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1 Introduction

The shortest loop traced out by a billiard ball in an acute triangle is the
pedal subtriangle, connecting the feet of the altitudes.

In this paper we prove a similar result for loops in the fundamental
polyhedron of a Coxeter group W , and use it to study the spectral radius
λ(w), w ∈ W for the geometric action of W . In particular we prove:

Theorem 1.1 Let (W,S) be a Coxeter system and let w ∈ W . Then either
λ(w) = 1 or λ(w) ≥ λLehmer ≈ 1.1762808.

Here λLehmer denotes Lehmer’s number, a root of the polynomial

1 + x − x3 − x4 − x5 − x6 − x7 + x9 + x10 (1.1)

and the smallest known Salem number.

Billiards. Recall that a Coxeter system (W,S) is a group W with a finite
generating set S = {s1, . . . , sn}, subject only to the relations (sisj)mij = 1,
where mii = 1 and mij ≥ 2 for i %= j. The permuted products

sσ1sσ2 · · · sσn ∈ W, σ ∈ Sn,

are the Coxeter elements of (W,S). We say w ∈ W is essential if it is not
conjugate into any subgroup WI ⊂ W generated by a proper subset I ⊂ S.

The Coxeter group W acts naturally by reflections on V ∼= RS , preserv-
ing an inner product B(v, v′). Let λ(w) denote the spectral radius of w|V .
When λ(w) > 1, it is also an eigenvalue of w. We will show (§4):

Theorem 1.2 Let (W,S) be a Coxeter system and let w ∈ W be essential.
Then we have λ(w) ≥ infSn λ(sσ1sσ2 · · · sσn).

Here is the relation to billiards. In the case of a hyperbolic Coxeter
system (when (V,B) has signature (p, 1)), the orbifold Y = Hp/W is a
convex polyhedron bounded by mirrors meeting in acute angles. Closed
geodesics on Y can be visualized as loops traced out by billiards in this
polyhedron. The hyperbolic length of the geodesic in the homotopy class
of w ∈ π1(Y ) = W is given by log λ(w). Thus the theorem states that
the essential billiard loops in Y are no shorter than the shortest Coxeter
element.

As a special (elementary) case, the shortest billiard loop in the (p, q, r)-
triangle in H2 is the pedal subtriangle representing w = s1s2s3; see Figure
1.
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Figure 1. The shortest billiard loop in the (3, 4, 7)-triangle.

The Hilbert metric on the Tits cone. To prove Theorem 1.2 for higher-
rank Coxeter groups (signature (p, q), q ≥ 2), we need a generalization of
hyperbolic space. A natural geometry in this case is provided by the Hilbert
metric on the Tits cone.

The Hilbert distance on the interior of a convex cone K is given in terms
of the cross-ratio by dK(x, y) = (1/2) inf log[a, x, y, b], where the infimum is
over all segments [a, b] in K containing [x, y]; it is a metric when K contains
no line. We will show (§2) that the translation length of a linear map T
preserving K satisfies

inf
x∈K◦

dK(x, Tx) = log λ(T ),

provided λ(T ) = λ(T−1).
The Tits cone W · F ⊂ V ∗ is the orbit, under the dual action of W ,

of a simplicial cone F which forms a fundamental domain for W . When
(W,S) is hyperbolic or higher-rank, K = W · F contains no line, so dK is
a metric. At the same time, log λ(w) is the translation length of w in the
Hilbert metric on K, so this geometry can be used to study eigenvalues.

We propose (PK◦, dK) as a natural generalization of the Klein model for
hyperbolic space to higher-rank Coxeter groups (§3). Once this geometry is
in place, the proof of Theorem 1.2 is based on the fact that a loop repre-
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senting an essential element w must touch all the faces of the fundamental
domain F (§4).
The bicolored eigenvalue. Next we give a succinct lower bound for the
spectral radius of Coxeter elements.

The Coxeter diagram D of (W,S) is the weighted graph whose vertices
are the set S, and whose edges of weight mij join si to sj when mij ≥ 3. If
D is a tree (such as one of the familiar spherical diagrams An, Bn, Dn or
En), then the Coxeter elements w ∈ W range in a single conjugacy class.
When D has cycles, however, many different conjugacy classes (and different
values of λ(w)) can arise.

When every cycle has even order (so D is bipartite), a special role
is played by the bicolored Coxeter elements. These are defined by w =∏

S1
∏

S2, where S = S1 ( S2 is a two-coloring of the vertices of D.
All bicolored Coxeter elements are conjugate. The value of λ(w) they

share can be computed directly, as follows. Let α(W,S) be the leading
eigenvalue of the adjacency matrix of (W,S), defined by Aij = 2cos(π/mij)
for i %= j and Aii = 0. Let β = β(W,S) ≥ 1 be the largest root of the
equation

β + β−1 + 2 = α(W,S)2,

provided α(W,S) ≥ 2. Set β(W,S) = 1 if α(W,S) < 2. Then λ(w) =
β(W,S) for all bicolored Coxeter elements.

The above definition of the bicolored eigenvalue β(W,S) makes sense for
any Coxeter system, bipartite or not. We will show in §5:

Theorem 1.3 For any Coxeter system (W,S), we have

inf
Sn

λ(sσ1sσ2 · · · sσn) ≥ β(W,S).

In particular the bicolored Coxeter elements, when they exist, minimize
λ(sσ1sσ2 · · · sσn).

In the hyperbolic and higher-rank cases, it is easy to see that β(W,S) >
1; thus every Coxeter element has infinite order. The same conclusion is
well-known to hold in the affine case, so we obtain:

Corollary 1.4 A Coxeter group W is infinite iff every Coxeter element
sσ1sσ2 · · · sσn ∈ W has infinite order.

This Corollary was first established in [How].

Minimal hyperbolic diagrams. There is a natural partial ordering on
Coxeter systems that is conveniently visualized in terms of diagrams: we
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write (W ′, S′) ≥ (W,S) if the diagram D′ is obtained from D by adding
more vertices and edges and/or increasing their weights. A useful feature of
the invariant β(W,S) is that it is a monotone function: we have

(W ′, S′) ≥ (W,S) =⇒ β(W ′, S′) ≥ β(W,S),

by elementary properties of positive matrices.
Now suppose w ∈ W ′ satisfies λ(w) > 1. Then (W ′, S′) has indefinite

signature, and therefore it dominates a minimal hyperbolic Coxeter system
(W,S). In §6 we will show:

Theorem 1.5 There are 38 minimal hyperbolic Coxeter systems, and among
these we have inf β(W,S) = λLehmer.

By monotonicity of β, we have

λ(w) ≥ β(W ′, S′) ≥ β(W,S) ≥ λLehmer,

completing the proof of Theorem 1.1.

Small Salem numbers. The results above suggest using β(W,S) as a
measure of the complexity of a Coxeter system. We conclude in §7 with a
few connections between the simplest Coxeter systems and small Salem and
Pisot numbers.

Let Ya,b,c denote the Coxeter system whose diagram is a tree with 3
branches of lengths a, b and c, joined at a single node. For example E8 =
Y2,3,5. We will show:

• The smallest Salem numbers of degrees 6, 8 and 10 coincide with λ(w)
for the Coxeter elements of Y3,3,4, Y2,4,5 and Y2,3,7. (These are the
hyperbolic versions of the exceptional spherical Coxeter systems E6,
E7 and E8.)

• In particular λLehmer = λ(w) for the Coxeter elements of Y2,3,7.

• The set of all irreducible Coxeter systems with β(W,S) < λPisot con-
sists exactly of Y2,4,5 and Y2,3,n, n ≥ 7. Here λPisot ≈ 1.324717 is the
smallest Pisot number; it satisfies x3 = x + 1.

• The infimum of β(W,S) over all higher-rank Coxeter systems coincides
with λPisot.
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• There are exactly 6 Salem numbers < 1.3 that arise as eigenvalues
in Coxeter groups. Five of these arise from the Coxeter elements of
Y2,3,n, 7 ≤ n ≤ 11. (On the other hand, there are in all 47 known
Salem numbers less than 1.3.)

• The second smallest known Salem number, λ ≈ 1.188368, arises as
λ(g) for g ∈ O+(II17,1), but does not arise as λ(w) for any w in the
index two Coxeter group W ⊂ O+(II17,1). Here II17,1 denotes the
unique even unimodular lattice of signature (17, 1).

At the end of §7 we connect the study of β(W,S) to the many known
results on the leading eigenvalues of graphs.

Notes and references. E. Hironaka showed that Lehmer’s number is
the smallest of an infinite family of Salem numbers that arise as roots of
Alexander polynomials of certain pretzel knots [Hir]. We observed that
these Salem numbers are also the leading eigenvalues of Coxeter elements
for the diagrams Yp1,...,pn , and were led to formulate Theorem 1.1.

It is conjectured that λLehmer is the smallest Salem number, and more
generally that it has minimal Mahler measure among all algebraic integers
(other than roots of unity). This conjecture is confirmed by Theorem 1.1
for those algebraic integers λ(w) that arise via Coxeter groups. Many Salem
numbers can also be realized as eigenvalues of automorphisms of even, uni-
modular lattices [GM], but it is unknown if λLehmer is a lower bound for the
Salem numbers that arise in this way. See [GH] for a recent survey on this
topic.

Basic references for Coxeter groups include [Bou], [Ha1] and [Hum]. See
[A’C], [BLM], [Co] and [How] for related work on eigenvalues of Coxeter el-
ements. Connections between Salem numbers and growth-rates of reflection
groups in H2 and H3 are studied in [FP], [Fl], [CW] and [Par]. The pedal
triangle is discussed in [RT, §5]. (The existence of billiard loops is an open
question for obtuse triangles; see [HH].)

For the convenience of the reader, we have included short proofs of key
results from the literature and a summary of the needed background on
Coxeter groups.

I would like to thank D. Allcock, B. Gross and E. Hironaka for many
informative and useful discussions.
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2 Translation length in the Hilbert metric

Let V be a finite-dimensional real vector space. Let K ⊂ V be a closed,
convex cone, such that the interior K◦ of K is nonempty and K contains no
line. Let T : V → V be a linear automorphism of V with T (K) = K, and
let λ(T ) denote the spectral radius of T .

In this section we introduce the Hilbert metric dK on K◦ and study the
translation length

δ(T,K) = inf
x∈K◦

dK(x, Tx).

We will show:

Theorem 2.1 (Hilbert length) The translation length of T in the Hilbert
metric satisfies

1

2
log max (λ+,λ−,λ+λ−) ≤ δ(T,K) ≤ log max (λ+,λ−),

where λ± = λ(T±1) .

Corollary 2.2 The translation length is given by δ(T,K) = log λ(T ) pro-
vided λ(T ) = λ(T−1).

The Hilbert metric. Let K ⊂ V be a closed convex set containing no
line. Let [x, y] ⊂ K denote the segment joining x, y ∈ K. The cross-ratio of
4 collinear points is given by

[a, x, y, b] =
|y − a|
|y − b| ·

|x − b|
|x − a|

for any norm | · | on V .
The Hilbert metric on K◦ is defined by

dK(x, y) =
1

2
inf log[a, x, y, b],

where the infimum is over all a, b ∈ K such that [x, y] lies in the interior of
[a, b] with the same orientation. Compare [H], [Ha2], [Bus, p. 105], [BK,
IV.28]. It is easy to see that dK induces the usual topology on K◦.

Examples. Let K = [A,B] ⊂ V = R; then dK coincides with the Rieman-
nian metric

(B − A) |dx|
2|x − A||x − B| ·
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More generally, if K ⊂ Rn is the closed unit ball, then K◦ coincides with
the Klein model for hyperbolic space Hn, and the Hilbert metric agrees
with the hyperbolic metric of constant curvature −1. (The factor of 1

2 in
the definition of dK compensates for the transition between the Poincaré
and Klein models.)

Straightness. Since the Hilbert metric restricts to a Riemannian metric
on any segment in K◦, we have the following crucial straightness property:

dK(x, y) + dK(y, z) = dK(x, z) (2.1)

for any y ∈ [x, z].

Contraction principle. Linear maps φ are contracting for the Hilbert
metric: that is, if φ : V → V ′ is a linear map that sends K into K ′, then we
have

dK ′(φ(x),φ(y)) ≤ dK(x, y).

In this respect the Hilbert metric behaves like the Poincaré metric from
complex analysis.

x

z

w

a b
y

c

d

f

e

p

Figure 2. The triangle inequality.

Triangle inequality. We sketch a proof that dK is a metric. Since K
contains no line, dK(x, y) = 0 iff x = y. The triangle inequality is verified
by Figure 2. By convexity, given x, y, z ∈ K◦, K contains at least the
quadrilateral L whose diagonals are the maximal segments [a, b] and [c, d]
containing [x, y] and [y, z]. Let [e, f ] denote the maximal segment through
[x, z] in L, and let p be the intersection of the lines through [a, c] and [b, d].
(If these lines are parallel we take p at infinity.) Projection from p sends y
to a point w in [x, z]. Since projection between lines preserves cross-ratios,
we see that [a, x, y, b] = [e, x,w, f ] and thus

dK(x,w) ≤ dL(x,w) = dK(x, y).
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Similarly dK(w, z) ≤ dK(y, z). Finally from the straightness property we
obtain

dK(x, z) = dK(x,w) + dK(w, z) ≤ dK(x, y) + dK(y, z).

The balanced metric. Here is a variant of the Hilbert metric with useful
properties. A segment [x, y] ⊂ K extends by α > 0 if the segment with the
same center but (1 + 2α)-times longer, namely

[a, b] = [x + α(x − y), y + α(y − x)],

is also contained in K.
The balanced metric on K◦ is defined by

d∗K(x, y) = inf{log(1 + α−1) : [x, y] extends by α.}.

The proof of the triangle inequality is similar to the case of the Hilbert
metric (see [BW, Lemma 2]).

The balanced metric is simply the Hilbert metric subject to the condition
that [a, b] has the same center as [x, y]. Thus it enjoys the same contraction
principle. Noting that [−α, 0, 1, 1 + α] = (1 + α−1)2 we have:

1

2
d∗K(x, y) ≤ dK(x, y) ≤ d∗K(x, y). (2.2)

One advantage of the balanced metric is the product formula:

d∗K1×K2
((x1, y1), (x2, y2)) = max

(
d∗K1

(x1, y1), d
∗
K2

(x2, y2)
)
,

which makes it suitable for proofs by induction. For example, a Hilbert ball
in K = R2

+ is a hexagon, while a balanced ball is a square (Figure 3).
A disadvantage of the balanced metric is that the straightness property

(2.1) fails.

Translation length. We now assume, as in the beginning of this section,
that K ⊂ V is a closed convex cone containing no line, and K◦ %= ∅.

Let T : V → V be a linear map such that T (K) = K. Then T induces
an isometry of K◦ in both the balanced and Hilbert metrics. Let

δ∗(T,K) = inf
x∈K◦

d∗K(x, Tx).

Concentrating first on the balanced metric, we will show:

Theorem 2.3 (Balanced length) The translation length of T in the bal-
anced metric is given by δ∗(T,K) = log max (λ(T ),λ(T−1)).

8



p

Figure 3. Balls of radius (log 2)/2 centered at p ∈ R2
+ in the balanced metric

(inner) and the Hilbert metric (outer).

Eigenvectors in K. As a first step in the proof, we show:

Theorem 2.4 Let T : V → V be a linear map satisfying T (K) = K. Then
λ(T ) > 0 is an eigenvalue of T , with a corresponding eigenvector v ∈ K.

Proof. Since T (K) = K, T is invertible. Using the generalized eigenspace
decomposition of T on V ⊗ C, we obtain a T -invariant splitting V = X ⊕ Y
such that the spectrum of (T |X) lies on the circle |z| = λ(T ), while λ(T |Y ) <
λ(T ).

Choose a norm | · | on V . Since K◦ %= ∅, there exists a vector u = (x, y) ∈
K with x %= 0. Then we have

|T n(x)| / λ(T )n|x| 0 |T n(y)|

as n → ∞. It follows that any accumulation point w of the sequence
T n(u)/|T n(u)| lies in K ∩ X. Since K is a cone, the entire ray R+ · w
is also contained in K ∩ X.

The set of all rays contained in K∩X determines a nonempty, T -invariant
subset P(K ∩ X) ⊂ PX. Since K is closed, convex and contains no line,
P(K ∩ X) is a compact, convex disk. Therefore T : P(K ∩ X) → P(K ∩ X)
has a fixed point [v]. We have Tv = αv and |α| = λ(T ) since v ∈ X. Since
K contains no line we have α > 0 and thus α = λ.

Corollary 2.5 We have δ∗(T,K) ≥ log max (λ(T ),λ(T−1)).

Proof. Let λ = λ(T ). Let T ∗ : V ∗ → V ∗ be the dual of T , and let
K∗ = {f ∈ V ∗ : f(K) ≥ 0} be the dual cone to K. Since the interior of K
is nonempty and K contains no line, the same properties obtain for K∗.

9



By the preceding Theorem, there is a nonzero f ∈ K∗ such that T ∗(f) =
λf . Then f : V → R satisfies:

f(Tv) = λf(v) and f(K) ⊂ [0,∞).

By the contraction principle, δ∗(T,K) is bounded below by the translation
distance δ∗(T ′,K ′) = | log λ| of T ′(x) = λx on V ′ = R with K ′ = [0,∞).
Applying the same reasoning to T−1 gives the Corollary.

For the reverse inequality it is convenient to prove a slightly more general
statement that allows K to contain a line.

Lemma 2.6 Let K ⊂ V be a closed convex cone with K◦ %= ∅. Let T : V →
V be an automorphism preserving K, and suppose

1 + α−1 > max (λ(T ),λ(T−1)).

Then there exists an x ∈ K◦ such that [x, Tx] extends by α.

Proof. The proof will be by induction on dimV . If dimV = 0, the Lemma
holds for all values of α > 0 by taking x = 0.

Now suppose that dimV > 0 and that the Lemma has been established
for all vector spaces with dimV ′ < dimV . Observe that any T -invariant
subspace S ⊂ V of positive dimension yields a quotient map f : V → V ′ =
V/S, and an automorphism T ′ of V ′ making the diagram

V
T−−−−→ V

f

% f

%

V ′ T ′

−−−−→ V ′

commute. Since the spectrum of T ′ is contained in that of T , and dimV ′ <
dim V , the Lemma provides an x′ in (K ′)◦ = f(K◦) such that [x′, T ′(x′)]
extends by α. Lifting to V , we obtain y, z ∈ K◦ such that [y, z] extends by
α and T (y) = z + s for some s ∈ S.

We apply this observation in two ways to complete the proof. First,
suppose K ⊂ V contains a line. Let S be the maximal subspace contained
in K. Then [y, z] and [y, z + s] extend by the same amount, so [y, T (y)]
extends by α and we are done.

Second, suppose K ⊂ V contains no line. It is convenient to assume
that λ = λ(T ) ≥ λ(T−1) (if not, replace T by its inverse); then λ ≥ 1. By
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Theorem 2.4 there is an eigenvector v ∈ K such that Tv = λv. (If v were in
K◦ we could finish the proof by taking x = v; but frequently v lies in ∂K.)

Let S be the subspace R · v ⊂ V . By the observation above, we have
y, z ∈ K◦ such that [y, z] extends by α and T (y) = z + mv for some m ∈ R.

Let x = y + Mv where M 0 0. Since y lies in K◦ and R+ · v ⊂ K, we
have x ∈ K◦. We claim that for M sufficiently large, [x, Tx] extends by α.
To see this, we compute:

x + α(x − Tx) = y + α(y − T (y)) + M(v + α(v − T (v)))

= y + α(y − z) − mv + M(1 + α − αλ)v

= y + α(y − z) + (Mβ − m)v

where the coefficient β = 1 + α − αλ is positive by our assumption that
1 + α−1 > λ. Therefore we have

(Mβ − m)v ∈ R+ · v ⊂ K

when M is large enough. On the other hand, y + α(y − z) lies in K since
[y, z] extends by α. Since K + K ⊂ K, we have x + α(x − Tx) ∈ K.

A similar argument shows Tx + α(Tx − x) ∈ K. Thus [x, Tx] extends
by α.

Proof of Theorem 2.3 (Balanced length). By Corollary 2.5 we have

δ∗(T,K) ≥ log max (λ(T ),λ(T−1)).

Since d∗K(x, Tx) ≤ log(1 + α−1) when [x, Tx] extends by α, the preceding
Lemma provides the reverse inequality.

Proof of Theorem 2.1 (Hilbert length). Using the comparison (2.2)
between the Hilbert metric and the balanced metric, the Theorem 2.3 im-
mediately yields

1

2
log max (λ+,λ−) ≤ δ(T,K) ≤ log max (λ+,λ−)

where λ± = λ(T±1).
When λ+ and λ− are both > 1, the lower bound can be strengthened

to 1
2 log λ+λ−, as follows. Proceeding as in Corollary 2.5, there exist eigen-

vectors f± ∈ K∗ such that (T ∗)±1f± = λ±f±. Define f : V → R2 by

11



f(v) = (f+(v), f−(v)), and T ′ : R2 → R2 by T ′(x, y) = (λ+x,λ−1
− y). Then

f ◦T = T ′ ◦ f , and f(K) = K ′ = R2
+. By the contraction principle, we have

δ(T,K) ≥ δ(T ′,K ′) =
1

2
log(λ+λ−),

completing the proof.

3 Coxeter groups and the Tits cone

This section summarizes geometric properties of Coxeter groups. Basic ref-
erences for this material are [Bou] and [Hum]; see also [Vin1], [Ha1].

Our main interest will be hyperbolic and higher-rank Coxeter groups.
For such groups, we observe that the Hilbert metric on the interior of the
Tits cone K◦ is well-defined and invariant, and passes to the space of rays
PK◦. Thus (PK◦, dK) serves as a generalization of the Klein model for
hyperbolic space to the case of higher-rank Coxeter groups.

Coxeter systems. Let W be a group generated by a finite set S, and let
m(s, t) denote the order of st ∈ W . Assume m(s, s) = 1 and m(s, t) ≥ 2 for
all s %= t in S.

The pair (W,S) is a Coxeter system if the generators S, together with
the relations (st)m(s,t) = 1 for all s, t ∈ S, give a presentation for W . Then
W itself is a Coxeter group.

Let V = RS be the real vector space with one basis element es for each
s ∈ S. Define a symmetric bilinear form B : V × V → R by

B(es, et) = −2 cos(π/m(s, t)).

There is a natural geometric action of W on V preserving the form B, given
on the generators s ∈ S by

s · v = v − B(es, v)es;

that is, by letting s acts via reflection through the hyperplane normal to es.
The representation W → O(V,B) is faithful.

The quadratic form B(v, v) on V is equivalent over R to one of the
standard forms

x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

p+q

on Rn; its signature is (p, q). The radical is defined by

rad(V ) = {v : B(v, v′) = 0 ∀v′ ∈ V };

12



it satisfies dim rad(V ) = n − p − q.
Remark: when (st) has infinite order, one drops the relation (st)m(s,t) =

1 and sets B(es, et) = −2.

Eigenvalues. Let λ(w) denote the spectral radius of w ∈ W acting geo-
metrically on V . Clearly s|rad(V ) = I for all s ∈ S, so the same is true of
w. Moreover B descends to a non-degenerate quadratic form on V/rad(V ),
preserved by w. It follows that det(λI − w) is a reciprocal polynomial, and
in particular that

λ(w) = λ(w−1). (3.1)

The Tits cone. The Coxeter group W also acts naturally on the dual
space V ∗. The dual action is characterized by the equation

〈w · f,w · v〉 = 〈f, v〉,

where 〈f, v〉 denotes the natural pairing between f ∈ V ∗ and v ∈ V . The
spectral radii of w|V and w|V ∗ agree.

The fundamental chamber F ⊂ V ∗ for (W,S) is defined by:

F = {f ∈ V ∗ : 〈f, es〉 ≥ 0 ∀s ∈ S}.

Passage to the dual space permits a uniform treatment of the geometric
action even in the case where rad(V ) %= (0). For example, the chamber
F ⊂ V is always a cone on a simplex, while the region

{v : B(v, es) ≥ 0 ∀s ∈ S} ⊂ V

need not be.
The Tits cone is the full orbit W · F of the fundamental chamber under

the action of W . From [Bou, V.4] or [Hum, §5.13] we have:

Theorem 3.1 The Tits cone W · F is convex, and w(F ) = F iff w = id.

Diagrams. The Coxeter diagram of (W,S) is the weighted graph D whose
vertices are S and whose edges of weight m(s, t) join s to t whenever
m(s, t) ≥ 3. To make a picture of the diagram D, we draw single lines
for edges of weight 3, double lines for edges of weight 4, and lines labeled by
n for edges of weight n ≥ 5.

A Coxeter system is irreducible if the action of W on V/rad(V ) is irre-
ducible; equivalently, if its Coxeter diagram is connected.
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A general Coxeter system (W,S) reduces naturally into irreducible sub-
systems (Wi, Si), such that S = (Si and W =

∏
Wi. The geometric action

of W on V is the product of the actions of Wi on Vi.

Classification by signature. Assume the Coxeter system (W,S) is irre-
ducible. Then (W,S) can be classified into one of 4 types according to the
signature of (V,B). Letting n = |S| = dim V , we say (W,S) is:

• Spherical if sig(V,B) = (n, 0);

• Affine if sig(V,B) = (n − 1, 0);

• Hyperbolic if sig(V,B) = (p, 1); and

• Higher-rank if sig(V,B) = (p, q), q ≥ 2.

This classification is conveniently approached via the adjacency matrix

Ast = (2I − B)(es, et) =

{
2 cos(π/m(s, t)), s %= t,

0 s = t.

Let α = α(W,S) denote the spectral radius of A. Since the smallest eigen-
value of the symmetric matrix B is 2 − α(W,S), we find:

(W,S) is






spherical if α(W,S) < 2,

affine if α(W,S) = 2, and

hyperbolic or higher-rank if α(W,S) > 2.

Terminology. The term ‘adjacency matrix’ comes from the case where
m(s, t) ≤ 3 for all s, t; then Ast = 1 if s and t are joined by an edge in
the Coxeter diagram of (W,S), and = 0 otherwise. The term ‘higher rank’
is meant to remind one that the real Lie group SO(p, q) has real rank ≥ 2
when (p, q) ≥ (2, 2). Note that in [Bou] and [Hum], the term ‘hyperbolic’
is used differently than here; these authors include the additional condition
that rad(V ) = (0) and Hp/W has finite volume.

Perron-Frobenius. Since the Coxeter diagram of (W,S) is connected,
the matrix A is one to which the Perron-Frobenius theory applies. That
is, α = α(W,S) is a simple eigenvalue of A, and there is a positive vector
v0 =

∑
ases, as > 0 such that Av0 = αv0 and Bv0 = (2 − α)v0.

Now assume α %= 2 and let f0 ∈ V ∗ be the dual vector satisfying

〈f0, v〉 = (2 − α)−1B(v0, v)

for all v ∈ V . Then clearly f0 belongs to rad(V )⊥; that is, 〈f0, v〉 = 0 for all
v ∈ rad(V ). Moreover, we have 〈f0, es〉 = as > 0, so f ∈ F ◦. This shows:
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Proposition 3.2 Except in the affine case, F ◦ meets rad(V )⊥.

Spherical, affine and hyperbolic groups. The spherical and affine
groups are well-understood; for example, their diagrams are classified. In
the spherical case the Tits cone is all of V ∗ and W is finite. In the affine
case the closure of the Tits cone is a half-space bounded by rad(V )⊥, and
W = W0 ! Zn−1 with |W0| < ∞. By considering the space of rays in the
interior of the Tits cone, one obtains an isometric action of W on the sphere
Sn or on the Euclidean space Rn−1.

Hyperbolic and higher rank groups. We will use the Hilbert metric on
the Tits cone to obtain an isometric action in the hyperbolic and higher-rank
cases. Let K = W · F .

Theorem 3.3 Let (W,S) be a hyperbolic or higher-rank Coxeter system.
Then the closure of the Tits cone K contains no line.

Proof. (From [Vin1, Lemma 15].) Let X ⊂ V ∗ be the maximal subspace
contained in K. For the sake of contradiction, suppose X %= (0). Then
X⊥ ⊂ V is a proper W -invariant subspace. By irreducibility of the action
of W on V/rad(V ), we have X⊥ ⊂ rad(V ), and thus X ⊃ rad(V )⊥.

Since F ◦ meets rad(V )⊥, there is an f0 ∈ rad(V )⊥ and a neighborhood
U of the origin in V ∗ such that

f0 + U ⊂ F ◦ ⊂ W · F = K.

We also have −f0 ∈ X ⊂ K. Since K is a convex cone, this implies

U = (−f0) + f0 + U ⊂ K,

and thus K = V . Therefore W is finite and (W,S) is spherical, a contradic-
tion.

Since K contains no line, the Hilbert metric dK is well-defined and we
have:

Corollary 3.4 In the hyperbolic or higher-rank case, the Coxeter group W
acts isometrically on K◦ in its Hilbert metric.

Since λ(w) = λ(w−1) ((3.1) above), Theorems 2.1 and 2.4 imply:
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Corollary 3.5 Let w belong to a hyperbolic or higher-rank Coxeter group.
Then λ(w) ≥ 1 is an eigenvalue of w, and

log λ(w) = inf
x∈K◦

dK(x,w · x).

Projective models. The Hilbert determines a W -invariant metric on the
space of rays

PK◦ ⊂ PV ∗,

because the cross-ratio is projectively invariant. The space PK◦ is isometric
(via projection) to the affine slice (K◦ ∩H, dK), for hyperplane H ⊂ V with
H ∩ K◦ %= ∅ and K ∩ H compact.

In the case of hyperbolic Coxeter groups, W also acts isometrically on
the Klein model for hyperbolic space,

Hp = PH ⊂ PV ∗,

where H is the image of the timelike cone B(v, v) < 0 under the map
V → V ∗ defined by B. In fact, when the radical is trivial and Hp/W
has finite volume, Hp coincides isometrically with (PK◦, dK). Thus we can
regard (PK◦, dK) as a generalization of the Klein model for hyperbolic space
to the infinite-volume and higher-rank cases.

4 Coxeter elements

In this section we show Coxeter elements minimize translation length among
all essential elements in W .

Coxeter elements. Let (W,S) be a Coxeter system with S = {s1, . . . sn}.
We say w ∈ W is a Coxeter element if

w = sσ1sσ2 · · · sσn

for some permutation σ ∈ Sn.

Essential elements. Let WI ⊂ W denote the parabolic subgroup generated
by I ⊂ S. Then (WI , I) is also a Coxeter system. An element w ∈ W is
peripheral if it is conjugate into a proper parabolic subgroup WI ⊂ W ,
I %= S; otherwise it is essential.

We will show:

Theorem 4.1 Let (W,S) be a Coxeter system and let w ∈ W be essential.
Then we have λ(w) ≥ infSn λ(sσ1sσ2 · · · sσn).
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Loops in the fundamental chamber. It is easy to see that Theorem 4.1
for general (W,S) follows from the irreducible case. In the spherical and
affine cases, λ(w) = 1 for all w ∈ W and the Theorem is immediate.

Now assume (W,S) is hyperbolic or higher-rank. Then W acts isomet-
rically and discretely on K◦, with X = F ∩ K◦ as a fundamental domain.
The natural projection map

π : K◦ → X,

characterized by x ∈ W · π(x), is a covering map in the sense of orbifolds.
By convexity, K◦ is contractible, and hence the orbifold fundamental group
of X is W .

Let γ : [0, 1] → K◦ be a piecewise linear path. Breaking the domain into
intervals [ti, ti+1] on which γ is linear, and setting xi = γ(ti), we define its
length by

L(γ) =
∑

dK(xi, xi+1).

The sum is independent of the choice of subdivision because of the triangle
equality (2.1) for collinear points.

A loop in X is a piecewise-linear path γ : [0, 1] → X with γ(0) = γ(1).
A lift of γ is a path γ̃ : [0, 1] → K◦ such that

π ◦ γ̃ = γ.

In this case γ̃(1) = w · γ(0) for some w ∈ W , and we say γ (or γ̃) represents
w. A given loop has many lifts, and thereby represents many elements in
W .

General position. The codimension-one faces of F are given by F (s) =
{f ∈ F : f(s) = 0}, s ∈ S; the codimension-two faces, by F (s)∩F (t), s %= t.

Let us say a piecewise-linear path γ : [0, 1] → X is in general position if it
is disjoint from the codimension-two faces of F and meets the codimension-
one faces at most in a finite set.

Proposition 4.2 We have log λ(w) = inf L(γ) over all loops γ : [0, 1] → X
in general position representing w.

Proof. Let γ represent w via the lift γ̃. By Corollary 3.5, log λ(w) is the
minimal translation length of w in the Hilbert metric. Thus we have

L(γ) = L(γ̃) ≥ dK(γ̃(0), w · γ̃(0)) ≥ log λ(w).
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Moreover, there exist xn ∈ K◦ with

dK(xn, w · xn) → log λ(w).

Since the orbits of the codimension-one faces W · F (s) are nowhere dense,
we can assume π(xn) ∈ F ◦.

Let γ̃n denote the straight line from xn to w · xn; then

L(γ̃n) → log λ(w).

Since the orbits W · (F (s) ∩ F (t)) of the codimension-two faces of F do not
separate K◦, we can modify γ̃n slightly (introducing new bends if necessary
but increasing its length by at most 1/n) so that γn = π ◦ γ̃n is in general
position. Then L(γn) → log λ and γn represents w, completing the proof.

Let γ be a loop in general position, and let t1 < t2 < . . . < tm be the
parameters such that γ(ti) ∈ ∂F . Then we have γ(ti) ∈ F (gi) for a unique
gi ∈ S. We say w is a subword of g1g2 · · · gm if we have w = gi1gi2 · · · gik for
some indices 1 ≤ i1 < i2 < · · · < ik ≤ m.

Proposition 4.3 The loop γ represents w iff w is conjugate to a subword
of g1g2 · · · gm.

Proof. Define a lift γ̃ of γ by

γ̃(t) =






γ(t) if t ∈ [0, t1],

g1g2 · · · gk · γ(t) if t ∈ [tk, tk+1], and

g1g2 · · · gm · γ(t) if t ∈ [tm, 1].

Since gk ·γ(tk) = γ(tk), the definition is consistent and γ̃ is continuous. Thus
γ represents the full word g1 · · · gm. By ignoring a subset of the (ti)’s, we
can similarly obtain a lift which represents any subword of g1 · · · gm.

Now let γ̃ be a lift with γ̃(0) ∈ X. Then γ̃(t) = w(t) · γ(t) for some
w(t) ∈ W . The element w(t) can only change when γ(t) touches a face
F (gi), and then only by composition on the right with gi. Thus γ̃ has the
form above and therefore γ represents a subword of g1 · · · gm.

To complete the proof, observe that γ̃ represents w iff g · γ̃ represents
gwg−1.
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Proof of Theorem 4.1. As discussed above, the Theorem reduces to the
case of a hyperbolic or higher-rank group.

Let w ∈ W be an essential element of such a group. For any ε > 0 we
can find a loop γ : [0, 1] → X in general position such that γ represents w
and L(γ) ≤ log λ(w) + ε.

Let γ(ti) ∈ F (gi) be the points of γ that meet ∂F . Then w is conjugate
to a subword of g1 · · · gm. Since w is essential, every element of S must occur
in the sequence (gi). Thus g1 · · · gm also contains a Coxeter element w′ as a
subword, and therefore γ also represents w′. We then have

λ(w′) ≤ L(γ) ≤ log λ(w) + ε,

and the proof is completed by letting ε → 0.

Hyperbolic groups. For hyperbolic Coxeter systems, the proof above can
also be carried through using hyperbolic space Hp in place of PK◦.

Question. Are all Coxeter elements essential?

5 Bipartite Coxeter diagrams

Let (W,S) be a Coxeter system. In this section we introduce the bicolored
eigenvalue β(W,S) ≥ 1 and prove it controls the eigenvalues of all Coxeter
elements. We will show:

Theorem 5.1 Any Coxeter system (W,S) satisfies

inf
Sn

λ(sσ1sσ2 · · · sσn) ≥ β(W,S).

Equality holds if the Coxeter diagram of (W,S) is bipartite.

Corollary 5.2 We have λ(w) ≥ β(W,S) for all essential w ∈ W .

Bicolored Coxeter elements. When the Coxeter diagram D of (W,S) is
a tree (or forest), the Coxeter elements range in a single conjugacy class in
W [Hum, §3.16].

When D contains cycles, in general several conjugacy classes occur. How-
ever, when all the cycles in D are of even order, there is still a special class
of Coxeter elements that are unique up to conjugacy.

To define these, let us say a partition S = S1 ( S2 of the vertices of D
is a two-coloring if all edges of D lead from S1 to S2. A two-coloring exists
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iff all cycles in D are of even order. In the terminology of graph-theory, the
diagram D is bipartite.

Let D admit a two-coloring S = S1 ( S2. Since there are no edges
between elements s, t ∈ Si, we have (st)2 = 1. Thus Si generates an abelian
subgroup of W , isomorphic to (Z/2)|Si|. The product σi of the elements of
Si is independent of the choice of ordering and satisfies σ2

i = 1.
We refer to w = σ1σ2 as a bicolored Coxeter element. Its conjugacy class

is independent of the choice of two-coloring. In fact, if (W,S) is irreducible
then its bicolored Coxeter element is unique up to w 9→ w−1, since the
two-coloring of a connected diagram is unique up to (S1, S2) 9→ (S2, S1).

As noted in [A’C] and [BLM], the spectrum of the bicolored Coxeter
elements is determined by the spectrum of Ast. In particular we have:

Proposition 5.3 Let w be a bicolored Coxeter element for (W,S). Then
the spectrum of w is contained in S1∪R+, and the eigenvalue(s) maximizing
Reλ satisfy

2 + λ + λ−1 = α(W,S)2. (5.1)

Proof. It is easy to check that the adjacency matrix determines an operator
A : V → V satisfying A = σ1 + σ2, where w = σ1σ2. Thus

A2 = 2 + σ1σ2 + σ2σ1 = 2 + w + w−1.

The spectrum of w is therefore the preimage of the spectrum of A2 under
λ 9→ 2 + λ + λ−1. Since A is symmetric, the spectrum of A2 lies in the
interval [0,α(W,S)2], and the Proposition follows.

The bicolored eigenvalue. Motivated by equation (5.1), we define the
bicolored eigenvalue β(W,S) as the unique root β ≥ 1 of the equation

2 + β + β−1 = α(W,S)2,

provided α(W,S) ≥ 2. For α(W,S) < 2 we set β(W,S) = 1. In the first
case, (W,S) has a hyperbolic or higher-rank component; in the second, all
components are affine or spherical. In the first case λ(w) is an eigenvalue of
w, showing:

Corollary 5.4 We have λ(w) = β(W,S) for all bicolored Coxeter elements.

Proof of Theorem 5.1. Assume (W,S) is hyperbolic or of higher-rank;
the Theorem easily reduces to this case. Let α = α(W,S) > 2.
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Let w = s1 · · · sn be a Coxeter element in W . We will write vectors
v ∈ V as v =

∑
viei, ei = esi

, and write v ≥ v′ to mean vi ≥ v′i for all i.
Since sk · v = v − B(v, ek)ek, and B = 2I − A, we have:

(sk · v)i =

{
(A · v)i − vi if k = i,

vi otherwise.
(5.2)

Note that (A · v)i only depends on vj, j %= i
Let v > 0 be a Perron-Frobenius eigenvector for A; it satisfies Av = αv.

To prove the Theorem, it suffices to show

(w + w−1)(v) ≥ (α2 − 2)v, (5.3)

since this equation implies

λ(w) + λ(w)−1 ≥ λ(w + w−1) ≥ α2 − 2

and thus λ(w) ≥ β(W,S).
To prove (5.3) first note that v′ ≥ v implies Av′ ≥ Av. Since α − 1 ≥ 1,

we have (sn · v)n = (α − 1)vn ≥ vn, and thus sn · v ≥ v. By induction, we
have the inequalities

sksk+1 · · · sn · v ≥ v,

(sksk+1 · · · sn · v)k ≥ (A · v)k − vk = (α − 1)vk

for all k. Since sk only changes the kth coordinate of v, we have

(sk+1 · · · sn · v)i ≥ (α − 1)vi, i > k,

(sk+1 · · · sn · v)i = vi, i ≤ k.

Applying the same reasoning to w−1 = sn · · · s1, we find

u = (sk+1 · · · sn · v) + (sk−1 · · · s1 · v)

satisfies ui ≥ αvi, i %= k, and uk = 2vk. On the other hand, we have

((w + w−1) · v)k = (sk · u)k,

using again the fact that only sk changes the kth coordinate. Therefore we
have

((w + w−1) · v)k = (A · u)k − uk

≥ (A · (αv))k − 2vk = (α2 − 2)vk,

establishing (5.3) and completing the proof.
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Corollary 5.5 The bicolored Coxeter elements, if they exist, minimize λ(w)
among all Coxeter elements.

Geometric interpretation. Suppose (W,S) admits a two-coloring S =
S1(S2 with corresponding Coxeter element w = σ1σ2. Then Fi =

⋂
s∈Si

F (s)
is a facet of F with a finite stabilizer in W ; hence it meets K◦. Let [x, y] ⊂ X
be a line segment joining F1 to F2 in (rad(V ))⊥ and perpendicular to both.
A loop γ that traces [x, y] twice, once in each direction, gives a geodesic
representing w; thus log λ(w) = 2L([x, y]).

In terms of the Hilbert metric on the quotient orbifold X, Theorem 4.1
implies:

Corollary 5.6 The loop γ for a bicolored Coxeter element has minimal
length among all loops that touch all the faces of X.

Figure 4. The geodesic stabilized by the Coxeter element for the (2, 3,∞)
triangle group.

Example. Let (W,S) = 〈a, b, c : a2 = b2 = c2 = (ac)2 = (ab)3〉 be the
(2, 3,∞) triangle group. Its Coxeter diagram is

a b ∞ c.
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The Coxeter element w = (ac)b is bicolored, and the corresponding segment
[x, y] joins the right angle x = F (a) ∩ F (c) of X to the opposite side F (b).
The hyperbolic length of [x, y] is given by the log of the golden mean, and
therefore

λ(w) =
3 +

√
5

2
= 2.61803 . . .

is the golden mean squared.
The corresponding tiling of H2 in the Poincaré model, and the geodesic

stabilized by w (which has [x, y] as a subsegment), are shown in Figure 4.
As is well-known, W contains PSL2(Z) as a subgroup of index two, and
w2 = ( 2 1

1 1 ) when suitably normalized.

Finite covers of Coxeter diagrams. Here is another perspective on
the bicolored eigenvalue. Let (W,S) be a Coxeter system with connected
diagram D. Regarding D as a topological 1-complex with weights on its
edges, consider the 2d-fold covering space D′ → D determined by the map

π1(D) → H1(D, Z/2).

All cycles in D′ have even length, so the associated Coxeter system (W ′, S′)
admits a bicolored Coxeter element w′ ∈ W ′. Clearly α(W,S) = α(W ′, S′),
so we can alternatively define the bicolored eigenvalue of (W,S) by

β(W,S) = λ(w′).

In other words, every Coxeter system admits a bicolored ‘virtual’ Coxeter
element, whose leading eigenvalue is β(W,S).

Indiscrete groups. The proof of Theorem 5.1 uses only the fact that
the adjacency matrix Ast is non-negative and symmetric, so it can easily
be generalized beyond Coxeter groups. A corresponding result applies, for
example, to the (possibly indiscrete) group generated by reflections through
the sides of any simplex in hyperbolic space with interior dihedral angles
≤ π/2.

6 Minimal hyperbolic diagrams

In this section we use the classification of minimal hyperbolic diagrams to
prove a universal lower bound for eigenvalues in Coxeter groups.

Let (W,S) be a Coxeter system and let

λ(W,S) = inf{λ(w) : w ∈ W and λ(w) > 1}.
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We set λ(W,S) = 1 if all elements of W have spectral radius one. Note
that when (W,S) is hyperbolic, log λ(W ) is the length of the shortest closed
geodesic on the hyperbolic orbifold Hp/W .

We will show:

Theorem 6.1 Either λ(W,S) = 1 or λ(W,S) ≥ λLehmer.

Recall λLehmer = 1.17628 . . . is the largest real root of Lehmer’s polynomial
(1.1).

Minimal Coxeter elements. We first show λ(W,S) can be computed by
examining a finite number of elements w ∈ W . Given a Coxeter system
(W,S), let

λCox(W,S) = inf
Sn

λ(sσ1sσ2 · · · sσn).

The infimum is realized by the minimal Coxeter elements in W .

Theorem 6.2 For any Coxeter system with λ(W,S) > 1, we have

λ(W,S) = inf{λCox(WI , I) : (WI , I) is hyperbolic or higher-rank.}

Proof. Any element w ∈ W is conjugate to an essential element of (WJ , J)
for some J ⊂ S. If λ(w) > 1 then (WJ , J) has a hyperbolic or higher-rank
component (WI , I) with the same minimal Coxeter eigenvalue as (WJ , J).
By Theorem 4.1 we have

λ(w) ≥ λCox(WJ , J) = λCox(WI , I),

and the proof is completed by taking the infimum over all w ∈ W with
λ(w) > 1.

Monotonicity. Coxeter systems admit a natural partial order, defined
by (W,S) ≤ (W ′, S′) if there is an injective map ι : S → S′ such that
m(s, t) ≤ m(ι(s), ι(t)) for all s, t ∈ S. We write (W,S) ∼= (W ′, S′) if ι
extends to an isomorphism between W and W ′; otherwise (W,S) < (W ′, S′).
Since m(s, t) ∈ {1, 2, 3, . . . ,∞}, this ordering satisfies the descending chain
condition: any strictly decreasing sequence of Coxeter systems is finite.

The inequality on m(s, t) is equivalent to the inequality

Ast ≤ A′
ι(s)ι(t)

between adjacency matrices. Now the spectral radius of Ast ≥ 0 increases
as its entries do, since λ(A) = lim ‖An‖1/n. The same is therefore true of
the bicolored eigenvalue; we have:
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Proposition 6.3 If (W,S) ≥ (W ′, S′) then β(W,S) ≥ β(W ′, S′).

Minimal hyperbolic diagrams. A hyperbolic Coxeter system (W,S)
is minimal if (W ′, S′) has only spherical and affine components whenever
(W ′, S′) < (W,S).

Proposition 6.4 If (W0, S0) is hyperbolic or higher rank, then there is a
minimal hyperbolic Coxeter system with (W,S) ≤ (W0, S0).

Proof. We will write the signature of a Coxeter system as (p(W,S), q(W,S)).
Consider the set of all Coxeter systems with (Wα, Sα) ≤ (W0, S0) and

q(Wα, Sα) ≥ 1. By the descending chain condition, this set has at least one
minimal element (W,S). The minimal system (W,S) must be irreducible —
otherwise one of its hyperbolic or higher-rank components would be strictly
smaller. By minimality, q(W ′, S′) = 0 if (W ′, S′) < (W,S), and thus any
strictly smaller system has only spherical and affine components.

To see (W,S) is hyperbolic, pick s ∈ S and let I = S − {s}; then
(WI , I) < (W,S) so q(WI , I) = 0. Adding s back in increases the signature
by at most 1, so q(W,S) = 1.

Therefore (W,S) is a minimal hyperbolic Coxeter system.

By Theorem 6.2 we have:

Proposition 6.5 If (W,S) is a minimal hyperbolic Coxeter system, then
λ(W,S) = λCox(W,S).

Theorem 6.6 Up to isomorphism, there are 38 minimal hyperbolic Coxeter
systems. Their diagrams are shown in Table 5.

Proof. Since the affine and spherical diagrams are known, the enumeration
of minimal hyperbolic Coxeter systems is a straightforward combinatorial
problem, albeit with many cases.

As an alternative argument, we note that if (W,S) is a minimal hyper-
bolic Coxeter system, then (W,S) is irreducible and rad(V ) = (0). (Indeed,
rad(V ) %= (0) implies RI + rad(V ) = RS for some proper subset I ⊂ S, and
then (WI , I) < (W,S) is still hyperbolic, contradicting minimality.)

Moreover, the condition that all proper parabolic subgroups of W are
affine or spherical implies that the vertices of the simplex PF ⊂ PV ∗ lie
inside or on the boundary of hyperbolic space Hn−1. Therefore Hn−1/W
has finite volume.
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Coxeter system λ(W, S) det(xI − w)

Ah4 2.36921
(2.26844)

1 − x − 3x2 − x3 + x4

Ah5 2.08102 (1 + x)(1 − x − 2x2 − x3 + x4)

Ah6 1.98779
(1.96355)

1 − 2x2 − 3x3 − 2x4 + x6

Ah7 1.88320 (1 + x)(1 + x + x2)(1 − 2x + x2 − 2x3 + x4)

Ah8 1.83488
(1.82515)

1 − x2 − 2x3 − 3x4 − 2x5 − x6 + x8

Bh5 1.72208 (1 + x)(1 − x − x2 − x3 + x4)

Bh6 1.58235 1 − x2 − 2x3 − x4 + x6

Bh7 1.50614 (1 + x)(1 − x − x3 − x5 + x6)

Bh8 1.45799 1 − x2 − x3 − x5 − x6 + x8

Bh9 1.42501 (1 + x)(1 − x − x3 + x4 − x5 − x7 + x8)

Dh6 1.72208 (1 + x)2(1 − x − x2 − x3 + x4)

Dh7 1.58235 (1 + x)(1 − x2 − 2x3 − x4 + x6)

Dh8 1.50614 (1 + x)2(1 − x − x3 − x5 + x6)

Dh9 1.45799 (1 + x)(1 − x2 − x3 − x5 − x6 + x8)

Dh10 1.42501 (1 + x)2(1 − x − x3 + x4 − x5 − x7 + x8)

Eh8 1.40127 (1 + x + x2)(1 − x2 − x3 − x4 + x6)

Eh9 1.28064 (1 + x)(1 − x3 − x4 − x5 + x8)

Eh10 1.17628 1 + x − x3 − x4 − x5 − x6 − x7 + x9 + x10

Table 5. The 38 minimal hyperbolic Coxeter diagrams. (Continued on next page.)
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Coxeter system λ(W, S) det(xI − w)

K343 2.08102 (1 + x)(1 − x − 2x2 − x3 + x4)

K3433 1.88320 (1 + x)2(1 − 2x + x2 − 2x3 + x4)

K44 2.61803 (1 + x)2(1 − 3x + x2)

K53
5 2.15372 (1 + x)2(2 − 3x −

√
5x + 2x2)

K533
5 1.91650 (1 + x)(2 − x −

√
5x − x3 −

√
5x3 + 2x4)

L33433 1.58235 1 − x2 − 2x3 − x4 + x6

L34333 1.40127 1 − x2 − x3 − x4 + x6

L353

5
1.84960 2 + x −

√
5x − 2

√
5x2 + x3 −

√
5x3 + 2x4

L4343 1.88320 (1 + x)(1 − 2x + x2 − 2x3 + x4)

L443 2.08102 1 − x − 2x2 − x3 + x4

L5333

5
1.36000 (1 + x)(2 − x −

√
5x + 2x2 − x3 −

√
5x3 + 2x4)

L534

5
1.91650 2 − x −

√
5x − x3 −

√
5x3 + 2x4

L54

5
2.15372 (1 + x)(2 − 3x −

√
5x + 2x2)

L633

6
1.72208 1 − x − x2 − x3 + x4

L73

7
1.63557 (1 + x)(1 + x + x2 − 4x cos2 π/7)

Q3 3.09066
(2.89005)

(1 + x)(1 − 2x −
√

2x + x2)

Q4 2.57747 1 − x − x2 − 2
√

2x2 − x3 + x4

Q5 2.43750
(2.3963)

(1 + x)(1 − 2x + x2 −
√

2x2 − 2x3 + x4)

X5 2.61803 (1 + x)3(1 − 3x + x2)

X6 2.61803 (1 + x)4(1 − 3x + x2)

Table 5. (Continued.)
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The hyperbolic Coxeter systems of finite covolume with trivial radical
are known and appear, for example, in [Hum, §6.8].1 There are 72 such
Coxeter systems with |S| ≥ 4. For |S| ≤ 3 there are infinitely many, namely
the (p, q, r) triangle groups with 1/p+1/q +1/r < 1. However among these,
only the (3, 3, 4), (2, 4, 5) and (2, 3, 7) groups are minimal. Thus we obtain
a list of 75 Coxeter systems containing all the minimal ones. Removing the
non-minimal elements from this list of 75, we are left with the 38 diagrams
shown in Table 5.

Guide to Table 5. The first column in Table 5 gives the notation for the
Coxeter system (W,S); the second, its diagram.

The third column gives the approximate value of λ(W,S) = λCox(W,S).
Note that λ(W,S) = β(W,S) for bipartite diagrams, so it is easily computed
from the adjacency matrix. For the 5 diagrams which cannot be two-colored,
β(W,S) is shown in parentheses.

The last column gives the characteristic polynomial p(x) = det(xI − w)
of a minimal Coxeter element. By Proposition 6.5, λ(W,S) is a zero of p(x).

Our notation for Coxeter systems is based in part on the standard nota-
tion An, Bn, Dn, En spherical diagrams. To each of these spherical diagrams
one can adjoin an extending node to obtain an affine diagram. Attaching
one more hyperbolic node to the extending node by a single edge, we ob-
tain the hyperbolic diagrams Ahn+2, Bhn+2, Dhn+2 and Ehn+2. Note that
λLehmer = λ(Eh10).

The notation L4343 indicates a linear graph with four edges, whose
weights are 4, 3, 4, and 3. Similarly K343 indicates a linear graph with
edge weights 3, 4 and 3, but with an additional edge of weight 3 attached to
the penultimate node. We denote by Qn a loop of n edges, one of which is
doubled, and by X5 and X6 a pair of star-shaped diagrams in no particular
series.

Proof of Theorem 6.1. Suppose λ(W,S) > 1. By the preceding results
and the bicolored bound (Theorem 5.1), there is a hyperbolic or higher-rank
subsystem (WI , I), I ⊂ S, and a minimal hyperbolic diagram (W ′, S′) ≤
(WI , I) such that

λ(W,S) = λCox(WI , I) ≥ β(WI , I) ≥ β(W ′, S′).

Inspection of Table 5 shows β(W ′, S′) ≥ λLehmer for all minimal hyperbolic
Coxeter systems, completing the proof.

1In the first printing of this book, X5 is missing a weight on one of its edges.
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7 Small Salem numbers

In this section we conclude by detailing some connections between the sim-
plest Coxeter systems and small Salem and Pisot numbers.

Salem and Pisot numbers. An algebraic integer λ > 1 is a Pisot number
if its conjugates (other than λ itself) satisfy |λ′| < 1. Similarly, an algebraic
integer λ > 1 is a Salem number if its conjugates satisfy |λ′| ≤ 1 and include
1/λ. (We allow quadratic Salem numbers.)

It is known that the Pisot numbers form a closed subset P ⊂ R, homeo-
morphic to the ordinal ωω, and that every Pisot number is a limit of Salem
numbers (see e.g. [Sa]). The smallest Pisot number, λPisot ≈ 1.324717, is a
root of x3 = x + 1, while the smallest accumulation point in P is the golden
mean,

λGolden =
1 +

√
5

2
≈ 1.61803,

a root of x2 = x + 1. All Pisot numbers λ < λGolden + ε are known [DP].
The Salem numbers are less well-understood. It is conjectured that

λLehmer ≈ 1.17628, a root of the 10th degree polynomial discovered by
Lehmer and given in (1.1), is the smallest Salem number [Leh], [GH]. The
catalog of 39 Salem numbers given in [B1] includes all Salem numbers λ < 1.3
of degree ≤ 20 over Q [B3]; it will be sufficient for the applications below.
At present there are 47 known Salem numbers λ < 1.3, and the list of such
is known to be complete through degree 40; see [B2], [Mos] and [FGR].

Salem numbers from Coxeter groups. A Coxeter system (W,S) is
crystallographic if W preserves a lattice V (Z) ⊂ V .

A Coxeter system is crystallographic iff every cycle in its diagram con-
tains an even number of edges with weight 4 and an even number with weight
6, and no edge weights other than 3, 4, 6 and ∞ occur in the diagram [Hum,
§5.13].

Proposition 7.1 Let (W,S) be a hyperbolic crystallographic Coxeter sys-
tem, and suppose w ∈ W satisfies λ(w) > 1. Then λ(w) is a Salem number
of degree at most |S| over Q.

Proof. Since w acts by an automorphism of V (Z) ∼= Z|S|, λ = λ(w) is an
algebraic integer of degree at most |S|. Since V is hyperbolic, w has exactly
two eigenvalues outside the unit circle, namely λ±1. All the other conjugates
λ′ of λ also occur as eigenvalues of w, so they satisfy |λ′| ≤ 1. Finally 1/λ
must be a conjugate of λ, because the product of all conjugates of λ is an
integer dividing det(w) = ±1.
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Corollary 7.2 If (W,S) is hyperbolic, crystallographic, and bipartite, then
β(W,S) is a Salem number.

Note. The Coxeter system Ah2n is hyperbolic, crystallographic but not
bipartite, and in fact β(Ah2n) fails to be a Salem number for n ≥ 5 (it has
2 conjugates outside the unit circle).

Since Coxeter elements minimize λ(w), they provide a geometric source
of small Salem numbers. For example, from Table 5 one can verify:

Proposition 7.3 The smallest Salem numbers of degrees 6, 8 and 10 coin-
cide with the eigenvalues of Coxeter elements for Eh8, Eh9 and Eh10. In
particular, β(Eh10) = λLehmer.

Note these 3 diagrams are the hyperbolic versions of the exceptional spher-
ical diagrams E6, E7 and E8.

Pisot numbers as limits. A sequence of Coxeter systems can give a geo-
metric form to a sequence of Salem numbers converging to a Pisot number.
To give examples of this phenomenon, let Ya,b,c denote the Coxeter system
whose diagram is a tree with 3 branches of lengths a, b and c, joined at a
single node. For example, Eh8 = Y3,3,4, Eh9 = Y2,4,5 and Eh10 = Y2,3,7.

Theorem 7.4 As n → ∞, we have

β(Ahn) → λGolden from above,

β(Bhn) → λPisot from above,

β(Dhn) → λPisot from above, and

β(Y2,3,n) → λPisot from below.

The values of β above, excluding the subsequence β(Ah2n), are all Salem
numbers.

Proof. The sequences of Coxeter systems above are all hyperbolic, crys-
tallographic and (excluding Ah2n) bipartite, so β(Wn, Sn) ranges through
Salem numbers. The limiting behavior of the β(Wn, Sn) is calculated in
[Hof] for the case of Ahn; the other cases are similar.

Infinite diagrams. We remark that the diagrams for Bhn, Dhn and Y2,3,n

all converge to the infinite diagram Y2,3,∞ if we use the triple-point as a
basepoint. Similarly, Ahn converges to Y2,∞,∞. Suitably interpreted, we
have β(Y2,3,∞) = λPisot and β(Y2,∞,∞) = λGolden. See [MRS] for more on
Pisot numbers and infinite graphs.
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Proposition 7.5 If an irreducible Coxeter system satisfies 1 < β(W,S) ≤
λGolden then its diagram is a tree.

Proof. If the diagram is not a tree then (W,S) ≥ Ahn or (W,S) ≥ Qn

for some n. In the first case we have β(W,S) ≥ β(Ahn) > λGolden. In the
second case we have β(W,S) ≥ β(Qn), and one can check that β(Qn) > 2
for all n.

Small Coxeter systems. Using Theorem 7.4 we can enumerate the Cox-
eter systems (W,S) that are sufficiently close to spherical, in the sense that
β(W,S) is sufficiently close to 1.

Theorem 7.6 The only irreducible Coxeter systems with

1 < β(W,S) < λPisot

are Y2,4,5 and Y2,3,n, n ≥ 7.

Proof. Suppose 1 < β(W,S) < λPisot. By Proposition 7.5, the diagram D
of (W,S) is a tree.

We claim D has at least one vertex of degree 3 or more. Indeed, there
exists a minimal hyperbolic Coxeter system with (W ′, S′) ≤ (W,S) and
hence β(W ′, S′) < λPisot. Referring to Table 5, we find

(W,S) ≥ Eh9 = Y2,4,5 or

(W,S) ≥ Eh10 = Y2,3,7.

In particular, D contains a copy of the Y2,3,5 diagram, possibly with higher
weights.

Next we claim all the edges of D have weight 3. Indeed, an edge of
weight 4 or more implies (W,S) ≥ Bhn for some n, which is impossible
because β(W,S) < λPisot. In fact the tree D consists of 3 branches joined
at a single node; otherwise (W,S) ≥ Dhn for some n, which is impossible
because λ(Dhn) > λPisot.

Thus (W,S) = Ya,b,c for some a ≤ b ≤ c. We have (W,S) = Y2,4,5 if
(W,S) ≥ Y2,4,5, since otherwise we would have

β(W,S) ≥ min (β(Y3,4,5),β(Y2,5,5),β(Y2,4,6)) > 1.36 > λPisot.

Similarly, (W,S) = Y2,3,n, n ≥ 7, if (W,S) ≥ Y2,3,7, since otherwise we would
have

β(W,S) ≥ min (β(Y3,3,7),β(Y2,4,7)) ≥ 1.40 > λPisot.

To see these Coxeter systems qualify, just note that β(Y2,3,n) < λPisot for all
n by Theorem 7.4, and β(Y2,4,5) < λPisot by Table 5.

31



Corollary 7.7 We have λPisot = inf{β(W,S) : (W,S) has higher rank}.

Proof. Since Y2,4,5 and Y2,3,n, n ≥ 7 are hyperbolic Coxeter systems, we
have β(W,S) ≥ λPisot if (W,S) has higher rank. To show this bound is
best possible, let Y2,3,n ∨ Y2,3,n be the diagram obtained from two copies of
Y2,3,n by identifying the nodes at the ends of the branches of length n. Let
(Wn, Sn) be the associated Coxeter system (the ‘double’ of Y2,3,n). Then it is
straightforward to check that β(Wn, Sn) → λPisot and sig(Wn, Sn) = (pn, 2)
for all n 0 0. Thus λPisot is a limit of β(W,S) for higher-rank Coxeter
systems.

Corollary 7.8 Let (W,S) be a Coxeter system, and suppose w ∈ W satisfies

1 < λ(w) < λPisot.

Then λ(w) is a Salem number.

Proof. We may assume (W,S) is irreducible and w is essential; then 1 <
β(W,S) ≤ λ(w) < λPisot, so (W,S) is either Y2,4,5 or Y2,3,n, n ≥ 7. All these
Coxeter systems are hyperbolic and crystallographic, so λ(w) is a Salem
number.

Realizing small Salem numbers. As remarked above, there are 47 known
Salem numbers < 1.3. By the preceding Corollary, λ(w) is also a Salem
number whenever 1 < λ(w) < 1.3 < λPisot. Using the catalog of small
Salem numbers, we can identify which ones occur.

Theorem 7.9 Let (W,S) be a Coxeter system, and suppose 1 < λ(w) < 1.3,
w ∈ W . Then λ(w) coincides with one of the 6 Salem numbers given in Table
6, and these all arise.

Guide to Table 6. The first column in Table 6 gives the approximate
value of the Salem number λ; the second, the irreducible Salem polynomial
S(x) it satisfies; and the third, one or two ways in which λ arises in Coxeter
groups as λ(w). For example, λ ≈ 1.26123 arises as λ(w) = β(Y2,3,9) for
any Coxeter element w in Y2,3,9, and as λ(w′) for a suitable (non-Coxeter)
element w′ in Y2,3,7.

Automorphisms of lattices. To aid in the realization of Salem numbers
via Coxeter groups, we quote a result from [GM].
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λ Salem polynomial Coxeter data

1.17628 1 + x − x3 − x4 − x5 − x6 − x7 + x9 + x10 β(Y2,3,7)

1.21639 1 − x4 − x5 − x6 + x10 Y2,3,7

1.23039 1 − x3 − x5 − x7 + x10 β(Y2,3,8)

1.26123 1 − x2 − x5 − x8 + x10 β(Y2,3,9), Y2,3,7

1.28064 1 − x3 − x4 − x5 + x8 β(Y2,3,10), β(Y2,4,5)

1.29349 1 − x2 − x3 + x5 − x7 − x8 + x10 β(Y2,3,11), Y2,3,7

Table 6. The 6 Salem numbers < 1.3 that can arise as λ(w).

Let O(IIp,1) denote the orthogonal group of the unique even, unimodular
lattice of signature (p, 1), and let O+(IIp,1) be the subgroup of index two
preserving one sheet of the hyperboloid v ·v = −1. It is known that O+(II9,1)
is isomorphic with the Coxeter group Y2,3,7 in its geometric representation
[Vin2], [CoS, Ch. 27].

A Salem polynomial is unramified if |S(−1)S(1)| = 1.

Theorem 7.10 Let S(x) be an unramified Salem polynomial of degree
8n + 2. Then S(x) = det(xI − g) for some g ∈ O+(II8n+1,1).

Proof of Theorem 7.9. Let (W,S) be a Coxeter system with 1 < λ(w) <
1.3, w ∈ W . As remarked above, λ = λ(w) is a Salem number. We may
assume w is essential; then 1 < β(W,S) < λ. Since

β(Y2,3,n) ≥ β(Y2,3,12) ≈ 1.30227

for n ≥ 12, Theorem 7.6 implies (W,S) is isomorphic to Y2,4,5 or to Y2,3,n,
7 ≤ n ≤ 11.

Let d be the degree of λ over Q. Since λ is a Salem number, d is even;
and we have d ≤ |S| by Proposition 7.1.

Suppose (W,S) is isomorphic to Y2,4,5. Then the condition d ≤ |S| = 9
leaves only one possibility for λ, namely the degree 8 Salem number given in
Table 6. In fact, in the catalog of Salem numbers in the range [1, 1.3] given
in [B1] (known to be complete through degree 20), every other number has
degree 10 or more.
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Now suppose (W,S) is isomorphic to Y2,3,n, 7 ≤ n ≤ 11, and d > 8. Then
|S| = n + 3, so d = 10, 12 or 14. If d = 12 then we have λ ∈ [β(Y2,3,9), 1.3],
and if d = 14 then λ ∈ [β(Y2,3,11), 1.3]. Referring to the catalog again, we
find there are no Salem numbers of the required degrees in these ranges.
Thus d = 10. There are 5 Salem numbers of degree 10 in the range [1, 1.3],
and these complete the list of 6 numbers given in Table 6.

To conclude, we check that all 6 Salem numbers arise via Coxeter groups.
Five of them can be recognized as the Coxeter eigenvalues β(Y2,3,n), 7 ≤ n ≤
11. (The degree 8 number also arises as β(Y2,4,5).) Four of the degree 10
numbers in Table 6 are unramified; by Theorem 7.10, these arise as λ(g) for
g ∈ O+(II9,1), and hence as λ(w) for w in Y2,3,7. All 6 numbers in the table
are covered by at least once by these constructions, completing the proof.

Figure 7. The Coxeter diagram for W ⊂ O+(II17,1).

The second smallest Salem number. After Lehmer’s number, the sec-
ond smallest known Salem number is λ ≈ 1.188368, with unramified minimal
polynomial

S(x) = 1 − x + x2 − x3 − x6 + x7 − x8 + x9 −
x10 + x11 − x12 − x15 + x16 − x17 + x18.

It is known that reflections in the roots of II17,1 generate a Coxeter subgroup
W of index two in O+(II17,1) [Vin2], [CoS, Ch. 27]; its diagram is shown in
Figure 7. Combining Theorems 7.9 and Theorem 7.10 we obtain:

Corollary 7.11 The Salem number λ ≈ 1.188368 arises as λ(g) for g ∈
O+(II17,1), but not as λ(w) for any w in the Coxeter subgroup W ⊂ O+(II17,1).

In fact one can take g = g1g2, where g1 comes from the order 2 symmetry
of the Coxeter diagram of W , and g2 is the bicolored Coxeter element of a
Y2,3,7 subdiagram.

Graph theory. We remark that the study of Coxeter systems via the
values of β(W,S) contains, as a special case, the study of graphs G via the
leading eigenvalues α(G) of their adjacency matrices.
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For example, Shearer has shown the values of α(G) (even when restricted

to trees) are dense in the interval [
√

2 +
√

5,∞) [Sh]. It follows that the
values of β(W,S) are dense in [λGolden,∞). On the other hand, graphs with

α(G) <
√

2 +
√

5 have been classified, and it seems likely that a similar
classification can be completed for Coxeter systems with β(W,S) < λGolden.

A survey of work on the leading eigenvalues of graphs can be found in
[CR].
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[H] D. Hilbert. Über die gerade Linie als kürzeste Verbindung zweier
Punkte. Math. Ann. 46(1895), 91–96.

[Hir] E. Hironaka. The Lehmer polynomial and pretzel links. Canad.
Math. Bull. 44(2001), 440–451.

36



[Hof] A. J. Hoffman. On limit points of spectral radii of non-negative
symmetric integral matrices. In Graph Theory and Applications,
volume 303 of Lecture Notes in Math., pages 165–172. Springer, 1972.

[How] R. B. Howlett. Coxeter groups and M -matrices. Bull. London Math.
Soc. 14(1982), 137–141.

[Hum] J. E. Humphreys. Reflection Groups and Coxeter Groups. Cambridge
University Press, 1990.

[Leh] D. H. Lehmer. Factorization of certain cyclotomic functions. Ann.
of Math. 34(1933), 461–479.

[MRS] J. F. McKee, P. Rowlinson, and C. J. Smyth. Pisot numbers from
stars. In Number Theory in Progress, Vol. I, pages 309–319. de
Gruyter, 1999.

[Mos] M. J. Mossinghoff. Polynomials with small Mahler measure. Math.
Comp. 67(1998), 1697–1705.

[Par] W. Parry. Growth series of Coxeter groups and Salem numbers. J.
Algebra 154(1993), 406–415.

[RT] H. Rademacher and O. Toeplitz. The Enjoyment of Mathematics.
Dover, 1990.

[Sa] R. Salem. Algebraic Numbers and Fourier Analysis. Wadsworth,
1983.

[Sh] J. B. Shearer. On the distribution of the maximum eigenvalue of
graphs. Linear Algebra Appl. 114/115(1989), 17–20.
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