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On the temperature dependence of point-defect-mediated luminescence
in silicon
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We present a model of the temperature dependence of point-defect-mediated luminescence in silicon
derived from basic kinetics and semiconductor physics and based on the kinetics of bound exciton
formation. The model provides a good fit to data for W line electroluminescence and G line
photoluminescence in silicon. Strategies are discussed for extending luminescence to room
temperature. © 2009 American Institute of Physics. �DOI: 10.1063/1.3157277�

Despite silicon’s indirect band gap, the potential cost and
scale benefits of developing a silicon device that displays
efficient electroluminescence at room temperature make the
search for such a device an active area of research.1 One
approach is the use of point defects as light emission
centers.2–4 Recently, light-emitting devices have been pro-
duced using two different zero-phonon emission lines origi-
nating at point defects, the W line at 1.018 eV and the G
line at 969 meV. The G line arises from the presence of
carbon in silicon.3,4 The W line from a small self-interstitial
complex.2,5

Point-defect luminescence devices are not yet practical
because the intensity of emitted light decreases to a small
fraction of its maximum value as the temperature is raised
from 4 to 77 K and is undetectable at room temperature.2,3,5

The most detailed phenomenological model of this tempera-
ture dependence, developed by Davies et al.6 to describe G
line photoluminescence, is not based on specific physical
mechanisms. It relies on two unknown energies: an unspeci-
fied trap level and an energy barrier for a general nonradia-
tive process. While this model was able to fit experimental
observations, it does not provide the detail necessary to con-
sider the feasibility of this type of device. This letter presents
an initial attempt to build on the work of Davies et al.6 by
describing the observed luminescence using familiar con-
cepts from semiconductor physics. Employing this approach
is an initial step toward addressing questions of materials
design for point-defect luminescence in silicon.

Previous experiments have suggested that G line lumi-
nescence is due to a two energy level system whose upper
level is slightly below the conduction band.6 These levels
likely arise from bound exciton formation at the neutral car-
bon complex responsible for the G line. Because the data are
qualitatively similar, we hypothesize that the same is true of
the neutral self-interstitial complex responsible for the W
line.

A neutral point defect capable of binding excitons can be
in one of three states:7 it can have no carriers bound to it, one
bound carrier �in which case it is charged�, or two bound
carriers of opposite signs �a bound exciton�. These will be
referred to as states 0, 1, and 2, respectively. It must be true
that

nD = n0 + n1 + n2, �1�

where nD is the total concentration of defects and n0, n1,
and n2 are the concentrations of defects in states 0, 1, and 2.
The defect is capable of transitioning between any pair of
these states. It is thus possible to define transition rates
between the three states per unit volume such as R20 for the
transition from state 2 to state 0 �e.g., by radiative recombi-
nation�. The intensity of luminescence will be proportional
to n2 and thus the goal of this model is to determine n2 as a
function of temperature. Under steady state conditions,
n0, n1, and n2 must be constant. For n2 this implies that
R02+R12=R20+R21. Similar consideration of n0 and n1 yields
a total of two independent equations.

Table I lists all the physical processes that can occur in
this system and ties each of them to one of the transition
rates. Several processes are ignored based on the following
assumptions: �1� the concentration of free excitons is negli-
gible compared to the concentration of free carriers. This is
reasonable because the purpose of the model is to describe an
electrically or optically pumped device. �2� The rate of re-
combination of a bound carrier with a free carrier is small
relative to the rates of capture and emission of free carriers.
This assumption reflects the notion that a localized state and
a delocalized state have a small interaction probability. Fi-
nally, �3� pair generation processes localized at a defect can
be ignored. In the case of electrical pumping this is a modest
assumption because the only carrier generation is thermal
and so all pair generation events can be neglected relative to
the electrical pumping. For optical pumping, this assumption
is essentially equivalent to stating that the rate at which
pump photons generate carriers at the luminescent defects is
small relative to the rate at which the defects capture free
carriers.

Assumption �1� means that it is not necessary to track
the number of free excitons. Similarly, if the concentration of
defects is small relative to the concentrations of free elec-
trons and free holes, applying charge neutrality8 allows free
carriers to be removed from the bookkeeping according to

nfree e− � nfree h+ � nc, �2�

which is independent of temperature and of the concentra-
tions of other species and is controlled independently by the
experimenter using the pump intensity. Consequently, n0, n1,a�Electronic mail: aziz@deas.harvard.edu.
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and n2 are the only temperature dependent concentrations in
this model.

Under these assumptions and assuming linear kinetics,
Table I translates into the following equations:

R01 = n0ncc01; R12 = n1ncc12; R02 � 0;

R10 = n1e10; R21 = n2e21; R20 = n2e20, �3�

where the cij’s and eij’s are capture and emission coefficients,
respectively. Detailed balance �e.g., Ref. 9� eliminates the
emission coefficients according to

e10 = c01n0
�nC

� /n1
� = c01K01 �4�

and

e21 = c12n1
�nC

� /n2
� = c12K12, �5�

where � denotes an equilibrium value and the Kij’s are cal-
culable equilibrium constants for their respective processes.
Making these substitutions and solving the steady state prob-
lem for n2 yields

n2 =
�nDnC

2

��K01K12 + K12nC + nC
2 � + ��K01 + nC� + ��nC

, �6�

in which ��e20 /c01 and ��c12 /c01 are fitting parameters
with units of concentration and no units, respectively. As-
suming that the defect always binds a hole from the valence
band �set to E=0� and then an electron from the conduction
band,10 Eq. �6� becomes

n2 =
�nDnC

2

��NV

gh

NC

ge
e�Ee−Eh−Eg�/kBT + nC

NC

ge
e�Ee−Eg�/kBT + nC

2 � + ��NV

gh
e−Eh/kBT + nC� + ��nC

, �7�

where NC and NV are the conduction and valence band effec-
tive densities of states ��T3/2�, gh, and ge are the hole and
electron degeneracy factors, respectively, Eg is the band gap,
and Eh and Eg−Ee are the hole and electron binding energies,
respectively, such that Ee−Eh is the energy of the emitted
photons.

Dividing Eq. �7� by nD provides a functional form for the
temperature dependence that can be compared with and fit to
photo and electroluminescence intensity data. The main por-
tion of Fig. 1 shows three least-squares fits �for three differ-
ent carrier concentrations� of this model to the data of Bao et
al.2 for the temperature dependence of electroluminescence
intensity from a W line light-emitting diode �LED�. The inset
shows a least-squares fit to the data of Davies et al.6 for the
temperature dependence of G line photoluminescence inten-
sity for an assumed carrier concentration of 1015 /cm. This
data series is truncated below 20 K to exclude points influ-
enced by a trap state not contained in this model. Both sets of
data have been normalized to a maximum of 1. All fits ignore

the temperature dependences of �, �, and nC, and silicon’s
band gap. �, �, and nC are considered constants to prevent a
proliferation of fitting parameters. The band gap is set to its
low-temperature value of 1.17 eV. Including its temperature
dependence would represent false precision because the �un-
known� temperature dependence of the defect levels is ne-
glected. Ee−Eh is taken to be 1.02 eV for the W line and
0.969 eV for the G line. Finally, the silicon samples in both
references are assumed to be undoped. This is accurate for
Ref. 6 but the active region of the W line LED in Ref. 2 was
lightly p-doped to a resistivity of 5 � cm.2,6 This resistivity
corresponds to a boron concentration of roughly 3
�1015 /cm2, which is on the order of the smallest carrier
concentration assumed in fitting the W line data.2

The model presented above provides an accurate fit to
the G line data from Ref. 6 and a reasonable fit to the W line
data in Ref. 2. In the latter case, higher carrier concentrations
produce a better fit at low temperatures and lower carrier
concentrations produce a better fit at high temperatures. This

TABLE I. Physical processes contributing to each transition rate, associated changes in concentrations of all species, and inclusion/neglect of process in the
model. For clarity in this table it is assumed that the defect captures a hole and then an electron even though the model makes no distinction. Processes listed
as not in the model are excluded based on the three numbered assumptions given in the text.

Rate Process �n0 �n1 �n2 �nfree e− �nfree h+ �nfree exciton In model? �reason neglected�

R01 h+ capture �1 +1 0 0 �1 0 Yes
R01 Bound h+ / free e− generation �1 +1 0 +1 0 0 No �3�
R12 e− capture 0 �1 +1 �1 0 0 Yes
R12 Bound e− / free h+ generation 0 �1 +1 0 +1 0 No �3�
R02 Free exciton capture �1 0 +1 0 0 �1 No �1�
R02 Bound exciton generation �1 0 +1 0 0 0 No �3�
R10 h+ emission +1 �1 0 0 +1 0 Yes
R10 Bound h+ / free e− recombination +1 �1 0 �1 0 0 No �2�
R21 e− emission 0 +1 �1 +1 0 0 Yes
R21 Bound e− / free h+ recombination 0 +1 �1 0 �1 0 No �2�
R20 Nonradiative bound exciton recombination +1 0 �1 0 0 0 Yes
R20 Radiative bound exciton recombination +1 0 �1 0 0 0 Yes
R20 Bound exciton emission +1 0 �1 0 0 +1 Yes
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could be a consequence of one or more of the temperature
dependences ignored in this calculation. The results of fitting
were highly insensitive to variations in several orders of
magnitude in the values of � and �. Table II reports the
values of Ee computed by the least-squares fits. For both
defects it is evident that one carrier, assumed by Eq. �7� to be
an electron, is bound much more loosely than the other. The
result for the G line is in quantitative agreement with Ref. 6,
which fits a model of a defect binding a single carrier to the
same data.

Given the model’s reasonable fit to the data, it is possible
to use the model to consider whether devices relying on
defect-mediated luminescence in silicon will ever operate at
room temperature. Equation �7� implies that that the domi-
nant influence on the temperature dependence is the smaller
of the carrier binding energies Eg−Ee and Eh. Whereas it
would be difficult to manipulate the binding energy for a
given defect, the model provides grounds for optimism if we
can utilize a defect with trap states at least 100 meV from
both band edges, leading to luminescence at around 800
meV—an energy that would be ideal for telecom applica-
tions at 1.55 �m. This would allow for tighter binding of

carriers, which is necessary for room-temperature operation.
Such a defect would bind electrons and holes with roughly
equal energies and would thus be beyond the scope of the
model presented in Ref. 6 but tractable using the model pre-
sented above. Temperature dependent photoluminescence
measurements on a system with comparable electron and
hole binding energies would thus be a natural way to experi-
mentally test the additional complexity of Eqs. �6� and �7�
relative to the model in Ref. 6.

In addition to changing defects, one could also poten-
tially increase the number of defects through materials pro-
cessing. Although the model presented above is normalized
with respect to defect concentration, the absolute intensity
scales with defect concentration. Furthermore, one could
raise the carrier concentration by increasing the level of op-
tical or electrical pumping. Nevertheless, the priority should
be manipulating the defect energy if possible because vary-
ing the defect and carrier concentrations provides linear and
sublinear11 enhancement in luminescence, respectively.

It is worth noting that if the defect binding energies in-
crease enough, bound exciton escape �contained within ��
might come to dominate the temperature dependence. Al-
though including this effect in the model would have been
possible, the temperature dependence of � was ignored, as
noted above, to reduce the total number of fitting parameters.

In summary, we have presented a model of defect-
mediated luminescence in silicon based on the kinetics of
carrier emission and capture that is consistent with past ex-
perimental observations. The model was used to suggest that
the most effective way to make a device based on these
principles operate at room temperature would be to utilize a
defect with trap states at least 100 meV from the conduction
and valence band edges.
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FIG. 1. Plot of a least-squares fit of the model to the W line electrolumi-
nescence data in Ref. 2 for three assumed carrier concentrations: 1015, 1016,
and 1017 /cm2. The temperature dependences of the fitting parameters and
band gap were ignored. Inset: plot of a least-squares fit of the model to the
G line photoluminescence data in Ref. 6 for an assumed carrier concentra-
tion of 1015 /cm2. Data for temperatures below 20 K were disregarded be-
cause they reflect an additional trap level not described in this model �see
Ref. 6�.

TABLE II. Trap energy calculated from a least-squares fit of the model to
the data in Refs. 2 and 6 assuming the stated values for nC.

nC

�atoms /cm3�
G line Ee

�eV�
W line Ee

�eV�

1015 1.138 1.144
1016 N/A 1.153
1017 N/A 1.162
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