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4-manifolds with inequivalent symplectic forms and

3-manifolds with inequivalent fibrations

Curtis T. McMullen and Clifford H. Taubes∗

22 August, 1999

Abstract

We exhibit a closed, simply connected 4-manifold X carrying two
symplectic structures whose first Chern classes in H2(X, Z) lie in dis-
joint orbits of the diffeomorphism group of X . Consequently, the mod-
uli space of symplectic forms on X is disconnected.

The example X is in turn based on a 3-manifold M . The symplec-
tic structures on X come from a pair of fibrations π0, π1 : M → S1

whose Euler classes lie in disjoint orbits for the action of Diff(M) on
H1(M, R).

1 Introduction

Symplectic 4-manifolds. A symplectic form ω on a smooth manifold X2n

is a closed 2-form such that ωn "= 0 pointwise. Given a pair of symplectic
forms ω0 and ω1 on X, we say:

(i) ω0 and ω1 are homotopic if there is a smooth family of symplectic
forms ωt, t ∈ [0, 1], interpolating between them;

(ii) ω0 is a pullback of ω1 if ω0 = f∗ω1 for some diffeomorphism f : X → X;
and

(iii) ω0 and ω1 are equivalent if they are related by a combination of (i)
and (ii).

∗This research was supported in part by the NSF. 1991 Mathematics Subject Classifi-
cation: Primary 57R57, Secondary 57M25, 57N13.
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Any symplectic form ω admits a compatible almost complex structure J :
TX → TX (satisfying ω(v, Jv) > 0 for v "= 0). Let c1(ω) ∈ H2(X, Z)
denote the first Chern class of the (canonical) complex line bundle ∧n

C
TX

determined by J . It is easy to see that the first Chern class is a deformation
invariant of the symplectic structure; that is, c1(ω0) = c1(ω1) if ω0 and ω1

are homotopic.
The purpose of this note is to show:

Theorem 1.1 There exists a closed, simply-connected 4-manifold X which
carries a pair of inequivalent symplectic forms. In fact, ω0 and ω1 can be
chosen such that c1(ω0) and c1(ω1) lie in disjoint orbits for the action of
Diff(X) on H2(X, Z).

One can also formulate this result by saying that the moduli space M =
(symplectic forms on X)/Diff(X) is disconnected.

Fibered 3-manifolds. To construct the 4-dimensional example X, we first
produce a compact 3-dimensional manifold M3 that fibers over the circle in
two unrelated ways.

To describe this example, we recall the correspondence between closed
1-forms and measured foliations. Let α be a closed 1-form on M , such
that α and its pullback to ∂M are pointwise nonzero. Then α defines a
measured foliation F of M3, transverse to ∂M , with TF = Ker α and with
transverse measure µ(T ) =

∫

T |α|. Conversely, a (transversally oriented)
measured foliation F determines such a 1-form α. If α happens to have
integral periods, then we can write α = dπ for a fibration π : M → S1 =
R/Z, and the leaves of F are then simply the fibers of π.

The Euler class of a measured foliation,

e(F) = e(α) ∈ H1(M, Z)/(torsion),

is represented geometrically by the zero set of a section s : M → TF , such
that the vector field s|∂M is inward pointing and nowhere vanishing.

Just as for symplectic forms, we say:

(i) α0 and α1 are homotopic if they are connected by a smooth family of
closed 1-forms αt, nonvanishing on M and ∂M ;

(ii) α0 is a pullback of α1 if α0 = f∗α1 for some f ∈ Diff(M); and

(iii) α0 and α1 are equivalent if they are related by a combination of (i)
and (ii).
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In the 3-dimensional arena we will show:

Theorem 1.2 There exists a compact link complement M = S3 − N (K)
which carries a pair of inequivalent measured foliations α0 and α1. In fact
α0 and α1 can be chosen to be fibrations, with e(α0) and e(α1) in disjoint
orbits for the action of Diff(M) on H1(M, Z).

(Here and below, N (K) denotes an open regular neighborhood of a link K
in a 3-manifold.)

Figure 1. An axis added to the Borromean rings.

Description of the manifolds. For the specific examples we will present,
the link K is obtained from the Borromean rings K1 ∪ K2 ∪ K3 by adding
a fourth component K4; see Figure 1. The fourth component is the axis of
a rotation of S3 cyclically permuting {K1,K2,K3}; it can be regarded as a
vertical line in R3, normal to a plane nearly containing the rings.

Alternatively, we can also write M = T 3 −N (L), where

• T 3 = R3/Z is the flat Euclidean 3-torus,

• L ⊂ T 3 is a union of 4 disjoint, oriented, closed geodesics,

• (L1, L2, L3) gives a basis for H1(T 3, Z), and

• L4 = L1 + L2 + L3 in H1(T 3, Z).

The 4-manifold X of Theorem 1.1 is the fiber-sum of T 3 × S1 with 4
copies of the elliptic surface E(1) → CP1, with the elliptic fiber F ⊂ E(1)
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glued along Li × S1. The key to the example is that Diff(X) preserves the
Seiberg–Witten norm

‖s‖SW = sup{|s · t| : SW(t) "= 0}

on H2(X, R), just as Diff(M) preserves the Alexander norm on H1(M, R).
The Seiberg–Witten norm manifests the rigidity of the smooth structure on
X, allowing us to check that the Chern classes c1(ω1), c1(ω2) lie in different
orbits of Diff(X).

On the other hand, using Freedman’s work one can see that these two
Chern classes are related by a homeomorphism of X. In fact, using the
3-torus we can write H2(X, Z) with its intersection form as a direct sum

(H2(X, Z),∧) =
(

Z
6,

(

0 I
I 0

))

⊕ (V, q),

where the Chern classes c1(ω1), c1(ω2) lie in the first factor and are related
by an integral automorphism preserving the hyperbolic form. By Freed-
man’s result [FQ, §10.1], this automorphism of H2(X, Z) is realized by a
homeomorphism of X.

Many more examples can be constructed along similar lines. For a simple
variation, one can replace L4 with a geodesic homologous to L1+L2+(2m+
1) ·L3, m ∈ Z, and replace the elliptic surface E(1) with its n-fold fiber sum,
E(n). The manifolds M and X resulting from these variations also satisfy
the Theorems above.

3-manifolds 4-manifolds

Measured foliations F of M Symplectic forms ω on X

Fibrations M → S1 Integral symplectic forms

Fibers minimize genus Pseudo-holomorphic curves minimize genus

Euler class e(TF) First Chern class c1(∧2
C
TX)

Alexander polynomial Seiberg–Witten polynomial

∆M ∈ Z[H1]
∑

SW(t) · t ∈ Z[H2]

Alexander norm on H1(M, R) Seiberg–Witten norm on H2(X, R)

Table 2.

Notes and references. Our examples exploit a dictionary between 3 and
4 dimensions, some of whose entries are summarized in Table 2.
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The connection between the Thurston norm and the Seiberg–Witten
invariant was developed by Kronheimer and Mrowka in [KM], [Kr2], [Kr1],
while the work of Meng–Taubes and Fintushel–Stern brought the Alexander
polynomial into play [MeT], [FS1], [FS2], [FS3]. Inasmuch as the Alexander
polynomial is tied to the Thurston norm in [Mc2], [Mc1], (see also [Vi]),
there is an intriguing circle of ideas here which might be better understood.

2 The Alexander and Thurston norms

In this section we recall the Alexander and Thurston norms for a 3-manifold,
and prove that Theorem 1.2 holds for the link complement pictured in the
Introduction.

The Thurston norm. Let M be a compact, connected, oriented 3-
manifold, whose boundary (if any) is a union of tori. For any compact
oriented n-component surface S = S1 + · · · + Sn, let

χ−(S) =
∑

χ(Si)<0

|χ(Si)|.

The Thurston norm on H1(M, Z) measures the minimum complexity of a
properly embedded surface (S, ∂S) ⊂ (M, ∂M) dual to a given cohomology
class; it is given by

‖φ‖T = inf{χ−(S) : [S] = φ}.

The Thurston norm extends by linearity to H1(M, R).
Let BT = {φ : ‖φ‖T ≤ 1} denote the unit ball in the Thurston norm; it

is a finite polyhedron in H1(M, R). A basic result is:

Theorem 2.1 Suppose φ0 ∈ H1(M, Z) is represented by a fibration M →
S1 with fiber S. Then:

• ‖φ0‖T = χ−(S);

• φ0 is contained in the open cone R+ ·F over a top-dimensional face F
of the Thurston norm ball BT ;

• every cohomology class in H1(M, Z)∩R+ ·F is represented by a fibra-
tion;

• the classes in H1(M, R)∩R+ ·F are represented by measured foliations;
and
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• the Euler class e = e(φ0) ∈ H1(M, Z) is dual to the supporting hyper-
plane to F . More precisely, φ(e) = −1 for all φ ∈ F .

In this case we say F is a fibered face of the Thurston norm ball. For more
details, see [Th2] and [Fr].

The Alexander norm. Next we discuss the Alexander polynomial and
its associated norm. Let G = H1(M, Z)/(torsion) ∼= Zb1(M). The Alexander
polynomial ∆M is an element of the group ring Z[G], well-defined up to a
unit and canonically determined by π1(M). It can be effectively computed
from a presentation for π1(M) (see e.g. [CF]). Writing

∆M =
∑

G

ag · g,

the Newton polygon N(∆M ) ⊂ H1(M, R) is the convex hull of the set of g
such that ag "= 0. The Alexander norm on H1(M, R) measures the length of
the image of the Newton polygon under a cohomology class φ : H1(M, R) →
R; that is,

‖φ‖A = |φ(N(∆M ))|.

From [Mc2] we have:

Theorem 2.2 If M is a 3-manifold with b1(M) ≥ 2, then we have

‖φ‖A ≤ ‖φ‖T

for all φ ∈ H1(M, R); and equality holds if φ is represented by a fibration
M → S1.

Links in the 3-torus. We now turn to the Thurston norm for link-
complements in the 3-torus. Let T 3 = R3/Z3 denote the flat Euclidean
3-torus. Every nonzero cohomology class φ ∈ H1(T 3, Z) is represented by a
fibration (indeed, a group homomorphism) Φ : T 3 → S1.

Consider an n-component link L ⊂ T 3, consisting of disjoint, oriented,
closed geodesics L1 ∪ · · · ∪ Ln. Define a norm on H1(T 3, R) by

‖φ‖L =
∑

|φ(Li)|, (2.1)

where the Li are considered as elements of H1(M, Z). Let M be the link
complement T 3 −N (L), equipped with the natural inclusion M ⊂ T 3.
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Theorem 2.3 Given φ ∈ H1(T 3, Z), let ψ denote its pullback to M =
T 3 −N (L). Then we have:

‖φ‖L = ‖ψ‖T = ‖ψ‖A. (2.2)

Moreover:

(a) ψ is represented by a fibration Ψ : M → S1 ⇐⇒

(b) φ(Li) "= 0 for all i ⇐⇒

(c) φ belongs to the open cone over a top-dimensional face of the norm
ball BL = {φ : ‖φ‖L ≤ 1} ⊂ H1(T 3, R).

Proof. We begin by showing (a-c) are equivalent. If ψ is represented by
a fibration Ψ : M → S1, then the fibers are transverse to ∂M and thus
φ(Li) "= 0 for all i. On the other hand, the latter condition insures that
the linear fibration Φ : T 3 → S1 associated to φ restricts to a fibration of
M representing ψ, so we have (a) ⇐⇒ (b). Finally ‖φ‖L behaves linearly
on H1(T 3, R) unless one of the terms φi(L) changes sign, and thus the cone
on the top dimensional faces is exactly the locus where φ(Li) "= 0 for all i,
showing (b) ⇐⇒ (c).

To establish equation (2.2), first suppose ψ is represented by a fibration
Ψ : M → S1 with fiber S. Since we may take Ψ = Φ|M , we see S is a union
of tori with

∑

|φ(Li)| punctures, and thus

χ−(S) = ‖ψ‖T =
∑

|φ(Li)| = ‖φ‖L.

Equality with the Alexander norm holds by Theorem 2.2.
Thus (2.2) holds on the cone over the top-dimensional faces of BL. Since

this cone is dense, (2.2) holds throughout H1(T 3, Z) by continuity.

The Borromean rings plus axis. We now turn to the study of the 4-
component link K ⊂ S3 pictured in Figure 1. Let M = S3 − N (K), and
let mi denote the meridian linking Ki positively. Then (m1,m2,m3,m4)
forms a basis for H1(M, Z) ∼= Z4, and the Alexander polynomial ∆M can be
written as a Laurent polynomial in these variables.

Lemma 2.4 The Alexander polynomial of M = S3 −N (K) is given by

∆M (x, y, z, t) = −4 +

(

t +
1

t

)

−

(

xy +
1

xy
+ yz +

1

yz
+ xz +

1

xz

)

+

(

xyz +
1

xyz

)

+

(

x +
1

x
+ y +

1

y
+ z +

1

z

)

,
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Figure 3. The Newton polygon of ∆M (x, y, z, 1) (top), and its dual.
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where (x, y, z, t) = (m1,m2,m3,m4).

Proof. The projection in Figure 1 yields the Wirtinger presentation

π1(M) = 〈a, b, c, d, e, f, g, h, i, j, k, l :

aj = jb, bi = ic, gc = ag, dc = ce, ae = fa, fj = jd,

ge = eh, hj = ji, di = gd, jg = gk, kc = cl, le = ej〉.

Here (a, b, c), (d, e, f), (g, h, i) and (j, k, l) are the edges of K1, K2, K3

and K4 respectively. Given this presentation, the calculation of ∆M is a
straightforward application of the Fox calculus [Fox].

Figure 3 shows the intersection of the Newton polygon N(∆M ) with the
(x, y, z)-hyperplane.

To bring the 3-torus into play, recall that 0-surgery along the Borromean
rings determines a diffeomorphism

S3 −N (K1 ∪ K2 ∪ K3) ∼= T 3 −N (L1 ∪ L2 ∪ L3),

where (L1, L2, L3) are disjoint closed geodesics forming a basis for H1(T 3, Z).
Under this surgery, the meridians (m1,m2,m3) go over to longitudes of
(L1, L2, L3). On the other hand, K4 goes over to the isotopy class of a
geodesic L4 ⊂ T 3, with

L4 = L1 + L2 + L3 in H1(T
3, Z).

(To check the homology class of L4, note that in S3 we have lk(Ki,K4) = 1
for i = 1, 2, 3.)

The meridian m4 goes over to a meridian of L4, so unlike (m1,m2,m3)
it becomes trivial in H1(T 3, Z). Thus we have:

H1(M, R) ⊃ H1(T 3, R) = (R · m4)
⊥.

Lemma 2.5 The action of Diff(M) on H1(M, R) preserves the subspace
H1(T 3, R).

Proof. Consider the Newton polygon

N = N(∆M ) ⊂ H1(M, R),

where ∆M is given by Proposition 2.4. Since (t+1/t) is the only expression
in ∆M involving t, we have N = N0 + [−1, 1] · t where

N0 = N(∆M (x, y, z, 1))
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is the polyhedron in (x, y, z)-space shown in Figure 3. The vertices ±t of N
are thus combinatorially distinguished: they are the endpoints of 14 edges of
N (coming from the 14 vertices of N0), whereas all other vertices of N have
degree 5. Since Diff(X) preserves N , it also stabilizes the special vertices
{±t}, and thus Diff(X) stabilizes H1(T 3, R) = (R · t)⊥ = (R · m4)⊥.

Proof of Theorem 1.2. For our chosen link L ⊂ T 3, we have

‖φ‖L = |φ(m1)| + |φ(m2)| + |φ(m3)| + |φ(m1 + m2 + m3)|.

The unit ball BL ⊂ H1(T 3, R) of this norm is shown in Figure 3 (bottom);
it is dual to the convex body N0.

Note that BL has both triangular and quadrilateral faces. Pick integral
classes φ0, φ1 ∈ H1(T 3, Z) lying inside the cones over faces F0 and F1 of
different types, and let α0, α1 ∈ H1(M, Z) denote their pullbacks to M .

By Theorem 2.3, the classes α0 and α1 correspond to fibrations M → S1.
On the other hand, Diff(M) preserves the subspace H1(T 3, R) ⊂ H1(M, R)
as well as the norm ‖φ‖L = ‖α‖T on this subspace. Thus Diff(M) preserves
BL, so it cannot send the face F0 to F1. The supporting hyperplanes for α0

and α1 in BT thus lie in different orbits of Diff(M). But these supporting
hyperplanes are represented by e(α0) and e(α1), so their Euler classes are
in different orbits as well.

The Thurston norm. As was shown in [Mc2], the Alexander and Thurston
norms agree for many simple links. The norms agree for the Borromean rings
plus axis K ⊂ S3 as well.

To see this, note that K can be presented as the closure of a 3-strand
braid wrapping once around the axis K4 ⊂ K. A disk spanning K4 and
transverse to K1 ∪ K2 ∪ K3 determines a fibered face F of the Thurston
norm ball BT . As observed by N. Dunfield, one can use the Teichmüller
polynomial [Mc1] to show that for any 3-strand braid, the fibered face F
coincides with a face of the Alexander norm ball BA. In the example at hand,
all the vertices of BA are contained in ±F , so we have BA ⊂ BT by convexity.
The reverse inclusion comes from the general inequality ‖φ‖A ≤ ‖φ‖T .

Further example: a closed 3-manifold. To conclude, we describe a
closed 3-manifold N which fibers over the circle in two inequivalent ways.

Let M = T 3 − N (L) = S3 − N (K) be the link complement considered
above. Note that the longitudes of K1, K2 and K3 are all homologous to
the meridian m4 of K4, since the components of the Borromean rings are
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unlinked, while each component links K4 once. Since T 3 is obtained by
0-surgery on K, all the meridians of L are homologous to m4.

Now let N → T 3 be the 2-fold covering, branched over L, determined by
the homomorphism

ξ : H1(M, Z) → {−1, 1}

satisfying ξ(m1) = ξ(m2) = ξ(m3) = 1 and ξ(m4) = −1.
The pullback map H1(T 3, R) → H1(N, R) is easily seen to be injective.

We claim it is an isomorphism. To see surjectivity, let N ′ ⊂ N be the
preimage of M ⊂ T 3. Decomposing H1(N ′, R) into eigenspaces for the
action of the Z/2 deck group for N ′ → M , we obtain an isomorphism

H1(N ′, R) ∼= H1(M, R) ⊕ H1(M, Rξ),

where the last term represents cohomology coefficients twisted by the char-
acter ξ of π1(M). Since ∆M (ξ) = ∆M(1, 1, 1,−1) = 4 "= 0, we have
H1(M, Rξ) = 0 (cf. [Mc2, §3]). Thus any cohomology class in H1(N, R)
restricts to a Z/2-invariant class on N ′, so it is the pullback of a class on
T 3.

Moreover, every fibration of T 3 transverse to L lifts to a fibration of N ,
so we find:

Theorem 2.6 The Thurston norm ball BT ⊂ H1(N, R) agrees with the
norm ball BL ⊂ H1(T 3, R), and every face is fibered.

Picking fibrations in combinatorially inequivalent faces of BT as before, we
have:

Corollary 2.7 The closed 3-manifold N admits a pair of fibrations α0, α1

such that e(α0), e(α1) lie in disjoint orbits for the action of Diff(N) on
H2(N, Z).

3 Fiber sum and symplectic 4-manifolds

In this section we recall the fiber sum construction, which can be used to
canonically associate a 4-manifold X = X(P,L) to a link L in a 3-manifold
P . Under this construction, suitable fibrations of P give symplectic forms on
X(P,L), and the Alexander polynomial ∆M of M = P −N (L) determines
Seiberg–Witten invariants of X. It is then straightforward to prove Theorem
1.1 by taking X = X(T 3, L), where L ⊂ T 3 is the 4-component link discussed
in previous sections.
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Fiber sum. Let fi : T 2 × D2 → Xi, i = 1, 2 be smooth embeddings of the
torus cross a disk into a pair of smooth closed 4-manifolds. Let

X ′
i = Xi − f(T 2 × intD2);

it is a smooth manifold whose boundary is marked by T 2×S1. The fiber sum
Z of X1 and X2 is the closed smooth manifold obtained by gluing together
X ′

1 and X ′
2 along their boundaries, such that (x, t) ∈ ∂X ′

1 is identified with
(x,−t) ∈ ∂X ′

2. We denote the fiber sum by

Z = X1 #
T1=T2

X2,

where Ti = f(T 2 × {0}) ⊂ Xi; note that there is an implicit identification
between the normal bundles of the tori Ti.

The fiber sum of symplectic manifolds along symplectic tori is also sym-
plectic. More precisely, if ωi are symplectic forms on Xi with ωi > 0 on Ti

and
∫

T1
ω1 =

∫

T2
ω2, then Z carries a natural symplectic form ω with ω = ωi

on X ′
i.

For more details, see [Go], [MW], [FS1], [FS2], [FS3].

The elliptic surface E(1). A convenient 4-manifold for use in the fiber-
sum construction is the rational elliptic surface E(1). The complex man-
ifold E(1) is obtained by blowing up the base-locus for a generic pencil
of elliptic curves on CP2. Thus E(1) is isomorphic to CP2#9CP2; it is
simply-connected and unique up to diffeomorphism. The pencil provides a
holomorphic map E(1) → CP1 with generic fiber F an elliptic curve, and
the canonical bundle of E(1) is represented by the divisor −F .

The projection E(1) → CP1 gives a natural trivialization of the normal
bundle of the fiber torus F . Since F ⊂ E(1) is a holomorphic curve in a
projective variety, there is a symplectic (Kähler) form on E(1) with ω|F > 0.

Each of the nine exceptional divisors gives a holomorphic section

s : P
1 → E(1).

In particular, a meridian for the fiber F is contractible in E(1) − N (F ),
since it bounds the image of a disk under s. Since E(1) is simply-connected,
any loop in the complement of F is homotopic to a product of conjugates of
meridians, so E(1) −N (F ) is also simply-connected.

For a detailed discussion of the topology of elliptic surfaces, see [HKK,
§1] or [GS].

From links to 4-manifolds. Now let L ⊂ P 3 be a framed n-component
link in a closed, oriented 3-manifold. Such a link determines:

12



• a 3-dimensional link complement M = P −N (L), and

• a 4-dimensional fiber-sum X = X(P,L) = (P × S1) #
L×S1=nF

nE(1).

To describe the fiber-sum in more detail, note that each component Li

of L determines a torus

Ti = Li × S1 ⊂ P × S1,

and the framing of Li provides a trivialization of the normal bundle of Ti.
Take n copies of the elliptic surface E(1) with fiber F ; as remarked above,
the projection E(1) → CP1 provides a natural trivialization of the normal
bundle of F . Finally, choose an orientation-preserving identification be-
tween L × S1 and nF . The fiber-sum X(P,L) is then defined using these
identifications.

It turns out that every orientation-preserving diffeomorphism of F ex-
tends to a diffeomorphism of E(1), preserving the normal data; indeed, the
monodromy of the fibration E(1) → CP1 is the full group SL2(Z). Thus the
diffeomorphism type of X(P,L) is the same for any choice of identification
between L × S1 and nF .

Proposition 3.1 The fiber-sum X is simply-connected if π1(M) is nor-
mally generated by π1(∂M) (e.g. if M is homeomorphic to a link comple-
ment in S3).

Proof. When the simply-connected manifolds n(E(1)−N (F )) are attached
to M ×S1 along ∂M ×S1, they kill π1(∂M ×S1) by van Kampen’s theorem.
Since the latter groups normally generate π1(M×S1), the resulting manifold
X is simply-connected.

Promotion of cycles. The fiber-sum construction furnishes us with an
inclusion M × S1 = (P × S1)′ ⊂ X.

Proposition 3.2 The map

i : H1(M, R) → H2(X, R),

sending a 1-cycle γ ⊂ M to the Poincaré dual of γ × S1 ⊂ X, is injective.

Proof. The map i is a composition of three maps:

H1(M) → H2(M × S1) → H2(X) → H2(X).
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The first arrow is part of the Künneth isomorphism, and the last comes from
Poincaré duality, so they are both injective. As for the middle arrow

H2(M × S1) → H2(X),

we can use the exact sequence of the pair (X,M × S1) to identify its kernel
with

H3(X,M × S1) ∼= H3(nE(1), nF ) ∼= H1(nE(1) − nF ) = 0.

Here we have used excision, Poincaré duality and the simple-connectivity of
E(1) − F . Thus all three arrows are injective, and so i is injective.

Corollary 3.3 For an n-component link, we have

b+
2 (X(P,L)) ≥ b1(M) ≥ n.

Here b+
2 (X) denotes the rank of the maximal subspace of H2(X, R) on which

the intersection form is positive-definite.

Proof. Since 1-cycles in general position on M are disjoint, the intersection
form on H2(X, R) restricts to zero on i(H1(M, R)). But the intersection
form is non-degenerate, so it must admit a positive (and negative) subspace
of dimension at least b1(M) = dim i(H1(M, R)).

For the second inequality, just note that we have b1(M) ≥ b1(∂M)/2 = n.
Indeed, by Lefschetz duality, the kernel of H1(∂M) → H1(M) is Lagrangian,
so the image has dimension n.

From fibrations to symplectic forms. A central point for us is that
suitable fibrations α of P give rise to symplectic structures ω on X(P,L).

Theorem 3.4 For any fibration α ∈ H1(P, Z) transverse to L, there is a
symplectic form ω on X(P,L) with

c1(ω) = i(e(α|M)).

Proof. Let α = dπ be the closed 1-form representing a fibration π : P → S1

transverse to L.
Pick a closed 2-form β on M such that β restricts to an area form on each

leaf of F . (One can construct such a form by representing the monodromy
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of the fibration by an area-preserving map.) As observed by Thurston, for
ε > 0 sufficiently small, the closed 2-form

ω0 = α ∧ dt + εβ

is a symplectic form on P × S1, nowhere vanishing on L × S1 [Th1]. (Here
[dt] is the standard 1-form on S1 = R/Z, and α and β have been pulled back
to the product).

By scaling the Kähler form, we can provide the ith copy of E(1) with a
symplectic form ωi such that

∫

F ωi =
∫

Li×S1 ω. Then as mentioned above,
ω0 and (ωi) joined together under fiber-sum to yield a symplectic form ω on
X.

Let K → X denote the canonical bundle of (X, ω). We will compute
c1(K) by constructing a section σ : X → K.

Let M = P−N (L). As an oriented R2-bundle, K|(M×S1) is isomorphic
to the pullback of TF from M . Let s : M → TF be a section such that
s|∂M is inward pointing and nowhere vanishing. Then the zero set of s is a
1-cycle γ representing the Euler class e(α|M) ∈ H1(M, R). Pulling back s,
we obtain a section σ0 : M × S1 → K with zero set γ × S1.

Now consider the 4-manifold E(1)′ = E(1) −N (F ) attached to M × S1

along Ti×S1. If we have ωi(F ) > 0, then K|E(1)′ is just the pullback of the
canonical bundle of E(1). Since −F is a canonical divisor on E(1), there
is a nowhere vanishing section σi : E(1)′ → K, namely the restriction of a
meromorphic 2-form on E(1) with divisor −F .

We claim σ0 and σi fit together under the gluing identification between
Ti×S1 and F ×S1. To check this, we use the framings to identify K|Ti×S1

and K|F ×S1 with the trivial bundle over T 2×S1. Under this identification,

σ0 : T 2 × S1 → C
∗

is homotopic to the projection T 2 × S1 → S1 ⊂ C∗, since the vector field
s|Ti runs along the meridians of ∂M . Similarly,

σi : T 2 × S1 → C
∗

is homotopic to 1/σ0, because of the simple pole along F . Since Ti × S1 is
identified with F × S1 using the involution (x, t) ∼ (x,−t) on T 2 × S1, the
two sections correspond under gluing.

In the case where we have ωi(F ) < 0, both homotopy classes are reversed,
so σ0 and σi still agree under gluing. Thus σ0 and (σi) join together to form
a global section σ : X → K with no zeros outside M × S1. It follows that
c1(X, ω) is Poincaré dual to γ × S1; equivalently, that c1(ω) = i(α|M).
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The Seiberg–Witten polynomial. A central feature of the fiber-sum
X = X(P,L) is that its Seiberg–Witten polynomial is directly computable.

Assume that X is simply-connected and b+
2 (X) > 1. Then the Seiberg–

Witten invariant of X can be regarded as a map

SW : H2(X, Z) → Z,

well-defined up to a sign and vanishing outside a finite set. This information
is conveniently packaged as a Laurent polynomial

SWX =
∑

t

SW(t) · t ∈ Z[H2(X, Z)].

Theorem 3.5 Suppose M is the complement of an n-component link L ⊂
P , and π1(∂M) normally generates π1(M). Then X = X(P,L) is simply-
connected, we have b+

2 (X) ≥ n, and

SWX = ±
∑

at · i(2t),

where ∆M =
∑

at · t is the symmetrized Alexander polynomial of M .

Remarks. This Theorem was established by Fintushel and Stern in the
special case where (P,L) is obtained by a certain surgery on a link in S3

[FS2, Thm. 1.9].1 To obtain the symmetrized Alexander polynomial, one
multiplies ∆K(t) by a monomial to arrange that its Newton polygon is cen-
tered at the origin. The exponents in the symmetrized polynomial may be
half-integral.

Proof. To compute SWX , we regard X as the union of manifolds X0 =
M × S1 and Xi = E(1) − N (F ), i = 1, . . . , n, glued together along their
boundary. For such manifolds one can define a relative Seiberg–Witten
polynomial SWXi

∈ Z[H2(Xi, ∂Xi; Z), such that

SWX = SWX0
· SWX1

· · · SWXn ,

using the natural map H2(Xi, ∂Xi) → H2(X) to compute the product. For
this gluing formula, developed by Morgan, Mrowka, Szabo and Taubes, see
[FS2, Thm. 2.2] and [Ta].

Now for each Xi = E(1) − N (F ), the relative polynomial is simply
1. To see this, just apply the product formula above to the K3 surface

1Note: contrary to [FS2, p. 371]: the cohomology classes [Tj ] in their formula for SWX

are always linearly independent in H2(X, R), by Proposition 3.2 above.
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Z = E(1)#F E(1), which satisfies SWZ = 1. (This well-known property
of K3 surfaces follows, for example, from equations (4.17) and (4.20) in
Witten’s original paper [Wit].)

Thus we have SWX = SWX0
= SWM×S1. Finally the Seiberg-Witten

polynomial for M ×S1 is given in terms of ∆M by the main result of [MeT],
yielding the formula for SWX above.

To see π1(X) = {1} and b+
2 (X) ≥ n, apply Proposition 3.1 and Corollary

3.3 above.

Proof of Theorem 1.1. Using the Seiberg–Witten invariants to control
the action of Diff(X), it is now easy to give an example of a simply-connected
4-manifold X with inequivalent symplectic forms.

For a concrete example, let X = X(T 3, L) for the 4-component link
L ⊂ T 3 studied in the preceding section, and choose any framing of L. As
we have seen, the link-complement M = T 3 − N (L) is homeomorphic to
the exterior S3 − N (K) of the Borromean rings plus axis. In particular,
π1(M) is the normal closure of π1(∂M), so X is simply-connected and we
have b+

2 (X) ≥ 4.
Let mi, i = 1, . . . , 4 be the basis for H1(M, Z) coming from the meridians

of K ⊂ S3. Then the classes ti = i(mi) form a basis for i(H1(M, Z)) ⊂
H2(X, Z). By Theorem 3.5, we have:

The Seiberg–Witten polynomial of X is given by

SWX = ∆M (t21, t
2
2, t

3
3, t

2
4),

where ∆M (x, y, z, t) is given by Lemma 2.4.

In particular, the Newton polygons satisfy N(SWX) = 2i(N(∆M )).
Now identify H1(T 3, R) with the subspace of H1(M, R) spanned by

(m1,m2,m3), and let

N0 = N(∆M ) ∩ H1(T
3, R).

As we have seen before, any vertex v of N0 is dual to a fibered face F of the
Thurston norm on H1(M, R); indeed, v is dual to a fibration pulled by from
T 3. All fibrations φ in the cone over F have the same Euler class e, which
satisfies

‖φ‖T = 2φ(v) = −φ(e);

thus e = −2v.
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By Theorem 3.4, the vertex

i(e) = i(−2v) ∈ 2i(N0)

is the first Chern class of a symplectic structure on X. Since v ∈ N0 was an
arbitrary vertex, we have:

Every vertex of 2i(N0) ⊂ N(SWX) is the first Chern class of a
symplectic structure on X.

Now pick a pair combinatorially distinct vertices

v0, v1 ∈ 2i(N0) ⊂ N(SWX).

More precisely, referring to Figure 3 (top), we see 2i(N0) has vertices of
degrees 3 and 4; choose one of each type. Then v0 and v1 have degrees 5
and 6 as vertices of N(SWX), since

N(SWX) = 2i(N0) + [−2, 2] · t4

is simply the suspension of 2i(N0). As a consequence, no automorphism of
H2(X, R) stabilizing N(SWX) can transport v0 to v1.

To complete the proof, choose symplectic forms on X with c1(ω0) = v0

and c1(ω1) = v1. Then the Chern classes of ω0 and ω1 lie in distinct orbits
for the action of Diff(X) on H2(X, R), since diffeomorphisms preserve the
Newton polygon of the Seiberg-Witten polynomial. In particular, ω0 and ω1

are inequivalent symplectic forms on X.

Question. Could it be that Diff(X) actually preserves the submanifold
M × S1 ⊂ X up to isotopy?

Further example: skirting gauge theory. To conclude, we sketch an
elementary example of a 4-manifold X carrying a pair of inequivalent sym-
plectic forms — but with π1(X) "= 1. By elementary, we mean the proof
does not use the Seiberg–Witten invariants; instead, it uses the fundamental
group.

To construct the example, simply let X = N ×S1, where N is the closed
3-manifold discussed at the end of §2.

By considering N as a covering of T 3 with a Z/2-orbifold locus along
L, one can show that π1(N) has trivial center. It follows that π1(S1) is the
center of π1(X), and thus the projection

π1(X) → π1(N)

18



is canonical. In particular, every diffeomorphism of X induces an automor-
phism of π1(N).

Now let α0, α1 be fibrations of N whose Euler classes are in different or-
bits for the action of Aut(π1(N)) on H1(N, Z). (These classes exist as before,
because the Alexander polynomial is functorially determined by π1(N), and
hence preserved by automorphisms.) Then the Euler classes e(α0), e(α1) lie
in disjoint orbits for the action of Diff(X) on H1(N) = H1(X)/H1(S1).

Now as we have seen above, each αi gives a symplectic form ωi on X
with c1(ωi) dual to e(αi) × S1. Since the Euler classes lie in disjoint orbits
for the action of Diff(X), so do these Chern classes. In particular, ω0 and
ω1 are inequivalent symplectic forms on X.
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