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Dynamics of SL2(R) over moduli space

in genus two

Curtis T. McMullen∗

19 October, 2003

Abstract

This paper classifies orbit closures and invariant measures for the nat-
ural action of SL2(R) on ΩM2, the bundle of holomorphic 1-forms over
the moduli space of Riemann surfaces of genus two.
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1 Introduction

Let Mg denote the moduli space of Riemann surfaces of genus g. By Teichmüller
theory, every holomorphic 1-form ω(z) dz on a surface X ∈ Mg generates a
complex geodesic f : H2 → Mg, isometrically immersed for the Teichmüller
metric.

In this paper we will show:

Theorem 1.1 Let f : H2 → M2 be a complex geodesic generated by a holomor-
phic 1-form. Then f(H2) is either an isometrically immersed algebraic curve, a
Hilbert modular surface, or the full space M2.

∗Research partially supported by the NSF.
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In particular, f(H2) is always an algebraic subvariety of M2.

Raghunathan’s conjectures. For comparison, consider a finite volume hy-
perbolic manifold M in place of Mg.

While the closure of a geodesic line in M can be rather wild, the closure of
a geodesic plane

f : H2 → M = Hn/Γ

is always an immersed submanifold. Indeed, the image of f can be lifted to
an orbit of U = SL2(R) on the frame bundle FM ∼= G/Γ, G = SO(n, 1).
Raghunathan’s conjectures, proved by Ratner, then imply that

Ux = Hx ⊂ G/Γ

for some closed subgroup H ⊂ G meeting xΓx−1 in a lattice. Projecting back
to M one finds that f(H2) ⊂ M is an immersed hyperbolic k-manifold with
2 ≤ k ≤ n [Sh].

The study of complex geodesics in Mg is similarly related to the dynamics
of SL2(R) on the bundle of holomorphic 1-forms ΩMg → Mg.

A point (X, ω) ∈ ΩMg consists of a compact Riemann surface of genus
g equipped with a holomorphic 1-form ω ∈ Ω(X). The Teichmüller geodesic
flow, coupled with the rotations ω 7→ eiθω, generates an action of SL2(R) on
ΩMg. This action preserves the subspace Ω1Mg of unit forms, those satisfying∫

X |ω|2 = 1.
The complex geodesic generated by (X, ω) ∈ Ω1Mg is simply the projection

to Mg of its SL2(R)-orbit. Our main result is a refinement of Theorem 1.1
which classifies these orbits for genus two.

Theorem 1.2 Let Z = SL2(R) · (X, ω) be an orbit closure in Ω1M2. Then
exactly one of the following holds:

1. The stabilizer SL(X, ω) of (X, ω) is a lattice, we have

Z = SL2(R) · (X, ω),

and the projection of Z to moduli space is an isometrically immersed Te-
ichmüller curve V ⊂ M2.

2. The Jacobian of X admits real multiplication by a quadratic order of dis-
criminant D, with ω as an eigenform, but SL(X, ω) is not a lattice. Then

Z = Ω1ED

coincides with the space of all eigenforms of discriminant D, and its pro-
jection to M2 is a Hilbert modular surface.

3. The form ω has a double zero, but is not an eigenform for real multiplica-
tion. Then

Z = Ω1M2(2)

coincides with the stratum of all forms with double zeros. It projects sur-
jectively to M2.
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4. The form ω has simple zeros, but is not an eigenform for real multiplica-
tion. Then its orbit is dense: we have Z = Ω1M2.

We note that in case (1) above, ω is also an eigenform (cf. Corollary 5.9).

Corollary 1.3 The complex geodesic generated by (X, ω) is dense in M2 iff
(X, ω) is not an eigenform for real multiplication.

Corollary 1.4 Every orbit closure GL+
2 (R) · (X, ω) ⊂ ΩM2 is a complex orb-

ifold, locally defined by linear equations in period coordinates.

Invariant measures. In the setting of Lie groups and homogeneous spaces,
it is also known that every U -invariant measure on G/Γ is algebraic (see §2).
Similarly, in §§10—12 we show:

Theorem 1.5 Each orbit closure Z carries a unique ergodic, SL2(R)-invariant
probability measure µZ of full support, and these are all the ergodic probability
measures on Ω1M2.

In terms of local coordinates given by the relative periods of ω, the measure µZ

is simply Euclidean measure restricted to the ‘unit sphere’ defined by
∫
|ω|2 = 1

(see §3, §8).

Pseudo-Anosov mappings. The classification of orbit closures also sheds
light on the topology of complexified loops in M2.

Let φ ∈ Mod2
∼= π1(M2) be a pseudo-Anosov element of the mapping class

group of a surface of genus two. Then there is a real Teichmüller geodesic
γ : R → Mg whose image is a closed loop representing [φ]. Complexifying γ,
we obtain a totally geodesic immersion

f : H2 → Mg

satisfying γ(s) = f(ie2s). The map f descends to the Riemann surface

Vφ = H2/Γφ, Γφ = {A ∈ Aut(H2) : f(Az) = f(z)}.

Theorem 1.6 For any pseudo-Anosov element φ ∈ π1(M2) with orientable
foliations, either

1. Γφ is a lattice, and f(Vφ) ⊂ M2 is a closed algebraic curve, or

2. Γφ is an infinitely generated group, and f(Vφ) is a Hilbert modular surface.

Proof. The limit set of Γφ is the full circle S1
∞ [Mc2], and f(Vφ) is the projection

of the SL2(R)-orbit of an eigenform (by Theorem 5.8 below). Thus we are in
case (1) of Theorem 1.2 if Γφ is finitely generated, and otherwise in case (2).
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In particular, the complexification of a closed geodesic as above is never
dense in M2. Explicit examples where (2) holds are given in [Mc2].

Connected sums. A central role in our approach to dynamics on ΩM2 is
played by the following result (§7):

Theorem 1.7 Any form (X, ω) of genus two can be written, in infinitely many
ways, as a connected sum (X, ω) = (E1, ω1)#

I
(E2, ω2) of forms of genus one.

Here (Ei, ωi) = (C/Λi, dz) are forms in ΩM1, and I = [0, v] is a segment in
R2 ∼= C. The connected sum is defined by slitting each torus Ei open along
the image of I in C/Λi, and gluing corresponding edges to obtain X (Figure 1).
The forms ωi on Ei combine to give a form ω on X with two zeros at the ends
of the slits. We also refer to a connected sum decomposition as a splitting of
(X, ω).

Figure 1. The connected sum of a pair of tori.

Connected sums provide a geometric characterization of eigenforms (§8):

Theorem 1.8 If (X, ω) ∈ ΩM2 has two different splittings with isogenous sum-
mands, then it is an eigenform for real multiplication. Conversely, any splitting
of an eigenform has isogenous summands.

Here (E1, ω1) and (E2, ω2) in ΩM1 are isogenous if there is a surjective holo-
morphic map p : E1 → E2 such that p∗(ω2) = tω1 for some t ∈ R.

Connected sums also allow one to relate orbit closures in genus two to those
in genus one. We conclude by sketching their use in the proof of Theorem 1.2.

1. Let Z = SL2(R) · (X, ω) be the closure of an orbit in Ω1M2. Choose a
splitting

(X, ω) = (E1, ω1)#
I
(E2, ω2), (1.1)

and let NI ⊂ SL2(R) be the stabilizer of I. Then by SL2(R)-invariance,
Z also contains the connected sums

(n · (E1, ω1))#
I
(n · (E2, ω2))

for all n ∈ NI .
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2. Let N ⊂ G = SL2(R) be the parabolic subgroup of upper-triangular
matrices, let Γ = SL2(Z), and let N∆ and G∆ be copies of N and G
diagonally embedded in G × G. For u ∈ R we also consider the twisted
diagonals

Gu = {(g, nugn−1
u ) : g ∈ G} ⊂ G × G,

where nu = ( 1 u
0 1 ) ∈ N .

The orbit of a pair of forms of genus one under the action of NI is isomor-
phic to the orbit of a point x ∈ (G × G)/(Γ × Γ) under the action of N∆.
By the classification of unipotent orbits (§2), we have Nx = Hx where

H = N∆, G∆, Gu (u 6= 0), N × N, N × G, G × N, or G × G.

3. For simplicity, assume ω has simple zeros. Then if H 6= N∆ and H 6= G∆,
we can find another point (X ′, ω′) ∈ Z for which H = G × G, which
implies Z = Ω1M2 (§11).

4. Otherwise, there are infinitely many splittings with H = N∆ or G∆.

The case H = N∆ arises when NI ∩ SL(X, ω) ∼= Z. If this case occurs for
two different splittings, then SL(X, ω) contains two independent parabolic
elements, which implies (X, ω) is an eigenform (§5).

Similarly, the case H = G∆ arises when (E1, ω1) and (E2, ω2) are isoge-
nous. If this case occurs for two different splittings, then (X, ω) is an
eigenform by Theorem 1.8.

5. Thus we may assume (X, ω) ∈ Ω1ED for some D. The summands in (1.1)
are then isogenous, and therefore

Γ0 = SL(E1, ω1) ∩ SL(E2, ω2) ⊂ SL2(R)

is a lattice. By SL2(R)-invariance, Z contains the connected sums

(E1, ω1)#
gI

(E2, ω2)

for all g ∈ Γ0, where I = [0, v]. But Γ0 · v ⊂ R2 is either discrete or dense.
In the discrete case we find SL(X, ω) is a lattice, and in the dense case we
find Z = Ω1ED, completing the proof (§12).

Invariants of Teichmüller curves. We remark that the orbit closure Z
in cases (3) and (4) of Theorem 1.2 is unique, and in case (2) it is uniquely
determined by the discriminant D. In the sequels [Mc4], [Mc5], [Mc3] to this
paper we obtain corresponding results for case (1); namely, if SL(X, ω) is a
lattice, then either:

(1a) We have
Z ⊂ Ω1M2(2) ∩ ΩED,

and Z is uniquely determined by the discriminant D and a spin invariant
ǫ ∈ Z/2; or
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(1b) Z is the unique closed orbit in Ω1M2(1, 1) ∩ ΩE5, which is generated by
a multiple of the decagon form ω = dx/y on y2 = x(x5 − 1); or

(1c) We have
Z ⊂ ΩM2(1, 1) ∩ ΩEd2 ,

and (X, ω) is the pullback of a form of genus one via a degree d covering
π : X → C/Λ branched over torsion points.

See e.g. [GJ], [EO], [EMS] for more on case (1c).
It would be interesting to develop similar results for the dynamics of SL2(R),

and its unipotent subgroups, in higher genus.

Notes and references. There are many parallels between the moduli spaces
Mg = Tg/ Modg and homogeneous spaces G/Γ, beyond those we consider here;
for example, [Iv] shows Modg exhibits many of the properties of an arithmetic
subgroup of a Lie group.

The moduli space of holomorphic 1-forms plays an important role in the dy-
namics of polygonal billiards [KMS], [V3]. The SL2(R)-invariance of the eigen-
form locus ΩED was established in [Mc1], and used to give new examples of
Teichmüller curves and L-shaped billiard tables with optimal dynamical prop-
erties; see also [Mc2], [Ca]. Additional references for dynamics on homogeneous
spaces, Teichmüller theory and eigenforms for real multiplication are given in
§2, §3 and §4 below.

I would like to thank Y. Cheung, H. Masur, M. Möller and the referee for
very helpful suggestions.

2 Dynamics and Lie groups

In this section we recall Ratner’s theorems for unipotent dynamics on homoge-
neous spaces. We then develop their consequences for actions of SL2(R) and its
unipotent subgroups.

Algebraic sets and measures. Let Γ ⊂ G be a lattice in a connected Lie
group. Let Γx = xΓx−1 ⊂ G denote the stabilizer of x ∈ G/Γ under the left
action of G.

A closed subset X ⊂ G/Γ is algebraic if there is a closed unimodular sub-
group H ⊂ G such that X = Hx and H/(H ∩ Γx) has finite volume. Then X
carries a unique H-invariant probability measure, coming from Haar measure
on H . Measures on G/Γ of this form are also called algebraic.

Unipotent actions. An element u ∈ G is unipotent if every eigenvalue of
Adu : g → g is equal to one. A group U ⊂ G is unipotent if all its elements are.

Theorem 2.1 (Ratner) Let U ⊂ G be a closed subgroup generated by unipo-
tent elements. Suppose U is cyclic or connected. Then every orbit closure
Ux ⊂ G/Γ and every ergodic U -invariant probability measure on G/Γ is alge-
braic.
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See [Rat, Thms. 2 and 4] and references therein.

Lattices. As a first example, we discuss the discrete horocycle flow on the
modular surface.

Let G = SL2(R) and Γ = SL2(Z). We can regard the G/Γ as the homoge-
neous space of lattices Λ ⊂ R2 with area(R2/Λ) = 1. Let

A =
{
at =

(
t 0
0 1/t

)
: t ∈ R+

}
and N = {nu = ( 1 u

0 1 ) : u ∈ R}

denote the diagonal and upper-triangular subgroups of G. Note that G and N
are unimodular, but AN is not. In fact we have:

Theorem 2.2 The only connected unimodular subgroups with N ⊂ H ⊂ G are
H = N and H = G.

Now consider the unipotent subgroup N(Z) = N ∩ SL2(Z) ⊂ G. Note that
N fixes all the horizontal vectors v = (x, 0) 6= 0 in R2. Let SL(Λ) denote the
stabilizer of Λ in G. Using the preceding result, Ratner’s theorem easily implies:

Theorem 2.3 Let Λ ∈ G/Γ be a lattice, and let X = N(Z) · Λ. Then exactly
one of the following holds.

1. There is a horizontal vector v ∈ Λ, and N(Z) ∩ SL(Λ) ∼= Z. Then X =
N(Z) · Λ is a finite set.

2. There is a horizontal vector v ∈ Λ, and N(Z) ∩ SL(Λ) ∼= (0). Then
X = N · Λ ∼= S1.

3. There are no horizontal vectors in Λ. Then X = G · Λ = G/Γ.

Pairs of lattices. Now let G∆ and N∆ denote G and N , embedded as diagonal
subgroups in G × G. Given u ∈ R, we can also form the twisted diagonal

Gu = {(g, nugn−1
u ) : g ∈ G} ⊂ G × G,

where nu = ( 1 u
0 1 ) ∈ N . Note that G0 = G∆.

For applications to dynamics over moduli space, it will be important to
understand the dynamics of N∆ on (G × G)/(Γ × Γ). Points in the latter
space can be interpreted as pairs of lattices (Λ1, Λ2) in R2 with area(R2/Λ1) =
area(R2/Λ2) = 1. The action of N∆ is given by simultaneously shearing these
lattices along horizontal lines in R2.

Theorem 2.4 All connected N∆-invariant algebraic subsets of (G×G)/(Γ×Γ)
have the form X = Hx, where

H = N∆, Gu, N × N, N × G, G × N, or G × G.

There is one unimodular subgroup between N × N and G×G not included
in the list above, namely the solvable group S ∼= R2 ⋉ R generated by N × N
and {(a, a−1) : a ∈ A}.
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Lemma 2.5 The group S does not meet any conjugate of Γ × Γ in a lattice.

Proof. In terms of the standard action of G×G on the product of two hyperbolic
planes, S ⊂ AN × AN stabilizes a point (p, q) ∈ ∂H2 × ∂H2. But the stabilizer
of p in Γ is either trivial or isomorphic to Z, as is the stabilizer of q. Thus
S ∩ (Γ × Γ) is no larger than Z ⊕ Z, so it cannot be a lattice in S. The same
argument applies to any conjugate.

Proof of Theorem 2.4. Let X be a connected, N∆-invariant algebraic set.
Then X = Hx where H is a closed, connected, unimodular group satisfying

N∆ ⊂ H ⊂ G × G

and meeting the stabilizer of x in a lattice.
It suffices to determine the Lie algebra h of H . Let U ⊂ G be the subgroup

of lower-triangular matrices, and let g, n, a and u denote the Lie algebras of G,
N , A and U respectively. Writing g = n ⊕ a ⊕ u, we have

[n, a] = n and [n, u] = a.

We may similarly express the Lie algebra of G × G = G1 × G2 as

g1 ⊕ g2 = (n1 ⊕ a1 ⊕ u1) ⊕ (n2 ⊕ a2 ⊕ u2).

If H projects faithfully to both factors of G×G, then its image in each factor
is N or G by Theorem 2.2. Thus H = N∆ or H is the graph of an automorphism
α : G → G. In the latter case α must fix N pointwise, since N∆ ⊂ H . Then
α(g) = ngn−1 for some n = nu ∈ N , and H = Gu.

Now assume H does not project faithfully to one of its factors; say H contains
M×{id} where M is a nontrivial connected subgroup of G. Then M is invariant
under conjugation by N , which implies M ⊃ N and thus N × N ⊂ H .

Assume H is a proper extension of N × N . We claim H is not contained in
AN × AN . Indeed, if it were, then (by unimodularity) it would coincide with
the solvable subgroup S; but S does not meet any conjugate of Γ×Γ in a lattice.

Therefore h contains an element of the form (a1 + u1, a2 + u2) where one of
the ui ∈ ui, say u1, is nonzero. Bracketing with (n1, 0) ∈ h, we obtain a nonzero
vector in a1 ∩ h, so H ∩ G1 contains AN . But H ∩ G1, like H , is unimodular,
so it coincides with G1. Therefore H contains G × N . Since H ∩ G2 is also
unimodular, we have H = G × N or H = G × G.

We can now classify orbit closures for N∆. We say lattices Λ1 and Λ2 are
commensurable if Λ1 ∩ Λ2 has finite index in both.

Theorem 2.6 Let x = (Λ1, Λ2) ∈ (G×G)/(Γ×Γ) be a pair of lattices, and let
X = N∆x. Then exactly one of the following holds.

1. There are horizontal vectors vi ∈ Λi with |v1|/|v2| ∈ Q. Then X = N∆x ∼=
S1.
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2. There are horizontal vectors vi ∈ Λi with |v1|/|v2| irrational. Then X =
(N × N)x ∼= S1 × S1.

3. One lattice, say Λ1, contains a horizontal vector but the other does not.
Then X = (N × G)x ∼= S1 × (G/Γ).

4. Neither lattice contains a horizontal vector, but Λ1 is commensurable to
nu(Λ2) for a unique u ∈ R. Then X = Gux ∼= G/Γ0 for some lattice
Γ0 ⊂ Γ.

5. The lattices Λ1 and n(Λ2) are incommensurable for all n ∈ N , and neither
one contains a horizontal vector. Then X = (G×G)x = (G×G)/(Γ×Γ).

Proof. Since N∆ is unipotent, Ratner’s theorem implies X = Hx is a connected
algebraic set. The result above follows, by considering the list of possible H in
Theorem 2.4 and checking when the stabilizer of (Λ1, Λ2) in H is a lattice.

Locally finite measures. A measure µ is locally finite if it assigns finite mass
to compact sets. We will show that, for unipotent actions, any locally finite
invariant measure is composed of algebraic measures.

Let Γ ⊂ G be a lattice in a connected Lie group. Let U = (ut) be a 1-
parameter unipotent subgroup of G. Then every x ∈ G/Γ naturally determines
an algebraic measure νx recording the distribution of the orbit Ux. More pre-
cisely, by [Rat, Thm. 6] we have:

Theorem 2.7 (Ratner) For every x ∈ G/Γ, there is an ergodic, algebraic,
U -invariant probability measure νx such that supp(νx) = U · x and

lim
T→∞

1

T

∫ T

0

f(ut · x)dt =

∫

G/Γ

f(y)νx(y)

for every f ∈ C0(G/Γ).

Here C0(G/Γ) denotes the space of compactly supported continuous func-
tions. Applying this result, we obtain:

Theorem 2.8 Let µ be a locally finite U -invariant measure on G/Γ. Then for
any f ∈ C0(G/Γ), we have

∫
fµ =

∫ (∫
f(y)νx(y)

)
µ(x). (2.1)

In other words, µ can be expressed as the convolution µ(x) ∗ νx.

Proof. The result is immediate if µ(G/Γ) < ∞. Indeed, in this case we can

consider the family of uniformly bounded averages fT (x) = (1/T )
∫ T

0
f(ut ·x)dt,

9



which converge pointwise to F (x) =
∫

fνx as T → ∞. Then by U -invariance of
µ and dominated convergence, we have:

∫
fµ = lim

T→∞

∫
fT µ =

∫ (
lim

T→∞
fT

)
µ =

∫
Fµ,

which is (2.1) .
For the general case, let K1 ⊂ K2 ⊂ K3 ⊂ · · · be an exhaustion of G/Γ by

compact sets, and let
En = {x : νx(Kn) > 1/n}.

Clearly En is U -invariant and
⋃

En = G/Γ. Moreover, if we take f ∈ C0(X)
with f ≥ 0 and f = 1 on En, then its averages satisfy

F (x) = lim
T→∞

fT (x) =

∫
fνx ≥ νx(Kn) > 1/n

for all x ∈ En. Thus by Fatou’s lemma we obtain:

(1/n)µ(En) ≤
∫

Fµ =

∫
( lim
T→∞

fT )µ ≤ lim

∫
fT µ =

∫
fµ < ∞,

and therefore µ(En) is finite. Applying the first argument to the finite invariant
measure µ|En, and letting n → ∞, we obtain the theorem.

Invariant measures on G/Γ. Analogous results hold when U = (un) is a
cyclic unipotent subgroup. For example, let

X = G/Γ = SL2(R)/ SL2(Z),

be the space of lattices again, and let

XH = {x ∈ X : N(Z) · x = Hx}.

Then we have a partition of X into three sets,

X = XN(Z) ⊔ XN ⊔ XG,

corresponding exactly to the three alternatives in Theorem 2.3. By Theorem 2.7,
the measure νx is H-invariant when x is in XH . Thus the preceding Theorem
implies:

Corollary 2.9 Let µ be a locally finite N(Z)-invariant measure on X = G/Γ.
Then µ|XH is H-invariant, for H = N(Z), N , and G.

Dynamics on R2. The same methods permit an analysis of the action of a
lattice Γ ⊂ SL2(R) on R2.

Theorem 2.10 Let Γ be a general lattice in SL2(R). Then:
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1. For v 6= 0, the orbit Γv ⊂ R2 is either dense or discrete, depending on
whether the stabilizer of v in Γ is trivial or Z.

2. Any Γ-invariant locally finite measure α on R2 has the form α = αa +αs,
where αa is a constant multiple of the standard area measure, and αs

assigns full mass to {v : Γv is discrete.}.

3. For any discrete orbit, we have tΓv → R2 in the Hausdorff topology as
t → 0.

4. If vn is a bounded sequence of vectors with infinitely many different slopes,
then

⋃
Γ · vn is dense in R2.

Proof. We can regard R2−{0} as the homogeneous space G/N . Thus the first
two statements follow from Ratner’s theorems, by relating the action of Γ on
G/N to the action of N on Γ\G. (For (1) use the fact that when Γv is discrete
in R2 − {0} it is also discrete in R2; this follows from discreteness of Γ.)

To prove (3) and (4), we interpret G/N as the space of horocycles in the
hyperbolic plane H2. Then discrete orbits Γv correspond to preimages of closed
horocycles around the finitely many cusps of the surface X = Γ\H2. Thus we
can choose nonzero vectors ci ∈ R2, one for each cusp, such that any discrete
orbit in R2 − {0} has the form

Γv = tΓci

for some t > 0 and 1 ≤ i ≤ m. As t → 0, the length of the corresponding closed
horocycle Hi(t) tends to infinity. Thus Hi(t) becomes equidistributed in T1(X)
[EsM, Thm. 7.1], and therefore tΓv → R2 in the Hausdorff topology.

To establish (4), we may assume each individual orbit Γvn is discrete, since
otherwise it is already dense by (1). Passing to a subsequence, we can write
Γvn = tnΓci for a fixed value of i. Since Γci is discrete in R2, for the bounded
vectors vn to take on infinitely many slopes, we must have lim inf tn = 0; thus⋃

Γvn is dense by (3).

Deserts. A typical example of a discrete Γ-orbit in R2 is the set of relatively
prime integral points,

Z2
rp = SL2(Z) · (1, 0) = {(p, q) ∈ Z2 : gcd(p, q) = 1}.

We remark that this orbit is not uniformly dense in R2: there exist arbitrarily
large ‘deserts’ in its complement. To see this, fix distinct primes (pij) indexed
by 0 ≤ i, j ≤ n. Then the Chinese remainder theorem provides integers a, b > 0
such that (a, b) = (−i,−j)mod pij for all (i, j). Thus pij divides (a + i, b + j),
and therefore we have

Z2
rp ∩ [a, a + n] × [b, b + n] = ∅.

However a and b are much greater than n, and thus (1/ max(a, b))Z2
rp is still

very dense, consistent with (3) above.
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3 Riemann surfaces and holomorphic 1-forms

In this section we recall the metric and affine geometry of a compact Riemann
surface equipped with a holomorphic 1-form. We then summarize results on the
moduli space ΩMg of all such forms, its stratification and the action of SL2(R)
upon it.

Geometry of holomorphic 1-forms. Let ω be a holomorphic 1-form on a
compact Riemann surface X of genus g. The g-dimensional vector space of all
such 1-forms will be denoted by Ω(X). Assume ω 6= 0, and let Z(ω) ⊂ X be its
zero set. We have |Z(ω)| ≤ 2g − 2.

The form ω determines a conformal metric |ω| on X , with concentrated
negative curvature at the zeros of ω and otherwise flat. Any two points of
(X, |ω|) are joined by a unique geodesic in each homotopy class. A geodesic is
straight if its interior is disjoint from Z(ω). Since a straight geodesic does not
change direction, its length satisfies

∫
γ
|ω| = |

∫
γ

ω|.
Saddle connections. A saddle connection is a straight geodesic (of positive
length) that begins and ends at a zero of ω (a saddle). When X has genus g ≥ 2,
every essential loop on X is homotopic to a chain of saddle connections.

Affine structure. The form ω also determines a branched complex affine
structure on X , with local charts φ : U → C satisfying dφ = ω. These charts
are well-defined up to translation, injective away from the zeros of ω, and of the
form φ(z) = zp+1 near a zero of order p.

Foliations. The harmonic form ρ = Re ω determines a measured foliation Fρ

on X . Two points x, y ∈ X lie on the same leaf of Fρ iff they are joined by a
path satisfying ρ(γ′(t)) = 0. The leaves are locally smooth 1-manifolds tangent
to Ker ρ, coming together in groups of 2p at the zeros of ω of order p. The
leaves are oriented by the condition Im ρ > 0. In a complex affine chart, we
have ρ = dx and the leaves of Fρ are the vertical lines in C. The measure of a
transverse arc is given by µ(τ) = |

∫
τ ρ|.

Slopes. Straight geodesics on (X, |ω|) become straight lines in C in the affine
charts determined by ω. Thus Fρ can alternatively be described as the foliation
of X by parallel geodesics of constant slope ∞. Similarly, FRe(x+iy)ω gives the
foliation of X by geodesics of slope x/y.

The spine. The union of all saddle connections running along leaves of Fρ is
the spine of the foliation. The spine is a finite graph embedded in X .

Cylinders. A cylinder A ⊂ X is a maximal open region swept out by circular
leaves of Fρ. The subsurface (A, |ω|) is isometric to a right circular cylinder
of height h(A) and circumference c(A); its modulus mod(A) = h(A)/c(A) is
a conformal invariant. Provided X is not a torus, ∂A is a union of saddle
connections.

Periodicity. The foliation Fρ is periodic if all its leaves are compact. In this
case, either X is a torus foliated by circles, or the complement of the spine of
Fρ in X is a finite union of cylinders A1, . . . , An.

12



Moduli space. Let Mg = Tg/ Modg denote the moduli space of compact
Riemann surfaces X of genus g, presented as the quotient of Teichmüller space
by the action of the mapping class group. Let

ΩTg → Tg

denote the bundle whose fiber over X is Ω(X) − {0}. The space ΩTg is the
complement of the zero-section of a holomorphic line bundle over Tg. The
mapping class group has a natural action on this bundle as well, and we define
the moduli space of holomorphic 1-forms of genus g by

ΩMg = ΩTg/ Modg .

The projection ΩMg → Mg is a holomorphic bundle map in the category of
orbifolds; the fiber over X ∈ Modg is the space Ω(X) − {0}/ Aut(X).

For brevity, we refer (X, ω) ∈ ΩMg as a form of genus g.

Action of GL+

2
(R). The group GL+

2 (R) of automorphism of R2 with det(A) >
0 has a natural action on ΩMg. To define A · (X, ω) for A =

(
a b
c d

)
∈ GL+

2 (R),
consider the harmonic 1-form

ω′ =
(
1 i

)(a b

c d

)(
Re ω

Im ω

)
(3.1)

on X . Then there is a unique complex structure with respect to which ω′ is
holomorphic; its charts yield a new Riemann surface X ′, and we define A ·
(X, ω) = (X ′, ω′)

Periods. Given (X, ω) ∈ ΩMg, the relative period map

Iω : H1(X, Z(ω); Z) → C

is defined by Iω(C) =
∫

C ω. Its restriction

Iω : H1(X, Z) → C

to chains with ∂C = 0 is the absolute period map, whose image Per(ω) ⊂ C is
the group of absolute periods of ω.

Strata. Let (p1, . . . , pn) be an unordered partition of 2g−2 =
∑

pi. The space
ΩTg breaks up into strata ΩTg(p1, . . . , pn) consisting of those forms (X, ω) whose
n zeros have multiplicities p1, . . . , pn. Clearly this stratification is preserved by
the action of GL+

2 (R).
The bundle of groups H1(X, Z(ω); Z) is locally trivial over a stratum. Thus

on a neighborhood U of (X0, ω0) in ΩTg we can define period coordinates

p : U → H1(X0, Z(ω0); C)

sending (X, ω) ∈ U to the cohomology class of ω.

Theorem 3.1 The period coordinate charts are local homeomorphisms, giving
ΩTg(p1, . . . , pn) the structure of a complex manifold of dimension 2g + n − 1.

13



Measures. The transition functions between period charts are integral linear
maps induced by homeomorphisms of (X, Z). Thus a stratum carries a natural
volume element, a local linear integral structure and a global quadratic function
q(X, ω) =

∫
X |ω|2, all inherited from H1(X, Z; C).

These structures descend to a stratification of the moduli space ΩMg by the
orbifolds

ΩMg(p1, . . . , pn) = ΩTg(p1, . . . , pn)/ Modg .

Unit area bundle. For t > 0, let ΩtMg denote the bundle of forms (X, ω)
with total area

∫
X |ω|2 = t. Each stratum of this space also carries a natural

measure, defined on U ⊂ ΩtMg(p1, . . . , pn) to be proportional to the measure
of the cone (0, 1) · U ⊂ ΩMg(p1, . . . , pn).

Theorem 3.2 Each stratum of Ω1Mg has finite measure and finitely many
components.

Theorem 3.3 The action of SL2(R) is volume-preserving and ergodic on each
component of each stratum of Ω1Mg.

Real-affine maps and SL(X, ω). The stabilizer of (X, ω) ∈ ΩMg is the
discrete group SL(X, ω) ⊂ SL2(R).

Here is an intrinsic definition of SL(X, ω). A map φ : X → X is real-affine
with respect to ω if, after passing to the universal cover, there is an A ∈ GL2(R)
and b ∈ R such that the diagram

X̃
eφ−−−−→ X̃

Dω

y Dω

y

C
Av+b−−−−→ C

commutes. Here the developing map Dω(q) =
∫ q

p ω is obtained by integrating
the lift of ω.

We denote the linear part of φ by Dφ = A ∈ SL2(R). Then SL(X, ω) is
the image of the group Aff+(X, ω) of orientation preserving real-affine auto-
morphisms of (X, ω) under φ 7→ Dφ.

Teichmüller curves. A Teichmüller curve f : V → Mg is finite volume
hyperbolic Riemann surface V equipped with a holomorphic, totally geodesic,
generically 1-1 immersion into moduli space. We also refer to f(V ) as a Te-
ichmüller curve; it is an irreducible algebraic curve on Mg whose normalization
is V .

Theorem 3.4 The following are equivalent.

1. The group SL(X, ω) is a lattice in SL2(R).

2. The orbit SL2(R) · (X, ω) is closed in ΩMg.

3. The projection of the orbit to Mg is a Teichmüller curve.

14



In this case we say (X, ω) generates the Teichmüller curve V → Mg. Assuming
ω is normalized so its area is one, the orbit

Ω1V = SL2(R) · (X, ω) ⊂ Ω1Mg

can be regarded as a circle bundle over V .

Genus one and two. The space ΩM1 is canonically identified with the space
of lattices Λ ⊂ C, via the correspondence (E,ω) = (C/Λ, dz). Moreover the
action of SL2(R) on Ω1M1 is transitive; if we take the square lattice Z ⊕ Zi as
a basepoint, we then obtain an SL2(R)-equivariant isomorphism

Ω1M1
∼= SL2(R)/ SL2(Z).

In particular SL(E, ω) is conjugate to SL2(Z) for any form of genus one.
In higher genus the action of SL2(R) is not transitive. However we do have:

Theorem 3.5 In genus two the strata are connected, and SL2(R) acts ergodi-
cally on Ω1M2(2) and Ω1M2(1, 1).

References. The metric geometry of holomorphic 1-forms, and more generally
of quadratic differentials, is developed in [Str] and [Gd]. Period coordinates and
strata are discussed in [V4], [MS, Lemma 1.1] and [KZ]. Finiteness of the mea-
sure of Ω1Mg(p1, . . . , pn) is proved in [V2]; see also [MS, Thm. 10.6]. The ergod-
icity of SL2(R) is shown in [Mas], [V1] for the principle stratum ΩMg(1, . . . , 1),
and in [V2, Theorem 6.14] for general strata. The equivalence of (1) and (2) in
Theorem 3.4 is due to Smillie; see [V5, p.226]. For more on Teichmüller curves,
see [V3] and [Mc1]. The classification of the components of strata is given in
[KZ]. For related results, see [Ko], [EO], and [EMZ].

4 Abelian varieties with real multiplication

In this section we review the theory of real multiplication, and classify eigen-
forms for Riemann surfaces of genus two.

An Abelian variety A ∈ Ag admits real multiplication if its endomorphism
ring contains a self-adjoint order o of rank g in a product of totally real fields.
Let

E2 = {(X, ω) ∈ ΩM2 : Jac(X) admits real multiplication with

ω as an eigenform},

let oD denote the real quadratic order of discriminant D, and let

ΩED = {(X, ω) ∈ ΩM2 : ω is an eigenform for real multiplication by oD}.

We will show:
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Theorem 4.1 The eigenform locus in genus two is a disjoint union

E2 =
⋃

ΩED

of closed, connected, complex orbifolds, indexed by the integers D ≥ 4, D = 0
or 1 mod4.

The discussion will also yield a description of ΩED as a C∗-bundle over a Zariski
open subset ED of the Hilbert modular surface XD = (H2 × −H2)/ SL2(oD),
and an identification of ΩEd2 with the space of elliptic differentials of degree d.

Abelian varieties. Let Ag denote the moduli space of principally polarized
Abelian varieties of dimension g. The space Ag is isomorphic to the quotient
Hg/ Sp2g(Z) of the Siegel upper halfspace by the action of the integral symplectic
group.

Let Ω(A) denote the g-dimensional space of holomorphic 1-forms on A, and
let ΩAg → Ag be the bundle of pairs (A, ω) with ω 6= 0 in Ω(A).

Endomorphisms. Let End(A) denote the ring of endomorphisms of A as a
complex Lie group. The endomorphism ring is canonically isomorphic to the
ring of homomorphisms

T : H1(A, Z) → H1(A, Z)

that preserve the Hodge decomposition H1(A, C) = H1,0(A) ⊕ H0,1(A).
The polarization of A provides H1(A, Z) ∼= Z2g with a unimodular symplectic

form 〈v1, v2〉, isomorphic to the intersection form
(

0 I
−I 0

)
on the homology of a

Riemann surface of genus g. The polarization is compatible with the Hodge
structure and makes A into a Kähler manifold.

Each T ∈ End(A) has an associated adjoint operator T ∗, characterized by
〈Tv1, v2〉 = 〈v1, T

∗v2〉. If T = T ∗ we say T is self-adjoint. (The map T 7→ T ∗ is
known as the Rosati involution.)

Real multiplication. Let K be a totally real field of degree g over Q, or more
generally a product K = K1×K2×· · ·×Kn of such fields with

∑
deg(Ki/Q) = g.

We say A ∈ Ag admits real multiplication by K if there is a faithful repre-
sentation

K →֒ End(A) ⊗ Q

satisfying 〈kv1, v2〉 = 〈v1, kv2〉. The breadth of this definition permits a uni-
form treatment of Humbert surfaces and elliptic differentials, in addition to the
traditional Hilbert modular varieties (H2)g/ SL2(OK) → Ag.

The map K → End(A) makes H1(A, Q) into a free K-module of rank 2.
Since End(A) respects the Hodge decomposition, we have a complex-linear ac-
tion of K on Ω(A) ∼= H1,0(A). Choosing a basis of eigenforms, we obtain a
direct sum decomposition

Ω(A) =

g⊕

1

Cωi

diagonalizing the action of K.
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Orders. The integral points o = K ∩ End(A) are an order1 in K acting by
self-adjoint endomorphisms of A. This action is proper in the sense that no
larger order in K acts on A; equivalently, (Q · o) ∩ End(A) = o.

Now let L ∼= (Z2g ,
(

0 I
−I 0

)
) be a unimodular symplectic lattice of rank 2g,

and let o be an order in K. Fix a representation

ρ : o →֒ End(L) ∼= M2g(Z)

giving a proper, faithful action of o on L by self-adjoint endomorphisms. This
representation makes L into an o-module of rank 2.

We say A ∈ Ag admits real multiplication by (o, ρ) if there is a symplectic
isomorphism L ∼= H1(A, Z) sending ρ(o) into End(A). This definition refines
the notion of real multiplication by K = o ⊗ Q.

Synthesis. To construct all Abelian varieties with real multiplication by (o, ρ),
we begin by diagonalizing the action of o on L; the result is a splitting

L ⊗ R =

g⊕

1

Si (4.1)

into orthogonal, symplectic eigenspaces Si
∼= R2. The set of o-invariant complex

structures on L⊗R, positive with respect to the symplectic form, is parameter-
ized by a product of upper halfplanes (H2)g, one for each Si. Given τ ∈ (H2)g,
we obtain an o-invariant complex structure on L ⊗ R and hence an Abelian
variety

Aτ = (L ⊗ R)τ/L ∼= Cg/Lτ ,

equipped with real multiplication by (o, ρ). Conversely, an Abelian variety A
with real multiplication by (o, ρ) determines an o-invariant complex structure

on Ã ∼= L ⊗ R, and hence A = Aτ for some τ .

Hilbert modular varieties. The symplectic automorphisms of L⊗R commut-
ing with o preserve the splitting ⊕g

1Si, and hence form a subgroup isomorphic
to SL2(R)g inside Sp(L ⊗ R) ∼= Sp2g(R). The automorphisms of L itself, as a
symplectic o-module, are given by the integral points of this subgroup:

Γ(o, ρ) = SL2(R)g ∩ Sp2g(Z).

Via its embedding in SL2(R)g, the discrete group Γ(o, ρ) acts isometrically
on (H2)g, with finite volume quotient the Hilbert modular variety

X(o, ρ) = (H2)g/Γ(o, ρ).

The variety X(o, ρ) is the moduli space of pairs (A, o → End(A)) compatible
with ρ. By forgetting the action of o, the map τ 7→ Aτ yields a commutative
diagram

(H2)g −−−−→ Hgy
y

X(o, ρ) −−−−→ Ag.

1An order is a subring of finite index in the full ring of integers OK = OK1
× · · · × OKn

.
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Here X(o, ρ) → Ag is a proper finite morphism of algebraic varieties.

Theorem 4.2 The image of X(o, ρ) consists exactly of those A ∈ Ag admitting
real multiplication by (o, ρ).

Corollary 4.3 The locus of real multiplication in Ag is covered by a countable
union of Hilbert modular varieties.

Genus two. We now specialize to the case of genus g = 2. This case is
simplified by the fact that every quadratic order

oD = Z[x]/(x2 + bx + c)

is determined up to isomorphism by its discriminant D = b2−4c. Thus we may
assume o = oD for some D > 0, D = 0 or 1 mod4.

The classification is further simplified by the fact that there is an essentially
unique representation ρ : oD → End(L), where L = (Z4,

(
0 I
−I 0

)
).

Theorem 4.4 There is a unique proper, faithful, self-adjoint representation

ρD : oD → End(L) ∼= M4(Z)

up to conjugation by elements of Sp(L) ∼= Sp4(Z) .

Because of this uniqueness, we will write XD and ΓD for X(oD, ρD) and
Γ(oD, ρD).

Sketch of the proof. We briefly describe three approaches.

1. The classical proof is by a direct matrix calculation [Hu, pp. 301–308],
succinctly presented in [Ru, Thm. 2].

2. A second approach is by the classification of oD-modules. Although oD need
not be a Dedekind domain, it admits a similar module theory, as shown in [Ba]
and [BF] (for orders in quadratic fields). In particular, we have L ∼= oD ⊕ a

for some ideal a ⊂ oD. Then unimodularity of the symplectic form implies
L ∼= oD ⊕ o∨D, with 〈v1, v2〉 = TrK

Q (v1 ∧ v2).

3. A third approach is based on the fact that the self-adjoint elements T ∈
End(L) correspond bijectively to ∧2L ∼= H2(A, Z) via T 7→ ZT = 〈Tv1, v2〉. The
identity element gives the original symplectic form on L, which corresponds to
the theta-divisor ZI = Θ. The intersection form Z ·W makes ∧2L into a lattice
of signature (3, 3), with Θ2 = 2, from which we obtain a quadratic form

q(Z) = (Z · Θ)2 − 2Z2

of signature (3, 2) on the quotient space M = (∧2L)/(ZΘ). The proper, self-
adjoint orders o = Z[T ] ⊂ End(L) of discriminant D correspond bijectively
to primitive vectors Z ∈ M with q(ZT ) = D; compare [Ka1], [GH, §3]. The
uniqueness of the order of discriminant D in End(L) then reduces to transitivity
of the action of Sp(L) on the primitive elements of norm D in M , which in turn
follows from general results on lattices containing a sum of hyperbolic planes
[Sc, Prop. 3.7.3].
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Galois involution. Note we have

K = oD ⊗ Q =

{
Q × Q if D = d2 is a square, and

Q(
√

D) otherwise.

We let k 7→ k′ denote the Galois involution of K/Q, with (x, y)′ = (y, x) when
K = Q × Q. As usual, the trace and norm of k ∈ K are defined by k + k′ and
kk′ respectively.

Explicit models. A model for the unique action of oD by real multiplication
on L is obtained by taking L ∼= oD × oD, with the symplectic form

〈v1, v2〉 = TrK
Q (D−1/2v1 ∧ v2).

This form is clearly alternating, and it is easily shown to be unimodular (since
D−1/2oD is the inverse different of oD).

The automorphism group of L ∼= oD ⊕ oD as a symplectic oD-module is
given simply by ΓD = SL2(oD). Thus the Hilbert modular surface for real
multiplication by oD is given by

XD = (H2 ×−H2)/ SL2(oD),

where the embedding SL2(oD) → SL2(R) × SL2(R) comes from the two real

places of K. (The −H2 factor arises because
√

D
′
= −

√
D < 0.)

Humbert surfaces. The image of XD in A2 is the Humbert surface

HD = {A ∈ A2 : A admits real multiplication by oD}.

The map XD → HD is generically two-to-one. In fact, the normalization of
HD is XD/ι, where ι changes the inclusion oD →֒ End(A) by precomposition
with the Galois involution k 7→ k′. The map ι interchanges the factors of
X̃D = H2 × H2 when lifted to the universal cover. Thus the normalization of
HD is a symmetric Hilbert modular surface.

Theorem 4.5 Each Humbert surface HD is irreducible, and the locus of real
multiplication in A2 coincides with

⋃
HD.

Proof. Since XD is connected, so is HD; and if A admits real multiplication
by o, then o ∼= oD for some D.

Eigenforms. For a more precise connectedness result, consider the eigenform
bundle ΩHD → HD defined by

ΩHD = {(A, ω) ∈ ΩA2 : ω is an eigenform for real multiplication by oD}.

The fiber of ΩHD over a generic point A ∈ HD has two components, one for
each of the eigenspaces of oD acting on Ω(A). Nevertheless we have:
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Theorem 4.6 The eigenform bundle ΩHD → HD is connected.

For the proof, consider the bundle ΩXD → XD whose fiber over τ consists
of the nonzero eigenforms in S∗

1 , where

Ω(Aτ ) ∼= (L ⊗ R)∗τ
∼= S∗

1 ⊕ S∗
2 .

(This bundle depends on the chosen ordering of (S1, S2), or equivalently on
the choice of a real place ν : K → R.) Clearly ΩXD is connected; thus the
connectedness of ΩHD follows from:

Theorem 4.7 The natural map ΩXD → ΩHD is an isomorphism.

Proof. Given (A, ω) ∈ ΩHD, there is a unique order o ⊂ End(A) with ω as
an eigenvector. Of the two Galois conjugate isomorphisms oD

∼= o, there is
a unique one such that ω lies in the eigenspace S∗

1 . The resulting inclusion
oD →֒ End(A) uniquely determines the point in ΩXD corresponding to (A, ω).

Jacobians. By the Torelli theorem, the map X 7→ Jac(X) from Mg to Ag is
injective. In the case of genus g = 2, the image is open, and in fact we have

A2 = M2 ⊔ H1.

The Humbert surface H1
∼= A1 × A1/(Z/2) consists of products of polarized

elliptic curves. The intersection HD ∩ H1 is a finite collection of curves.
Let ED ⊂ XD be the Zariski open subset lying over HD − H1; it consists of

the Jacobians in XD. Using the embedding ΩM2 ⊂ ΩA2, we can regard

ΩED = {(X, ω) ∈ ΩM2 : ω is an eigenform for real multiplication by oD}
as the set of pairs (Jac(X), ω) ∈ ΩHD. By Theorem 4.7, we have

ΩED = ΩHD|(HD − H1) = ΩXD|ED.

Theorem 4.8 The locus ΩHD ⊂ ΩA2 is closed.

Proof. Consider a sequence in ΩHD such that (An, ωn) → (A, ω) ∈ ΩA2.
Write oD = Z[t]/p(t) with

p(t) = t2 + bt + c = (t − k)(t − k′).

Then for each n, there is a self-adjoint holomorphic endomorphism

Tn : An → An,

with ωn as an eigenform, satisfying p(Tn) = 0. Since Tn is self-adjoint, we have

‖DTn‖ ≤ max(|k|, |k′|)
with respect to the Kähler metric on An coming from its polarization. By
equicontinuity, there is a subsequence along which Tn converges to a self-adjoint
holomorphic endomorphism T : A → A. In the limit ω is an eigenform for T
and p(T ) = 0; therefore (A, ω) ∈ ΩHD.
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Corollary 4.9 The locus ΩED ⊂ ΩM2 is closed.

Proof of Theorem 4.1. Whenever X admits real multiplication, we have
Jac(X) ∈ HD − H1 for some D, and thus E2 =

⋃
ΩED. (We can take D ≥ 4

since E1 is empty.) Because XD is connected, so is ED, and therefore so is the
C∗-bundle ΩED → ED.

Elliptic differentials. A holomorphic 1-form (X, ω) ∈ ΩMg is an elliptic
differential if there is an elliptic curve E = C/Λ and a holomorphic map p :
X → E such that p∗(dz) = ω. By passing to a covering space of E if necessary,
we can assume p∗(H1(X, Z)) = H1(E, Z); then the degree of ω is the degree of
p.

Theorem 4.10 The locus ΩEd2 ⊂ ΩM2 coincides with the set of elliptic dif-
ferentials of degree d.

Proof. An elliptic differential (X, ω) of degree d, pulled back via a degree d
map p : X → E, determines a splitting

H1(A, Q) = H1(E, Q) ⊕ H1(E, Q)⊥

where A = Jac(X). Let π ∈ End(A) ⊗ Q denote projection to H1(E), and
let T (v) = π(d · v). Then T is a primitive, self-adjoint element of End(A),
and T 2 = dT ; thus A admits real multiplication by Z[T ] ∼= od2 , and we have
(X, ω) ∈ ΩEd2 .

Conversely, given (X, ω) ∈ ΩEd2 , the eigenspaces for the action of od2 de-
termine a splitting of H1(Jac(X), Q) as above, which in turn yields a degree d
map X → E that exhibits ω as an elliptic differential. Compare [Ka1, §4].
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Figure 2. A degree 6 branched covering. The shaded handle maps to the shaded

disk with 2 branch points.

Letting Σg denote a smooth oriented surface of genus g, we have the following
purely topological result.

Corollary 4.11 Up to the action of Diff+(Σ2) × Diff+(Σ1), there is a unique
degree d covering map

p : Σ2 → Σ1,

branched over two points, such that p∗ : H1(Σ2, Z) → H1(Σ1, Z) is surjective.
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Proof. Maps p as above are classified by components of the locus U ⊂ ΩEd2

where the relative and absolute periods of ω are distinct. Since U is Zariski
open and ΩEd2 is connected, p is unique up to diffeomorphism.

The unique branched covering of degree 6 is shown in Figure 2.

Theorem 4.12 The singular locus of the orbifold ΩM2 coincides with ΩE4,
with local fundamental group Z/2.

Proof. A point (X, ω) in the manifold cover ΩT2 → ΩM2 has a nontrivial
stabilizer in Mod2 iff ω descends to a holomorphic 1-form on E = X/Γ, where
Γ is a nontrivial subgroup of Aut(X). But then E must be an elliptic curve,
and X → E must be a regular degree 2 branched cover.

Notes. The above results on real multiplication in genus two originate in the
work of Humbert in the late 1890s [Hu]; see also [vG, Ch. IX] and [Ru, §4].
Additional material on real multiplication and Hilbert modular varieties can be
found in [HG], [vG] and [BL]. Elliptic differentials and the Humbert surfaces
Hd2 are discussed in detail in [Ka1]; see also [Her], [KS1], [Ka2]. We remark
that our notation here differs slightly from [Mc1], where eigenforms for Q × Q

were excluded from E2.

5 Recognizing eigenforms

In this section we introduce a homological version of the group SL(X, ω), and re-
call the notion of complex flux. We then establish the following characterization
of eigenforms for real multiplication.

Theorem 5.1 Let K ⊂ R be a real quadratic field, and let (X, ω) belong to
ΩM2. Then the following conditions are equivalent.

1. Jac(X) admits real multiplication by K with ω as an eigenform.

2. The trace field of SL(H1(X, Q), ω) is K.

3. The span S(ω) ⊂ H1(X, R) of (Re ω, Imω) is defined over K, and satisfies
S(ω)′ = S(ω)⊥.

4. After replacing (X, ω) by g · (X, ω) for suitable g ∈ GL+
2 (R), the form ω

has absolute periods in K(i) and zero complex flux.

We also give similar results for K = Q × Q, and applications to Teichmüller
curves.

The homological affine group. We begin by explaining condition (2). Let
F ⊂ R be a subring (such as Z or Q). Given (X, ω) ∈ ΩMg, consider the
absolute period map

Iω : H1(X, F ) → C ∼= R2
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defined by Iω(C) =
∫

C
ω. We say a symplectic automorphism Φ of H1(X, F ) is

affine with respect to ω if there is a real-linear map DΦ : C → C such that the
diagram

H1(X, F )
Φ−−−−→ H1(X, F )

Iω

y Iω

y

C
DΦ−−−−→ C

(5.1)

commutes. Equivalently, let S(ω) ⊂ H1(X, R) denote the span of (Re ω, Im ω);
then Φ is affine iff Φ∗(S(ω)) = S(ω).

The group of all Φ as above will be denoted by Aff+(H1(X, F ), ω), and its
image under Φ 7→ DΦ by

SL(H1(X, F ), ω) ⊂ SL2(R).

This group records all the affine symmetries of (X, ω) that are feasible on a
homological level. Note that SL(H1(X, F ), ω) changes by conjugacy in SL2(R)
if we replace (X, ω) by g · (X, ω), g ∈ SL2(R).

Properties. Any affine homeomorphism of (X, ω) induces an affine map on
homology, so we have:

Theorem 5.2 The group SL(X, ω) is a subgroup of SL(H1(X, F ), ω).

The trace field of SL(H1(X, Q), ω) is the field generated over Q by {TrDΦ}; it
is constant along the orbit SL2(R) · (X, ω).

Theorem 5.3 The trace field of SL(H1(X, Q), ω) has degree at most g over Q,
where g is the genus of X.

Proof. Using the identity tr(A) tr(B) = tr(AB) + tr(AB−1), any element of
the trace field can be expressed in the form t =

∑
ai tr(DΦi), ai ∈ Q. Since the

endomorphism

T =
∑

ai(Φi + Φ−1
i )

of H1(X, Q) satisfies T |S(ω) = tI, t is an eigenvalue of multiplicity at least two.
Since dimH1(X) = 2g, we have deg(Q(t)/Q) ≤ g. Compare [Mc1, Thm. 5.1],
[KS2].

Theorem 5.4 Let (X, ω) ∈ ΩED be an eigenform of genus two. Then we have:

SL(H1(X, Q), ω) ∼= SL2(Q(
√

D)), and

SL(H1(X, Z), ω) ∼=
{

SL2(Z) if D is a square,

SL2(oD) otherwise.
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Proof. The condition Φ∗(S(ω)) = S(ω) is equivalent to the condition that Φ∗

commutes with oD acting on H1(X, R). Thus we have

Aff+(H1(X, Z), ω) ∼= ΓD
∼= SL2(oD)

(see §4). The action of affine automorphisms on S(ω) gives a map SL2(oD) →
SL2(R) which is an isomorphism when D is not a square; otherwise, its image
is SL2(Z), and the result follows.

Cohomology over K. Next we explain condition (3). The subspace S(ω) ⊂
H1(X, R) is defined over K if S(ω) = V ⊗K R for some V ⊂ H1(X, K). The
Galois involution of K/Q determines a second subspace S(ω)′ = V ′ ⊗ R, and
(3) says the cohomology of X decomposes as an orthogonal direct sum

H1(X, R) = S(ω) ⊕ S(ω)′

with respect to the symplectic form.

Complex flux. Finally we explain condition (4). Consider the complex exten-
sion field K(i) ⊂ C. Let (k1 + ik2)

′ = k′
1 + ik′

2 and k1 + ik2 = k1 − ik2. These
involutions generate the Galois group Z/2 × Z/2 of K(i)/Q.

Now suppose that (X, ω) ∈ M2 has absolute periods in K(i). Then ω
determines both a cohomology class [ω] in H1(X, K(i)), and its Galois conjugate
classes [ω], [ω′] and [ω′]. We say ω has zero complex flux [Mc1] if

∫
ω ∧ ω′ =

∫
ω ∧ ω′ = 0.

Remark. If ω has relative periods in K(i) and zero complex flux, then the
group SL(X, ω) is large — its limit set is the full circle at infinity [Mc1, Thm.
8.4].

Proof of Theorem 5.1. By Theorem 5.4, (1) =⇒ (2). To see (2) =⇒ (3),
choose Φ ∈ Aff+(H1(X, Q), ω) such that Tr(DΦ) = k and K = Q(k). Let
T = Φ∗ + (Φ∗)−1 acting on H1(X, Q). Since Φ∗ preserves the splitting

H1(X, R) = S(ω) ⊕ (Sω)⊥,

we have T =
(

kI 0
0 k′I

)
with respect to this decomposition. Consequently the

subspace S(ω) = Ker(T − kI) is defined over K, and S(ω)⊥ = Ker(T − k′I) is
its Galois conjugate.

The reverse argument shows (3) =⇒ (1). Indeed, suppose the two factors in
the direct sum decomposition

H1(X, R) = S(ω) ⊕ S(ω)⊥

are defined over K and Galois conjugate, and write K = Q(k). Then T =(
kI 0
0 k′I

)
preserves H1(X, Q). Orthogonality of the factors implies T is self-

adjoint with respect to the symplectic form. The first factor maps to a complex
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line under the isomorphism H1(X, R) ∼= Ω(X), so the second does as well. Thus
T defines an element of End(Jac(X))⊗Q, and consequently Jac(X) admits real
multiplication by Q(T ) ∼= Q(k) ∼= K.

The equivalence of (3) and (4) follows easily by choosing a suitable basis for
S(ω).

A similar argument shows:

Theorem 5.5 For K = Q × Q, the following conditions are equivalent.

1. The Jacobian of X admits real multiplication by K with ω as an eigenform.

2. The absolute periods of ω form a lattice in C.

3. The span S(ω) ⊂ H1(X, R) of (Re ω, Im ω) is defined over Q.

From condition (2) in Theorems 5.1 and 5.5 we have:

Corollary 5.6 Membership in the eigenform locus E2 depends only on the ab-
solute period map Iω : H1(X, Z) → C.

Corollary 5.7 The eigenform locus E2 ⊂ M2 is invariant under the action of
SL2(R), as is each of its connected components ΩED.

Compare [Mc1, Thm. 7.2].

Theorem 5.8 If SL(X, ω) contains a hyperbolic element, then (X, ω) ∈ E2.

Proof. In fact, if A ∈ SL(X, ω) is hyperbolic with irrational trace, then (X, ω)
is an eigenform for real multiplication by Q(tr(A)) (Theorem 5.1). Otherwise,
ω is an elliptic differential [Mc2, Thm. 9.5].

Corollary 5.9 If (X, ω) generates a Teichmüller curve, then (X, ω) is an eigen-
form. In particular, every Teichmüller curve in M2 lies on a Hilbert modular
surface.

Theorem 5.10 A form (X, ω) in ΩM2(2) generates a Teichmüller curve iff
(X, ω) ∈ E2.

Proof. Let (X, ω) ∈ ΩM2(2) be an eigenform for real multiplication by K. If
K is a quadratic field, then SL(X, ω) is a lattice by [Mc1, Thm 1.3]. Otherwise,
ω = π∗(dz) is an elliptic differential, pulled back via a map π : X → E =
C/Λ. Since ω has a double zero, π is branched over only one point, and hence
a subgroup of finite index in SL(E, dz) ∼= SL2(Z) lifts to SL(X, ω) [GJ]; so
SL(X, ω) is a lattice in this case as well.

The converse is immediate from Theorem 5.8.
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Corollary 5.11 For each discriminant D, there is a finite collection of Te-
ichmüller curves such that ΩED ∩ ΩM2(2) =

⋃
ΩVi.

Proof. Each connected component of ΩED ∩ ΩM2(2) lies over a Teichmüller
curve by the preceding result, and the number of components is finite because
the intersection is an algebraic variety.

6 Algebraic sums of 1-forms

In this section we introduce the notion of algebraic sums of 1-forms. We find
that whenever an eigenform in genus 2 is presented as a sum of forms of genus
1, the corresponding elliptic curves are isogenous. Conversely, we will show:

Theorem 6.1 Let (X, ω) be a holomorphic 1-form of genus 2 that can be pre-
sented, in more than one way, as an algebraic sum

(X, ω) ∼= (E1, ω1) + (E2, ω2)

of isogenous forms of genus 1. Then Jac(X) admits real multiplication with ω
as an eigenform.

Isogeny. An isogeny between a pair of elliptic curves is a surjective holomorphic
map p : E1 → E2. We say a pair of 1-forms (Ei, ωi) ∈ ΩM1 are isogenous if
there is a t > 0 and an isogeny p : E1 → E2 such that p∗(ω2) = tω1. This is
equivalent to the condition that tΛ1 ⊂ Λ2, where Λi ⊂ C is the period lattice of
(Ei, ωi).

Algebraic sum. Let (X, ω) be a form of genus g, and let (Yi, ωi) be forms of
genus gi, g = g1 + g2. A symplectic isomorphism

H1(X, Z) ∼= H1(Y1, Z) ⊕ H1(Y2, Z)

presents (X, ω) as an algebraic sum,

(X, ω) ∼= (Y1, ω1) + (Y2, ω2),

if we have
[ω] = [ω1] + [ω2]

upon passing to cohomology with coefficient in C. Two algebraic splittings of
(X, ω) are equivalent if they come from the same unordered splitting H1(X) =
H1(Y1) ⊕ H1(Y2).

We emphasize that the sublattices H1(Y1, Z) and H1(Y2, Z) of H1(X, Z) are
orthogonal and of determinant 1.

Genus two. We will be interested in expressing forms of genus 2 as algebraic
sums of forms of genus 1,

(X, ω) ∼= (E1, ω1) + (E2, ω2).
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In this case the forms (Ei, ωi) ∈ ΩM1 are uniquely determined by the splitting

H1(X, Z) = S1 ⊕ S2, (6.1)

Si = H1(Ei, Z); indeed, we have (Ei, ωi) = (C/Λi, dz) where Λi = Iω(Si).
On the other hand, not every symplectic splitting as in (6.1) determines an

algebraic sum; the lattices Λi = Iω(Si) must be nondegenerate, and each map
Si → Λi ⊂ C must preserve the orientation of Si as a symplectic subspace of
H1(X, Z).

Real multiplication. To motivate Theorem 6.1, we first prove:

Theorem 6.2 Let (X, ω) be an eigenform for real multiplication, expressed as
an algebraic sum

(X, ω) ∼= (E1, ω1) + (E2, ω2)

of forms of genus 1. Then (E1, ω1) and (E2, ω2) are isogenous.

Lemma 6.3 Suppose A ∈ A2 admits real multiplication by a field K, and
H1(A, Q) = S ⊕ S⊥, dimQ S = 2. Then there is a k ∈ K such that kS = S⊥.

Proof. Let (a, b) be a basis for S over Q, with 〈a, b〉 = 1. Let k 6= 0 be
an element in the kernel of the map K → Q given by k 7→ 〈ka, b〉. By self-
adjointness of the action of K, we have 〈ka, b〉 = 〈a, kb〉 = 0, as well as 〈ka, a〉 =
〈kb, b〉 = 0. Thus kS = S⊥.

Proof of Theorem 6.2. Let

H1(X, Z) = L1 ⊕ L2
∼= H1(E1, Z) ⊕ H1(E2, Z)

be the isomorphism underlying the algebraic sum, and let Λi = Iω(Li) =
Per(ωi).

Assume (X, ω) is an eigenform for real multiplication by K. If K = Q × Q,
then Λ = Iω(H1(X, Z)) ∼= Z2 is a lattice in C containing Λ1 and Λ2 with finite
index, so (E1, ω1) and (E2, ω2) are isogenous.

Otherwise K is a field. The eigenform ω determines an embedding K ⊂ R

such that Iω(k ·v) = kIω(v) for all v in H1(X, Q). Let Si = Li⊗Q ⊂ H1(X, Q).
By the preceding Lemma, we have S⊥

1 = S2 = kS1 for some k ∈ K; therefore

Λ1 ⊗ Q = Iω(S1) = Iω(kS2) = kΛ2 ⊗ Q,

which again implies isogeny.

Isogeny and SL2(Q). To prove Theorem 6.1, we will show that multiple
splittings of (X, ω) with isogenous summands make the group SL(H1(X, Q), ω)
large.
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Lemma 6.4 Let (X, ω) = (E1, ω1) + (E2, ω2) be an algebraic sum of isogenous
forms. Then the largest subgroup

H ⊂ Aff+(H1(X, Q), ω)

that preserves each summand in the splitting

H1(X, Q) = H1(E1, Q) ⊕ H1(E2, Q)

is isomorphic to SL2(Q).

Proof. Let p : E1 → E2 be an isogeny satisfying p∗(ω2) = tω1, and let

P = p∗ : H1(E1, Q) → H1(E2, Q).

Then tIω = IωP on H1(E1) ⊂ H1(X). It follows that any symplectic automor-
phism A of H1(E1, Q) has a unique extension

Φ = A ⊕ PAP−1

to an ω-affine automorphism of H1(E1)⊕H1(E2) ∼= H1(X). Thus H is isomor-
phic to Sp(H1(E1, Q)) ∼= SL2(Q) .

Proof of Theorem 6.1. Suppose (X, ω) can be presented as an algebraic sum
of isogenous forms in two different ways,

(X, ω) ∼= (E1, ω1) + (E2, ω2) ∼= (F1, η1) + (F2, η2).

Then we have
Per(ω) = Per(ω1) + Per(ω2) = Λ1 + tΛ2,

where Λ1 and Λ2 are commensurable lattices. If t > 0 is rational then the
periods of ω also form a lattice, in which case (X, ω) is an eigenform for real
multiplication by Q × Q by Theorem 5.5.

Now assume t is irrational. Then the period map Iω : H1(X, Q) → C is an
embedding. This implies the map Φ 7→ DΦ gives an isomorphism

G = Aff+(H1(X, Q), ω) ∼= SL(H1(X, Q), ω) = Γ.

We may assume the trace field K of Γ is Q, since otherwise (X, ω) is an eigenform
for real multiplication by K (Theorem 5.1).

Let H ⊂ G be the subgroup stabilizing the splitting

H1(X) = H1(E1) ⊕ H1(E2).

By the preceding Lemma, H isomorphic to SL2(Q). But any proper extension of
DH ∼= SL2(Q) ⊂ Γ has irrational trace field, so DH = Γ and H = G. Thus the
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isogeny from E1 to E2 determines a map P : H1(E1, Q) → H1(E2, Q) satisfying
det(P ) > 0 and P (Φx) = Φ(P (x)) for all Φ ∈ G.

Now consider the second splitting, H1(X) = H1(F1)⊕H1(F2). Let A1 ⊕A2

denote two factors of the map

H1(F1, Z) →֒ H1(E1, Z) ⊕ H1(E2, Z).

Then det(A1)+det(A2) = 1, since the oriented sublattice H1(F1, Z) ⊂ H1(X, Z)
has determinant one.

By the same reasoning as above, G stabilizes the splitting H1(F1)⊕H1(F2).
But if the second splitting is different from the first, then the subspace H1(F1, Q)
is the graph of a map Q : H1(E1, Q) → H1(E2, Q), Q = A2 ◦ A−1

1 , that also
respects the action of G. Since the action of G ∼= SL2(Q) on H1(Ei, Q) is
irreducible, we have Q = A2 ◦ A−1 = cP for some c ∈ Q∗. But this implies
det(A1) det(A2) > 0, which is impossible for two integers satisfying det(A1) +
det(A2) = 1.

7 Connected sums of 1-forms

In this section we introduce the connected sum construction and establish:

Theorem 7.1 Any holomorphic 1-form of genus 2 can be expressed in infinitely
many ways as a connected sum (X, ω) = (E1, ω1)#

I
(E2, ω2) of forms of genus 1.

We also discuss the relation to algebraic sum.

Connected sum. Let I = [0, v] = [0, 1] · v be the segment from 0 to v 6= 0 in
C. Let (Yi, ωi) be holomorphic 1-forms of genus gi, i = 1, 2, and let

γi : I → Yi

be smooth embeddings such that γ∗
i (ωi) = dz. The arcs Ji = γi(I) are straight

geodesics on (Yi, |ωi|), possibly with zeros of ω at their endpoints.
Slitting the two surfaces open along these arcs, and gluing corresponding

edges using γi, we obtain the connected sum

(X, ω) = (Y1, ω1)#
I
(Y2, ω2).

Here X has genus g1 + g2. If Ji joins zeros of orders ai and bi on Yi, then ω has
zeros of order a1 +a2 +1 and b1 +b2 +1 on X . The simplest case, in which there
are no zeros on the arcs Ji, results in a pair of simple zeros on X ; see Figure 3.

It is straightforward to check that the connected sum operation commutes
with the action of GL+

2 (R): we have

g · ((Y1, ω1)#
I
(Y2, ω2)) = g · (Y1, ω1) #

g·I
g · (Y2, ω2) (7.1)
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#

Figure 3. Local picture of a connected sum.

for all g ∈ GL+
2 (R).

Splitting. To present (X, ω) as a connected sum, it suffices to find a loop
L ⊂ X consisting of a pair of homologous saddle connections. Then L splits
(X, ω) into two slit surfaces; regluing the slits, we obtain a pair (Y1, ω1), (Y2, ω2)
whose connected sum is the original surface.

Genus two. We will be interested in presenting forms of genus two as connected
sums of forms of genus one,

(X, ω) = (E1, ω1)#
I
(E2, ω2).

It is convenient to identify elements of ΩM1 with lattices Λ ⊂ C, via the
correspondence (E, ω) = (C/Λ, dz). The gluing data can always be normalized
so that γi(z) = z.

Thus a connected sum of tori is completely determined by a pair of lattices
Λ1, Λ2 ⊂ C, and a vector v ∈ C∗, such that

[0, v] ∩ Λ1 = [0, v] ∩ Λ2 = {0}. (7.2)

The last condition guarantees that I = [0, v] embeds in Ei = C/Λi.
We extend the operation of connected sum in a natural way to include the

case where
[0, v] ∩ Λ1 = {0, v}, [0, v] ∩ Λ2 = {0} (7.3)

or vice versa. In this case I maps to a loop in E1 and remains embedded in E2.
The connected sum then results in a double zero for ω, lying on a figure-eight
L ⊂ X coming from the slits on E1 and E2.

Local homeomorphism. Let D(1, 1) and D(2) denote the set of triples

(Λ1, Λ2, v) ∈ ΩM1 × ΩM1 × C∗

satisfying (7.2) and (7.3) respectively. (In D(2) we allow I to map to a loop in
either E1 or E2.) The domain D(1, 1) is open and dense, while D(2) is open
and dense in a codimension one hypersurface. The group GL+

2 (R) acts on the
space of triples (Λ1, Λ2, v), leaving D(1, 1) and D(2) invariant.

By sending the data (Λ1, Λ2, v) to the connected sum it defines, we obtain
natural maps Φ(1, 1) : D(1, 1) → ΩM2(1, 1) and Φ(2) : D(2) → ΩM2(2).
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Theorem 7.2 The connected sum mappings Φ(1, 1) and Φ(2) are surjective,
GL+

2 (R)-equivariant local covering maps.

Proof. Surjectivity is Theorem 7.1, and equivariance follows from equation
(7.1). To see these maps are locally coverings (in the category of orbifolds), recall
that the relative periods of (X, ω) provide local coordinates on the universal
cover of each stratum (§3). The absolute periods determine Λ1 and Λ2, while v
is a relative period of ω. Thus Φ(1, 1) and Φ(2) have continuous local inverses,
after passing to a manifold local cover in ΩM2(1, 1) and ΩM2(2).

Note. Since the result of a connected sum is independent of the order of its
summands, the map Φ(1, 1) is locally 2-to-1 along the diagonal Λ1 = Λ2 in
D(1, 1). The image of the diagonal is the singular locus ΩE4 of ΩM2, discussed
in Theorem 4.12.

Saddle connections. Now fix a surface (X, ω) of genus two, and let η : X → X
be the hyperelliptic involution.

Theorem 7.3 Let J ⊃ Z(ω) be a saddle connection such that J 6= η(J). Then
(X, ω) splits along L = J ∪ η(J) as a connected sum of tori.

The proof is straightforward. Note that L is a loop when ω has simple zeros,
and a figure eight otherwise; and J = η(J) iff J contains a Weierstrass point in
its interior.

To see that many splittings exist, we next establish:

Theorem 7.4 Let (X, ω) be a form of genus two, and let C be a cylinder on
X. Then there is a saddle connection J ⊃ Z(ω) such that J 6= η(J) and J does
not cross ∂C.

(Note: We allow J to have endpoints on ∂C or to be contained in ∂C.)

1a 1b 2b 2c 32a

Figure 4. The 6 possible ribbon graphs for periodic 1-forms of genus two.

Let F be the foliation of (X, |ω|) by geodesics parallel to ∂C.

Lemma 7.5 The required saddle connection exists if the foliation F is periodic.
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Proof. In this case the complement of the spine S of F is a union of n ≤ 3
cylinders, one of which is C. Each cylinder contains two Weierstrass points, so
η|S has exactly 6 − 2n fixed-points.

The spine itself is a ribbon graph isomorphic to one of the six examples
shown in Figure 4 (compare [Z]).

In this Figure the round dots represent zeros of ω and the edges represent
saddle connections. The local planar embedding at each zero is essential, while
the internal crossing of edges should be ignored. The graphs are labeled accord-
ing to the number of cylinders of F . Note that ω has a double zero in cases (1a)
and (2a), and otherwise a pair of simple zeros.

It is straightforward to construct J in each case. In cases (2a) and (2b) we
can take J to be one of the edges of S whose interior is disjoint from the two
fixed-points of η|S. In the remaining cases, one of the cylinders C′ ⊂ X − S
contains the interiors of three disjoint saddle connections joining the zeros of ω.
Since C′ contains only two Weierstrass points, one of these saddle connections
satisfies η(J) 6= J .

Proof of Theorem 7.4. Consider the subgraph of the spine of F given by
L = ∂C.

If L is empty, then F is periodic with one cylinder and the preceding Lemma
applies.

If L is connected, then it is either a loop or a figure eight containing Z(ω) and
invariant under the hyperelliptic involution; thus it has the form L = J ∪ η(J),
where J is a saddle connection, and we are done.

Now suppose L is disconnected. Then L = L1∪L2 has two components, and
ω has a pair of simple zeros z1, z2 with zi ∈ Li. If L is a pair of figure-eights,
then F is periodic with 3 cylinders and again the Lemma applies.

Thus we are left with the case where L is a pair of topological circles. In
this case C is an embedded annulus in X , and so its complement F = X −C is
a torus with 2 boundary components. Note that (F, |ω|) has interior angle 3π
at each zero zi ∈ ∂F .

We can assume that L coincides with the spine S, since otherwise F is
periodic. Let A ∈ GL+

2 (R) be a linear transformation that acts by isometry on
the leaves of F and stretches in the orthogonal direction. Then, after replacing
(X, ω) with An · (X, ω) for n ≫ 0, we can also assume that L1 and L2 are the
two shortest saddle connections on X .

Now let K ⊂ F be the shortest geodesic joining z1 to z2. If η(K) 6= K
we can take J = K to complete the proof; so assume that η(K) = K. Let
α + β = 3π be the two interior angles formed by K and ∂F at z2.

If min(α, β) < π, we can construct a broken geodesic M ′ = K ∗ L2 also
joining z1 to z2, with a bending angle of less than π at the break. Let M ⊂ F
be the geodesic in the same homotopy class as M ′ relative to its endpoints.
Because of the bend in M ′, we have

|M | < |M ′| = |K| + |L2|.
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Note that M 6= η(M) because these geodesics are in different homotopy classes
relative to their endpoints. Thus if M is a saddle connection from z1 to z2, we
can take J = M to complete the proof. Otherwise, M contains both a saddle
connection N from z1 to z2, and at least one other saddle connection, necessarily
of length ≥ |L2|. But then |N | ≤ |M | − |L2| < |K|, contrary to our assumption
that K is the shortest geodesic joining z1 to z2.

Finally suppose α, β ≥ π. Using the fact that η(K) = K, it is not hard to
see that the metric completion of (F − K, |ω|) is isometric to (E − P, |dz|), the
complement of an open parallelogram P in a flat torus E. (When α or β is
equal to π, P degenerates to a slit.) There is a natural collapsing map

π : (E − P, ∂P ) → (F , L1 ∪ K ∪ L2)

that sends the cyclically ordered vertices (a, b, b′, a′) of ∂P to (z1, z2, z2, z1)
(Figure 5). The opposite edges ab and a′b′ are identified to form K. Note that
the hyperelliptic involution η of E − P sends a to b′ and b to a′.

L
2L

1

K z

b’

b

2

a’

a

1
z

Figure 5. The collapsing map P → L1 ∪ K ∪ L2.

Next we construct a straight geodesic I joining a to b through the interior
of E − P . Let R ⊂ E − P be a maximal parallelogram with sides parallel to
those of P , and sharing the edge bb′ with P . By maximality, ∂R contains a or
a′. If a ∈ ∂R, let I be straight geodesic from a to b inside R. If a′ ∈ ∂R, let I ′

join a′ to b′ through R and let I = η(I ′).
Now consider the saddle connection J = π(I) from z1 to z2. We have

I 6= η(I) since the latter segment joins a′ to b′. Since I runs through the
interior of E − P , we have η(J) = π(η(I)) 6= J . By construction J is disjoint
from C, so the proof is complete.

Corollary 7.6 The slopes of saddle connections J ⊃ Z(ω) with J 6= η(J) are
dense in R ∪ {∞}.

Proof. Let U ⊂ P1(R) be an open interval. We will show there is a saddle
connection J as above with slope in U .

It is known that the uniquely ergodic slopes are dense, as are the slopes of
cylinders [MT, §3, §4]. Thus we can find a long, thin cylinder C on X such
that every saddle connection with slope outside U crosses ∂C. By the preceding
result, we can find a J that does not cross ∂C, and hence its slope is in U .
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Proof. of Theorem 7.1. The saddle connections J provided by the Corollary
give, by Theorem 7.3, infinitely many distinct splittings of (X, ω).

Algebraic sum. By Mayer–Vietoris, any geometric splitting of (X, ω) gives
rise to a natural isomorphism H1(X, Z) ∼= H1(Y1, Z) ⊕ H1(Y2, Z), and hence
an algebraic splitting (X, ω) = (Y1, ω1) + (Y2, ω2). Thus Theorem 7.1 gives
immediately:

Corollary 7.7 Any form of genus two can be expressed in infinitely many ways
as an algebraic sum of forms of genus one.

Remarks. Variants of the connected sum construction are discussed in [Mc2,
§7] and [EMZ, §7]. The argument above also uses the ‘parallelogram construc-
tion’, developed in more detail in [EMZ, §10]. We remark that the connected
sum operation can be extended to yield points in M2; for example, if I maps to
a loop in both tori, then (E1, ω1)#

I
(E2, ω2) naturally defines a form on a stable

curve X ∈ M1,2 ⊂ ∂M2.

8 Eigenforms as connected sums

In this section we discuss the special properties of splittings of eigenforms
(X, ω) ∈ ΩED, and the natural measure on ΩED(1, 1).

Isogeny. We begin by observing that eigenforms are characterized by isogeny
of their summands. More precisely, since any geometric sum gives rise to an
algebraic sum, Theorems 6.1 and 6.2 imply:

Theorem 8.1 Any splitting (X, ω) = (E1, ω1)#
I
(E2, ω2) of an eigenform for

real multiplication has isogenous summands.

Theorem 8.2 If (X, ω) ∈ ΩM2 has splits as a connected sum of isogenous
forms in two different ways, then (X, ω) is an eigenform for real multiplication.

Finiteness. Next we show that the discriminant D controls the shape of the
isogeny.

Theorem 8.3 An algebraic sum (X, ω) ∼= (E1, ω1)+(E2, ω2) lies in ΩED if and
only if there are integers satisfying e2 + 4d = D, and an isogeny p : E1 → E2,
such that:

• deg(p) = d ≥ 1, gcd(p, e) = 1, and

• p∗(ω2) = λω1, where λ2 = eλ + d.

In particular, D determines deg(p) and λ up to finitely many choices.
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Here gcd(p, e) = gcd(p11, p12, p21, p22, e), where (pij) ∈ M2(Z) is a matrix
for the map p∗ : H1(E1, Z) → H1(E2, Z).

Proof. Since (X, ω) is an eigenform, there is a primitive self-adjoint endomor-
phism

T : H1(X, Z) → H1(X, Z)

such that Z[T ] ∼= oD, and T ∗ω = λω for some λ ∈ R. Equivalently, we have

Iω(T (x)) =

∫

T (x)

ω = λ · Iω(x)

for all cycles x ∈ H1(X, Z), and gcd(Tij) = 1. Using the algebraic splitting

H1(X, Z) = H1(E1, Z) ⊕ H1(E2, Z),

we can write x = x1 + x2 with xi ∈ H1(Ei, Z); then Iω(x) = Iω1
(x1) + Iω2

(x2).
Now let (ai, bi) be a symplectic basis for H1(Ei, Z), satisfying 〈ai, bi〉 = 1.

Then with respect to the basis (a1, b1, a2, b2) for H1(X, Z), the symplectic form
is given by the block matrix S = ( J 0

0 J ), J =
(

0 1
−1 0

)
. The self-adjointness

condition 〈Tx, y〉 = 〈x, T y〉 is equivalent to ST t = TS. Equating corresponding
blocks, we find that T has the form

T =

(
fI B

C eI

)

with JBt = CJ . In particular Bt and C are conjugate.
After replacing T with T −fI (which still generates oD), we can assume f =

0. Then for all x ∈ H1(E1, Z), we have T (x) = C(x) ∈ H1(E2, Z). Moreover,
we have

Iω2
(C(x)) = Iω(T (x)) = λ · Iω(x) = λ · Iω1

(x).

Thus C : H1(E1, Z) → H1(E2, Z) determines an isogeny p : E1 → E2 of degree
d = det(C) > 0, satisfying p∗(ω2) = λω1.

We have gcd(Tij) = gcd(p, e) = 1, since C is a matrix for p. Moreover T
generates oD, so it satisfies T 2 = e′T + d′ with (e′)2 + 4d′ = D.

We claim that (d′, e′) = (d, e). To see this, first note that

T 2 =

(
BC eB

eC e2I

)
= e′T + d′ =

(
d′I e′B

e′C (e′)2I

)
.

This equation implies e = e′ and d2 = det(BC) = (d′)2. We also have tr(B) =
tr(C) = tr(d′C−1) = (d′/d) tr(C), and thus d′ = d provided tr(B) 6= 0. But
the same conclusion holds when tr(B) = 0. For if d′ = −d and tr(B) = 0, then
C = −dB−1 = B and thus JBt = BJ , which implies B = 0, contrary to the
fact that det(B) = d > 0.

Since T 2 = eT + d, the same relation holds for its eigenvalue λ.
The converse follows similar lines.
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Corollary 8.4 Fix a discriminant D. Then there is a finite collection of pairs
of forms of genus 1 such that every splitting of an eigenform in Ω1ED is given
by

(X, ξ) = (g · (Ei, ωi))#
I
(g · (Fi, ηi)), (8.1)

for some I ⊂ C, g ∈ SL2(R), and i ∈ {1, . . . , nD}.

Proof. Let (X, ξ) = (E, ω)#
I
(F, η) be a splitting of a form in Ω1ED. By

the preceding theorem, there is an isogeny p : E → F of degree d satisfying
p∗(η) = λω, where D determines the pair (d, λ) up to finitely many choices.
Adjusting by the action of SL2(R), we can assume Per(η) = Zs ⊕ Zis for some
s > 0. Since area(X, ξ) = 1, we have s2(1 + d/λ2) = 1, so the data (d, λ)
determines the square torus (F, η). But d = deg(p) also determines E and p up
to finitely many choices, and for each of these we have ω = λ−1p∗(η).

Volume. Recall that the relative periods of (X, ω) provide local (orbifold)
coordinates on ΩM2(1, 1). In these charts ΩED(1, 1) = ΩED ∩ ΩM2(1, 1) is
locally a linear subspace of complex codimension 2, determined by constraints
that hold

Ker(Iω) ⊂ H1(X, C)

fixed as ω varies. (Cf. Theorem 5.1(3)). Thus the Euclidean volume element in
period coordinates determines a natural SL2(R)-invariant measure on ΩED(1, 1)
and Ω1ED(1, 1).

Theorem 8.5 The space of eigenforms Ω1ED(1, 1) has finite volume.

Proof. The proof follows the same lines as the proof of finiteness of the volume
of Ω1M2(1, 1), using the fact that ∂Ω1ED(1, 1) lies over a finite set of curves in
M2.

Remark. Corollary 8.4 can also be proved by starting with a splitting (X, ξ) =
(E, ω)#

I
(F, η) in Ω1ED, letting I → 0 to obtain a stable curve Y ∈ ∂M2, noting

that Jac(Y ) ∼= E × F belongs to the Humbert surface H1 ∈ A2, and appealing
to the fact that H1 ∩ HD is a finite union of irreducible curves.

9 Pairs of splittings

Since any (X, ω) ∈ ΩM2 splits as a connected sum in many ways, it is useful
to understand how various splittings are related to one another. In this section
we classify splittings according to the cylinders they produce, and explore how
these cylinders behave when the splitting is changed or deformed. We also show
that, after varying the factors in a connected sum, there is almost surely a
second splitting which is generic.
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Cylinders and splittings. Consider a 1-form on a surface of genus two,
presented as a connected sum

(X, ω) = (E1, ω1)#
I
(E2, ω2) (9.1)

of a pair of tori. Let NI ⊂ SL2(R) denote the stabilizer of I.
The foliation F of (X, ω) by geodesics parallel to I has at most two cylinders,

one for each subtorus Ei. It is easy to see that the foliation F
• has a cylinder Ci on Ei iff NI ∩ SL2(Ei, ωi) ∼= Z, and

• has two cylinders, with a rational ratio of moduli iff NI ∩ SL2(X, ω) ∼= Z.

In the latter case, a suitable product of Dehn twists around C1 and C2 gives an
affine automorphism of (X, ω) generating NI ∩ SL(X, ω) ∼= Z. For brevity, in
this case we say the foliation F is rational.

When there are two cylinders, F is periodic, because all its leaves are closed.
When there are no cylinders at all, the splitting presents (X,F) as a con-

nected sum of tori with irrational foliations.
We say the splitting (9.1) is rational, periodic, has no cylinders, etc., if the

corresponding property holds for F .

Theorem 9.1 Any splitting of an eigenform (X, ω) ∈ E2 either has two cylin-
ders with a rational ratio of moduli, or no cylinders at all.

Proof. By Theorem 5.1, after normalizing (X, ω) by the action of GL+
2 (R), we

can assume ω has absolute periods in K(i) and zero complex flux. Let F be the
foliation of (X, ω) by geodesics parallel to I. If F has a cylinder on E1 or E2,
then its leaves have the same slope as an absolute period of ω, and therefore
(X,F) decomposes into a pair of cylinders with a rational ratio of moduli by
[Mc2, Thm 8.3].

Rectangles. The next result gives an explicit description of two different
splittings of certain surfaces. Let us say a based lattice in C ∼= R2 is rectangular
if it has the form Λ = Z(x, 0) ⊕ Z(0, y), x, y > 0. Similarly, we say an element
of ΩM1 is rectangular if it has the form (R, ρ) = (C/Λ, dz), where Λ is a
rectangular lattice.

Theorem 9.2 Let I = [0, v] ⊂ R, and let (X, ω) = (R1, ρ1)#
I
(R2, ρ2) be a

connected sum of tori with rectangular period lattices

Per(ρi) = Zai + Zbi.

Then we also have (X, ω) = (F1, η1)#
K

(F2, η2), where

Per(η1) = Z(a1 + b2) ⊕ Zb1,

Per(η2) = Z(a2 + b1) ⊕ Zb2,

and K = [0, v + b1 + b2].
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Proof. Let P ⊂ C be the polygon consisting of an a2 × b2 rectangle resting
atop an a1 × b1 rectangle, overlapping along I = [0, v] as shown in Figure 6.
By assumption, (X, ω) is isomorphic to the quotient space (P, dz)/∼ obtained
by gluing opposite edges of P using horizontal and vertical translations. In the
Figure, ω has two simple zeros, labeled by white and black dots along ∂P .

Now let J = [−b1, v + b2] be the saddle connection crossing I as shown.
By splitting (X, ω) along the loop L = J ∪ η(J) (represented by the three
slanting lines in P ), we obtain a second connected sum decomposition (X, ω) =
(F1, η1)#

K
(F2, η2). To check its periods, note that the new and old splittings are

related by a vertical Dehn twist.

2

2

1

1

a

a

b

I

J

b

Figure 6. Resplitting a sum of rectangles.

Since the saddle connections used above persist throughout a neighborhood
of (X, ω) in ΩM2(1, 1) or ΩM2(2), we have:

Theorem 9.3 Corresponding pairs of splittings exist for all (X ′, ω′) close enough
to (X, ω) in its stratum.

Shearing. We now study how the splittings above change when one of the
original rectangles is sheared along horizontal lines.

By reordering the summands, we can assume that I embeds in R1. Let
nu = ( 1 u

0 1 ), and let

(X(u), ω(u)) = (nu · (R1, ρ1))#
I
(R2, ρ2).

For all u sufficiently small, the second splitting (X, ω) = (F1, η1)#
K

(F2, η2) de-

forms to give a second splitting

(X(u), ω(u)) = (F1(u), η1(u)) #
K(u)

(F2(u), η2(u)). (9.2)

Theorem 9.4 For all but countably many u, the splitting (9.2) has no cylinder
on F1(u). In addition, area(F1(u), η1(u)) = Au + B with A 6= 0.
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Proof. We have nu · Per(ρ1) = Za1 ⊕ Z(ua1 + b1), and thus by continuity

Per(η1(u)) = Z(a1 + b2) ⊕ Z(ua1 + b1). (9.3)

Similarly K(u) = [0, v(u)] with v(u) = v + ua1 + b1 + b2.
We claim that, for all but countably many u, we have

Per(η1(u)) ∩ R · K(u) = {0}. (9.4)

Otherwise, there are integers (n, m) 6= (0, 0) such that the vector

λ(u) = n(a1 + b2) + m(ua1 + b1) ∈ Per(η1(u))

has the same slope as v(u) for all u. But since λ(u) and v(u) move along straight
lines in the plane, and v(u) never passes through the origin, for the slopes always
to agree we must have λ(u) = mv(u). This easily implies v = a1, contrary to
the fact that |v| < |a1| (since I embeds in (R1, ρ1)).

Thus the second splitting almost never has a cylinder on F1(u). Finally (9.3)
implies

area(F1(u), η1(u)) = |a1||b1| − u|a1||b2|
is a nonconstant linear function of u.

e h

a c d

i j k lf

k l

i

e

a b c d

f

b j

g

hg

Figure 7. A pair of two-cylinder splittings.

Persistent cylinders. Starting with a 2-cylinder splitting along I ⊂ R, one
might expect that the sheared surfaces

(X(u), ω(u)) = (nu · (E1, ω1))#
I
(E2, ω2)

have a unique 2-cylinder splitting for almost every u (namely the splitting
above). But this need not be the case; there may be a second 2-cylinder splitting
that persists under shearing.

An example is shown in Figure 7. The result of gluing the edges of the par-
allelogram in the indicated pattern is a surface (X, ω) that splits as a connected
sum of tori in both the horizontal and vertical directions. The two horizontal
tori correspond to the 1 × 8 rectangles in the figure; the two vertical tori are
distinguished by shading.

39



The key property of this example is that the intersection matrix for the
horizontal and vertical cylinders (C1, C2), (D1, D2) is singular; we have Ci ·Dj =
4 for all i and j. Because of this, the cylinders D1 and D2 remain parallel as we
shear along C1, and therefore (X(u), ω(u)) has two distinct 2-cylinder splittings
for all u sufficiently small.

On the other hand, it is easy to check:

Theorem 9.5 Let (X, ω) = (E1, ω1)#
I
(E2, ω2). Then for almost every g ∈

SL2(R), the deformed sum

(X ′, ω′) = (g · (E1, ω1))#
I
(E2, ω2)

has no 2-cylinder splittings.

Proof. Almost every choice of g puts the lattice g ·Per(ω1) into general position
with respect to I and Per(ω2). Thus I embeds into (E1, ω1) and the connected
sum is well-defined. Similarly, the periods

∫
Ci

ω′ of any linearly independent

homology classes C1, C2 ∈ H1(X
′, Z) almost surely have different slopes, so

(X ′, ω′) cannot carry a pair of parallel cylinders.

Generic splittings. We say a splitting

(X, ω) = (E1, ω1)#
I
(E2, ω2)

is generic if it has no cylinders and if (E1, ω1) is not isogenous to n · (E2, ω2) for
any n ∈ NI . By Theorem 2.6, this is equivalent to the condition

NI · (Λ1, Λ2) = (G × G)/(Γ × Γ),

where Λi is the period lattice Per(ωi) rescaled to have determinant one. The
existence of a generic splitting is useful for showing G · (X, ω) is large.

To treat the case of the twisted diagonals Gu, u 6= 0 that arise in Theorem
2.6, we will use:

Theorem 9.6 If h 6= id in G, then

(Xg, ωg) = (g · (E1, ω2))#
I
(hg · (E2, ω2)) (9.5)

admits a generic splitting for almost every g ∈ G.

Lemma 9.7 Let L1, L2 : M2(R) → R2 be linear maps, and let V ⊂ M2(R) be
the subvariety defined by

((1, 0) + L1(g)) ∧ L2(g) = 0. (9.6)

Then either V meets G = SL2(R) ⊂ M2(R) in a proper subvariety, or

(1, 0) ∧ L2(g) = L1(g) ∧ L2(g) = 0

for all g ∈ M2(R).
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Proof. The defining equation for V has the form

f(g) = (1, 0) ∧ L2(g) + L1(g) ∧ L2(g) = f1(g) + f2(g),

where fi(g) is homogeneous of degree i in the entries of g =
(

a b
c d

)
. Since G is

the irreducible smooth subvariety of M2(R) defined by the equation ad−bc = 1,
if V contains G then f(g) = h(g)(ad − cb − 1) for some polynomial h(g). But
f is quadratic with no constant term, so we must have h = f = 0 and thus
f1 = f2 = 0.

Proof of Theorem 9.6. Given g ∈ G, pick a pair of splittings for (Xg, ωg)
other than the given one. Let U be an open neighborhood of g on which these
splittings persist, let Vi ⊂ U , i = 1, 2 be the locus where the ith splitting has
isogenous summands, and let V = V1∩V2. Then by Theorem 8.2, (Xg, ωg) is an
eigenform for all g ∈ V , and thus its original splitting (9.5) also has isogenous
summands. Consequently (E1, ω1) is isogenous to g−1hg · (E2, ω2) for all g ∈ V ,
which implies the set {g−1hg : g ∈ V } is countable. Since h 6= id, this in
turn implies V ⊂ G has measure zero. But V1 and V2 are countable unions of
algebraic subsets of G, so one of these has measure zero as well.

Thus for all g ∈ U we can choose a new, continuously varying splitting

(Xg, ωg) = (F1(g), η1(g)) #
J(g)

(F2(g), η2(g)) (9.7)

whose summands are almost surely not isogenous. Since this splitting is distinct
from (9.5), the interval J(g) = [0, v(g)] is not parallel to I. To complete the
proof, we will show this new splitting is generic for almost every g ∈ U .

By symmetry we can assume I = [0, 1]. Note that

Per(ωg) = g · Per(ω1) ⊕ hg · Per(ω2),

and thus any period of ωg has the form

w(g) = L2(g) = g(w1) + hg(w2)

with wi ∈ Per(ωi). Similarly, since J(g) and I are homologous rel their end-
points, the difference v(g) − (1, 0) is a period of ωg and hence

v(g) = (1, 0) + L1(g) = (1, 0) + g(v1) + hg(v2)

for fixed vi ∈ Per(ωi). Note that L1 and L2 depend linearly on the coefficients
of g, and thus they extend to linear maps L1, L2 : M2(R) → R2.

We begin by ruling out cylinders. If the splitting (9.7) has a cylinder, then
there is a vector w(g) ∈ Per(ωg) that is parallel to J(g) = [0, v(g)]. In other
words, we have

v(g) ∧ w(g) = ((1, 0) + L1(g)) ∧ L2(g) = 0. (9.8)

Since w(g) = L2(g) is parallel to J(g), it is not parallel to (1, 0), and thus
(1, 0) ∧ L2(g) 6= 0. But then by the preceding Lemma, the relation (9.8) (for
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fixed w1 and w2) can only hold on a proper subvariety of G. Since there are
only countably many possibilities for w1 and w2, the locus where the splitting
(9.7) has a cylinder is a countable union of proper subvarieties, and hence it has
measure zero.

We conclude by ruling out commensurability relations. Suppose g ∈ U and
(F1(g), η1(g)) is isogenous to n(g)·(F2(g), η2(g)) for some (almost surely unique)
n(g) ∈ NJ(g). We have already arranged that the summands of (9.7) are almost
surely not commensurable, so we can assume n(g) 6= id. Then we can find
ni(g) ∈ Per(ηi(g)) such that n1(g) = n(g) · n2(g) 6= n2(g) and thus

0 6= w(g) = n1(g) − n2(g) ∈ Per(ωg)

is parallel to J(g); that is, v(g)∧w(g) = 0. But again, the relation v(g)∧w(g) = 0
(for fixed w1 and w2) can only hold on a set of measure zero in U . Thus the
summands of (9.7) almost surely satisfy no commensurability relation, and so
the new splitting is generic for almost every g ∈ U .

Similar arguments yield:

Theorem 9.8 For almost every (g1, g2) ∈ SL2(R) × SL2(R), every splitting of
the form

(X, ω) = (g1 · (E1, ω1))#
I
(g2 · (E2, ω2))

is generic.

10 Dynamics on ΩM2(2)

In this section we begin the proof of our main results, by analyzing orbit closures
and invariant measures for forms with double zeros. We will show:

Theorem 10.1 Let Z be the closure of the SL2(R)-orbit of (X, ω) ∈ Ω1M2(2).
Then either:

• Z = Ω1V for some Teichmüller curve V → M2, or

• Z = Ω1M2(2).

In the first case (X, ω) is an eigenform for real multiplication, while in the
second case it is not.

Theorem 10.2 Any ergodic SL2(R)-invariant probability measure α on Ω1M2(2)
is either the standard measure on the full space, or the standard measure on

Ω1V ⊂ Ω1M2(2)

for some Teichmüller curve V .
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The Weierstrass foliation. The orbits of SL2(R) on Ω1M2(2) project to
the leaves of the Weierstrass foliation F of M2. This “foliation” has six leaves
passing through each X ∈ M2, corresponding to the six Weierstrass points on
X and the associated forms with double zeros. Each leaf is an isometrically
immersed Riemann surface. Theorem 10.1 implies:

Corollary 10.3 Each leaf of the Weierstrass foliation is either an isometrically
immersed algebraic curve, or a dense subset of M2.

Orbit closures. We proceed to the proof of Theorem 10.1. Let

Z = SL2(R) · (X, ω) ⊂ Ω1M2(2).

Choose a splitting
(X, ω) = (E1, ω1)#

I
(E2, ω2). (10.1)

Order the summands so that I embeds in E1 and projects to a loop in E2. The
splitting always has a cylinder on E2.

Let N ⊂ G = SL2(R) be the upper-triangular subgroup as usual. Let NI

denote the conjugate of N stabilizing I, and let NI(Z) = NI ∩ SL(E2, ω2) ∼= Z.
Since NI(Z) leaves both (E2, ω2) and I invariant, we have:

n · (X, ω) = (n · (E1, ω1))#
I
(E2, ω2) ∈ Z (10.2)

for all n ∈ NI(Z). Applying the results of §2 to the unipotent orbit NI(Z) ·
(E1, ω1), we obtain:

Lemma 10.4 At least one of the following alternatives holds.

1. The splitting (10.1) has two cylinders, and NI ∩ SL(X, ω) ∼= Z.

2. The splitting has two cylinders, and there are a pair of rectangular tori
such that (n · (R1, ρ1)) #

[0,1]
(R2, ρ2) ∈ Z for all n ∈ N .

3. The splitting has only one cylinder, and we have (F1, η1)#
K

(F2, η2) ∈ Z

whenever area(Fi, ηi) = area(Ei, ωi) and K projects to a loop in F2.

Proof. Since the discussion is SL2(R)-invariant, after replacing (X, ω) with
g · (X, ω) we can assume I = [0, t] is horizontal, (E2, ω2) is a square torus, and
NI(Z) = N(Z).

Now let
Z1 = N(Z) · (X1, ω1) ⊂ ΩM1

∼= G/Γ.

By the classification of N(Z) orbits on G/Γ, we have Z1 = H · (X1, ω1) where
H = N(Z), N or G.

These three alternative correspond to the three cases in the Lemma above.
Indeed, by Theorem 2.3, exactly one of the following holds.
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1. H = N(Z), Z1 is finite and there is a horizontal vector in Λ = Per(ω1).
Then the splitting has two cylinders because of the horizontal vector, and
NI ∩ SL(X, ω) = Z because the stabilizer of (X1, ω1) has finite index in
N(Z). Thus we are in case (1).

2. H = N and Λ has a horizontal vector. Then the splitting again has two
cylinders, and by SL2(R)-invariance of Z and (10.2), we find that

(g1 · (E1, ω1))#
I
(g2 · (E2, ω2)) ∈ Z (10.3)

for all g1, g2 ∈ N . The action of N can be used to make these tori
rectangular, so we are in case (2).

3. H = G. Then (10.3) holds for all g1, g2 ∈ G, and we are in case (3).

Proof of Theorem 10.1. Recall that (X, ω) splits as a connected sum in
infinitely many ways. If case (1) of the Lemma holds for two different splittings,
then SL(X, ω) contains a pair of independent parabolic subgroups. Therefore
it also contains a hyperbolic element, and consequently Z = Ω1V is a circle
bundle over a Teichmüller curve, by Theorems 5.8 and 5.10.

Now assume case (2) of the Lemma holds, and let nu = ( 1 u
0 1 ). By Theorem

9.4, for almost all sufficiently small u, the form

(nu · (R1, ρ1)) #
[0,1]

(R2, ρ2) ∈ Z

admits a second splitting

(F1(u), η1(u)) #
K(u)

(F2(u), η2(u))

with no cylinder on F1. Moreover A(u) = area(F1(u), η1(u)) is a linear function
of u.

By case (3) of the Lemma, when there is no cylinder on F1, Z contains all
connected sums in Ω1M2(2) whose first summand has area A(u). Since A(u)
ranges through a set of positive measure, Z has positive measure. Thus Z
coincides with the full stratum Ω1M2(2), by ergodicity of the action of SL2(R).

The same argument shows Z = Ω1M2(2) when the initial splitting satisfies
case (3) of the Lemma, since Z contains a connected sum of rectangles in this
case as well.

The classification of ergodic invariant measures follows similar lines, using
conditional measures.

The space of splittings. To formalize the discussion, we will use a local
covering map

f : G × T → Ω1M2(2)
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to pass to a space G×T which parameterizes points (X, ω) ∈ Ω1M2(2) equipped
with a choice of splitting. We refer to G×T as the splitting space for Ω1M2(2).

To define f , let 0 < s, t < 1 satisfy s2 + t2 = 1. Let Λ2 = Zt ⊕ Zit, so that
(R2, ρ2) = (C/Λ2, dz) is the square torus of area t2, and let I = [0, t]. Define
Ts ⊂ Ωs2M1 by

Ts = {(E1, ω1) : area(E1, ω1) = s2 and Per(ω1) ∩ I = {0}},

and define
Φs : Ts → Ω1M2(2)

by
Φs(E1, ω1) = (E1, ω1)#

I
(R2, ρ2). (10.4)

This map slits open a torus of area s2 and inserts a square cylinder of area t2,
to yield a surface of genus two with area one.

Let N ⊂ G ∼= SL2(R) be the upper-triangular subgroup as usual, and let
N(Z) = N ∩ SL2(Z). Since N(Z) stabilizes (Λ2, I), we have

Φs(nx) = n · Φs(x)

for all n ∈ N(Z).
Now let T =

⋃
Ts ⊂ ΩM1, equipped with the natural projection π : T →

(0, 1) sending Ts to {s}. The union of the mappings Φs gives a map

Φ : T → Ω1M2(2)

satisfying Φ|Ts = Φs, and we define f : G × T → Ω1M2(2) by

f(g, (E, ω)) = g · Φ(E, ω).

It is easy to see that f is a surjective local covering map (cf. Theorem 7.2).
Note that

g · f(h, (E, ω)) = f(gh, (E, ω)) (10.5)

for all g, h ∈ G, and

f(gn, (E, ω)) = f(g, n · (E, ω)) (10.6)

for all n ∈ N(Z).

Types of splittings. It is useful to classify the elements of T ⊂ ΩM1 according
to the types of splittings they determine. Let

TH = {x ∈ T : N(Z) · x = H · x ⊂ ΩM1}.

Then by the results of §2, we have:

T = TN(Z) ⊔ TN ⊔ TG.

Moreover, the splitting (10.4) has:
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• two cylinders, with a rational ratio of moduli, when (E1, ω1) ∈ TN(Z);

• two cylinders, with an irrational ratio of moduli, when (E1, ω1) ∈ TN ; and

• only one cylinder, when (E1, ω1) ∈ TG.

Pullback of measures. Now let α be an ergodic, SL2(R)-invariant probability
measure on Ω1M2(2). Since f is a local covering map, we can pull back α to a
locally finite measure f∗(α) on G × T . Equation (10.5) implies

f∗(α) = dg × µ

where dg is Haar measure on G, and µ is a locally finite measure on T ; and
equation (10.6) implies µ is N(Z)-invariant.

By standard results on disintegration of measures [Bou, §2.7], there is a
family µs of locally finite, N(Z)-invariant conditional measures on Ts, and a
locally finite measure ξ on (0, 1), such that

∫

T

φµ =

∫

(0,1)

(∫

Ts

φµs

)
ξ(s) (10.7)

for all φ ∈ C0(T ). In other words, µ can be expressed as the convolution µs∗ξ(s).
This construction reduces the study of α to the study of the N(Z)-invariant

measures µs on the homogeneous spaces Ωs2M1 ⊃ Ts. By applying Corollary
2.9 to these measures, we obtain:

Lemma 10.5 The restriction of µ to TH ⊂ T is H-invariant, for H = N(Z),
N , or G.

Proof of Theorem 10.2. We consider how the mass of the measure µ on T
is distributed among the blocks of the partition T = TN(Z) ⊔ TN ⊔ TG.

First suppose µ assigns full measure to TN(Z). Then α assigns full measure to
the set of (X, ω) ∈ ΩM2(2) such that every splitting of (X, ω) is rational. But
every such (X, ω) generates a Teichmüller curve V (by Theorems 5.8 and 5.10).
Since the collection of Teichmüller curves is countable, we have α(Ω1V ) > 0 for
some V , and by ergodicity of α, V is unique. Since α is SL2(R)-invariant, it
coincides with the standard probability measure on

Ω1(V ) ∼= SL2(R)/ SL(X, ω),

completing the proof in the case µ(TN) = µ(TG) = 0.
Now suppose µ assigns positive mass to TN or TG. We claim µ(TG) > 0.

Indeed, ν|TN is N -invariant by the Lemma above, and every N -orbit in TN

contains a rectangular lattice (R1, ρ1). By Theorem 9.4, there is a positive
measure set of n ∈ N such that Φ(n · (R1, ρ1)) admits a splitting with only one
cylinder. Thus if TN has positive mass, so does TG.

Next we show µ assigns full measure to TG. By the Lemma, µ|TG is G-
invariant. By Theorem 9.5, for almost every g ∈ G, Φs(g · (E1, ω1)) has no
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2-cylinder splittings. Thus α assigns positive mass to the set of forms M ⊂
Ω1M2(2) which have only 1-cylinder splittings. By ergodicity, α assigns full
measure to M . Since f−1(M) is contained in G × TG, µ gives full measure to
the space TG.

In particular, µ is G-invariant. Thus each conditional measure µs is propor-
tional to the unique G-invariant measure on Ωs2M1.

We now analyze the measure ξ on (0, 1). Let ξ = ξa+ξs denote the Lebesgue
decomposition of ξ into measures absolutely continuous and singular with re-
spect to ds respectively. We will show that ξa 6= 0.

Pick 0 < x < 1 in the support of ξ, and pick a rectangular lattice (R1, ρ1) ∈
Tx. By G-invariance of µ, (R1, ρ1) is in the support of µ. Let nu = ( 1 u

0 1 ). By
Theorems 9.2 and 9.4, we have an explicit second splitting

Φ(R′
1, ρ

′
1) = (F ′

1, η
′
1)#

I′

(F ′
2, η

′
2)

defined for all (R′
1, ρ

′) in a neighborhood V of (R1, ω1) in T , such that A(R′
1, ρ

′
1) =

area(F ′
1, η

′
1) satisfies

d

du
A(nu · (R1, ρ1))

∣∣∣∣
u=0

6= 0.

Let S(p) = A(p)1/2, so S(R1, ρ1) = s. By taking V small enough, we can
insure that dS(nu ·p)/du 6= 0 for all p ∈ V . Since µ(V ) > 0 and µ is N -invariant,
this implies S∗(µ|V ) is equivalent to Lebesgue measure ds on the open interval
J = S(V ). On the other hand, the area of the first summand of a splitting
chosen at random with respect to µ is controlled by the measure class of ξ, so
we have

ξ ≫ S∗(µ|V ) ≍ ds|J,

and thus ξa 6= 0.
Now let µ = µa + µs and α = αa + αs be the Lebesgue decompositions of µ

and α. Since µs is absolutely continuous on Ωs2M1, we have

µa = µs ∗ ξa(s) 6= 0.

Since f is a locally covering map, we have µa × dg = f∗(αa), and therefore
αa 6= 0 as well. By ergodicity, this implies α = αa. But the standard probability
measure m on Ω1M2(2) is also absolutely continuous, invariant and ergodic;
therefore α = m.

11 Dynamics on ΩM2(1, 1)

In this section we begin the analysis of forms with simple zeros. We will establish
the following two results.

Theorem 11.1 Let Z be the closure of the SL2(R)-orbit of (X, ω) ∈ Ω1M2(1, 1).
Then either:
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• Z is contained in Ω1ED for some D > 0, or

• Z = Ω1M2.

Theorem 11.2 Any ergodic, SL2(R)-invariant probability measure on Ω1M2(1, 1)
is either the standard measure on the full space, or a measure supported inside
the eigenform locus Ω1ED for some D > 0.

The proofs parallel the case of double zeros.

Orbit closures in M2(1, 1). Let

(X, ω) = (E1, ω1)#
I
(E2, ω2) (11.1)

be a splitting of a form in Ω1M2(1, 1), and let NI ⊂ SL2(R) be the conjugate
of N that stabilizes I. We then have

(n · (E1, ω1))#
I
(n · (E2, ω2)) = n · (X, ω)

for all n ∈ NI .
We have seen in §2 that any pair of unimodular lattices (Λ1, Λ2) satisfies

N∆ · (Λ1, Λ2) = H · (Λ1, Λ2) ⊂ (G × G)/(Γ × Γ) (11.2)

for a unique subgroup H ∈ H, where

H = {N∆, N × N, N × G, G × N, G × G, Gu : u ∈ R}. (11.3)

Applying this analysis to NI
∼= N∆, we can now deduce:

Lemma 11.3 Let Z be the SL2(R)-orbit closure of (X, ω) = (E1, ω1)#
I
(E2, ω2)

in Ω1M2(1, 1). Then at least one of the following alternatives holds.

1. SL(X, ω) ∩ NI
∼= Z.

2. The tori (E1, ω1) and (E2, ω2) are isogenous.

3. There are rectangular tori such that

(n · (R1, ρ1)) #
[0,1]

(R2, ρ2) ∈ Z

for all n ∈ N .

(In (3) above, we have used the SL2(R)-invariance of Z to normalize so that the
connected sum is over I = [0, 1].)

Proof. It suffices to treat the case I = [0, 1]; then NI = N . Let Λi be Per(ωi)
rescaled to have determinant one, and let H ∈ H be the unique subgroup
satisfying (11.2).
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By Theorem 2.6, if H = N∆ we are in case (1), if H = G∆ = G0 we are in
case (2), and if H ⊃ N × N we are in case (3). In the remaining case H = Gu

where u 6= 0. Then Z contains the forms

(Xg, ωg) = (g · (e1, ω2)) #
[0,1]

(nugn−1
u · (E2, ω2))

for almost every g ∈ G. By Theorem 9.6, almost all of these forms have generic
splittings (for which H = G × G), and thus we are again in case (3).

Proof of Theorem 11.1. Any (X, ω) ∈ Ω1M2(1, 1) has infinitely many split-
tings. If alternative (1) of the Lemma holds for two of these splittings, then
SL(X, ω) contains a hyperbolic element and hence (X, ω) is an eigenform by
Theorem 5.8. Similarly, if alternative (2) holds for two splittings, then (X, ω)
is an eigenform by Theorem 8.2. In either case, we have Z ⊂ Ω1ED for some
discriminant D, completing the proof.

Now assume alternative (3) holds, and let nu = ( 1 u
0 1 ). By Theorem 9.4, for

all u sufficiently small, we have a second splitting:

(nu · (R1, ρ1)) #
[0,1]

(R2, ρ2) = (F1(u), η1(u)) #
K(u)

(F2, η2(u))., (11.4)

where A(u) = area(F1(u), η1(u)) is a nonconstant linear function of u. By
Theorem 9.4, for almost every u, there is no cylinder on F1(u) and the summands
of (11.4) are not isogenous. Since ω(u) has simple zeros, we can reverse the roles
of R1 and R2 and conclude there is also, almost surely, no cylinder on F2(u).

Thus (11.4) provides a family of splittings, parameterized by a positive mea-
sure set of u ∈ R, which fall into case (4) of the Lemma above. For each such u,
Z contains all connected sums whose first summand has area A(u). Since A(u)
itself varies in a set of positive measure, Z has positive measure; and thus Z
contains the full stratum Ω1M2(1, 1), by ergodicity. The stratum of forms with
simple zeros is dense, so Z = Ω1M2.

Splittings in M2(1, 1). To classify invariant measures, we again pull back to
the space of splittings.

Let I = [0, 1] ⊂ C. For any 0 < s, t < 1 with s2 + t2 = 1, let

Ts ⊂ Ωs2M1 × Ωt2M1

denote the open set of pairs such that the connected sum

(X, ω) = (E1, ω1)#
I
(E2, ω2) (11.5)

is defined and has simple zeros. Let T =
⋃

0<s<1 Ts, equipped with the projec-
tion π : T → (0, 1) sending Ts to {s}. Let

f : G × T → Ω1M2(1, 1)
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be the local covering map defined by

f(g, ((E1, ω1), (E2, ω2))) = g · ((E1, ω1)#
I
(E2, ω2)).

Then f presents G × T as the splitting space for Ω1M2(1, 1); its elements are
forms (X, ω) with chosen splittings.

Types of splittings. Because N stabilizes I = [0, 1], Ts is invariant under the
action of the diagonal subgroup N∆ on

Ωs2M1 × Ωt2M1
∼= (G × G)/(Γ × Γ),

where Γ = SL2(Z). Let TH = {x ∈ T : N∆x = Hx}. By the classification of
orbit closures for N∆ given in Theorem 2.6, we have:

T =
⊔

H∈H

TH . (11.6)

Moreover, the splitting (11.5):

• is rational, for points in TN∆
;

• has summands with (E1, ω1) isogenous to nu · (E,ω2), but no cylinders,
for points in TGu;

• is irrational, with two cylinders, for points in TN×N ;

• has exactly one cylinder, for points in TN×G and TG×N ; and

• is generic, for points in TG×G.

Pullback of measures. Now let α be an ergodic, G-invariant probability
measure on Ω1M2(1, 1). Then we have

f∗(α) = dg × µ,

where dg is Haar measure on G and µ is a locally finite measure on T . Since
N stabilizes I = [0, 1], µ is N -invariant. Disintegrating over the projection
π : T → (0, 1), we can write µ as the convolution

µ = µs ∗ ξ(s)

of a family of locally finite, N -invariant conditional measures µs on Ts, over a
locally finite measure ξ on (0, 1). By Theorem 2.8, we then have:

Lemma 11.4 The restriction of µ to TH ⊂ T is H-invariant.

Proof of Theorem 11.2. First suppose the measure µ on T assigns full
measure to TN∆

∪TG∆
(recall G∆ = G0). Then α-almost every (X, ω) either has

two rational splittings or two splittings with isogenous summands. In either case,
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(X, ω) is an eigenform, and thus α(
⋃

Ω1ED) = 1. By ergodicity, α(Ω1ED) = 1
for some discriminant D, completing the proof in this case.

Now suppose µ assigns positive mass to the union of the remaining blocks
in the partition (11.6) of T . We claim µ assigns positive mass to TG×G.

Indeed, if µ(TN×N) > 0, then µ|TN×N is (N × N)-invariant by the Lemma
above. Every (N × N)-orbit in TN×N contains a pair of rectangular tori. By
Theorem 9.4, for every such pair of tori, there is a positive measure set of
(n1, n2) ∈ (N × N) such that

(n1 · (R1, ρ1))#
I
(n2 · (R2, ρ2))

has a second splitting with no cylinders and with non-isogenous summands.
Such splittings belong to TG×G; since µ is N ×N -invariant, we have µ(TG×G) >
0. The same conclusion holds if µ assigns positive mass to TN×G or TG×N ,
by Theorem 9.5. Finally suppose µ assigns positive mass to E =

⋃
u6=0 TGu .

Then µ|E is invariant under the action of G ∼= Gu, by the Lemma above. By
Theorem 9.6, µ-almost every point in E also admits a generic splitting, and thus
µ(TG×G) > 0 in this case as well.

Thus we may assume µ(TG×G) > 0. By the Lemma, the measure µ|TG×G is
G × G-invariant. By Theorem 9.8, for almost every (g1, g2) ∈ G × G, the form

(g1 · (E1, ω1))#
I
(g2 · (E2, ω2))

is generic: all of its splittings are generic. Thus α assigns positive mass to
the set A ⊂ Ω1M2(1, 1) of generic forms. But α is ergodic, so it assigns full
measure to A; consequently, µ assigns full measure to TG×G. It follows that each
conditional measure µs is an absolutely continuous, G×G-invariant measure on
Ts.

By considering pairs of splittings in a neighborhood of a pair of rectangular
tori (as in the proof of Theorem 10.2), we deduce from the absolute continuity
of µs that the absolutely continuous component ξa of ξ is nontrivial. Thus µa

and αa are also nontrivial, and thus α = αa by ergodicity. But the standard
invariant probability measure m on Ω1M2(1, 1) is also absolutely continuous
and ergodic, so α = m, completing the proof.

12 Dynamics on ΩED

In this section we complete the proof of our main results by studying the space
of eigenforms. We will show:

Theorem 12.1 Let Z be the closure of the SL2(R)-orbit of (X, ω) ∈ Ω1ED.
Then either:

• Z = Ω1V for some Teichmüller curve V → M2, or
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• Z = Ω1ED.

Theorem 12.2 Any ergodic SL2(R)-invariant probability measure α on Ω1ED

is either the standard measure on Ω1ED(1, 1), or the standard measure on Ω1V
for some Teichmüller curve V .

These theorems, in concert with the results of §10 and §11, complete the clas-
sification of orbits closures and invariant measures for Ω1M2.

Orbit closures in Ω1ED. Let Ω1ED(1, 1) and Ω1ED(2) denote the eigenforms
with simple and double zeros, respectively. We begin by studying what happens
when one SL2(R)-orbit is a limit of others.

Lemma 12.3 Let Y = SL2(R) · (X, ω) be a single orbit in a closed, SL2(R)-
invariant set Z ⊂ Ω1ED. If Y is not open in Z, then int(Z) 6= ∅ and Y ⊂
int(Z) ∪ Ω1ED(2).

Proof. By assumption, (X, ξ) is the limit of a sequence (Xn, ξn) ∈ Z−Y . Since
Ω1ED(2) is a finite union of closed orbits (by Corollary 5.11), we can assume
(Xn, ξn) ∈ Ω1ED(1, 1).

Choose a splitting
(X, ξ) = (E, ω)#

I
(F, η)

with I = [0, v]. If ξ happens to have a double zero, order the summands so I
embeds in E.

For all n ≫ 0 there exist corresponding splittings

(Xn, ξn) = (En, ωn)#
In

(Fn, ηn),

with In = [0, vn] and vn → v. By Corollary 8.4, up to the action of SL2(R),
only a finite number of pairs of tori are required to express all connected sums
in Ω1ED. Thus after passing to a subsequence, we can find a fixed pair of tori
and a sequence gn ∈ SL2(R) such that

(Xn, ξn) = (gn · (E′, ω′))#
In

(gn · (F ′, η′)). (12.1)

Since H1(E, Z) ⊂ H1(X, Z) has a pair of generating cycles disjoint from I,
there are corresponding nearby cycles generating H1(En, Z) ⊂ H1(Xn, Z). By
continuity of the periods of ωn along these cycles, we have

(En, ωn) = gn · (E′, ω′) → (E, ω)

in ΩM1. Thus we may choose (E′, ω′) = (E, ω) and (F ′, η′) = (F, η) as our
fixed pair of tori, and arrange that gn → id. But g−1

n (Xn, ξn) ∈ Z also converges
to (X, ξ), so we can further modify the sequence so that gn = id for all n. Thus
(X, ξ) is the limit of a sequence

(Xn, ξn) = (E, ω)#
In

(F, η) ∈ Z, (12.2)

52



consisting of connected sums of a fixed pair of tori.
Now suppose the slopes of the vectors vn defining In form an infinite set.

Let Γ be the lattice SL(E, ω) ∩ SL(F, η). Since Z is SL2(R)-invariant, we have

(E, ω) #
gIn

(F, η) ∈ Z

for all g ∈ Γ. By Theorem 2.10,
⋃

Γvn is dense in R2. Thus
⋃

Γvn contains the
open dense set D consisting of all w ∈ R2 such that

(E, ω) #
[0,w]

(F, η)

is defined and has simple zeros. Since Z is closed, it also contains all these sums,
and hence int(Z) 6= ∅. Finally if (X, ω) has simple zeros, then v ∈ D and thus
Y ⊂ int(Z); otherwise Y ⊂ Ω1ED(2). This completes the proof in the case of
infinitely many slopes.

Now suppose vn assumes only finitely many slopes. We will show that after
resplitting, we obtain infinitely many slopes.

Since vn → v, we can pass to a subsequence such that vn = tnv where tn → 1
and tn 6= 1 (because (Xn, ξn) ∈ Z − Y ). Choose a second splitting

(X, ξ) = (A, α)#
J
(B, β)

with J = [0, w] 6= I. Then for all n ≫ 0, there are corresponding splittings

(Xn, ξn) = (A, α)#
Jn

(B, β),

Jn = [0, wn]. (The old summands in (12.2) were independent of n, so the new
summands are as well.)

Since both vn and wn are relative periods of saddle connections joining the
zeros of ξn, we can assume (after adjusting signs) that wn − vn is an absolute
period of ξn. But the absolute periods of ξn are independent of n, so wn =
vn + p = tnv + p for a fixed absolute period p. Since I and J have different
slopes, so do p and v, and therefore the vectors wn assume infinitely many
slopes. The desired conclusions then follow from the argument above.

Proof of 12.1. If the SL2(R)-orbit of (X, ξ) ∈ Ω1ED is already closed, then
(X, ξ) generates a Teichmüller curve, by Theorem 3.4. Otherwise, its closure Z
contains a non-isolated orbit, and thus Z has nonempty interior. But any orbit
Y ⊂ int(Z) ∩ Ω1ED(1, 1) fails to be open in Z, so by Lemma 12.3 it satisfies
Y ⊂ int(Z). Therefore int(Z) ∩ Ω1ED(1, 1) is both open and closed. Since
Ω1ED(1, 1) is connected, and dense in Ω1ED, this implies Z = Ω1ED.
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Splittings of eigenforms. To study invariant measures, we once more pull
back to the space of splittings.

Let ((Ei, ωi), (Fi, ηi)), i = 1, . . . , nD be the finite list of pairs of tori provided
by Corollary 8.4. Let Ti ⊂ R2 be the open dense set of vectors v such that the
connected sum of the ith pair of tori over I = [0, v] is well-defined and has
simple zeros. Let G = SL2(R), and let

fi : G × Ti → Ω1ED(1, 1)

be the local covering map defined by

fi(g, v) = g · ((Ei, ωi) #
[0,v]

(Fi, ηi)). (12.3)

Note that
fi(g, h · v) = fi(gh, v) (12.4)

for all h in the lattice Γi = SL(Ei, ωi) ∩ SL(Fi, ηi). By Corollary 8.4, the open
sets fi(G × Ti) cover Ω1ED(1, 1).

Proof of Theorem 12.2. Let α be an ergodic, G-invariant probability measure
on Ω1ED. Then we can write

f∗
i (α) = dg × µi,

where dg is Haar measure on G and µi is a locally finite measure on Ti ⊂ R2.
By (12.4), µi is Γi-invariant.

Recall Ω1ED(2) =
⋃n

1 Ω1Vi by Corollary 5.11. If α assigns positive mass to
Ω1ED(2), then by ergodicity it assigns full measure to a single component Ω1Vi,
and we are done.

Otherwise, at least one measure µi is nonzero. Let αa + αs and µa
i + µs

i be
the Lebesgue decompositions of α and µi. By Theorem 2.10, µa

i is a multiple of
the standard area measure on R2, while µs

i is supported on the set

Ri = {v ∈ R2 : Γiv is discrete}.

Concretely, Ri = R · Per(ωi) is a countable union of lines through the origin,
consisting of those vectors v such that the splitting (12.3) has two cylinders.

Now suppose µa
j 6= 0 for some j. We claim α coincides with the standard

invariant probability measure m on Ω1ED(1, 1). Indeed, since dg × µa
j is a

constant multiple of f∗
j (m), the measure αa|fj(G × Ti) is a constant multiple

of m. By ergodicity, α = αa. Applying the same reasoning to the open sets
fi(G × Ti) in Ω1ED(1, 1), we conclude that α/m is locally constant on the
connected space Ω1ED(1, 1). Since both α and m are probability measures, we
have α = m.

Finally suppose µa
i = 0 for all i. This implies µi is supported on Ri for

all i, so α is supported on the set of eigenforms for which every splitting has
two cylinders. Consequently µi is supported on the set Pi of v such that every
splitting of (X, ξ) = f(id, v) has 2 cylinders.
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We claim that Pi is countable. Indeed, for any v ∈ Pi, we have a distinct
second splitting of (X, ξ) = f(id, v) over J = [0, w], where w = p1 + v for some
absolute period

p1 ∈ Per(ξ) = Per(ωi) + Per(ηi) = Λi.

Since both splittings have cylinders, there are periods p2, p3 ∈ Λi such that
v ∈ Rp2 and w ∈ Rp3. But distinct splittings cannot be parallel, so we have

{v} = Rp2 ∩ (−p1 + Rp3).

There are only countably many possibilities for (p1, p2, p3) ∈ Λ3
i , so Pi itself is

a countable set.
Consequently α is supported on a countable union of SL2(R)-orbits. Since

α is ergodic, it must be supported on a single orbit SL2(R) · (X, ξ), and since
α has finite measure, SL(X, ξ) must be a lattice. Therefore (X, ξ) generates
a Teichmüller curve V → M2, and α coincides with the standard measure on
Ω1V .

Proof of Theorems 1.2 and 1.5. The classification of orbit closures in Ω1M2

now follows, by combining Theorems 10.1, 11.1 and 12.1 on orbits in Ω1M2(2),
Ω1(1, 1) and Ω1ED respectively. Similarly, the classification of invariant mea-
sures follows from Theorems 10.2, 11.2 and 12.2.
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of their moduli spaces. Tôhoku Math. J. 51(1999), 283–303.

[Sc] F. Scattone. On the Compactification of Moduli Spaces for Algebraic K3
Surfaces. Mem. Amer. Math. Soc., No. 374, 1987.

[Sh] N. A. Shah. Closures of totally geodesic immersions in manifolds of con-
stant negative curvature. In Group Theory from a Geometrical Viewpoint
(Trieste, 1990), pages 718–732. World Scientific, 1991.

[Str] K. Strebel. Quadratic Differentials. Springer-Verlag, 1984.

[V1] W. Veech. Gauss measures for transformations on the space of interval
exchange maps. Ann. of Math. 115(1982), 201–242.

[V2] W. Veech. The Teichmüller geodesic flow. Ann. of Math. 124(1986),
441–530.

[V3] W. Veech. Teichmüller curves in moduli space, Eisenstein series and an
application to triangular billiards. Invent. math. 97(1989), 553–583.

[V4] W. Veech. Moduli spaces of quadratic differentials. J. Analyse Math.
55(1990), 117–171.

57



[V5] W. Veech. Geometric realizations of hyperelliptic curves. In Algorithms,
Fractals and Dynamics (Okayama/Kyoto, 1992), pages 217–226. Plenum
Publishing, 1995.

[Z] A. Zorich. Square tiled surfaces and Teichmüller volumes of the moduli
spaces of abelian differentials. In Rigidity in Dynamics and Geometry
(Cambridge, 2000), pages 459–471. Springer, 2002.

Mathematics Department

Harvard University

1 Oxford St

Cambridge, MA 02138-2901

58


