Finally we observe that !γ and θWP can be extended to holomorphic func-
tions on the complexification of Teich(S). Local uniform bounds on these holo-
morphic functions control all their derivatives, and yield the desired bounds on
the curvature and injectivity radius of g1/" (§8).

The 1/d metric and domains in the plane. To conclude we mention a
parallel discussion of a Kähler metric g1/d comparable to the hyperbolic metric
gH on a bounded domain Ω ⊂ C with smooth boundary.

The (incomplete) Euclidean metric gE on Ω is defined by the Kähler form

ωE =
i

2
dz ∧ dz.

A well-known argument (based on the Koebe 1/4-theorem) gives for v ∈ TzΩ
the estimate

‖v‖2
H /

‖v‖2
E

d(z, ∂Ω)2
, (1.4)

where d(z, ∂Ω) is the Euclidean distance to the boundary [BP].
Now consider the 1/d metric g1/d, defined for small ε and δ by the Kähler

form
ω1/d(z) = ωE(z) + i δ ∂∂ Log

ε

d(z, ∂Ω)
·

We claim that for suitable ε and δ, the metric g1/d is comparable to the hyper-
bolic metric gH .

Sketch of the proof. Since ∂Ω is smooth, the function d(z) = d(z, ∂Ω) is
also smooth near the boundary and satisfies ‖∂∂d‖H = O(d2). Thus for ε > 0
sufficiently small, ∂∂ Log(ε/d) is dominated by the gradient term (∂d ∧ ∂d)/d2.
Since |(∂d)(v)| is comparable to the Euclidean length ‖v‖E , by (1.4) we find
gH / g1/d.
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Like the function 1/d(z, ∂Ω), the reciprocal length functions 1/!γ(X) mea-
sure the distance from X to the boundary of moduli space, rendering the met-
ric g1/" complete and comparable to the Teichmüller (=Kobayashi) metric on
M(S).

References. The curvature and convexity of the Weil-Petersson metric and
the behavior of geodesic length-functions are discussed in [Wol1] and [Wol2].
For more on π1(Mg,n), its subgroups and parallels with lattices in Lie groups,
see [Iv2], [Iv3]. The hyperconvexity of Teichmüller space, which is related to
Kähler hyperbolicity, is established by Krushkal in [Kru].

Acknowledgements. I would like to thank Gromov for posing the question of
the Kähler hyperbolicity of moduli space, and Takhtajan for explaining his work
with Zograf several years ago. Takhtajan also provided useful and insightful
remarks when this paper was first circulated, leading to the Appendix.

Notation. We use the standard notation A = O(B) to mean A ≤ CB, and
A / B to mean A/C < B < CA, for some constant C > 0. Throughout
the exposition, the constant C is allowed to depend on S but it is otherwise
universal. In particular, all bounds will be uniform over the entire Teichmüller
space of S unless otherwise stated.

2 Teichmüller space

This section reviews basic definitions and constructions in Teichmüller theory;
for further background see [Gd], [IT], [Le], [Nag].

The hyperbolic metric. A Riemann surface X is hyperbolic if it is covered
by the upper halfplane H. In this case the metric

ρ =
|dz|

Im z

on H descends to the hyperbolic metric on X , a complete metric of constant
curvature −1.

The Teichmüller metric. Let S be a hyperbolic Riemann surface. A Riemann
surface X is marked by S if it is equipped with a quasiconformal homeomorphism
f : S → X . The Teichmüller metric on marked surfaces is defined by

d((f : S → X), (g : S → Y )) =
1

2
inf log K(h),

where h : X → Y ranges over all quasiconformal maps isotopic to g ◦ f−1 rel
ideal boundary, and K(h) ≥ 1 is the dilatation of h. Two marked surfaces are
equivalent if their Teichmüller distance is zero; then there is a conformal map
h : X → Y respecting the markings. The metric space of equivalence classes is
the Teichmüller space of S, denoted Teich(S).

Teichmüller space is naturally a complex manifold. To describe its tan-
gent and cotangent spaces, let Q(X) denote the Banach space of holomorphic

7



quadratic differentials φ = φ(z) dz2 on X for which the L1-norm

‖φ‖T =

∫

X
|φ|

is finite; and let M(X) be the space of L∞ measurable Beltrami differentials
µ(z) dz/dz on X . There is a natural pairing between Q(X) and M(X) given by

〈φ, µ〉 =

∫

X
φ(z)µ(z) dz dz.

A vector v ∈ TX Teich(S) is represented by a Beltrami differential µ ∈ M(X),
and its Teichmüller norm is given by

‖µ‖T = sup{Re〈φ, µ〉 : ‖φ‖T = 1}.

We have the isomorphism:

TX Teich(S) ∼= Q(X)∗ ∼= M(X)/Q(X)⊥,

and ‖µ‖T gives the infinitesimal form of the Teichmüller metric.

Projective structures. A complex projective structure on X is a subatlas
of charts whose transition functions are Möbius transformations. The space of
projective surfaces marked by S is naturally a complex manifold Proj(S) →
Teich(S) fibering over Teichmüller space. The Fuchsian uniformization, X =
H/Γ(X), determines a canonical section

σF : Teich(S) → Proj(S).

This section is real analytic but not holomorphic.
Let P (X) be the Banach space of holomorphic quadratic differentials on X

with finite L∞-norm
‖φ‖∞ = sup

X
ρ−2(z)|φ(z)|.

The fiber ProjX(S) of Proj(S) over X ∈ Teich(S) is an affine space modeled
on P (X). That is, given X0 ∈ ProjX(S) and φ ∈ P (X), there is a unique
X1 ∈ ProjX(S) and a conformal map f : X0 → X1 respecting markings, such
that Sf = φ. Here Sf is the Schwarzian derivative

Sf(z) =

(
f ′′(z)

f ′(z)

)′

−
1

2

(
f ′′(z)

f ′(z)

)2

dz2.

Writing X1 = X0 + φ, we have ProjX(S) = σF (X) + P (X).

Nehari’s bound. A univalent function is an injective, holomorphic map f :
H → Ĉ. The bounds of the next result [Gd, §5.4] play a key role in proving
universal bounds on the geometry of Teich(S).

Theorem 2.1 (Nehari) Let Sf be the Schwarzian derivative of a holomorphic
map f : H → Ĉ. Then we have the implications:

‖Sf‖∞ < 1/2 =⇒ (f is univalent) =⇒ ‖Sf‖∞ < 3/2.
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Quasifuchsian groups. The space QF (S) of marked quasifuchsian groups
provides a complexification of Teich(S) that plays a crucial role in the sequel.

Let Ĉ = H ∪ L ∪ R∞ denote the partition of the Riemann sphere into the
upper and lower halfplanes and the circle R∞ = R ∪ {∞} . Let S = H/Γ(S)
be a presentation of S as the quotient H by the action of a Fuchsian group
Γ(S) ⊂ PSL2(R).

Let S = L/Γ denote the complex conjugate of S. Any Riemann surface
X ∈ Teich(S) also has a complex conjugate X ∈ Teich(S), admitting an anti-
conformal map X → X compatible with marking.

The quasifuchsian space of S is defined by

QF (S) = Teich(S) × Teich(S).

The map X 3→ (X, X) sends Teichmüller space to the totally real Fuchsian
subspace F (S) ⊂ QF (S), and thus QF (S) is a complexification of Teich(S).

The space QF (S) parametrizes marked quasifuchsian groups equivalent to
Γ(S), as follows. Given

(f : S → X, g : S → Y ) ∈ QF (S),

we can pull back the complex structure from X ∪Y to H∪L, solve the Beltrami
equation, and obtain a quasiconformal map φ : Ĉ → Ĉ such that:

• φ transports the action of Γ(S) to the action of a Kleinian group Γ(X, Y ) ⊂
PSL2(C);

• φ maps (H∪L, R∞) to (Ω(X, Y ), Λ(X, Y )), where Λ(X, Y ) is a quasicircle;
and

• there is an isomorphism Ω(X, Y )/Γ(X, Y ) ∼= X ∪ Y such that

φ : (H ∪ L) → Ω(X, Y )

is a lift of (f ∪ g) : (S ∪ S) → (X ∪ Y ).

Then Γ(X, Y ) is a quasifuchsian group equipped with a conjugacy φ to Γ(S).
Here (X, Y ) determines Γ(X, Y ) up to conjugacy in PSL2(C), and φ up to
isotopy rel (R∞, Λ(X, Y )).1

There is a natural holomorphic map

σ : Teich(S) × Teich(S) → Proj(S) × Proj(S),

which records the projective structures on X and Y inherited from Ω(X, Y ) ⊂ Ĉ.
We denote the two coordinates of this map by

σ(X, Y ) = (σQF (X, Y ), σQF (X, Y )).

1When S has finite area, the limit set of Γ(X, Y ) coincides with Λ(X, Y ); in general it may
be smaller.
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The Bers embedding βY : Teich(S) → P (Y ) is given by

βY (X) = σQF (X, Y ) − σF (Y ).

Writing Y = H/Γ(Y ), we have βY (X) = Sf , where f : H → Ω(X, Y ) is a
Riemann mapping conjugating Γ(Y ) to Γ(X, Y ). Amplifying Theorem 2.1 we
have:

Theorem 2.2 The Bers embedding maps Teichmüller space to a bounded do-
main in P (Y ), with

B(0, 1/2) ⊂ βY (Teich(S)) ⊂ B(0, 3/2),

where B(0, r) is the norm ball of radius r in P (Y ). The Teichmüller metric
agrees with the Kobayashi metric on the image of βY .

See [Gd, §5.4, §7.5]. (This reference has different constants, because there the
hyperbolic metric ρ is normalized to have curvature −4 instead of −1.)

Real and complex length. Given a hyperbolic geodesic γ on S, let !γ(X)
denote the hyperbolic length of the corresponding geodesic on X ∈ Teich(S).

For (X, Y ) ∈ QF (S), we can normalize coordinates on Ĉ so that the element
g ∈ Γ(X, Y ) corresponding to γ is given by g(z) = λz, |λ| > 1, and so that 1
and λ belong to Λ(X, Y ). By analytically continuing the logarithm from 1 to λ
along Λ(X, Y ), starting with log(1) = 0, we obtain the complex length

Lγ(X, Y ) = logλ = L + iθ.

In the hyperbolic 3-manifold H3/Γ(X, Y ), γ corresponds to a closed geodesic of
length L and torsion θ.

The group Γ(X, Y ) varies holomorphically as a function of (X, Y ) ∈ QF (S),
so we have:

Proposition 2.3 The complex length Lγ : QF (S) → C is holomorphic, and
satisfies !γ(X) = Lγ(X, X).

The Weil-Petersson metric. Now suppose S has finite hyperbolic area. The
Weil-Petersson metric is defined on the cotangent space Q(X) ∼= T ∗

X Teich(S)
by the L2-norm

‖φ‖2
WP =

∫

X
ρ−2(z) |φ|2 |dz|2.

By duality we obtain a Riemannian metric gWP on the tangent space to Teich(S),
and in fact gWP is a Kähler metric.

Proposition 2.4 For any tangent vector v to Teich(S) we have

‖v‖WP ≤ |2πχ(S)|1/2 · ‖v‖T .
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Proof. By Cauchy-Schwarz, if φ ∈ Q(X) represents a cotangent vector then
we have

‖φ‖T =

∫

X

|φ|

ρ2
ρ2 ≤

(∫

X
1 · ρ2

)1/2 (∫

X

|φ|2

ρ4
ρ2

)1/2

= |2πχ(S)|1/2 · ‖φ‖WP,

where Gauss-Bonnet determines the hyperbolic area of S. By duality the reverse
inequality holds on the tangent space.

3 1/! is almost pluriharmonic

In this section we begin a more detailed study of geodesic length functions and
prove a universal bound on ∂∂(1/!γ).

The Teichmüller metric ‖v‖T on tangent vectors determines a norm ‖θ‖T

for n-forms on Teich(S) by

‖θ‖T = sup{|θ(v1, . . . , vn)| : ‖vi‖T = 1},

where the sup is over all X ∈ Teich(S) and all n-tuples (vi) of unit tangent
vectors at X .

Theorem 3.1 (Almost pluriharmonic) Let !γ : Teich(S) → R+ be the length
function of a closed geodesic on S. Then

‖∂∂(1/!γ)‖T = O(1).

The bound is independent of γ and S.

We begin by discussing the case where S is an annulus and γ is its core
geodesic. To simplify notation, set ! = !γ and L = Lγ . Each annulus X ∈
Teich(S) can be presented as a quotient:

X = H/〈z 3→ e"(X)z〉.

The metric |dz|/|z| makes X into a right cylinder of area A = π! and circum-
ference C = !(X); the modulus of X is the ratio

mod(X) =
A

C2
=

π

!(X)
·

Given a pair of Riemann surfaces (X, Y ) ∈ Teich(S)×Teich(S) we can glue
X to Y along their ideal boundaries (which are canonically identified using the
markings by S) to obtain a complex torus

T (X, Y ) = X ∪ (∂X = ∂Y ) ∪ Y ∼= C
∗/〈eL(X,Y )〉,

11



where L(X, Y ) is the complex length introduced in §2. This torus is simply the
quotient Riemann surface for the Kleinian group

Γ(X, Y ) ∼= 〈z 3→ eL(X,Y )z〉.

The metric |dz|/|z| makes T (X, Y ) into a flat torus with area A = 2πReL
in which ∂X is represented by a geodesic loop of length C = |L|. We define the
modulus of the torus by

mod(T (X, Y )) =
A

C2
= Re

2π

L(X, Y )
·

Note that T (X, X) is obtained by doubling the annulus X , and mod(T (X, X)) =
2 mod(X).

Figure 2. Two annuli joined to form the torus T (X, Y ).

Lemma 3.2 If the Teichmüller distance from X to Y is bounded by 1, then

mod(T (X, Y )) = mod(X) + mod(Y ) + O(1).

Proof. Since dT (X, Y ) ≤ 1, there is a K-quasiconformal map from T (X, X)
to T (X, Y ) with K = O(1). The annuli X, Y ⊂ T (X, Y ) are thus separated by
a pair of K-quasicircles. A quasicircle has bounded turning [LV, §8.7], with a
bound controlled by K, so we can find a pair of geodesic cylinders (with respect
to the flat metric on T (X, Y )) such that ∂X = ∂Y ⊂ A ∪ B and mod(A) =
mod(B) = O(1). See Figure 2. (The cylinders A and B will be embedded if
mod(X) and mod(Y ) are large; otherwise they may be just immersed.)

The geodesic cylinders X∪A∪B and Y ∪A∪B cover T (X, Y ) with bounded
overlap, so their moduli sum to mod(T (X, Y ))+O(1). Combining this fact with
monotonicity of the modulus [LV, §4.6], we have

mod(X) + mod(Y ) ≤ mod(X ∪ A ∪ B) + mod(Y ∪ A ∪ B)

= mod(T ) + O(1).

12



Similarly, we have

mod(T (X, Y )) = mod(X − A − B) + mod(Y − A − B) + O(1)

≤ mod(X) + mod(Y ) + O(1),

establishing the Theorem.

Proof of Theorem 3.1 (Almost pluriharmonic). We continue with the
case of an annulus and its core geodesic as above. Consider X0 ∈ Teich(S) and
v ∈ TX0

Teich(S) with ‖v‖T = 1. Let ∆ be the unit disk in C. Using the Bers
embedding of Teich(S) into P (X0) and Theorem 2.2, we can find a holomorphic
disk

ι : (∆, 0) → (Teich(S), X0),

tangent to v at the origin, such that the Teichmüller and Euclidean metrics are
comparable on ∆, and diamT (ι(∆)) ≤ 1. (For example, we can take ι(s) = sv/10
using the linear structure on P (X0).)

Let Xs = ι(s) and Yt = Xt ∈ Teich(S); then (Xs, Yt) ∈ QF (S) is a holo-
morphic function of (s, t) ∈ ∆2. Set

M(X, Y ) = mod(T (X, Y )) = Re
2π

L(X, Y )
,

and define f : ∆2 → R by

f(s, t) = M(Xs, Yt) − M(Xs, Y0) − M(X0, Yt) + M(X0, Y0).

By Lemma 3.2 above, we have f(s, t) = O(1). On the other hand, L(X, Y ) is
holomorphic, so f(s, t) is pluriharmonic. Thus the bound f(s, t) = O(1) controls
the full 2-jet of f(s, t) at (0, 0); in particular we have

∂2f(s, t)

∂s ∂t

∣∣∣∣
0,0

= O(1).

Letting g(s) = f(s, s), it follows that (∂∂g)(0) = O(1) in the Euclidean metric
on ∆. On the other hand,

∂∂g(s) = ∂∂M(Xs, Xs) = ∂∂(π/!(Xs)),

since the remaining terms in the expression for f(s, s) are pluriharmonic in s.
Thus ‖∂∂(1/!)‖T = O(1), and the proof is complete for annuli.

To treat the case of general (S, γ), let S̃ → S be the annular covering space
determined by 〈γ〉 ⊂ π1(S), and let π : Teich(S) → Teich(S̃) be the holomorphic
map obtained by lifting complex structures. Then we have:

‖∂∂(1/!γ)‖T = ‖π∗(∂∂(1/!))‖T ≤ ‖∂∂(1/!)‖T = O(1),

since holomorphic maps do not expand the Teichmüller (=Kobayashi) metric.

Remark. It is known that on finite-dimensional Teichmüller spaces, !γ is
strictly plurisubharmonic [Wol2].

13



4 Thick-thin decomposition of quadratic differ-
entials

Let S be a hyperbolic surface of finite area, and let φ ∈ Q(X) be a quadratic
differential on X ∈ Teich(S). In this section we will present a canonical decom-
position of φ adapted to the short geodesics γ on X .

To each γ we will associate a residue Resγ : Q(X) → C and a differential
φγ ∈ Q(X) proportional to ∂ log !γ with Resγ(φγ) ≈ 1. We will then show:

Theorem 4.1 (Thick-thin) For ε > 0 sufficiently small, any φ ∈ Q(X) can
be uniquely expressed in the form

φ = φ0 +
∑

"γ(X)<ε

aγφγ (4.1)

with Resγ(φ0) = 0 for all γ in the sum above. Each term φ0 and aγφγ has
Teichmüller norm O(‖φ‖T ).

We will also show that ‖φ0‖WP / ‖φ0‖T (Theorem 4.4). Thus the thick-thin
decomposition accounts for the discrepancy between the Teichmüller and Weil-
Petersson norms on Q(X) in terms of short geodesics on X .

The quadratic differential ∂ log !γ . Let γ be a closed hyperbolic geodesic
on S. Given X ∈ Teich(S), let π : Xγ → X be the covering space corresponding
to 〈γ〉 ⊂ π1(S). We may identify Xγ with a round annulus

Xγ
∼= A(R) = {z : R−1 < |z| < R}.

By requiring that γ̃ ⊂ Xγ and S1 agree as oriented loops, we can make this
identification unique up to rotations.

Consider the natural 1-form θγ = dz/z on Xγ . In the |θ|-metric, Xγ is a
right cylinder of circumference C = 2π and area A = 4π log R. Thus we have

mod(Xγ) =
A

C2
=

log R

π
=

π

!γ(X)
, and

‖θ2‖T = A =
4π3

!γ(X)
·

Define φγ ∈ Q(X) by

φγ = π∗(θ
2
γ) = π∗

(
dz2

z2

)
·

The importance of φγ comes from its well-known connection to geodesic length:

(∂ log !γ)(X) = −
!γ(X)

2π3
φγ (4.2)

in T ∗
X Teich(S) ∼= Q(X) (cf. [Wol2, Thm 3.1]).
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Theorem 4.2 The differential (∂ log !γ)(X) is proportional to φγ . We have
‖∂ log !γ‖T ≤ 2, and ‖∂ log !γ‖T → 2 as !γ → 0.

Proof. Equation (4.2) gives the proportionality and implies the bound

‖∂ log !γ‖T =
!γ(X)

2π3
‖φγ‖T ≤

!γ(X)

2π3
‖θ2‖T = 2.

To analyze the behavior of ∂ log !γ when !γ(X) is small, note that the collar
lemma [Bus] provides a universal ε0 > 0 such that for

T = ε0R,

the map π sends A(T ) ⊂ A(R) injectively into a collar neighborhood of γ on X .
Since

∫
A(R)−A(T ) |θγ |

2 = O(1), we obtain

‖φγ‖T =

∫

π(A(T ))
|φγ | + O(1) = ‖θ2‖T + O(1),

which implies ‖∂ log !γ‖T = 2 + O(!γ).

The residue of a quadratic differential. Let us define the residue of φ ∈
Q(X) around γ by

Resγ(φ) =
1

2πi

∫

S1

π∗(φ)

θγ
·

In terms of the Laurent expansion

π∗(φ) =

(
∞∑

−∞

anzn

)
dz2

z2

on A(R), we have Resγ(φ) = a0.

Proof of Theorem 4.1 (Thick-thin). To begin we will show that for any γ
with !γ(X) < ε, we have

Resγ(φ) = O

(
‖φ‖T

‖φγ‖T

)
. (4.3)

To see this, identify Xγ with A(R), set T = ε0R as in the proof of Theorem 4.2,
and consider the Beltrami coefficient on A(T ) given by

µ =
θγ

2

|θγ |
=

z

z

dz

dz
·

Then we have:

Resγ(φ) =
1

4π log T

∫

A(T )
π∗(φ)µ = O

(

(log T )−1

∫

A(T )
|π∗φ|

)

. (4.4)
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Since π|A(T ) is injective, we have
∫

A(T ) |π
∗φ| = O(‖φ‖T ) and log T / ‖φγ‖T ,

yielding (4.3).
By similar reasoning, all γ and δ shorter than ε satisfy:

Resγ(φδ) =

{
1 if γ = δ,

0 otherwise

}

+ O

(
1

‖φγ‖

)
· (4.5)

Indeed, if δ )= γ then most of the mass of |φδ| resides in the thin part associated
to δ, which is disjoint from π(A(T )). More precisely, we have

∫
A(T ) |π

∗φδ| =

O(1), and the desired bound on Resγ(φδ) follows from (4.4). The estimate when
δ = γ is similar, using the fact that π∗φγ = π∗π∗(θ2

γ) ≈ θ2
γ on A(T ).

By (4.5), the matrix Resγ(φδ) is close to the identity when ε is small, since
‖φγ‖

−1
T = O(ε). Therefore we have unique coefficients aγ satisfying equation

(4.1) in the statement of the theorem.
To estimate |aγ |, we first use the matrix equation

[aγ ] = [Resγ φδ]
−1[Resδ(φ)]

to obtain the bound
|aγ | = O(‖φ‖T ) (4.6)

from (4.3). (Note that size of the matrix Resγ φδ is controlled by the genus of
X .) Then we make the more precise estimate

|aγ | / |Resγ(aγφγ)| =

∣∣∣∣∣∣
Resγ(φ) −

∑

δ '=γ

aδ Resγ(φδ)

∣∣∣∣∣∣
= O(‖φ‖T /‖φγ‖T )

by (4.3), (4.5) and (4.6). The bound ‖aγφγ‖T = O(‖φ‖T ) follows.

The bound on the terms in (4.1) above can be improved when φ is also
associated to a short geodesic.

Theorem 4.3 If φ = φδ with 2ε > !δ(X) > ε, then we have

‖aγφγ‖T = O(!δ(X) ‖φ‖T )

in equation (4.1).

Proof. For any γ with !γ(X) < ε, the short geodesics δ and γ correspond to
disjoint components X(δ) and X(γ) of the thin part of X . The total mass of
|φδ| in X(γ) is O(1). Now aγφγ is chosen to cancel the residue of φδ in X(γ),
so we also have ‖aγφγ‖T = O(1). Since ‖φδ‖T / !δ(X)−1, we obtain the bound
above.
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Theorem 4.4 If Resγ(φ) = 0 for all geodesics with !γ(X) < ε, then we have

‖φ‖WP ≤ C(ε) ‖φ‖T .

Proof. Let Xr, r = ε/2, denote the subset of X with hyperbolic injectivity
radius less than r. Since the area of X is 2π|χ(S)|, the thick part X − Xr can
be covered by N(r) balls of radius r/2. The L1-norm of φ on a ball B(x, r)
controls its L2-norm on B(x, r/2), so we have:

∫

X−Xr

ρ−2|φ|2 = O(‖φ‖2
T ).

It remains to control the L2-norm of φ over the thin part Xr. For ε suf-
ficiently small, every component of Xr is either a horoball neighborhood of a
cusp or a collar neighborhood Xr(γ) of a geodesic γ with !γ(X) < ε.

To bound the integral of ρ−2|φ|2 over a collar Xr(γ), identify the covering
space Xγ → X with A(R) as before, and note that (for small ε) we have Xr(γ) ⊂
π(A(T )) with T = ε0R. Since π|A(T ) is injective we have

∫

Xr(γ)
ρ−2|φ|2 ≤

∫

A(T )
ρ−2|π∗φ|2.

Now because Resγ(φ) = 0, we can use the Laurent expansion on A(R) to write

π∗φ = zf(z)
dz2

z2
+

1

z
g

(
1

z

)
dz2

z2
= F + G,

where f(z) and g(z) are holomorphic on ∆(R) = {z : |z| < R}. Then F and G
are orthogonal in L2(A(R)), so we have

∫

A(T )
ρ−2|π∗φ|2 =

∫

A(T )
ρ−2(|F |2 + |G|2).

The inclusion A(R) ⊂ ∆∗(R) contracts the hyperbolic metric, so to obtain
an upper bound on the integral above we can replace ρ(z) with ρ∆(R)∗(z) =
1/|z log(R/|z|)|. Moreover |f(z)|2 is subharmonic, so its mean over the circle of
radius t is an increasing function of t. Combining these facts, we have

∫

A(T )
ρ−2|F |2 =

∫

A(T )

|zf(z)|2

|z|4ρ2(z)
|dz|2 ≤

∫

∆(T )
|f(z)|2 | log(R/|z|)|2 |dz|2

=

∫ T

0
t(log(R/t))2

∫ 2π

0
|f(teiθ)|2 dθ dt

≤ 2πT 2| log ε0|
2 sup

S1(T )
|f(z)|2 = O

(

sup
S1(T )

|zf(z)|2
)

.

Applying a similar argument to |G|2, we obtain

∫

A(T )
ρ−2|π∗φ|2 = O

(

sup
S1(T )

|zg(z)|2 + |zf(z)|2
)

.
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Without loss of generality we may assume supS1(T ) |f(z)| ≥ supS1(T ) |g(z)|.

Since ρ / |dz|/|z| on S1(T ), we then have

sup
S1(T )

|π∗φ|

ρ2
/ sup

S1(T )
|zf(z) + g(1/z)/z| / sup

S1(T )
|zf(z)|.

Now π(S1(T )) is contained in the thick part X − Xr, so we may conclude that

∫

Xr(γ)
ρ−2|φ|2 = O

(
sup

X−Xr

ρ−4|φ|2
)

.

But the sup-norm of φ in the thick part is controlled by its L1-norm, so finally
we obtain ∫

Xr(γ)
ρ−2|φ|2 = O(‖φ‖2

T ).

The bound on the L2-norm of φ over the cuspidal components of the thin
part Xr is similar, using the fact that φ has at worst simple poles at the cusps.
Since the number of components of Xr is bounded in terms of |χ(S)|, we obtain∫

Xr
ρ−2|φ|2 = O(‖φ‖2

T ), completing the proof.

Remark. Masur has shown the Weil-Petersson metric extends to Mg,n, using a
construction similar to the thick-thin decomposition to trivialize the cotangent
bundle of Mg,n near a curve with nodes [Mas].

5 The 1/! metric

In this section we turn to the Kähler metric g1/" on Teichmüller space, and show
it is comparable to the Teichmüller metric.

Recall that a positive (1, 1)-form ω on Teich(S) determines a Hermitian
metric g(v, w) = ω(v, iw), and g is Kähler if ω is closed. We say g is comparable
to the Teichmüller metric if we have ‖v‖2

T / g(v, v) for all v in the tangent space
to Teich(S).

Theorem 5.1 (Kähler / Teichmüller) Let S be a hyperbolic surface of fi-
nite volume. Then for all ε > 0 sufficiently small, there is a δ > 0 such that the
(1, 1)-form

ω1/" = ωWP − iδ
∑

"γ(X)<ε

∂∂ Log
ε

!γ
(5.1)

defines a Kähler metric g1/" on Teich(S) that is comparable to the Teichmüller
metric.

Since the Teichmüller metric is complete we have:

Corollary 5.2 (Completeness) The metric g1/" is complete.
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Notation. To present the proof of Theorem 5.1, let N = 3|χ(S)|/2 + 1 be a
bound on the number of terms in the expression for ω1/", and let

ψγ = ∂ log !γ =
∂!γ
!γ

;

then we have

|ψγ(v)|2 =
i

2

∂!γ ∧ ∂!γ
!2γ

(v, iv). (5.2)

Lemma 5.3 There is a Hermitian metric g of the form

g(v, v) = A(ε) ‖v‖2
WP + B

∑

"γ (X)<ε

|ψγ(v)|2 (5.3)

such that ‖v‖2
T ≤ g(v, v) ≤ O(‖v‖2

T ) for all ε > 0 sufficiently small.

Proof. By Propositions 2.4 and 4.2, we have ‖v‖WP = O(‖v‖T ) and ‖ψγ(v)‖ ≤
2‖v‖T , and there are at most N terms in the sum (5.3), so g(v, v) ≤ O(‖v‖2

T ).
To make the reverse comparison for a given v ∈ TX Teich(S), pick φ ∈ Q(X)

with ‖φ‖T = 1 and φ(v) = ‖v‖T . So long as ε > 0 is sufficiently small, we can
apply the thick-thin decomposition for quadratic differentials (Theorem 4.1) to
obtain

φ = φ0 +
∑

"γ(X)<ε

aγψγ (5.4)

with Resγ(φ0) = 0 and with ‖ψγ‖T ≥ 1. (Recall from Theorem 4.2 that φγ and
ψγ are proportional, and that ‖ψγ‖T → 2 as ε → 0.)

By Theorem 4.1 each term on the right in (5.4) has Teichmüller norm
O(‖φ‖T ) = O(1). Since the residues of φ0 along the short geodesics vanish,
the Teichmüller and Weil-Petersson norms of φ0 are comparable, with a bound
depending on ε (Theorem 4.4). Therefore we have |φ0(v)| ≤ D(ε)‖v‖WP. Since
we have ‖ψγ‖T ≥ 1 and ‖aγψγ‖T = O(1), we also have |aγ | ≤ E, where E is
independent of ε. So from (5.4) we obtain

φ(v) = ‖v‖T = φ(v) ≤ D(ε) ‖v‖WP + E
∑

"γ(X)<ε

|ψγ(v)|.

There are at most N terms in the sum above, so we have

‖v‖2
T ≤ ND(ε)2‖v‖2

WP + NE2
∑

"γ(X)<ε

|ψγ(v)|2.

Setting A(ε) = ND(ε)2 and B = NE2, from (5.3) we obtain ‖v‖2
T ≤ g(v, v).
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Corollary 5.4 For ε > 0 sufficiently small, we have

‖v‖2
T / ‖v‖2

WP +
∑

"γ(X)<ε

|(∂ log !γ)(v)|2

for all vectors v in the tangent space to Teich(S).

Next we control the terms in (5.1) coming from geodesics of length near ε.

Lemma 5.5 For ε < !δ(X) < 2ε we have

|ψδ(v)|2 ≤ D(ε)‖v‖2
WP + O



ε
∑

"γ(X)<ε

|ψγ(v)|2





for any tangent vector v ∈ TX Teich(S).

Proof. By Theorem 4.3 we have ψδ = ψ0+
∑

"γ(X)<ε aγψγ with aγ = O(!δ(X)) =

O(ε), and with ‖ψ0‖T ≤ C(ε)‖ψδ‖WP by Theorem 4.4. Evaluating this sum on
v, we obtain the Lemma.

Proof of Theorem 5.1 (Kähler ! Teichmüller). Consider the (1, 1)-form

ω = (F (ε) + A(ε))ωWP − B
∑

"δ(X)<2ε

i

2
∂∂ Log

2ε

!δ
, (5.5)

where
F (ε) = 16NBD(ε) sup

[1,2]
|Log′′(x)|,

and where A(ε), B and D(ε) come from the Lemmas above. Then ω and ω1/"

are of the same form (up to scaling and replacing ε with ε/2), so to prove the
Theorem it suffices to show g(v, v) = ω(v, iv) is comparable to the Teichmüller
metric.

Let v ∈ TX Teich(S) be a vector with ‖v‖T = 1. To begin the evaluation of
g(v, v), we compute

∂∂ Log
2ε

!δ
= 2ε

(
Log′

2ε

!δ

)
∂∂

(
1

!δ

)
+

4ε2

!2δ

(
Log′′

2ε

!δ

)
∂!δ ∧ ∂!δ

!2δ
· (5.6)

By Theorem 3.1, the function 1/!δ is almost pluriharmonic; more precisely,
∣∣∣∣∂∂

(
1

!δ

)
(v, iv)

∣∣∣∣ = O(1).

Since Log′(x) is bounded, the term in (5.6) involving ∂∂(1/!δ) is O(ε). Using
(5.2) we then obtain

i

2

(
∂∂ Log

2ε

!δ

)
(v, iv) =

4ε2

!2δ

(
Log′′

2ε

!δ

)
|ψδ(v)|2 + O(ε). (5.7)
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Using expression (5.5) to compute ω(v, iv), we obtain a sum of terms like
that above, with !δ(X) < 2ε. If !δ(X) < ε, then Log′′(2ε/!γ) = log′′(2ε/!γ) =
−!2γ/(4ε2), and hence

−
i

2

(
∂∂ Log

2ε

!δ

)
(v, iv) = |ψδ(v)|2 + O(ε).

On the other hand, if ε ≤ !δ(X) < 2ε, then from (5.7) and Lemma 5.5 we obtain:
∣∣∣∣
i

2

(
∂∂ Log

2ε

!δ

)
(v, iv)

∣∣∣∣ ≤ 16|ψδ(v)|2 sup
[1,2]

|Log′′(x)| + O(ε)

≤
F (ε)

NB
‖v‖2

WP + O



ε
∑

"γ(X)<ε

|ψγ(v)|2



 + O(ε).

Applying these two bounds to g(v, v) = ω(v, iv), we obtain:

g(v, v) ≥ A(ε)‖v‖2
WP + B

∑

"γ (X)<ε

|ψγ(v)|2

+ B
∑

ε≤"δ(X)<2ε

(
F (ε)

NB
‖v‖2

WP −

∣∣∣∣
i

2

(
∂∂ Log

2ε

!δ

)
(v, iv)

∣∣∣∣

)
+ O(ε)

≥ A(ε)‖v‖2
WP + B(1 + O(ε))

∑

"γ (X)<ε

|ψγ(v)|2 + O(ε).

By Lemma 5.3 we then have:

g(v, v) ≥ ‖v‖2
T + O(ε) = 1 + O(ε).

Thus ‖v‖2
T = O(g(v, v)) when ε is small enough. The reverse comparison,

g(v, v) = O(‖v‖2
T ), follows the same lines as Lemma 5.3.

6 Quasifuchsian reciprocity

Let S be a hyperbolic surface of finite area with quasifuchsian space QF (S) =
Teich(S) × Teich(S). In this section we define a map

q : TQF (S) → C,

providing a natural bilinear pairing q(µ, ν) on M(X)×M(Y ) for each (X, Y ) ∈
QF (S). The symmetry of this pairing (explained below) will play a key role in
the discussion of a bounded primitive for the Weil-Petersson metric in the next
section.

To define q, recall that a small change in the conformal structure on X
determines a change in the projective structure on Y , by the derivative of the
Bers embedding

DβY : TX Teich(S) → P (Y ).
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Since S has finite area, we also have

P (Y ) ∼= Q(Y ) ∼= T∗
Y Teich(S).

Thus for (µ, ν) ∈ M(X) × M(Y ), we can define the quasifuchsian pairing

q(µ, ν) = 〈DβY (µ), ν〉

by evaluating the cotangent vector DβY (µ) on the tangent vector [ν] ∈ TY Teich(S).
This pairing only depends on the equivalence class represented by (µ, ν) in
T(X,Y )QF (S).

Interchanging the roles of X and Y , we obtain a similar pairing from the
Bers embedding

βX : Teich(S) → P (X).

The main result of this section is that these pairings are equal.

Theorem 6.1 (Quasifuchsian reciprocity) For any (µ, ν) ∈ T(X,Y )QF (S),
we have

q(µ, ν) =

∫

Y
(DβY (µ)) · ν =

∫

X
(DβX(ν)) · µ.

This Theorem says q is symmetric, meaning q ◦ Dρ = q, where

Dρ : TQF (S) → TQF (S)

is the derivative of the involution ρ(X, Y ) = (Y , X).

Proof. Recall that 1/(πz) is the fundamental solution to the ∂ equation on Ĉ.
Thus a solution to the infinitesimal Beltrami equation ∂v = µ is given by

v(z)
∂

∂z
=

(
1

π

∫

bC

µ(w)

(z − w)
|dw|2

)
∂

∂z
·

Since 1/(πz)′′′ = −6/(πz4), outside the support of µ the vector field v is holo-
morphic with infinitesimal Schwarzian derivative given by

φ = v′′′(z) dz2 = K ∗ µ

where K is the kernel

K = −
6

π(z − w)4
dz2 dw2.

This kernel on Ĉ × Ĉ is natural and symmetric, in the sense that:

• (γ × γ)∗K = K for any Möbius transformation γ ∈ Aut(Ĉ); and

• ι∗K = K where ι(w, z) = (z, w).
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The symmetry of q will come from the symmetry of K.
To compute the derivative of Bers’ embedding βY , let us regard µ ∈ M(X)

and φ = DβY (µ) ∈ Q(Y ) as Γ(X, Y )-invariant forms on Ω(X, Y ). Then we have

DβY (µ) = φ(z) dz2 =

(
−

6

π

∫

bC

µ(w)

(z − w)4
|dw|2

)
dz2. (6.1)

(See [Bers], [Gd, §5.7].)

Now consider the kernel on Ĉ × Ĉ given by

K0 =
∑

γ∈Γ(X,Y )

(γ, id)∗K.

Since K was already invariant under the diagonal action of Aut(Ĉ), the kernel
K0 is invariant under Γ(X, Y )×Γ(X, Y ), and so it descends to a form on X×Y .
We then have

q0(µ, ν) = 〈DβY (µ), ν〉 =

∫

X×Y
K0(w, z)µ(w)ν(z) |dw|2 |dz|2.

The reverse pairing is given similarly by

q1(µ, ν) = 〈DβX(ν), µ〉 =

∫

Y ×X
K1(w, z)ν(w)µ(z) |dw|2 |dz|2,

where the form K1 on Y × X is given upstairs by

K1 =
∑

γ∈Γ(X,Y )

(id, γ)∗K.

By symmetry of K, K0 = π∗(K1) for the natural map π : X × Y → Y × X ;
therefore q0(µ, ν) = q1(µ, ν), establishing reciprocity.

7 The Weil-Petersson form is d(bounded)

In this section we construct an explicit 1-form θWP on Teich(S) such that
d(iθWP) = ωWP. Using this 1-form and Nehari’s bound for univalent func-
tions, we then show the Kähler metrics corresponding to ωWP and ω1/" are
both d(bounded).

Recall σQF (X, Y ) ∈ ProjX(S) is the projective structure on X coming from
the quasifuchsian uniformization of X ∪ Y .

Theorem 7.1 (Quasifuchsian primitive) Fix Y ∈ Teich(S), and let θWP be
the (1, 0)-form on Teich(S) given by

θWP(X) = σF (X) − σQF (X, Y )

= −βX(Y ).

Then iθWP is a primitive for the Weil-Petersson Kähler form; that is, d(iθWP) =
ωWP.
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A key ingredient in the proof is:

Theorem 7.2 For any Y0, Y1 ∈ Teich(S), we have

d(σQF (X, Y1) − σQF (X, Y0)) = 0

as a 2-form on Teich(S).

Proof. Let Yt be a smooth path in Teich(S) joining Y0 to Y1, and let

θt(X) = σQF (X, Yt) − σQF (X, Y0).

We will show θ1 = dF for an explicit function F : Teich(S) → C.
Let νt = dYt/dt ∈ TYt Teich(S). The quasifuchsian uniformization of (X, Yt)

determines a Schwarzian quadratic differential βYt(X) on Yt. Let

ft(X) = 〈σQF (X, Yt) − σF (Yt), νt〉 = 〈βYt(X), νt〉.

We claim dft = ∂θt/∂t as 1-forms on Teich(S). Indeed, by quasifuchsian
reciprocity, for any µ ∈ M(X) we have

dft(µ) = 〈DβYt(µ), νt〉 = 〈DβX(νt), µ〉 =

〈
∂σQF (X, Yt)

∂t
, µ

〉
=
∂θt

∂t
(µ)·

Set F (X) =
∫ 1
0 ft(X) dt. Then, since θ0 = 0, we have

θ1 =

∫ 1

0

∂θt

∂t
dt = d

∫ 1

0
ft dt = dF,

and thus dθ1 = d2F = 0.

Proof of Theorem 7.1 (Quasifuchsian primitive). Let us compute the
2-form dθWP at X0 ∈ Teich(S). By the preceding result, we may freely modify
the choice of Y without changing dθWP. Setting Y = X0 we obtain

θWP = σQF (X, X) − σQF (X, X0).

Now σQF (X, Y ) is holomorphic in X and antiholomorphic in Y , so to compute
the (2, 0) part of dθWP we can replace X by X0 in σQF (X, X); then we obtain:

∂θWP = ∂(σQF (X, X0) − σQF (X, X0)) = 0.

As for the (1, 1)-part, we can similarly replace X by X0 in −σQF (X, X0) to
obtain:

∂θWP = ∂(σQF (X0, X) − σQF (X0, X0)) = ∂βX0
(X).

To complete the proof, it suffices to show

(∂θWP)(µ, iµ) = −i‖µ‖2
WP
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for all [µ] ∈ TX0
Teich(S).

Since S has finite hyperbolic area, any tangent direction to Teich(S) at X0

is represented by a harmonic Beltrami differential

µ = ρ−2φ,

where φ ∈ Q(X0) and ‖µ‖WP = ‖φ‖WP. Let µ ∈ M(X0) be the corresponding
conjugate vector tangent to Teich(S) at X0. Since θWP(X0) = 0, we have

(∂θWP)(µ, iµ) = 〈DβX0
(µ), iµ〉 − 〈DβX0

(−iµ), µ〉

= 2i 〈DβX0
(µ), µ〉.

The evaluation of DβX0
(µ) is a standard calculation of the derivative of the

Bers embedding at the origin. Namely writing X0 = H/Γ0, we can interpret φ
and µ as Γ0-invariant forms on H and L = −H respectively. Then µ(w) = φ(w),
and by (6.1) we have

DβX0
(µ) = ψ(z) dz2 =

(
−

6

π

∫

L

ρ2(w)φ(w)

(z − w)4
|dw|2

)
dz2.

A well-known reproducing formula (see [Gd, §5.7], [Bers, (5.2)]) gives ψ =
(−1/2)φ. Therefore we have

(∂θWP)(µ, iµ) = 2i 〈(−1/2)φ, µ〉 = −i

∫

X
φρ−2φ = −i ‖µ‖2

WP,

completing the proof.

Corollary 7.3 (d(bounded)) The Kähler form of the 1/! metric on Teichmüller
space is d(bounded), with primitive

θ1/" = θWP − δ
∑

"γ (X)<ε

∂ Log
ε

!γ
(7.1)

satisfying d(iθ1/") = ω1/".

Proof. By (5.1) we have ω1/" = d(iθ1/"). To bound the first term, we note that
−θWP(X) = σQF (X, Y ) − σF (X) is the Schwarzian derivative of the univalent
map

fX,Y : H → X̃ ⊂ Ω(X, Y ) ⊂ Ĉ,

so by Nehari’s bound (Theorem 2.1) we have ‖θWP(X)‖∞ < 3/2. Therefore

‖θWP‖T =

∫

X

|φ|

ρ2
ρ2 ≤ 3π|χ(S)|, (7.2)

since
∫
ρ2 = 2π|χ(S)| by Gauss-Bonnet.
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For the remaining terms in (7.1) we appeal to Theorem 4.2, which gives the
bound ‖∂!γ‖T ≤ 2!γ. The latter implies:

∥∥∥∥∂ Log
ε

!γ

∥∥∥∥
T

=

∣∣∣∣
ε

!2γ
Log′

ε

!γ

∣∣∣∣ · ‖∂!γ‖T ≤

∣∣∣∣
ε

!γ
Log′

ε

!γ

∣∣∣∣ = O(1).

Putting these bounds together, we have ‖θ1/"‖T = O(1). Since the 1/! metric is
comparable to the Teichmüller metric (Theorem 5.1), we have shown that ω1/"

is d(bounded).

The L2-version of (7.2) gives ‖θWP‖2
WP ≤ (9π/2)|χ(S)|, so we also have:

Corollary 7.4 The Kähler form ωWP is d(bounded) for the Weil-Petersson
metric.

8 Volume and curvature of moduli space

In this section we prove that (M(S), g1/") has bounded geometry and finite
volume, completing the proof of the Kähler hyperbolicity of moduli space.

Theorem 8.1 (Finite volume) The metric g1/" descends to the moduli space
M(S), and (M(S), g1/") has finite volume.

Proof. By its definition (5.1), the metric g1/" is invariant under the action of
the mapping class group Mod(S) on M(S), so it descends to a metric on moduli
space.

Let n = dimC M(S), and let M(S) be the Deligne-Mumford compactifica-
tion of M(S). Consider a stable curve Z ∈ M(S) with k nodes. Then Z has a
neighborhood U in M(S) satisfying

(U, Z) ∼= (∆n, 0)/G and

U ∩M(S) ∼= ((∆∗)k × ∆n−k)/G,

where G is a finite group. (Compare [Wol3, §3].)
A small neighborhood of (0, 0) has finite volume in the Kobayashi metric

on (∆∗)k × ∆n−k, and inclusions contract the Kobayashi metric, so there is a
neighborhood V of Z in M(S) with vol(V ∩ M(S)) < ∞ in the Kobayashi
= Teichmüller metric on M(S). By compactness of M(S), the Teichmüller
volume of M(S) is finite.

Since the Teichmüller metric is comparable to g1/", M(S) also has finite
volume in the 1/! metric.

Theorem 8.2 (Bounded geometry) The sectional curvatures of the metric
g1/" are bounded above and below over Teich(S), and the injectivity radius of
g1/" is uniformly bounded below.
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Proof. We use the method of the proof of Theorem 3.1: namely we realize
Teich(S) as the locus (X, X) in QF (S), and extend the functions σQF and !γ
used in the definition of g1/" to holomorphic functions on QF (S). Uniform
bounds on these extensions then give C∞ bounds on g1/".

Pick X0 ∈ Teich(S), and let n = dimC Teich(S). By an elementary result in
convex geometry, there is an isomorphism A : Cn → P (X0) such that ‖Az‖∞ /
|z| with constants depending only on n. Using the Bers embedding of Teich(S)
into P (X0) and Theorem 2.2, we can find an embedded polydisk

f : (∆n, 0) → (Teich(S), X0),

such that the Teichmüller and Euclidean metrics are comparable on ∆n. (Indeed
we can take f(z) = A(αz) for a suitable α > 0.)

Let Xs = f(s) ∈ Teich(S) and Yt = Xt ∈ Teich(S); then (Xs, Yt) ∈ QF (S)
is a holomorphic function of (s, t) ∈ ∆n × ∆n. For any closed geodesic γ on S,
the complex length satisfies ReLγ(Xs, Yt) > 0, so the holomorphic function

Lγ(s, t) = logLγ(Xs, Yt)

maps ∆n × ∆n into the strip {z : | Im z| < π}. By the Schwarz lemma, all the
derivatives of Lγ(s, t) at (0, 0) of order ≤ k are bounded by a constant Ck in
the Euclidean metric. Therefore the derivatives of

log !γ(Xs) = logLγ(Xs, Xs)

are also controlled at s = 0.
Fixing Z ∈ Teich(S), the holomorphic 1-form

τ(X, Y ) = σQF (X, Y ) − σQF (X, Z)

is bounded in the Teichmüller metric on QF (S) (by Nehari’s bound, Theorem
2.1). Hence f∗τ is bounded in the Euclidean metric, and thus the derivatives of

(f∗τ)(s) = f∗(σF (Xs) − σQF (Xs, Z))

at s = 0 are also uniformly controlled.
Now by Corollary 7.3, if we set

θ = f∗(σF (Xs) − σQF (Xs, Z)) − δ
∑

"γ(X)<ε

∂ Log
ε

!γ(Xs)
,

then the 1-form iθ is a primitive for the Kähler form of g = f∗g1/" on ∆n.
Since the derivatives of each term are controlled, and g is comparable to the
Euclidean metric, we find that the sectional curvatures of g are bounded above
and below at s = 0. (Indeed g ranges in a compact family of metrics in the
C∞ topology on ∆n.) Thus the curvatures of g1/" are O(1) at X0, and hence
uniformly bounded over Teich(S).

We then have curvature bounds on g throughout ∆n, from which it follows
that the injectivity radius of g at 0 is bounded below. Since f is one-to-one, the
injectivity radius of g1/" on Teich(S) is also bounded below.
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Proof of Theorem 1.1 (Kähler hyperbolic). The metric h = g1/" is compa-
rable to the Teichmüller metric by Theorem 5.1, and therefore g1/" is complete
(Corollary 5.2). Its symplectic form ω1/" is d(bounded) by Corollary 7.3. In
this section we have shown that (M(S), g1/") has finite volume and bounded
geometry, and therefore moduli space is Kähler hyperbolic in the g1/" metric.

9 Appendix: Reciprocity for Kleinian groups

This appendix formulates a version of quasifuchsian reciprocity for general
Kleinian groups. As an application, we sketch a proof of the Takhtajan-Zograf
formula

d(σF (X) − σS(X)) = −iωWP.

Kleinian groups. Let Γ ⊂ Aut(Ĉ) be a finitely generated Kleinian group,
with domain of discontinuity Ω and (possibly disconnected) quotient Riemann
surface X = Ω/Γ. By Ahlfors’ finiteness theorem, X has finite hyperbolic area.

Let µ ∈ M(X) be a Beltrami differential, regarded as a Γ-invariant form on
Ĉ, vanishing outside Ω. Let v be a quasiconformal vector field on the sphere
with ∂v = µ. Then the infinitesimal Schwarzian derivative

φµ =
∂3v

∂z3
dz2

is a Γ-invariant quadratic differential, holomorphic outside the support of µ.
On the support of µ, the third derivative of v exists only as a distribution.

If, however, µ is sufficiently smooth — for example, if µ is a harmonic Beltrami
differential (µ = ρ−2φ, φ ∈ Q(X)) — then φµ is smooth on Ω and descends to
a quadratic differential

K(µ) = φµ ∈ L1(X, dz2).

We refer to φµ as the projective distortion of µ.

Theorem 9.1 (Kleinian reciprocity) Let X = Ω/Γ be the quotient Riemann
surface for a finitely generated Kleinian group Γ, and let µ, ν ∈ M(X) be a pair
of sufficiently smooth Beltrami differentials. Then we have:

∫

X
φµ ν =

∫

X
φν µ,

where φµ, φν ∈ L1(X, dz2) give the projective distortions of µ and ν.

Note that if Γ is quasifuchsian, with X = X17X2, then by taking µ ∈ M(X1)
and ν ∈ M(X2) we recover Theorem 6.1 (Quasifuchsian reciprocity). The proof
of the general version is essentially the same; it turns on the symmetry of the
kernel K = −6 dz2 dw2/(π(z − w)4).
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Schottky uniformization. As an application, let S be a closed surface of
genus g ≥ 2, and fix a maximal collection (a1, . . . , ag) of disjoint simple closed
curves on S, linearly independent in H1(S, R). Then to each X ∈ Teich(S) one
can associate a Schottky group ΓS , such that X = ΩS/ΓS and the curves ai lift
to ΩS . Let σS(X) be the projective structure on X inherited from ΩS .

Theorem 9.2 (Takhtajan-Zograf) The difference between the Fuchsian and
Schottky projective structures gives a 1-form on Teich(S) satisfying:

d(σF (X) − σS(X)) = −iωWP.

Sketch of the proof. Since σS and σQF are holomorphic, we have ∂(σF−σS) =
∂(σF−σQF ) = −iωWP (Theorem 7.1). Thus we just need to check that the (2,0)-
form ∂(σF −σS) on Teich(S) vanishes. To this end, let us represent the tangent
space to Teich(S) at X by the space H(X) of harmonic Beltrami differentials.
Using the Fuchsian and Schottky representations of X as a quotient Riemann
surface for Kleinian groups ΓF and ΓS , we obtain operators

KF , KS : H(X) → L1(X, dz2)

sending µ ∈ H(X) to its projective distortion φµ. (In the Fuchsian case,
ΩF /ΓF = X 7 X; we set µ = 0 on X.)

We then compute:

∂(σF − σS)(µ, ν) = 〈KF (µ) − KS(µ), ν〉 − 〈KF (ν) − KS(ν), µ〉,

where 〈φ, µ〉 =
∫

X φµ. The key to this computation is to observe that the usual
chain rule for the Schwarzian derivative, S(g ◦f) = Sf +f∗Sg, holds even when
just one of f and g is conformal (assuming the other is sufficiently smooth).

By reciprocity, the bracketed expressions above agree, so ∂(σF − σS) = 0.
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