DIGITAL ACCESS TO SCHOLARSHIP AT HARVARD

4-Manifolds With Inequivalent Symplectic Forms and 3-Manifolds With Inequivalent Fibrations

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	McMullen, Curtis T., and Cliffor H. Taubes. 1999. 4-Manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations. Mathematical Research Letters 6(5-6): 681-696. Revised 2003.			
Published Version	http://www.mrlonline.org/mrl/			
Accessed	February 18, 2015 5:02:48 AM EST			
Citable Link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:3637160	$	$	This article was downloaded from Harvard University's DASH
:---	:---			
repository, and is made available under the terms and conditions				
applicable to Other Posted Material, as set forth at				
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-				
use\#LAA				

[^0]
4-manifolds with inequivalent symplectic forms and 3 -manifolds with inequivalent fibrations

Curtis T. McMullen and Clifford H. Taubes*

22 August, 1999

Abstract

We exhibit a closed, simply connected 4 -manifold X carrying two symplectic structures whose first Chern classes in $H^{2}(X, \mathbb{Z})$ lie in disjoint orbits of the diffeomorphism group of X. Consequently, the moduli space of symplectic forms on X is disconnected.

The example X is in turn based on a 3 -manifold M. The symplectic structures on X come from a pair of fibrations $\pi_{0}, \pi_{1}: M \rightarrow S^{1}$ whose Euler classes lie in disjoint orbits for the action of $\operatorname{Diff}(M)$ on $H_{1}(M, \mathbb{R})$.

1 Introduction

Symplectic 4-manifolds. A symplectic form ω on a smooth manifold $X^{2 n}$ is a closed 2 -form such that $\omega^{n} \neq 0$ pointwise. Given a pair of symplectic forms ω_{0} and ω_{1} on X, we say:
(i) ω_{0} and ω_{1} are homotopic if there is a smooth family of symplectic forms $\omega_{t}, t \in[0,1]$, interpolating between them;
(ii) ω_{0} is a pullback of ω_{1} if $\omega_{0}=f^{*} \omega_{1}$ for some diffeomorphism $f: X \rightarrow X$; and
(iii) ω_{0} and ω_{1} are equivalent if they are related by a combination of (i) and (ii).

[^1]Any symplectic form ω admits a compatible almost complex structure J : $T X \rightarrow T X$ (satisfying $\omega(v, J v)>0$ for $v \neq 0$). Let $c_{1}(\omega) \in H^{2}(X, \mathbb{Z})$ denote the first Chern class of the (canonical) complex line bundle $\wedge_{\mathbb{C}}^{n} T X$ determined by J. It is easy to see that the first Chern class is a deformation invariant of the symplectic structure; that is, $c_{1}\left(\omega_{0}\right)=c_{1}\left(\omega_{1}\right)$ if ω_{0} and ω_{1} are homotopic.

The purpose of this note is to show:
Theorem 1.1 There exists a closed, simply-connected 4-manifold X which carries a pair of inequivalent symplectic forms. In fact, ω_{0} and ω_{1} can be chosen such that $c_{1}\left(\omega_{0}\right)$ and $c_{1}\left(\omega_{1}\right)$ lie in disjoint orbits for the action of $\operatorname{Diff}(X)$ on $H^{2}(X, \mathbb{Z})$.

One can also formulate this result by saying that the moduli space $\mathcal{M}=$ (symplectic forms on $X) / \operatorname{Diff}(X)$ is disconnected.
Fibered 3-manifolds. To construct the 4-dimensional example X, we first produce a compact 3-dimensional manifold M^{3} that fibers over the circle in two unrelated ways.

To describe this example, we recall the correspondence between closed 1 -forms and measured foliations. Let α be a closed 1-form on M, such that α and its pullback to ∂M are pointwise nonzero. Then α defines a measured foliation \mathcal{F} of M^{3}, transverse to ∂M, with $T \mathcal{F}=\operatorname{Ker} \alpha$ and with transverse measure $\mu(T)=\int_{T}|\alpha|$. Conversely, a (transversally oriented) measured foliation \mathcal{F} determines such a 1 -form α. If α happens to have integral periods, then we can write $\alpha=d \pi$ for a fibration $\pi: M \rightarrow S^{1}=$ \mathbb{R} / \mathbb{Z}, and the leaves of \mathcal{F} are then simply the fibers of π.

The Euler class of a measured foliation,

$$
e(\mathcal{F})=e(\alpha) \in H_{1}(M, \mathbb{Z}) /(\text { torsion })
$$

is represented geometrically by the zero set of a section $s: M \rightarrow T \mathcal{F}$, such that the vector field $s \mid \partial M$ is inward pointing and nowhere vanishing.

Just as for symplectic forms, we say:
(i) α_{0} and α_{1} are homotopic if they are connected by a smooth family of closed 1-forms α_{t}, nonvanishing on M and ∂M;
(ii) α_{0} is a pullback of α_{1} if $\alpha_{0}=f^{*} \alpha_{1}$ for some $f \in \operatorname{Diff}(M)$; and
(iii) α_{0} and α_{1} are equivalent if they are related by a combination of (i) and (ii).

In the 3-dimensional arena we will show:
Theorem 1.2 There exists a compact link complement $M=S^{3}-\mathcal{N}(K)$ which carries a pair of inequivalent measured foliations α_{0} and α_{1}. In fact α_{0} and α_{1} can be chosen to be fibrations, with $e\left(\alpha_{0}\right)$ and $e\left(\alpha_{1}\right)$ in disjoint orbits for the action of $\operatorname{Diff}(M)$ on $H_{1}(M, \mathbb{Z})$.
(Here and below, $\mathcal{N}(K)$ denotes an open regular neighborhood of a link K in a 3 -manifold.)

Figure 1. An axis added to the Borromean rings.

Description of the manifolds. For the specific examples we will present, the link K is obtained from the Borromean rings $K_{1} \cup K_{2} \cup K_{3}$ by adding a fourth component K_{4}; see Figure 1. The fourth component is the axis of a rotation of S^{3} cyclically permuting $\left\{K_{1}, K_{2}, K_{3}\right\}$; it can be regarded as a vertical line in \mathbb{R}^{3}, normal to a plane nearly containing the rings.

Alternatively, we can also write $M=T^{3}-\mathcal{N}(L)$, where

- $T^{3}=\mathbb{R}^{3} / \mathbb{Z}$ is the flat Euclidean 3-torus,
- $L \subset T^{3}$ is a union of 4 disjoint, oriented, closed geodesics,
- $\left(L_{1}, L_{2}, L_{3}\right)$ gives a basis for $H_{1}\left(T^{3}, \mathbb{Z}\right)$, and
- $L_{4}=L_{1}+L_{2}+L_{3}$ in $H_{1}\left(T^{3}, \mathbb{Z}\right)$.

The 4-manifold X of Theorem 1.1 is the fiber-sum of $T^{3} \times S^{1}$ with 4 copies of the elliptic surface $E(1) \rightarrow \mathbb{C P}^{1}$, with the elliptic fiber $F \subset E(1)$
glued along $L_{i} \times S^{1}$. The key to the example is that $\operatorname{Diff}(X)$ preserves the Seiberg-Witten norm

$$
\|s\|_{\mathrm{SW}}=\sup \{|s \cdot t|: \operatorname{SW}(t) \neq 0\}
$$

on $H^{2}(X, \mathbb{R})$, just as $\operatorname{Diff}(M)$ preserves the Alexander norm on $H^{1}(M, \mathbb{R})$. The Seiberg-Witten norm manifests the rigidity of the smooth structure on X, allowing us to check that the Chern classes $c_{1}\left(\omega_{1}\right), c_{1}\left(\omega_{2}\right)$ lie in different orbits of $\operatorname{Diff}(X)$.

On the other hand, using Freedman's work one can see that these two Chern classes are related by a homeomorphism of X. In fact, using the 3 -torus we can write $H^{2}(X, \mathbb{Z})$ with its intersection form as a direct sum

$$
\left(H^{2}(X, \mathbb{Z}), \wedge\right)=\left(\mathbb{Z}^{6},\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right)\right) \oplus(V, q),
$$

where the Chern classes $c_{1}\left(\omega_{1}\right), c_{1}\left(\omega_{2}\right)$ lie in the first factor and are related by an integral automorphism preserving the hyperbolic form. By Freedman's result $[\mathrm{FQ}, \S 10.1]$, this automorphism of $H^{2}(X, \mathbb{Z})$ is realized by a homeomorphism of X.

Many more examples can be constructed along similar lines. For a simple variation, one can replace L_{4} with a geodesic homologous to $L_{1}+L_{2}+(2 m+$ $1) \cdot L_{3}, m \in \mathbb{Z}$, and replace the elliptic surface $E(1)$ with its n-fold fiber sum, $E(n)$. The manifolds M and X resulting from these variations also satisfy the Theorems above.

3-manifolds	4-manifolds
Measured foliations \mathcal{F} of M	Symplectic forms ω on X
Fibrations $M \rightarrow S^{1}$	Integral symplectic forms
Fibers minimize genus	Pseudo-holomorphic curves minimize genus
Euler class $e(T \mathcal{F})$	First Chern class $c_{1}\left(\wedge_{\mathbb{C}}^{2} T X\right)$
Alexander polynomial	Seiberg-Witten polynomial
$\Delta_{M} \in \mathbb{Z}\left[H_{1}\right]$	$\sum \operatorname{SW}(t) \cdot t \in \mathbb{Z}\left[H^{2}\right]$
Alexander norm on $H^{1}(M, \mathbb{R})$	Seiberg-Witten norm on $H^{2}(X, \mathbb{R})$

Table 2.

Notes and references. Our examples exploit a dictionary between 3 and 4 dimensions, some of whose entries are summarized in Table 2.

The connection between the Thurston norm and the Seiberg-Witten invariant was developed by Kronheimer and Mrowka in [KM], $[\mathrm{Kr} 2],[\mathrm{Kr} 1]$, while the work of Meng-Taubes and Fintushel-Stern brought the Alexander polynomial into play [MeT], [FS1], [FS2], [FS3]. Inasmuch as the Alexander polynomial is tied to the Thurston norm in [Mc2], [Mc1], (see also [Vi]), there is an intriguing circle of ideas here which might be better understood.

2 The Alexander and Thurston norms

In this section we recall the Alexander and Thurston norms for a 3 -manifold, and prove that Theorem 1.2 holds for the link complement pictured in the Introduction.
The Thurston norm. Let M be a compact, connected, oriented 3manifold, whose boundary (if any) is a union of tori. For any compact oriented n-component surface $S=S_{1} \sqcup \cdots \sqcup S_{n}$, let

$$
\chi_{-}(S)=\sum_{\chi\left(S_{i}\right)<0}\left|\chi\left(S_{i}\right)\right| .
$$

The Thurston norm on $H^{1}(M, \mathbb{Z})$ measures the minimum complexity of a properly embedded surface $(S, \partial S) \subset(M, \partial M)$ dual to a given cohomology class; it is given by

$$
\|\phi\|_{T}=\inf \left\{\chi_{-}(S):[S]=\phi\right\} .
$$

The Thurston norm extends by linearity to $H^{1}(M, \mathbb{R})$.
Let $B_{T}=\left\{\phi:\|\phi\|_{T} \leq 1\right\}$ denote the unit ball in the Thurston norm; it is a finite polyhedron in $H^{1}(M, \mathbb{R})$. A basic result is:

Theorem 2.1 Suppose $\phi_{0} \in H^{1}(M, \mathbb{Z})$ is represented by a fibration $M \rightarrow$ S^{1} with fiber S. Then:

- $\left\|\phi_{0}\right\|_{T}=\chi_{-}(S)$;
- ϕ_{0} is contained in the open cone $\mathbb{R}_{+} \cdot F$ over a top-dimensional face F of the Thurston norm ball B_{T};
- every cohomology class in $H^{1}(M, \mathbb{Z}) \cap \mathbb{R}_{+} \cdot F$ is represented by a fibration;
- the classes in $H^{1}(M, \mathbb{R}) \cap \mathbb{R}_{+} \cdot F$ are represented by measured foliations; and
- the Euler class $e=e\left(\phi_{0}\right) \in H_{1}(M, \mathbb{Z})$ is dual to the supporting hyperplane to F. More precisely, $\phi(e)=-1$ for all $\phi \in F$.

In this case we say F is a fibered face of the Thurston norm ball. For more details, see [Th2] and [Fr].
The Alexander norm. Next we discuss the Alexander polynomial and its associated norm. Let $G=H_{1}(M, \mathbb{Z}) /($ torsion $) \cong \mathbb{Z}^{b_{1}(M)}$. The Alexander polynomial Δ_{M} is an element of the group ring $\mathbb{Z}[G]$, well-defined up to a unit and canonically determined by $\pi_{1}(M)$. It can be effectively computed from a presentation for $\pi_{1}(M)$ (see e.g. [CF]). Writing

$$
\Delta_{M}=\sum_{G} a_{g} \cdot g,
$$

the Newton polygon $N\left(\Delta_{M}\right) \subset H_{1}(M, \mathbb{R})$ is the convex hull of the set of g such that $a_{g} \neq 0$. The Alexander norm on $H^{1}(M, \mathbb{R})$ measures the length of the image of the Newton polygon under a cohomology class $\phi: H_{1}(M, \mathbb{R}) \rightarrow$ \mathbb{R}; that is,

$$
\|\phi\|_{A}=\left|\phi\left(N\left(\Delta_{M}\right)\right)\right| .
$$

From [Mc2] we have:
Theorem 2.2 If M is a 3-manifold with $b_{1}(M) \geq 2$, then we have

$$
\|\phi\|_{A} \leq\|\phi\|_{T}
$$

for all $\phi \in H^{1}(M, \mathbb{R})$; and equality holds if ϕ is represented by a fibration $M \rightarrow S^{1}$.

Links in the 3 -torus. We now turn to the Thurston norm for linkcomplements in the 3 -torus. Let $T^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$ denote the flat Euclidean 3 -torus. Every nonzero cohomology class $\phi \in H^{1}\left(T^{3}, \mathbb{Z}\right)$ is represented by a fibration (indeed, a group homomorphism) $\Phi: T^{3} \rightarrow S^{1}$.

Consider an n-component link $L \subset T^{3}$, consisting of disjoint, oriented, closed geodesics $L_{1} \cup \cdots \cup L_{n}$. Define a norm on $H^{1}\left(T^{3}, \mathbb{R}\right)$ by

$$
\begin{equation*}
\|\phi\|_{L}=\sum\left|\phi\left(L_{i}\right)\right|, \tag{2.1}
\end{equation*}
$$

where the L_{i} are considered as elements of $H_{1}(M, \mathbb{Z})$. Let M be the link complement $T^{3}-\mathcal{N}(L)$, equipped with the natural inclusion $M \subset T^{3}$.

Theorem 2.3 Given $\phi \in H^{1}\left(T^{3}, \mathbb{Z}\right)$, let ψ denote its pullback to $M=$ $T^{3}-\mathcal{N}(L)$. Then we have:

$$
\begin{equation*}
\|\phi\|_{L}=\|\psi\|_{T}=\|\psi\|_{A} . \tag{2.2}
\end{equation*}
$$

Moreover:
(a) ψ is represented by a fibration $\Psi: M \rightarrow S^{1} \Longleftrightarrow$
(b) $\phi\left(L_{i}\right) \neq 0$ for all $i \Longleftrightarrow$
(c) ϕ belongs to the open cone over a top-dimensional face of the norm ball $B_{L}=\left\{\phi:\|\phi\|_{L} \leq 1\right\} \subset H^{1}\left(T^{3}, \mathbb{R}\right)$.

Proof. We begin by showing (a-c) are equivalent. If ψ is represented by a fibration $\Psi: M \rightarrow S^{1}$, then the fibers are transverse to ∂M and thus $\phi\left(L_{i}\right) \neq 0$ for all i. On the other hand, the latter condition insures that the linear fibration $\Phi: T^{3} \rightarrow S^{1}$ associated to ϕ restricts to a fibration of M representing ψ, so we have (a) \Longleftrightarrow (b). Finally $\|\phi\|_{L}$ behaves linearly on $H^{1}\left(T^{3}, \mathbb{R}\right)$ unless one of the terms $\phi_{i}(L)$ changes sign, and thus the cone on the top dimensional faces is exactly the locus where $\phi\left(L_{i}\right) \neq 0$ for all i, showing (b) $\Longleftrightarrow(\mathrm{c})$.

To establish equation (2.2), first suppose ψ is represented by a fibration $\Psi: M \rightarrow S^{1}$ with fiber S. Since we may take $\Psi=\Phi \mid M$, we see S is a union of tori with $\sum\left|\phi\left(L_{i}\right)\right|$ punctures, and thus

$$
\chi_{-}(S)=\|\psi\|_{T}=\sum\left|\phi\left(L_{i}\right)\right|=\|\phi\|_{L} .
$$

Equality with the Alexander norm holds by Theorem 2.2.
Thus (2.2) holds on the cone over the top-dimensional faces of B_{L}. Since this cone is dense, (2.2) holds throughout $H^{1}\left(T^{3}, \mathbb{Z}\right)$ by continuity.

The Borromean rings plus axis. We now turn to the study of the 4component link $K \subset S^{3}$ pictured in Figure 1. Let $M=S^{3}-\mathcal{N}(K)$, and let m_{i} denote the meridian linking K_{i} positively. Then $\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ forms a basis for $H_{1}(M, \mathbb{Z}) \cong \mathbb{Z}^{4}$, and the Alexander polynomial Δ_{M} can be written as a Laurent polynomial in these variables.

Lemma 2.4 The Alexander polynomial of $M=S^{3}-\mathcal{N}(K)$ is given by

$$
\begin{aligned}
\Delta_{M}(x, y, z, t)= & -4+\left(t+\frac{1}{t}\right)-\left(x y+\frac{1}{x y}+y z+\frac{1}{y z}+x z+\frac{1}{x z}\right) \\
& +\left(x y z+\frac{1}{x y z}\right)+\left(x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}\right),
\end{aligned}
$$

Figure 3. The Newton polygon of $\Delta_{M}(x, y, z, 1)$ (top), and its dual.
where $(x, y, z, t)=\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$.
Proof. The projection in Figure 1 yields the Wirtinger presentation

$$
\begin{aligned}
\pi_{1}(M)= & \langle a, b, c, d, e, f, g, h, i, j, k, l: \\
& a j=j b, b i=i c, g c=a g, d c=c e, a e=f a, f j=j d, \\
& g e=e h, h j=j i, d i=g d, j g=g k, k c=c l, l e=e j\rangle .
\end{aligned}
$$

Here $(a, b, c),(d, e, f),(g, h, i)$ and (j, k, l) are the edges of K_{1}, K_{2}, K_{3} and K_{4} respectively. Given this presentation, the calculation of Δ_{M} is a straightforward application of the Fox calculus [Fox].

Figure 3 shows the intersection of the Newton polygon $N\left(\Delta_{M}\right)$ with the (x, y, z)-hyperplane.

To bring the 3 -torus into play, recall that 0 -surgery along the Borromean rings determines a diffeomorphism

$$
S^{3}-\mathcal{N}\left(K_{1} \cup K_{2} \cup K_{3}\right) \cong T^{3}-\mathcal{N}\left(L_{1} \cup L_{2} \cup L_{3}\right),
$$

where $\left(L_{1}, L_{2}, L_{3}\right)$ are disjoint closed geodesics forming a basis for $H_{1}\left(T^{3}, \mathbb{Z}\right)$. Under this surgery, the meridians (m_{1}, m_{2}, m_{3}) go over to longitudes of $\left(L_{1}, L_{2}, L_{3}\right)$. On the other hand, K_{4} goes over to the isotopy class of a geodesic $L_{4} \subset T^{3}$, with

$$
L_{4}=L_{1}+L_{2}+L_{3} \quad \text { in } H_{1}\left(T^{3}, \mathbb{Z}\right) .
$$

(To check the homology class of L_{4}, note that in S^{3} we have $\operatorname{lk}\left(K_{i}, K_{4}\right)=1$ for $i=1,2,3$.)

The meridian m_{4} goes over to a meridian of L_{4}, so unlike (m_{1}, m_{2}, m_{3}) it becomes trivial in $H_{1}\left(T^{3}, \mathbb{Z}\right)$. Thus we have:

$$
H^{1}(M, \mathbb{R}) \supset H^{1}\left(T^{3}, \mathbb{R}\right)=\left(\mathbb{R} \cdot m_{4}\right)^{\perp}
$$

Lemma 2.5 The action of $\operatorname{Diff}(M)$ on $H^{1}(M, \mathbb{R})$ preserves the subspace $H^{1}\left(T^{3}, \mathbb{R}\right)$.

Proof. Consider the Newton polygon

$$
N=N\left(\Delta_{M}\right) \subset H_{1}(M, \mathbb{R}),
$$

where Δ_{M} is given by Proposition 2.4. Since $(t+1 / t)$ is the only expression in Δ_{M} involving t, we have $N=N_{0}+[-1,1] \cdot t$ where

$$
N_{0}=N\left(\Delta_{M}(x, y, z, 1)\right)
$$

is the polyhedron in (x, y, z)-space shown in Figure 3. The vertices $\pm t$ of N are thus combinatorially distinguished: they are the endpoints of 14 edges of N (coming from the 14 vertices of N_{0}), whereas all other vertices of N have degree 5. Since $\operatorname{Diff}(X)$ preserves N, it also stabilizes the special vertices $\{ \pm t\}$, and thus $\operatorname{Diff}(X)$ stabilizes $H^{1}\left(T^{3}, \mathbb{R}\right)=(\mathbb{R} \cdot t)^{\perp}=\left(\mathbb{R} \cdot m_{4}\right)^{\perp}$.

Proof of Theorem 1.2. For our chosen link $L \subset T^{3}$, we have

$$
\|\phi\|_{L}=\left|\phi\left(m_{1}\right)\right|+\left|\phi\left(m_{2}\right)\right|+\left|\phi\left(m_{3}\right)\right|+\left|\phi\left(m_{1}+m_{2}+m_{3}\right)\right| .
$$

The unit ball $B_{L} \subset H^{1}\left(T^{3}, \mathbb{R}\right)$ of this norm is shown in Figure 3 (bottom); it is dual to the convex body N_{0}.

Note that B_{L} has both triangular and quadrilateral faces. Pick integral classes $\phi_{0}, \phi_{1} \in H^{1}\left(T^{3}, \mathbb{Z}\right)$ lying inside the cones over faces F_{0} and F_{1} of different types, and let $\alpha_{0}, \alpha_{1} \in H^{1}(M, \mathbb{Z})$ denote their pullbacks to M.

By Theorem 2.3, the classes α_{0} and α_{1} correspond to fibrations $M \rightarrow S^{1}$. On the other hand, $\operatorname{Diff}(M)$ preserves the subspace $H^{1}\left(T^{3}, \mathbb{R}\right) \subset H^{1}(M, \mathbb{R})$ as well as the norm $\|\phi\|_{L}=\|\alpha\|_{T}$ on this subspace. Thus $\operatorname{Diff}(M)$ preserves B_{L}, so it cannot send the face F_{0} to F_{1}. The supporting hyperplanes for α_{0} and α_{1} in B_{T} thus lie in different orbits of $\operatorname{Diff}(M)$. But these supporting hyperplanes are represented by $e\left(\alpha_{0}\right)$ and $e\left(\alpha_{1}\right)$, so their Euler classes are in different orbits as well.

The Thurston norm. As was shown in [Mc2], the Alexander and Thurston norms agree for many simple links. The norms agree for the Borromean rings plus axis $K \subset S^{3}$ as well.

To see this, note that K can be presented as the closure of a 3 -strand braid wrapping once around the axis $K_{4} \subset K$. A disk spanning K_{4} and transverse to $K_{1} \cup K_{2} \cup K_{3}$ determines a fibered face F of the Thurston norm ball B_{T}. As observed by N. Dunfield, one can use the Teichmüller polynomial [Mc1] to show that for any 3 -strand braid, the fibered face F coincides with a face of the Alexander norm ball B_{A}. In the example at hand, all the vertices of B_{A} are contained in $\pm F$, so we have $B_{A} \subset B_{T}$ by convexity. The reverse inclusion comes from the general inequality $\|\phi\|_{A} \leq\|\phi\|_{T}$.
Further example: a closed 3-manifold. To conclude, we describe a closed 3 -manifold N which fibers over the circle in two inequivalent ways.

Let $M=T^{3}-\mathcal{N}(L)=S^{3}-\mathcal{N}(K)$ be the link complement considered above. Note that the longitudes of K_{1}, K_{2} and K_{3} are all homologous to the meridian m_{4} of K_{4}, since the components of the Borromean rings are
unlinked, while each component links K_{4} once. Since T^{3} is obtained by 0 -surgery on K, all the meridians of L are homologous to m_{4}.

Now let $N \rightarrow T^{3}$ be the 2-fold covering, branched over L, determined by the homomorphism

$$
\xi: H_{1}(M, \mathbb{Z}) \rightarrow\{-1,1\}
$$

satisfying $\xi\left(m_{1}\right)=\xi\left(m_{2}\right)=\xi\left(m_{3}\right)=1$ and $\xi\left(m_{4}\right)=-1$.
The pullback map $H^{1}\left(T^{3}, \mathbb{R}\right) \rightarrow H^{1}(N, \mathbb{R})$ is easily seen to be injective. We claim it is an isomorphism. To see surjectivity, let $N^{\prime} \subset N$ be the preimage of $M \subset T^{3}$. Decomposing $H^{1}\left(N^{\prime}, \mathbb{R}\right)$ into eigenspaces for the action of the $\mathbb{Z} / 2$ deck group for $N^{\prime} \rightarrow M$, we obtain an isomorphism

$$
H^{1}\left(N^{\prime}, \mathbb{R}\right) \cong H^{1}(M, \mathbb{R}) \oplus H^{1}\left(M, \mathbb{R}_{\xi}\right)
$$

where the last term represents cohomology coefficients twisted by the character ξ of $\pi_{1}(M)$. Since $\Delta_{M}(\xi)=\Delta_{M}(1,1,1,-1)=4 \neq 0$, we have $H^{1}\left(M, \mathbb{R}_{\xi}\right)=0($ cf. $[\mathrm{Mc} 2, \S 3])$. Thus any cohomology class in $H^{1}(N, \mathbb{R})$ restricts to a $\mathbb{Z} / 2$-invariant class on N^{\prime}, so it is the pullback of a class on T^{3}.

Moreover, every fibration of T^{3} transverse to L lifts to a fibration of N, so we find:

Theorem 2.6 The Thurston norm ball $B_{T} \subset H^{1}(N, \mathbb{R})$ agrees with the norm ball $B_{L} \subset H^{1}\left(T^{3}, \mathbb{R}\right)$, and every face is fibered.

Picking fibrations in combinatorially inequivalent faces of B_{T} as before, we have:

Corollary 2.7 The closed 3-manifold N admits a pair of fibrations α_{0}, α_{1} such that $e\left(\alpha_{0}\right), e\left(\alpha_{1}\right)$ lie in disjoint orbits for the action of $\operatorname{Diff}(N)$ on $H^{2}(N, \mathbb{Z})$.

3 Fiber sum and symplectic 4-manifolds

In this section we recall the fiber sum construction, which can be used to canonically associate a 4 -manifold $X=X(P, L)$ to a link L in a 3-manifold P. Under this construction, suitable fibrations of P give symplectic forms on $X(P, L)$, and the Alexander polynomial Δ_{M} of $M=P-\mathcal{N}(L)$ determines Seiberg-Witten invariants of X. It is then straightforward to prove Theorem 1.1 by taking $X=X\left(T^{3}, L\right)$, where $L \subset T^{3}$ is the 4 -component link discussed in previous sections.

Fiber sum. Let $f_{i}: T^{2} \times D^{2} \rightarrow X_{i}, i=1,2$ be smooth embeddings of the torus cross a disk into a pair of smooth closed 4 -manifolds. Let

$$
X_{i}^{\prime}=X_{i}-f\left(T^{2} \times \operatorname{int} D^{2}\right) ;
$$

it is a smooth manifold whose boundary is marked by $T^{2} \times S^{1}$. The fiber sum Z of X_{1} and X_{2} is the closed smooth manifold obtained by gluing together X_{1}^{\prime} and X_{2}^{\prime} along their boundaries, such that $(x, t) \in \partial X_{1}^{\prime}$ is identified with $(x,-t) \in \partial X_{2}^{\prime}$. We denote the fiber sum by

$$
Z=X_{1} \underset{T_{1}=T_{2}}{\#} X_{2},
$$

where $T_{i}=f\left(T^{2} \times\{0\}\right) \subset X_{i}$; note that there is an implicit identification between the normal bundles of the tori T_{i}.

The fiber sum of symplectic manifolds along symplectic tori is also symplectic. More precisely, if ω_{i} are symplectic forms on X_{i} with $\omega_{i}>0$ on T_{i} and $\int_{T_{1}} \omega_{1}=\int_{T_{2}} \omega_{2}$, then Z carries a natural symplectic form ω with $\omega=\omega_{i}$ on X_{i}^{\prime}.

For more details, see [Go], [MW], [FS1], [FS2], [FS3].
The elliptic surface $\boldsymbol{E}(\mathbf{1})$. A convenient 4-manifold for use in the fibersum construction is the rational elliptic surface $E(1)$. The complex manifold $E(1)$ is obtained by blowing up the base-locus for a generic pencil of elliptic curves on $\mathbb{C P}^{2}$. Thus $E(1)$ is isomorphic to $\mathbb{C P}^{2} \# 9 \overline{\mathbb{C P}^{2}}$; it is simply-connected and unique up to diffeomorphism. The pencil provides a holomorphic map $E(1) \rightarrow \mathbb{C P}^{1}$ with generic fiber F an elliptic curve, and the canonical bundle of $E(1)$ is represented by the divisor $-F$.

The projection $E(1) \rightarrow \mathbb{C P}^{1}$ gives a natural trivialization of the normal bundle of the fiber torus F. Since $F \subset E(1)$ is a holomorphic curve in a projective variety, there is a symplectic (Kähler) form on $E(1)$ with $\omega \mid F>0$.

Each of the nine exceptional divisors gives a holomorphic section

$$
s: \mathbb{P}^{1} \rightarrow E(1)
$$

In particular, a meridian for the fiber F is contractible in $E(1)-\mathcal{N}(F)$, since it bounds the image of a disk under s. Since $E(1)$ is simply-connected, any loop in the complement of F is homotopic to a product of conjugates of meridians, so $E(1)-\mathcal{N}(F)$ is also simply-connected.

For a detailed discussion of the topology of elliptic surfaces, see [HKK, §1] or [GS].
From links to 4 -manifolds. Now let $L \subset P^{3}$ be a framed n-component link in a closed, oriented 3 -manifold. Such a link determines:

- a 3-dimensional link complement $M=P-\mathcal{N}(L)$, and
- a 4-dimensional fiber-sum $X=X(P, L)=\left(P \times S^{1}\right) \underset{L \times S^{1}=n F}{\#} n E(1)$.

To describe the fiber-sum in more detail, note that each component L_{i} of L determines a torus

$$
T_{i}=L_{i} \times S^{1} \subset P \times S^{1},
$$

and the framing of L_{i} provides a trivialization of the normal bundle of T_{i}. Take n copies of the elliptic surface $E(1)$ with fiber F; as remarked above, the projection $E(1) \rightarrow \mathbb{C P}^{1}$ provides a natural trivialization of the normal bundle of F. Finally, choose an orientation-preserving identification between $L \times S^{1}$ and $n F$. The fiber-sum $X(P, L)$ is then defined using these identifications.

It turns out that every orientation-preserving diffeomorphism of F extends to a diffeomorphism of $E(1)$, preserving the normal data; indeed, the monodromy of the fibration $E(1) \rightarrow \mathbb{C P}^{1}$ is the full group $S L_{2}(\mathbb{Z})$. Thus the diffeomorphism type of $X(P, L)$ is the same for any choice of identification between $L \times S^{1}$ and $n F$.

Proposition 3.1 The fiber-sum X is simply-connected if $\pi_{1}(M)$ is normally generated by $\pi_{1}(\partial M)$ (e.g. if M is homeomorphic to a link complement in S^{3}).

Proof. When the simply-connected manifolds $n(E(1)-\mathcal{N}(F))$ are attached to $M \times S^{1}$ along $\partial M \times S^{1}$, they kill $\pi_{1}\left(\partial M \times S^{1}\right)$ by van Kampen's theorem. Since the latter groups normally generate $\pi_{1}\left(M \times S^{1}\right)$, the resulting manifold X is simply-connected.

Promotion of cycles. The fiber-sum construction furnishes us with an inclusion $M \times S^{1}=\left(P \times S^{1}\right)^{\prime} \subset X$.

Proposition 3.2 The map

$$
i: H_{1}(M, \mathbb{R}) \rightarrow H^{2}(X, \mathbb{R})
$$

sending a 1-cycle $\gamma \subset M$ to the Poincaré dual of $\gamma \times S^{1} \subset X$, is injective.
Proof. The map i is a composition of three maps:

$$
H_{1}(M) \rightarrow H_{2}\left(M \times S^{1}\right) \rightarrow H_{2}(X) \rightarrow H^{2}(X) .
$$

The first arrow is part of the Künneth isomorphism, and the last comes from Poincaré duality, so they are both injective. As for the middle arrow

$$
H_{2}\left(M \times S^{1}\right) \rightarrow H_{2}(X),
$$

we can use the exact sequence of the pair ($X, M \times S^{1}$) to identify its kernel with

$$
H_{3}\left(X, M \times S^{1}\right) \cong H_{3}(n E(1), n F) \cong H^{1}(n E(1)-n F)=0 .
$$

Here we have used excision, Poincaré duality and the simple-connectivity of $E(1)-F$. Thus all three arrows are injective, and so i is injective.

Corollary 3.3 For an n-component link, we have

$$
b_{2}^{+}(X(P, L)) \geq b_{1}(M) \geq n .
$$

Here $b_{2}^{+}(X)$ denotes the rank of the maximal subspace of $H_{2}(X, \mathbb{R})$ on which the intersection form is positive-definite.
Proof. Since 1-cycles in general position on M are disjoint, the intersection form on $H^{2}(X, \mathbb{R})$ restricts to zero on $i\left(H_{1}(M, \mathbb{R})\right)$. But the intersection form is non-degenerate, so it must admit a positive (and negative) subspace of dimension at least $b_{1}(M)=\operatorname{dim} i\left(H_{1}(M, \mathbb{R})\right)$.

For the second inequality, just note that we have $b_{1}(M) \geq b_{1}(\partial M) / 2=n$. Indeed, by Lefschetz duality, the kernel of $H_{1}(\partial M) \rightarrow H_{1}(M)$ is Lagrangian, so the image has dimension n.

From fibrations to symplectic forms. A central point for us is that suitable fibrations α of P give rise to symplectic structures ω on $X(P, L)$.

Theorem 3.4 For any fibration $\alpha \in H^{1}(P, \mathbb{Z})$ transverse to L, there is a symplectic form ω on $X(P, L)$ with

$$
c_{1}(\omega)=i(e(\alpha \mid M)) .
$$

Proof. Let $\alpha=d \pi$ be the closed 1-form representing a fibration $\pi: P \rightarrow S^{1}$ transverse to L.

Pick a closed 2-form β on M such that β restricts to an area form on each leaf of \mathcal{F}. (One can construct such a form by representing the monodromy
of the fibration by an area-preserving map.) As observed by Thurston, for $\epsilon>0$ sufficiently small, the closed 2 -form

$$
\omega_{0}=\alpha \wedge d t+\epsilon \beta
$$

is a symplectic form on $P \times S^{1}$, nowhere vanishing on $L \times S^{1}$ [Th1]. (Here [$d t$] is the standard 1 -form on $S^{1}=\mathbb{R} / \mathbb{Z}$, and α and β have been pulled back to the product).

By scaling the Kähler form, we can provide the i th copy of $E(1)$ with a symplectic form ω_{i} such that $\int_{F} \omega_{i}=\int_{L_{i} \times S^{1}} \omega$. Then as mentioned above, ω_{0} and $\left(\omega_{i}\right)$ joined together under fiber-sum to yield a symplectic form ω on X.

Let $K \rightarrow X$ denote the canonical bundle of (X, ω). We will compute $c_{1}(K)$ by constructing a section $\sigma: X \rightarrow K$.

Let $M=P-\mathcal{N}(L)$. As an oriented \mathbb{R}^{2}-bundle, $K \mid\left(M \times S^{1}\right)$ is isomorphic to the pullback of $T \mathcal{F}$ from M. Let $s: M \rightarrow T \mathcal{F}$ be a section such that $s \mid \partial M$ is inward pointing and nowhere vanishing. Then the zero set of s is a 1 -cycle γ representing the Euler class $e(\alpha \mid M) \in H_{1}(M, \mathbb{R})$. Pulling back s, we obtain a section $\sigma_{0}: M \times S^{1} \rightarrow K$ with zero set $\gamma \times S^{1}$.

Now consider the 4-manifold $E(1)^{\prime}=E(1)-\mathcal{N}(F)$ attached to $M \times S^{1}$ along $T_{i} \times S^{1}$. If we have $\omega_{i}(F)>0$, then $K \mid E(1)^{\prime}$ is just the pullback of the canonical bundle of $E(1)$. Since $-F$ is a canonical divisor on $E(1)$, there is a nowhere vanishing section $\sigma_{i}: E(1)^{\prime} \rightarrow K$, namely the restriction of a meromorphic 2-form on $E(1)$ with divisor $-F$.

We claim σ_{0} and σ_{i} fit together under the gluing identification between $T_{i} \times S^{1}$ and $F \times S^{1}$. To check this, we use the framings to identify $K \mid T_{i} \times S^{1}$ and $K \mid F \times S^{1}$ with the trivial bundle over $T^{2} \times S^{1}$. Under this identification,

$$
\sigma_{0}: T^{2} \times S^{1} \rightarrow \mathbb{C}^{*}
$$

is homotopic to the projection $T^{2} \times S^{1} \rightarrow S^{1} \subset \mathbb{C}^{*}$, since the vector field $s \mid T_{i}$ runs along the meridians of ∂M. Similarly,

$$
\sigma_{i}: T^{2} \times S^{1} \rightarrow \mathbb{C}^{*}
$$

is homotopic to $1 / \sigma_{0}$, because of the simple pole along F. Since $T_{i} \times S^{1}$ is identified with $F \times S^{1}$ using the involution $(x, t) \sim(x,-t)$ on $T^{2} \times S^{1}$, the two sections correspond under gluing.

In the case where we have $\omega_{i}(F)<0$, both homotopy classes are reversed, so σ_{0} and σ_{i} still agree under gluing. Thus σ_{0} and $\left(\sigma_{i}\right)$ join together to form a global section $\sigma: X \rightarrow K$ with no zeros outside $M \times S^{1}$. It follows that $c_{1}(X, \omega)$ is Poincaré dual to $\gamma \times S^{1}$; equivalently, that $c_{1}(\omega)=i(\alpha \mid M)$.

The Seiberg-Witten polynomial. A central feature of the fiber-sum $X=X(P, L)$ is that its Seiberg-Witten polynomial is directly computable.

Assume that X is simply-connected and $b_{2}^{+}(X)>1$. Then the SeibergWitten invariant of X can be regarded as a map

$$
\mathrm{SW}: H^{2}(X, \mathbb{Z}) \rightarrow \mathbb{Z}
$$

well-defined up to a sign and vanishing outside a finite set. This information is conveniently packaged as a Laurent polynomial

$$
\mathcal{S} \mathcal{W}_{X}=\sum_{t} \mathrm{SW}(t) \cdot t \in \mathbb{Z}\left[H^{2}(X, \mathbb{Z})\right] .
$$

Theorem 3.5 Suppose M is the complement of an n-component link $L \subset$ P, and $\pi_{1}(\partial M)$ normally generates $\pi_{1}(M)$. Then $X=X(P, L)$ is simplyconnected, we have $b_{2}^{+}(X) \geq n$, and

$$
\mathcal{S W}_{X}= \pm \sum a_{t} \cdot i(2 t)
$$

where $\Delta_{M}=\sum a_{t} \cdot t$ is the symmetrized Alexander polynomial of M.
Remarks. This Theorem was established by Fintushel and Stern in the special case where (P, L) is obtained by a certain surgery on a link in S^{3} [FS2, Thm. 1.9]. ${ }^{1}$ To obtain the symmetrized Alexander polynomial, one multiplies $\Delta_{K}(t)$ by a monomial to arrange that its Newton polygon is centered at the origin. The exponents in the symmetrized polynomial may be half-integral.
Proof. To compute $\mathcal{S} \mathcal{W}_{X}$, we regard X as the union of manifolds $X_{0}=$ $M \times S^{1}$ and $X_{i}=E(1)-\mathcal{N}(F), i=1, \ldots, n$, glued together along their boundary. For such manifolds one can define a relative Seiberg-Witten polynomial $\mathcal{S W}_{X_{i}} \in \mathbb{Z}\left[H^{2}\left(X_{i}, \partial X_{i} ; \mathbb{Z}\right)\right.$, such that

$$
\mathcal{S} \mathcal{W}_{X}=\mathcal{S} \mathcal{W}_{X_{0}} \cdot \mathcal{S} \mathcal{W}_{X_{1}} \cdots \mathcal{S} \mathcal{W}_{X_{n}}
$$

using the natural map $H^{2}\left(X_{i}, \partial X_{i}\right) \rightarrow H^{2}(X)$ to compute the product. For this gluing formula, developed by Morgan, Mrowka, Szabo and Taubes, see [FS2, Thm. 2.2] and [Ta].

Now for each $X_{i}=E(1)-\mathcal{N}(F)$, the relative polynomial is simply 1. To see this, just apply the product formula above to the K3 surface

[^2]$Z=E(1) \#_{F} E(1)$, which satisfies $\mathrm{SW}_{Z}=1$. (This well-known property of K3 surfaces follows, for example, from equations (4.17) and (4.20) in Witten's original paper [Wit].)

Thus we have $\mathcal{S} \mathcal{W}_{X}=\mathcal{S} \mathcal{W}_{X_{0}}=\mathcal{S} \mathcal{W}_{M \times S^{1}}$. Finally the Seiberg-Witten polynomial for $M \times S^{1}$ is given in terms of Δ_{M} by the main result of [MeT], yielding the formula for $\mathcal{S} \mathcal{W}_{X}$ above.

To see $\pi_{1}(X)=\{1\}$ and $b_{2}^{+}(X) \geq n$, apply Proposition 3.1 and Corollary 3.3 above.

Proof of Theorem 1.1. Using the Seiberg-Witten invariants to control the action of $\operatorname{Diff}(X)$, it is now easy to give an example of a simply-connected 4 -manifold X with inequivalent symplectic forms.

For a concrete example, let $X=X\left(T^{3}, L\right)$ for the 4 -component link $L \subset T^{3}$ studied in the preceding section, and choose any framing of L. As we have seen, the link-complement $M=T^{3}-\mathcal{N}(L)$ is homeomorphic to the exterior $S^{3}-\mathcal{N}(K)$ of the Borromean rings plus axis. In particular, $\pi_{1}(M)$ is the normal closure of $\pi_{1}(\partial M)$, so X is simply-connected and we have $b_{2}^{+}(X) \geq 4$.

Let $m_{i}, i=1, \ldots, 4$ be the basis for $H_{1}(M, \mathbb{Z})$ coming from the meridians of $K \subset S^{3}$. Then the classes $t_{i}=i\left(m_{i}\right)$ form a basis for $i\left(H_{1}(M, \mathbb{Z})\right) \subset$ $H^{2}(X, \mathbb{Z})$. By Theorem 3.5, we have:

The Seiberg-Witten polynomial of X is given by

$$
\mathcal{S} \mathcal{W}_{X}=\Delta_{M}\left(t_{1}^{2}, t_{2}^{2}, t_{3}^{3}, t_{4}^{2}\right),
$$

where $\Delta_{M}(x, y, z, t)$ is given by Lemma 2.4.
In particular, the Newton polygons satisfy $N\left(\mathcal{S W}_{X}\right)=2 i\left(N\left(\Delta_{M}\right)\right)$.
Now identify $H_{1}\left(T^{3}, \mathbb{R}\right)$ with the subspace of $H_{1}(M, \mathbb{R})$ spanned by (m_{1}, m_{2}, m_{3}), and let

$$
N_{0}=N\left(\Delta_{M}\right) \cap H_{1}\left(T^{3}, \mathbb{R}\right)
$$

As we have seen before, any vertex v of N_{0} is dual to a fibered face F of the Thurston norm on $H^{1}(M, \mathbb{R})$; indeed, v is dual to a fibration pulled by from T^{3}. All fibrations ϕ in the cone over F have the same Euler class e, which satisfies

$$
\|\phi\|_{T}=2 \phi(v)=-\phi(e) ;
$$

thus $e=-2 v$.

By Theorem 3.4, the vertex

$$
i(e)=i(-2 v) \in 2 i\left(N_{0}\right)
$$

is the first Chern class of a symplectic structure on X. Since $v \in N_{0}$ was an arbitrary vertex, we have:

Every vertex of $2 i\left(N_{0}\right) \subset N\left(\mathcal{S W}_{X}\right)$ is the first Chern class of a symplectic structure on X.

Now pick a pair combinatorially distinct vertices

$$
v_{0}, v_{1} \in 2 i\left(N_{0}\right) \subset N\left(\mathcal{S} \mathcal{W}_{X}\right)
$$

More precisely, referring to Figure 3 (top), we see $2 i\left(N_{0}\right)$ has vertices of degrees 3 and 4 ; choose one of each type. Then v_{0} and v_{1} have degrees 5 and 6 as vertices of $N\left(\mathcal{S} \mathcal{W}_{X}\right)$, since

$$
N\left(\mathcal{S W}_{X}\right)=2 i\left(N_{0}\right)+[-2,2] \cdot t_{4}
$$

is simply the suspension of $2 i\left(N_{0}\right)$. As a consequence, no automorphism of $H^{2}(X, \mathbb{R})$ stabilizing $N\left(\mathcal{S W}_{X}\right)$ can transport v_{0} to v_{1}.

To complete the proof, choose symplectic forms on X with $c_{1}\left(\omega_{0}\right)=v_{0}$ and $c_{1}\left(\omega_{1}\right)=v_{1}$. Then the Chern classes of ω_{0} and ω_{1} lie in distinct orbits for the action of $\operatorname{Diff}(X)$ on $H^{2}(X, \mathbb{R})$, since diffeomorphisms preserve the Newton polygon of the Seiberg-Witten polynomial. In particular, ω_{0} and ω_{1} are inequivalent symplectic forms on X.

Question. Could it be that $\operatorname{Diff}(X)$ actually preserves the submanifold $M \times S^{1} \subset X$ up to isotopy?
Further example: skirting gauge theory. To conclude, we sketch an elementary example of a 4-manifold X carrying a pair of inequivalent symplectic forms - but with $\pi_{1}(X) \neq 1$. By elementary, we mean the proof does not use the Seiberg-Witten invariants; instead, it uses the fundamental group.

To construct the example, simply let $X=N \times S^{1}$, where N is the closed 3 -manifold discussed at the end of $\S 2$.

By considering N as a covering of T^{3} with a $\mathbb{Z} / 2$-orbifold locus along L, one can show that $\pi_{1}(N)$ has trivial center. It follows that $\pi_{1}\left(S^{1}\right)$ is the center of $\pi_{1}(X)$, and thus the projection

$$
\pi_{1}(X) \rightarrow \pi_{1}(N)
$$

is canonical. In particular, every diffeomorphism of X induces an automorphism of $\pi_{1}(N)$.

Now let α_{0}, α_{1} be fibrations of N whose Euler classes are in different orbits for the action of $\operatorname{Aut}\left(\pi_{1}(N)\right)$ on $H_{1}(N, \mathbb{Z})$. (These classes exist as before, because the Alexander polynomial is functorially determined by $\pi_{1}(N)$, and hence preserved by automorphisms.) Then the Euler classes $e\left(\alpha_{0}\right), e\left(\alpha_{1}\right)$ lie in disjoint orbits for the action of $\operatorname{Diff}(X)$ on $H_{1}(N)=H_{1}(X) / H_{1}\left(S^{1}\right)$.

Now as we have seen above, each α_{i} gives a symplectic form ω_{i} on X with $c_{1}\left(\omega_{i}\right)$ dual to $e\left(\alpha_{i}\right) \times S^{1}$. Since the Euler classes lie in disjoint orbits for the action of $\operatorname{Diff}(X)$, so do these Chern classes. In particular, ω_{0} and ω_{1} are inequivalent symplectic forms on X.

References

[CF] R. H. Crowell and R. H. Fox. Introduction to Knot Theory. SpringerVerlag, 1977.
[FS1] R. Fintushel and R. Stern. Constructions of smooth 4-manifolds. In Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), pages 443-452. Doc. Math., 1998.
[FS2] R. Fintushel and R. Stern. Knots, links and 4-manifolds. Invent. math. 134(1998), 363-400.
[FS3] R. Fintushel and R. Stern. Symplectic structures in a fixed homology class. In preparation.
[Fox] R. H. Fox. Free differential calculus I, II, III. Annals of Math. 57, 59, 64(1953, 54, 56), 547-560, 196-210, 407-419.
[FQ] M. Freedman and F. Quinn. Topology of 4-manifolds. Princeton University Press, 1990.
[Fr] D. Fried. Fibrations over S^{1} with pseudo-Anosov monodromy. In Travaux de Thurston sur les surfaces, pages 251-265. Astérisque, volume 66-67, 1979.
[Go] R. Gompf. A new construction of symplectic manifolds. Ann. Math. 142(1995), 527-595.
[GS] R. Gompf and A. Stipsicz. 4-Manifolds and Kirby Calculus. Amer. Math. Soc., 1999.
[HKK] J. Harer, A. Kas, and R. Kirby. Handlebody Decompositions of Complex Surfaces. Mem. Amer. Math. Soc., No. 350, 1986.
[Kr1] P. Kronheimer. Embedded surfaces and gauge theory in three and four dimensions. In Surveys in differential geometry, Vol. III (Cambridge, MA, 1996), pages 243-298. Int. Press, 1998.
[Kr2] P. Kronheimer. Minimal genus in $S^{1} \times M^{3}$. Invent. math. 135(1999), 45-61.
[KM] P. Kronheimer and T. Mrowka. Scalar curvature and the Thurston norm. Math. Res. Lett. 4(1997), 931-937.
[MW] J. McCarthy and J. Wolfson. Symplectic normal connect sum. Topology 33(1994), 729-764.
[Mc1] C. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations. Ann. scient. Éc. Norm. Sup. 33(2000), 519-560.
[Mc2] C. McMullen. The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology. Ann. scient. Éc. Norm. Sup. 35(2002), 153-172.
[MeT] G. Meng and C. H. Taubes. $\underline{S W}=$ Milnor torsion. Math. Res. Lett. 3(1996), 661-674.
[Ta] C. Taubes. The Seiberg-Witten invariants and 4-manifolds with essential tori. In preparation.
[Th1] W. P. Thurston. Some simple examples of symplectic manifolds. Proc. Amer. Math. Soc. 55(1976), 467-468.
[Th2] W. P. Thurston. A norm for the homology of 3-manifolds. Mem. Amer. Math. Soc., No. 339, pages 99-130, 1986.
[Vi] S. Vidussi. The Alexander norm is smaller than the Thurston norm: a Seiberg-Witten proof. École Polytechnique Preprint 99-6.
[Wit] E. Witten. Monopoles and four-manifolds. Math. Res. Letters 1(1994), 769-796.

Mathematics Department
Harvard University
1 Oxford St
Cambridge, MA 02138-2901

[^0]: (Article begins on next page)

[^1]: *This research was supported in part by the NSF. 1991 Mathematics Subject Classification: Primary 57R57, Secondary 57M25, 57N13.

[^2]: ${ }^{1}$ Note: contrary to [FS2, p. 371]: the cohomology classes [T_{j}] in their formula for $\mathcal{S} \mathcal{W}_{X}$ are always linearly independent in $H^{2}(X, \mathbb{R})$, by Proposition 3.2 above.

