

Foliations of Hilbert Modular Surfaces

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	McMullen, Curtis T. 2007. Foliations of Hilbert modular surfaces. American Journal of Mathematics 129(1): 183-215.
Published Version	http://www.math.jhu.edu/~ajm/
Accessed	February 18, 2015 4:20:46 AM EST
Citable Link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:3446012
Terms of Use	This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

(Article begins on next page)

Foliations of Hilbert modular surfaces

Curtis T. McMullen*

21 February, 2005

Abstract

The Hilbert modular surface X_D is the moduli space of Abelian varieties A with real multiplication by a quadratic order of discriminant D > 1. The locus where A is a product of elliptic curves determines a finite union of algebraic curves $X_D(1) \subset X_D$.

In this paper we show the lamination $X_D(1)$ extends to an essentially unique foliation \mathcal{F}_D of X_D by complex geodesics. The geometry of \mathcal{F}_D is related to Teichmüller theory, holomorphic motions, polygonal billiards and Lattès rational maps. We show every leaf of \mathcal{F}_D is either closed or dense, and compute its holonomy. We also introduce refinements $T_N(\nu)$ of the classical modular curves on X_D , leading to an explicit description of $X_D(1)$.

Contents

1	Introduction
2	Quaternion algebras
3	Modular curves and surfaces
4	Laminations
5	Foliations of Teichmüller space
6	Genus two
$\overline{7}$	Holomorphic motions
8	Quasiconformal dynamics
9	Further results

^{*}Research supported in part by the NSF and the Guggenheim Foundation.

1 Introduction

Let D > 1 be an integer congruent to 0 or $1 \mod 4$, and let \mathcal{O}_D be the real quadratic order of discriminant D. The *Hilbert modular surface*

$$X_D = (\mathbb{H} \times \mathbb{H}) / \operatorname{SL}(\mathcal{O}_D \oplus \mathcal{O}_D^{\vee})$$

is the moduli space for principally polarized Abelian varieties

$$A_{\tau} = \mathbb{C}^2 / (\mathcal{O}_D \oplus \mathcal{O}_D^{\vee} \tau)$$

with real multiplication by \mathcal{O}_D .

Let $X_D(1) \subset X_D$ denote the locus where A_{τ} is isomorphic to a polarized product of elliptic curves $E_1 \times E_2$. The set $X_D(1)$ is a finite union of disjoint, irreducible algebraic curves (§4), forming a *lamination* of X_D . Note that $X_D(1)$ is preserved by the twofold symmetry $\iota(\tau_1, \tau_2) = (\tau_2, \tau_1)$ of X_D .

In this paper we will show:

Theorem 1.1 Up to the action of ι , the lamination $X_D(1)$ extends to a unique foliation \mathcal{F}_D of X_D by complex geodesics.

(Here a Riemann surface in X_D is a *complex geodesic* if it is isometrically immersed for the Kobayashi metric.)

Holomorphic graphs. The preimage $X_D(1)$ of $X_D(1)$ in the universal cover of X_D gives a lamination of $\mathbb{H} \times \mathbb{H}$ by the graphs of countably many Möbius transformations. To foliate X_D itself, in §6 we will show:

Theorem 1.2 For any $(\tau_1, \tau_2) \notin \widetilde{X}_D(1)$, there is a unique holomorphic function

 $f:\mathbb{H}\to\mathbb{H}$

such that $f(\tau_1) = \tau_2$ and the graph of f is disjoint from $\widetilde{X}_D(1)$.

The graphs of such functions descend to X_D , and form the leaves of the foliation \mathcal{F}_D (§7). The case D = 4 is illustrated in Figure 1.

Modular curves. To describe the lamination $X_D(1)$ explicitly, recall that the Hilbert modular surface X_D is populated by infinitely many *modular* curves F_N [Hir], [vG]. The endomorphism ring of a generic Abelian variety in F_N is a quaternionic order R of discriminant N^2 .

In general F_N can be reducible, and R is not determined up to isomorphism by N. In §3 we introduce a refinement $F_N(\nu)$ of the traditional modular curves, such that the isomorphism class of R is constant along

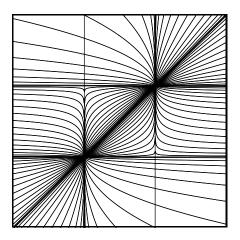


Figure 1. Foliation of the Hilbert modular surface X_D , D = 4.

 $F_N(\nu)$ and $F_N = \bigcup F_N(\nu)$. The additional finite invariant ν ranges in the ring $\mathcal{O}_D/(\sqrt{D})$ and its norm satisfies $N(\nu) = -N \mod D$. The curves $T_N = \bigcup F_{N/\ell^2}$ can be refined similarly, and we obtain:

Theorem 1.3 The locus $X_D(1) \subset X_D$ is given by

$$X_D(1) = \bigcup T_N((e+\sqrt{D})/2),$$

where the union is over all integral solutions to $e^2 + 4N = D$, N > 0.

Remark. Although $X_D(1) = \bigcup T_{(D-e^2)/4}$ when D is prime, in general (e.g. for $D = 12, 16, 20, 21, \ldots$) the locus $X_D(1)$ cannot be expressed as a union of the traditional modular curves T_N (§3).

Here is a corresponding description of the lamination $\widetilde{X}_D(1)$. Given N > 0 such that $D = e^2 + 4N$, let

$$\Lambda_D^N = \left\{ U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix} : \begin{array}{c} a, b \in \mathbb{Z}, \ \mu \in \mathcal{O}_D, \ \det(U) = N \\ \text{and } \mu \equiv \pm (e + \sqrt{D})/2 \ \text{in } \mathcal{O}_D / (\sqrt{D}) \end{array} \right\}$$

Let Λ_D be the union of all such Λ_D^N . Choosing a real place $\iota_1 : \mathcal{O}_D \to \mathbb{R}$, we can regard Λ_D as a set of matrices in $\mathrm{GL}_2^+(\mathbb{R})$, acting by Möbius transformations on \mathbb{H} .

Theorem 1.4 The lamination $\widetilde{X}_D(1)$ of $\mathbb{H} \times \mathbb{H}$ is the union of the loci $\tau_2 = U(\tau_1)$ over all $U \in \Lambda_D$.

We also obtain a description of the locus $X_D(E) \subset X_D$ where A_{τ} admits an action of both \mathcal{O}_D and \mathcal{O}_E (§3).

Quasiconformal dynamics. Although its leaves are Riemann surfaces, \mathcal{F}_D is not a holomorphic foliation. Its transverse dynamics is given instead by quasiconformal maps, which can be described as follows.

Let $q = q(z) dz^2$ be a meromorphic quadratic differential on \mathbb{H} . We say a homeomorphism $f : \mathbb{H} \to \mathbb{H}$ is a *Teichmüller mapping* relative to q if it satisfies $\overline{\partial}f/\partial f = \alpha q/|q|$ for some complex number $|\alpha| < 1$; equivalently, if f has the form of an orientation-preserving real-linear mapping

$$f(x+iy) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = D_q(f) \begin{pmatrix} x \\ y \end{pmatrix}$$

in local charts where $q = dz^2 = (dx + i dy)^2$.

Fix a transversal $\mathbb{H}_s = \{s\} \times \mathbb{H}$ to $\widetilde{\mathcal{F}}_D$. Any $g \in \mathrm{SL}(\mathcal{O}_D \oplus \mathcal{O}_D^{\vee})$ acts on $\mathbb{H} \times \mathbb{H}$, permuting the leaves of $\widetilde{\mathcal{F}}_D$. The permutation of leaves is recorded by the *holonomy map*

$$\phi_g: \mathbb{H}_s \to \mathbb{H}_s,$$

characterized by the property that g(s, z) and $(s, \phi_g(z))$ lie on the same leaf of $\widetilde{\mathcal{F}}_D$.

In $\S8$ we will show:

Theorem 1.5 The holonomy acts by Teichmüller mappings relative to a fixed meromorphic quadratic differential q on \mathbb{H}_s . For s = i and $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, we have

$$D_q(\phi_g) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PSL}_2(\mathbb{R}).$$

On the other hand, for $z \in \partial \mathbb{H}_s$ we have

$$\phi_g(z) = (a'z - b')/(-c'z + d');$$

in particular, the holonomy acts by Möbius transformations on $\partial \mathbb{H}_s$.

Here $(x + y\sqrt{D})' = (x - y\sqrt{D})$. Note that both Galois conjugate actions of g on \mathbb{R}^2 appear, as different aspects of the holonomy map ϕ_q .

Quantum Teichmüller curves. For comparison, consider an isometrically immersed *Teichmüller curve*

$$f: V \to \mathcal{M}_g,$$

generated by a holomorphic quadratic differential (Y,q) of genus g. For simplicity assume Aut(Y) is trivial. Then the pullback of the universal curve $X = f^*(\mathcal{M}_{q,1})$ gives an algebraic surface

$$p: X \to V$$

with $p^{-1}(v) = Y$ for a suitable basepoint $v \in V$. The surface X carries a canonical foliation \mathcal{F} , transverse to the fibers of p, whose leaves map to Teichmüller geodesics in $\mathcal{M}_{g,1}$. The holonomy of \mathcal{F} determines a map

$$\pi_1(V, v) \to \operatorname{Aff}^+(Y, q)$$

giving an action of the fundamental group by Teichmüller mappings; and its linear part yields the isomorphism

$$\pi_1(V, v) \cong \mathrm{PSL}(Y, q) \subset \mathrm{PSL}_2(\mathbb{R}).$$

where PSL(Y,q) is the stabilizer of (Y,q) in the bundle of quadratic differentials $Q\mathcal{M}_q \to \mathcal{M}_q$. (See e.g. [V1], [Mc4, §2].)

The foliated Hilbert modular surface (X_D, \mathcal{F}_D) presents a similar structure, with the fibration $p: X \to V$ replaced by the holomorphic foliation \mathcal{A}_D coming from the level sets of τ_1 on $\widetilde{X}_D = \mathbb{H} \times \mathbb{H}$. This suggests that one should regard $(X_D, \mathcal{A}_D, \mathcal{F}_D)$ as a *quantum* Teichmüller curve, in the same sense that a 3-manifold with a measured foliation can be regarded as a quantum Teichmüller geodesic [Mc3].

Question. Does every fibered surface $p: X \to C$ admit a foliation \mathcal{F} by Riemann surfaces transverse to the fibers of p?

Complements. We conclude in §9 by presenting the following related results.

- 1. Every leaf of \mathcal{F}_D is either closed or dense.
- 2. When $D \neq d^2$, there are infinitely many eigenforms for real multiplication by \mathcal{O}_D that are isoperiodic but not isomorphic.
- 3. The Möbius transformations Λ_D give a maximal top-speed holomorphic motion of a discrete subset of \mathbb{H} .
- 4. The foliation \mathcal{F}_4 also arises as the motion of the Julia set in a Lattès family of iterated rational maps.

The link with complex dynamics was used to produce Figure 1.

Notes and references. The foliation \mathcal{F}_D is constructed using the connection between polygonal billiards and Hilbert modular surfaces presented in [Mc4]. For more on the interplay of dynamics, holomorphic motions and quasiconformal mappings, see e.g. [MSS], [BR], [S1], [Mc2], [Sul], [McS], [EKK] and [Dou]. A survey of the theory of *holomorphic* foliations of surfaces appears in [Br1]; see also [Br2] for the Hilbert modular case.

I would like to thank G. van der Geer, B. Gross and the referees for useful comments and suggestions.

2 Quaternion algebras

In this section we consider a real quadratic order \mathcal{O}_D acting on a symplectic lattice L, and classify the quaternionic orders $R \subset \operatorname{End}(L)$ extending \mathcal{O}_D .

Quadratic orders. Given an integer D > 0, $D \equiv 0$ or $1 \mod 4$, the *real quadratic order* of discriminant D is given by

$$\mathcal{O}_D = \mathbb{Z}[T]/(T^2 + bT + c), \text{ where } D = b^2 - 4c.$$

Let $K_D = \mathcal{O}_D \otimes \mathbb{Q}$. Provided *D* is not a square, K_D is a real quadratic field. Fixing an embedding $\iota_1 : K_D \to \mathbb{R}$, we obtain a unique basis

$$K_D = \mathbb{Q} \cdot 1 \oplus \mathbb{Q} \cdot \sqrt{D}$$

such that $\iota_1(\sqrt{D}) > 0$. The conjugate real embedding $\iota_2 : K_D \to \mathbb{R}$ is given by $\iota_2(x) = \iota_1(x')$, where $(a + b\sqrt{D})' = (a - b\sqrt{D})$.

Square discriminants. The case $D = d^2$ can be treated similarly, so long as we regard $x = \sqrt{d^2}$ as an element of K_D satisfying $x^2 = d^2$ but $x \notin \mathbb{Q}$. In this case the algebra $K_D \cong \mathbb{Q} \oplus \mathbb{Q}$ is not a field, so we must take care to distinguish between elements of the algebra such as

$$x = d - \sqrt{d^2} \in K_D,$$

and the corresponding real numbers

$$\iota_1(x) = d - d = 0$$
, and $\iota_2(x) = d + d = 2d$.

Trace, norm and different. For simplicity of notation, we fix D and denote \mathcal{O}_D and K_D by K and \mathcal{O} .

The trace and norm on K are the rational numbers Tr(x) = x + x' and N(x) = xx'. The *inverse different* is the fractional ideal

$$\mathcal{O}^{\vee} = \{ x \in K : \operatorname{Tr}(xy) \in \mathbb{Z} \; \forall y \in \mathcal{O} \}$$

It is easy to see that $\mathcal{O}^{\vee} = D^{-1/2} \mathcal{O}$, and thus the different $\mathcal{D} = (\mathcal{O}^{\vee})^{-1} \subset \mathcal{O}$ is the principal ideal (\sqrt{D}) . The trace and norm descend to give maps

$$\operatorname{Tr}, \operatorname{N} : \mathcal{O} / \mathcal{D} \to \mathbb{Z} / D,$$

satisfying

$$\operatorname{Tr}(x)^2 = 4\operatorname{N}(x) \operatorname{mod} D.$$
(2.1)

When D is odd, Tr : $\mathcal{O}/\mathcal{D} \to \mathbb{Z}/D$ is an isomorphism, and thus (2.1) determines the norm on \mathcal{O}/\mathcal{D} . On the other hand, when D = 4E is even, we have an isomorphism

$$\mathcal{O}/\mathcal{D} \cong \mathbb{Z}/2E \oplus \mathbb{Z}/2$$

given by $a + b\sqrt{E} \mapsto (a, b)$, and the trace and norm on \mathcal{O}/\mathcal{D} are given by

$$\operatorname{Tr}(a,b) = 2a \operatorname{mod} D, \quad \operatorname{N}(a,b) = a^2 - Eb^2 \operatorname{mod} D.$$

Symplectic lattices. Now let $L \cong (\mathbb{Z}^{2g}, \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix})$ be a unimodular symplectic lattice of genus g. (This lattice is isomorphic to the first homology group $H_1(\Sigma_g, \mathbb{Z})$ of an oriented surface of genus g with the symplectic form given by the intersection pairing.)

Let $\operatorname{End}(L) \cong \operatorname{M}_{2g}(\mathbb{Z})$ denote the endomorphism ring of L as a \mathbb{Z} -module. The *Rosati involution* $T \mapsto T^*$ on $\operatorname{End}(L)$ is defined by the condition $\langle Tx, y \rangle = \langle x, T^*y \rangle$; it satisfies $(ST)^* = T^*S^*$, and we say T is *self-adjoint* if $T = T^*$.

Specializing to the case g = 2, let L denote the lattice

$$L = \mathcal{O} \oplus \mathcal{O}^{\vee}$$

with the unimodular symplectic form

$$\langle x, y \rangle = \operatorname{Tr}(x \wedge y) = \operatorname{Tr}_{\mathbb{Q}}^{K}(x_{1}y_{2} - x_{2}y_{1}).$$

A standard symplectic basis for L (satisfying $\langle a_i \cdot b_j \rangle = \delta_{ij}$) is given by

$$(a_1, a_2, b_1, b_2) = ((1, 0), (\gamma, 0), (0, -\gamma'/\sqrt{D}), (0, 1/\sqrt{D})),$$
(2.2)

where $\gamma = (D + \sqrt{D})/2$.

The lattice L comes equipped with a proper, self-adjoint action of \mathcal{O} , given by

$$k \cdot (x_1, x_2) = (kx_1, kx_2). \tag{2.3}$$

Conversely, any proper, self-adjoint action of \mathcal{O} on a symplectic lattice of genus two is isomorphic to this model (see e.g. [Ru], [Mc7, Thm 4.1]). (Here an action of R on L is *proper* if it is indivisible: if whenever $T \in \text{End}(L)$ and $mT \in R$ for some integer $m \neq 0$, then $T \in R$.)

Matrices. The natural embedding of $L = \mathcal{O} \oplus \mathcal{O}^{\vee}$ into $K \oplus K$ determines an embedding of matrices

$$M_2(K) \to End(L \otimes \mathbb{Q}),$$

and hence a diagonal inclusion

$$K \to \operatorname{End}(L \otimes \mathbb{Q})$$

extending the natural action (2.3) of \mathcal{O} on L. Every $T \in \text{End}(L \otimes \mathbb{Q})$ can be uniquely expressed in the form

$$T(x) = Ax + Bx', \quad A, B \in \mathcal{M}_2(K),$$

where $(x_1, x_2)' = (x'_1, x'_2)$; and we have

$$T^*(x) = A^{\dagger}x + (B^{\dagger})'x', \qquad (2.4)$$

where $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\dagger} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

The automorphisms of L as a symplectic \mathcal{O} -module are given, as a subgroup of $M_2(K)$, by

$$\operatorname{SL}(\mathcal{O} \oplus \mathcal{O}^{\vee}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \begin{pmatrix} \mathcal{O} & \mathcal{D} \\ \mathcal{O}^{\vee} & \mathcal{O} \end{pmatrix} : ad - bc = 1 \right\}.$$

Compare [vG, p.12].

Integrality. An endomorphism $T \in \text{End}(L \otimes \mathbb{Q})$ is *integral* if it satisfies $T(L) \subset L$.

Lemma 2.1 The endomorphism $\phi(x) = ax + bx'$ of K satisfies $\phi(\mathcal{O}) \subset \mathcal{O}$ iff $a, b \in \mathcal{O}^{\vee}$ and $a + b \in \mathcal{O}$.

Proof. Since $x - x' \in \sqrt{D\mathbb{Z}}$ for all $x \in \mathcal{O}$, the conditions on a, b imply $\phi(x) = a(x - x') + (a + b)x' \in \mathcal{O}$ for all $x \in \mathcal{O}$. Conversely, if ϕ is integral, then $\phi(1) = a + b \in \mathcal{O}$, and thus $a(x - x') \in \mathcal{O}$ for all $x \in \mathcal{O}$, which implies $a \in D^{-1/2} \mathcal{O} = \mathcal{O}^{\vee}$.

Corollary 2.2 The endomorphism $T(x) = kx + \begin{pmatrix} a & bD \\ c & d \end{pmatrix} x'$ is integral iff we have

$$a, b, c, d, k \in \mathcal{O}^{\vee}$$
 and $k + a, k - d \in \mathcal{O}$.

Proof. This follows from the preceding Lemma, using the fact that kx + dx' maps \mathcal{O}^{\vee} to \mathcal{O}^{\vee} iff kx - dx' maps \mathcal{O} to \mathcal{O} .

Quaternion algebras. A rational quaternion algebra is a central simple algebra of dimension 4 over \mathbb{Q} . Every such algebra has the form

$$Q \cong \mathbb{Q}[i,j]/(i^2 = a, j^2 = b, ij = -ji) = \left(\frac{a,b}{\mathbb{Q}}\right)$$

for suitable $a, b \in \mathbb{Q}^*$. Any $q \in Q$ satisfies a quadratic equation

$$q^2 - \operatorname{Tr}(q)q + \mathcal{N}(q) = 0,$$

where $\operatorname{Tr}, \operatorname{N} : Q \to \mathbb{Q}$ are the reduced trace and norm.

An order $R \subset Q$ is a subring such that, as an additive group, we have $R \cong \mathbb{Z}^4$ and $\mathbb{Q} \cdot R = Q$. Its *discriminant* is the square integer

$$N^2 = |\det(\operatorname{Tr}(q_i q_j))| > 0,$$

where $(q_i)_1^4$ is an integral basis for R. The discriminants of a pair of orders $R_1 \subset R_2$ are related by $N_1/N_2 = |R_2/R_1|^2$.

Generators. We say $V \in End(L)$ is a quaternionic generator if:

- 1. $V^* = -V$,
- 2. $V^2 = -N \in \mathbb{Z}, N \neq 0,$
- 3. Vk = k'V for all $k \in K$, and
- 4. $k + D^{-1/2}V \in \text{End}(L)$ for some $k \in K$.

These conditions imply that $Q = K \oplus KV$ is a quaternion algebra isomorphic to $\left(\frac{D,-N}{\mathbb{Q}}\right)$. Conversely, we have:

Theorem 2.3 Any Rosati-invariant quaternion algebra Q with

$$K \subset Q \subset \operatorname{End}(L \otimes \mathbb{Q})$$

contains a unique pair of primitive quaternionic generators $\pm V$.

(A generator is *primitive* unless (1/m)V, m > 1 is also a generator.)

Proof. By a standard application of the Skolem-Noether theorem, we can write $Q = K \oplus KW$ with $0 \neq W^2 \in \mathbb{Q}$ and Wk = k'W for all $k \in K$. Then KW coincides with the subalgebra of Q anticommuting with the self-adjoint element \sqrt{D} , so it is Rosati-invariant. The eigenspaces of *|KW are exchanged by multiplication by \sqrt{D} , so up to a rational multiple there is a unique nonzero $V \in KW$ with $V^* = -V$. A suitable integral multiple of V is then a generator, and a rational multiple is primitive.

Corollary 2.4 Quaternionic extensions $K \subset Q \subset \text{End}(L)$ correspond bijectively to pairs of primitive generators $\pm V \in \text{End}(L)$.

Generator matrices. We say $U \in M_2(K)$ is a quaternionic generator matrix if it has the form

$$U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix}$$
(2.5)

with $a, b \in \mathbb{Z}, \mu \in \mathcal{O}$ and $N = \det(U) \neq 0$.

Theorem 2.5 The endomorphism V(x) = Ux' is a quaternionic generator iff U is a quaternionic generator matrix.

Proof. By (2.4) the condition $V = -V^*$ is equivalent to $U^{\dagger} = -U'$, and thus U can be written in the form (2.5) with $a, b \in \mathbb{Q}$ and $\mu \in K$. Assuming $U^{\dagger} = -U'$, we have

$$N = \det(U) = UU^{\dagger} = -UU' = -V^2,$$

so $V^2 \neq 0 \iff \det(U) \neq 0$. The condition that $D^{-1/2}(k+V)$ is integral for some k implies, by Corollary 2.2, that the coefficients of U satisfy $a, b \in \mathbb{Z}$ and $\mu \in \mathcal{O}$; and given such coefficients for U, the endomorphism $D^{-1/2}(k+V)$ is integral when $k = -\mu$.

The invariant $\nu(U)$. Given generator matrix $U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix}$, let $\nu(U)$ denote the image of μ in the finite ring \mathcal{O}/\mathcal{D} . It is easy to check that

$$\nu(U) = \pm \nu(g'Ug^{-1})$$

for all $g \in SL(\mathcal{O} \oplus \mathcal{O}^{\vee})$, and that its norm satisfies

$$N(\nu(U)) \equiv -N \mod D. \tag{2.6}$$

Quaternionic orders. Let V(x) = Ux', and let

$$R_U = (K \oplus KV) \cap \operatorname{End}(L)$$

Then R_U is a Rosati-invariant order in the quaternion algebra generated by V. Clearly $\mathcal{O} \subset R_U$, so we can also regard $(R_U, *)$ as an involutive algebra over \mathcal{O} . We will show that $N = \det(U)$ and $\nu(U)$ determine $(R_U, *)$ up to isomorphism.

Models. We begin by constructing a model algebra $(R_N(\nu), *)$ over \mathcal{O}_D for every $\nu \in \mathcal{O} / \mathcal{D}$ with $N(\nu) = -N \neq 0 \mod D$.

Let $Q_N = K \oplus KV$ be the abstract quaternion algebra with the relations $V^2 = -N$ and Vk = k'V. Define an involution on Q_N by $(k_1 + k_2V)^* = (k_1 - k'_2V)$, and let $R_N(\nu)$ be the order in Q_N defined by

$$R_N(\nu) = \{ \alpha + \beta V : \alpha, \beta \in \mathcal{O}^{\vee}, \alpha + \beta \nu \in \mathcal{O} . \}$$
(2.7)

Note that $\mathcal{O}^{\vee} \cdot \mathcal{D} \subset \mathcal{O}$, so the definition of $R_N(\nu)$ depends only on the class of ν in \mathcal{O}/\mathcal{D} . To check that $R_N(\nu)$ is an order, note that

$$(\alpha + \beta V)(\gamma + \delta V) = (\kappa + \lambda V) = (\alpha \gamma - N\beta \delta') + (\alpha \delta + \beta \gamma')V;$$

since $-N \equiv N(\nu) = \nu \nu' \mod D$, we have

$$\kappa + \nu\lambda \equiv (\alpha\gamma + \nu\nu'\beta\delta') + \nu(\alpha\delta + \beta\gamma')$$

= $(\alpha + \beta\nu)(\gamma' + \delta'\nu') + \alpha(\gamma - \gamma' + \nu\delta - \nu'\delta')$
= $0 + 0 \mod \mathcal{O},$

and thus R_U is closed under multiplication.

Theorem 2.6 The quaternionic order $R_N(\nu)$ has discriminant N^2 .

Proof. Note that the inclusions

$$\mathcal{O} \oplus \mathcal{O} V \subset R_N(\nu) \subset \mathcal{O}^{\vee} \oplus \mathcal{O}^{\vee} V$$

each have index D. The quaternionic order $\mathcal{O} \oplus \mathcal{O} V$ has discriminant $D^2 N^2$, since $V^2 = -N$ and $\operatorname{Tr} | \mathcal{O} V = 0$, and thus $R_N(\nu)$ has discriminant N^2 .

Theorem 2.7 We have $(R_N(\nu), *) \cong (R_M(\mu), *)$ iff N = M and $\nu = \pm \mu$.

Proof. The element $V \in R_N(\nu)$ is, up to sign, the order's unique primitive generator, in the sense that $V^* = -V$, Vk = k'V for all $k \in \mathcal{O}_D$, $V^2 \neq 0$, $k + D^{-1/2}V \in R_N(\nu)$ for some $k \in K$, and V is not a proper multiple of another element in $R_N(\nu)$ with the same properties. Thus the structure of $(R_N(\nu), *)$ as an \mathcal{O}_D -algebra determines $V \in R_N(\nu)$ up to sign, and Vdetermines $N = -V^2$ and the constant $\nu \in \mathcal{O}/\mathcal{D}$ in the relation $\alpha + \beta \nu \in \mathcal{O}$ defining $R_N(\nu) \subset K \oplus KV$.

Theorem 2.8 If U is a primitive generator matrix, then we have

$$(R_U, *) \cong (R_N(\nu), *)$$

where $N = \det(U)$ and $\nu = \nu(U)$.

Proof. Setting V(x) = Ux', we need only verify that $(K \oplus KV) \cap \text{End}(L)$ coincides with the order $R_N(\nu)$ defined by (2.7). To see this, let

$$T(x) = \alpha x + \beta V(x) = \alpha x + \beta \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix} x'$$

in $K \oplus KV$. By Corollary 2.2, T is integral iff

- (i) $a\beta, b\beta, \mu\beta, \mu'\beta \in \mathcal{O}^{\vee},$
- (ii) $\alpha \in \mathcal{O}^{\vee}$,
- (iii) $\alpha + \beta \mu \in \mathcal{O}$ and
- (iv) $\alpha + \beta \mu' \in \mathcal{O}$.

Using (iii), condition (iv) can be replaced by

(iv') $\beta(\mu - \mu') / \sqrt{D} \in \mathcal{O}^{\vee}.$

Since U is primitive, the ideal $(a, b, \mu, (\mu - \mu')/\sqrt{D})$ is equal to \mathcal{O} . Thus (i) and (iv') together are equivalent to the condition $\beta \in \mathcal{O}^{\vee}$, and we are left with the definition of $R_N(\nu)$.

Remark. In general, the invariants det(U) and $\nu(U)$ do not determine the embedding $R_U \subset End(L)$ up to conjugacy. For example, when D is odd, the generator matrices $U_1 = \begin{pmatrix} 0 & D^2 \\ -D & 0 \end{pmatrix}$ and $U_2 = \begin{pmatrix} 0 & D^3 \\ -1 & 0 \end{pmatrix}$ have the same invariants, but the corresponding endomorphisms are not conjugate in End(L) because

$$L/V_1(L) \cong (\mathbb{Z}/D \times \mathbb{Z}/D^2)^2$$

while

$$L/V_2(L) \cong \mathbb{Z}/D \times \mathbb{Z}/D^2 \times \mathbb{Z}/D^3.$$

Extra quadratic orders. Finally we determine when the algebra $R_N(\nu)$ contains a second, independent quadratic order \mathcal{O}_E .

Theorem 2.9 The algebra $(R_N(\nu), *)$ contains a self-adjoint element $T \notin \mathcal{O}_D$ generating a copy of \mathcal{O}_E iff there exist $e, \ell \in \mathbb{Z}$ such that

$$ED = e^2 + 4N\ell^2, \quad \ell \neq 0$$

and $(e + E\sqrt{D})/2 + \ell\nu = 0 \mod \mathcal{D}.$

Proof. Given e, ℓ as above, let

$$T = \alpha + \beta V = D^{-1/2} \left(\frac{e + E\sqrt{D}}{2} + \ell V \right).$$

Then we have $T = T^*$, $T \in R_N(\nu)$ and $T^2 - eT + (E - E^2)/4 = 0$; therefore $\mathbb{Z}[T] \cong \mathcal{O}_E$. A straightforward computation shows that, conversely, any independent copy of \mathcal{O}_E in $R_N(\nu)$ arises as above.

For additional background on quaternion algebras, see e.g. [Vi], [MR] and [Mn].

3 Modular curves and surfaces

In this section we describe modular curves on Hilbert modular surfaces from the perspective of the Abelian varieties they determine.

Abelian varieties. A principally polarized Abelian variety is a complex torus $A \cong \mathbb{C}^g/L$ equipped with a unimodular symplectic form $\langle x, y \rangle$ on $L \cong \mathbb{Z}^{2g}$, whose extension to $L \otimes \mathbb{R} \cong \mathbb{C}^g$ satisfies

$$\langle x, y \rangle = \langle ix, iy \rangle$$
 and $\langle x, ix \rangle \ge 0$.

The ring $\operatorname{End}(A) = \operatorname{End}(L) \cap \operatorname{End}(\mathbb{C}^g)$ is Rosati invariant, and coincides with the endomorphism ring of A as a complex Lie group. We have $\operatorname{Tr}(TT^*) \geq 0$ for all $T \in \operatorname{End}(A)$.

Every Abelian variety can be presented in the form

$$A = \mathbb{C}^g / (\mathbb{Z}^g \oplus \Pi \mathbb{Z}^g),$$

where Π is an element of the Siegel upper halfplane

$$\mathfrak{H}_g = \{ \Pi \in M_g(\mathbb{C}) : \Pi^t = \Pi \text{ and } \operatorname{Im}(\Pi) \text{ is positive-definite} \}.$$

The symplectic form on $L = \mathbb{Z}^g \oplus \Pi \mathbb{Z}^g$ is given by $\begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$. Any two such presentations of A differ by an automorphism of L, so the moduli space of abelian varieties of genus g is given by the quotient space

$$\mathcal{A}_g = \mathfrak{H}_g / \operatorname{Sp}_{2g}(\mathbb{Z}).$$

Real multiplication. As in §2, let D > 0 be the discriminant of a real quadratic order \mathcal{O}_D , and let $K = \mathcal{O} \otimes \mathbb{Q}$. Fix a real place $\iota_1 : K \to \mathbb{R}$, and set $\iota_2(k) = \iota_1(k')$.

We will regard K as a subfield of the reals, using the fixed embedding $\iota_1 : K \subset \mathbb{R}$. The case $D = d^2$ is treated with the understanding that the real numbers (k, k') implicitly denote $(\iota_1(k), \iota_2(k)), k \in K$.

An Abelian variety $A \in \mathcal{A}_2$ admits *real multiplication* by \mathcal{O}_D if there is a self-adjoint endomorphism $T \in \text{End}(A)$ generating a proper action of $\mathbb{Z}[T] \cong \mathcal{O}_D$ on A. Any such variety can be presented in the form

$$A_{\tau} = \mathbb{C}^2 / (\mathcal{O}_D \oplus \mathcal{O}_D^{\vee} \tau) = \mathbb{C}^2 / \phi_{\tau}(L), \qquad (3.1)$$

where $\tau = (\tau_1, \tau_2) \in \mathbb{H} \times \mathbb{H}$ and where $L = \mathcal{O} \oplus \mathcal{O}^{\vee}$ is embedded in \mathbb{C}^2 by the map

$$\phi_{\tau}(x_1, x_2) = (x_1 + x_2\tau_1, x_1' + x_2'\tau_2).$$

As in §2, the symplectic form on L is given by $\langle x, y \rangle = \operatorname{Tr}_{\mathbb{Q}}^{K}(x \wedge y)$, and the action of \mathcal{O}_{D} on $\mathbb{C}^{2} \supset L$ is given simply by $k \cdot (z_{1}, z_{2}) = (kz_{1}, k'z_{2})$.

Eigenforms. The Abelian variety A_{τ} comes equipped with a distinguished pair of normalized *eigenforms* $\eta_1, \eta_2 \in \Omega(A_{\tau})$. Using the isomorphism $H_1(A_{\tau}, \mathbb{Z}) \cong L$, these forms are characterized by the property that

$$\phi_{\tau}(C) = \left(\int_C \eta_1, \int_C \eta_2\right). \tag{3.2}$$

Modular surfaces. If we change the identification $L \cong H_1(A_{\tau}, \mathbb{Z})$ by an automorphism g of L, we obtain an isomorphic Abelian variety $A_{g,\tau}$. Thus the moduli space of Abelian varieties with real multiplication by \mathcal{O}_D is given by the Hilbert modular surface

$$X_D = (\mathbb{H} \times \mathbb{H}) / \operatorname{SL}(\mathcal{O}_D \oplus \mathcal{O}_D^{\vee}).$$

The point $g(\tau)$ is characterized by the property that

$$\phi_{g \cdot \tau} = \chi(g, \tau) \ \phi_\tau \circ g^{-1}$$

for some matrix $\chi(g,\tau) \in \mathrm{GL}_2(\mathbb{C})$; explicitly, we have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot (\tau_1, \tau_2) = \left(\frac{a\tau_1 - b}{-c\tau_1 + d}, \frac{a'\tau_2 - b'}{-c'\tau_2 + d'}\right)$$
(3.3)

and

$$\chi(g,\tau) = \begin{pmatrix} (d-c\tau_1)^{-1} & 0\\ 0 & (d'-c'\tau_2)^{-1} \end{pmatrix}.$$
 (3.4)

A point $[\tau] \in X_D$ gives an Abelian variety $[A_{\tau}] \in \mathcal{A}_2$ with a *chosen* embedding $\mathcal{O}_D \to \operatorname{End}(A_{\tau})$. Similarly, a point $\tau \in \widetilde{X}_D = \mathbb{H} \times \mathbb{H}$ gives an Abelian variety with a distinguished isomorphism or *marking*, $L \cong H_1(A_{\tau}, \mathbb{Z})$, sending \mathcal{O}_D into $\operatorname{End}(A_{\tau})$.

Modular embedding. The modular embedding

$$p_D: X_D \to \mathcal{A}_2$$

is given by $[\tau] \mapsto [A_{\tau}]$. To write p_D explicitly, note that the embedding $\phi_{\tau} : L \to \mathbb{C}^2$ can be expressed with respect to the basis (a_1, a_2, b_1, b_2) for L given in (2.2) by the matrix

$$\phi_{\tau} = \begin{pmatrix} 1 & \gamma & -\tau_1 \gamma' / \sqrt{D} & \tau_1 / \sqrt{D} \\ 1 & \gamma' & \tau_2 \gamma / \sqrt{D} & -\tau_2 / \sqrt{D} \end{pmatrix} = (A, B).$$

Consequently we have $A_{\tau} \cong \mathbb{C}^2/(\mathbb{Z}^2 \oplus \Pi \mathbb{Z}^2)$, where

$$\Pi = \widetilde{p}_{D}(\tau) = A^{-1}B = \frac{1}{D} \begin{pmatrix} \tau_{1}(\gamma')^{2} + \tau_{2}\gamma^{2} & -\tau_{1}\gamma' - \tau_{2}\gamma \\ -\tau_{1}\gamma' - \tau_{2}\gamma & \tau_{1} + \tau_{2} \end{pmatrix}.$$

The map $X_D \to p_D(X_D)$ has degree two.

Modular curves. Given a matrix $U(x) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(K) \cap \operatorname{End}(L)$ such that $U' = -U^*$, let V(x) = Ux' and define

$$\mathbb{H}_U = \{ \tau \in \mathbb{H} \times \mathbb{H} : V \in \operatorname{End}(A_\tau) \}.$$

It is straightforward to check that

$$\mathbb{H}_U = \left\{ (\tau_1, \tau_2) : \tau_2 = \frac{d\tau_1 + b}{c\tau_1 + a} \right\};$$
(3.5)

indeed, when τ_1 and τ_2 are related as above, the map $\phi_\tau: L \to \mathbb{C}^2$ satisfies

$$\phi_{\tau}(V(x)) = \begin{pmatrix} 0 & a + c\tau_1 \\ a' + c'\tau_2 & 0 \end{pmatrix} \phi_{\tau}(x),$$

exhibiting the complex-linearity of V. Note that $\mathbb{H}_U = \emptyset$ if det(U) < 0.

We now restrict attention to the case where U is a generator matrix. Then by the results of §2, we have:

Theorem 3.1 The ring $\operatorname{End}(A_{\tau})$ contains a quaternionic order extending \mathcal{O}_D if and only if $\tau \in \mathbb{H}_U$ for some generator matrix U.

Let $F_U \subset X_D$ denote the projection of \mathbb{H}_U to the quotient $(\mathbb{H} \times \mathbb{H}) / \operatorname{SL}(\mathcal{O}_D \oplus \mathcal{O}_D^{\vee})$. Following [Hir, §5.3], we define the *modular curve* F_N by

 $F_N = \bigcup \{F_U : U \text{ is a primitive generator matrix with } \det(U) = N.\}.$

It can be shown that F_N is an algebraic curve on X_D .

To describe this curve more precisely, let

$$F_N(\nu) = \{F_U : U \text{ is primitive, } \det(U) = N \text{ and } \nu(U) = \pm \nu\},\$$

where $\nu \in \mathcal{O}_D / \mathcal{D}_D$. Note that we have

$$F_N(\nu) \neq \emptyset \iff N(\nu) = -N \mod D$$

by equation (2.6), $F_N(\nu) = F_N(-\nu)$, and $F_N = \bigcup F_N(\nu)$.

The results of §2 give the structure of the quaternion ring generated by V(x) = Ux'.

Theorem 3.2 The curve $F_N(\nu) \subset X_D$ coincides with the locus of Abelian varieties such that

$$\mathcal{O}_D \subset R \subset \operatorname{End}(A_\tau),$$

for some properly embedded quaternionic order (R, *) isomorphic to $(R_N(\nu), *)$.

Corollary 3.3 The curve F_N is the locus where $\mathcal{O}_D \subset \text{End}(A_{\tau})$ extends to a properly embedded, Rosati-invariant quaternionic order of discriminant N^2 .

Two quadratic orders. We can now describe the locus $X_D(E)$ of Abelian varieties with an independent, self-adjoint action of \mathcal{O}_E . (We do not require the action of \mathcal{O}_E to be proper.)

To state this description, it is useful to define:

$$T_N = \bigcup \{F_U : \det(U) = N\} = \bigcup F_{N/\ell^2},$$

and

$$T_N(\nu) = \bigcup \{ F_U : \det(U) = N, \nu(U) = \pm \nu \}.$$

Then Theorem 2.9 implies:

Theorem 3.4 The locus $X_D(E)$ is given by

$$X_D(E) = \bigcup T_N((e + E\sqrt{D})/2),$$

where the union is over all N > 0 and $e \in \mathbb{Z}$ such that $ED = e^2 + 4N$.

Corollary 3.5 We have $X_D(1) = \bigcup \{T_N((e + \sqrt{D})/2) : e^2 + 4N = D\}.$

Refined modular curves. To conclude we show that in general the expression $F_N = \bigcup F_N(\nu)$ gives a proper refinement of F_N . First note:

Theorem 3.6 We have $F_N(\nu) = F_N$ iff $\pm \nu$ are the only solutions to

$$N(\xi) = -N \mod D, \quad \xi \in \mathcal{O}_D / \mathcal{D}_D.$$

Corollary 3.7 If D = p is prime, then $F_N = F_N(\nu)$ whenever $F_N(\nu) \neq \emptyset$.

Proof. In this case, according to (2.1), the norm map

$$N: \mathcal{O}_D / \mathcal{D}_D \stackrel{\mathrm{Tr}}{\cong} \mathbb{Z}/p \to \mathbb{Z}/p$$

is given by $N(\xi) = \xi^2/4$. Since $F_N(\nu) \neq \emptyset$, we have $N(\nu) = -N$; and since \mathbb{Z}/p is a field, $\pm \nu$ are the only solutions to this equation.

Corollary 3.8 When D is prime, we have $X_D(E) = \bigcup T_{(ED-e^2)/4}$.

Now consider the case D = 21, the first odd discriminant which is not a prime. Then the norm map is still given by $N(\xi) = \xi^2/4$ on $\mathcal{O}_D/\mathcal{D}_D \cong \mathbb{Z}/D$, but now \mathbb{Z}/D is not a field. For example, the equation $\xi^2 = 1 \mod D$ has four solutions, namely $\xi = 1, 8, 13$ or 20. These give four solutions to the equation $N(\xi) = -5$, and hence contribute two distinct terms to the expression

$$F_5 = \bigcup F_5(\nu) = F_5((1+\sqrt{21})/2) \cup F_5((8+\sqrt{21})/2).$$

Only one of these terms appears in the expression for $X_D(1)$. In fact, since $21 = 1^2 + 4 \cdot 5 = 3^2 + 4 \cdot 3$, by Corollary 3.5 we have

$$\begin{array}{rcl} X_{21}(1) &=& F_3 \cup F_5((1+\sqrt{21})/2) \\ &\neq & F_3 \cup F_5. \end{array}$$

(The full curve F_3 appears because the only solutions to $N(\xi) = \xi^2/4 = -3 \mod 21$ are $\xi = \pm 3$.)

Using Theorem 3.6, it is similarly straightforward to check other small discriminants; for example:

Theorem 3.9 For $D \leq 30$ we have $X_D(1) = \bigcup_{e^2+4N=D} T_N$ when D = 4,5,8,9,13,17,25 and 29, but not when D = 12,16,20,21,24 or 28.

Notes. For more background on modular curves and surfaces, see [Hir], [HZ2], [HZ1], [BL], [Mc7, §4] and [vG]. Our $U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix}$ corresponds to the skew-Hermitian matrix $B = \sqrt{D} \begin{pmatrix} a & \mu \\ \mu' & bD \end{pmatrix}$ in [vG, Ch. V]. Note that (3.3) agrees with the standard action $(a\tau + b)/(c\tau + d)$ up to the automorphism $\begin{pmatrix} a & b \\ -c & d \end{pmatrix} \mapsto \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$ of $SL_2(K)$. We remark that X_D can also be presented as the quotient $(\mathbb{H} \times -\mathbb{H})/SL_2(\mathcal{O}_D)$, using the fact that $\sqrt{D}' = -\sqrt{D}$; on the other hand, the surfaces $(\mathbb{H} \times \mathbb{H})/SL_2(\mathcal{O}_D)$ and X_D are generally not isomorphic (see e.g. [HH].)

It is known that the intersection numbers $\langle T_N, T_M \rangle$ form the coefficients of a modular form [HZ1], [vG, Ch. VI]. The results of [GKZ] suggest that the intersection numbers of the refined modular curves $T_N(\nu)$ may similarly yield a Jacobi form.

4 Laminations

In this section we show algebraically that $\widetilde{X}_D(1)$ gives a lamination of $\mathbb{H} \times \mathbb{H}$ by countably many disjoint hyperbolic planes. We also describe these

laminations explicitly for small values of D. Another proof of laminarity appears in $\S7$.

Jacobian varieties. Let $\Omega(X)$ denote the space of holomorphic 1-forms on a compact Riemann surface X. The *Jacobian* of X is the Abelian variety $Jac(X) = \Omega(X)^*/H_1(X,\mathbb{Z})$, polarized by the intersection pairing on 1-cycles.

In the case of genus two, any principally polarized Abelian variety A is either a Jacobian or a product of polarized elliptic curves. The latter case occurs iff A admits real multiplication by \mathcal{O}_1 , generated by projection to one of the factors of $A \cong B_1 \times B_2$. In particular, we have:

Theorem 4.1 For any $D \ge 4$, the locus of Jacobian varieties in X_D is given by $X_D - X_D(1)$.

Laminations. To describe $X_D(1)$ in more detail, given N > 0 such that $D = e^2 + 4N$ let

$$\Lambda_D^N = \{ U \in M_2(K) : U \text{ is a generator matrix, } \det(U) = N \text{ and} \\ \nu(U) \equiv \pm (e + \sqrt{D})/2 \mod \mathcal{D}_D \},$$

and let Λ_D be the union of all such Λ_D^N . Note that if U is in Λ_D , then -U, U'and U^* are also in Λ_D .

By Corollary 3.5, the preimage of $X_D(1)$ in $\widetilde{X}_D = \mathbb{H} \times \mathbb{H}$ is given by:

$$\widetilde{X}_D(1) = \bigcup \{ \mathbb{H}_U : U \in \Lambda_D \}.$$

Note that each \mathbb{H}_U is the graph of a Möbius transformation.

Theorem 4.2 The locus $\widetilde{X}_D(1)$ gives a lamination of $\mathbb{H} \times \mathbb{H}$ by countably many hyperbolic planes.

(This means any two planes in $\widetilde{X}_D(1)$ are either identical or disjoint.)

For the proof, it suffices to show that the difference $g \circ h^{-1}$ of two Möbius transformations in Λ_D is never elliptic. Since Λ_D is invariant under $U \mapsto U^* = (\det U)U^{-1}$, this in turn follows from:

Theorem 4.3 For any $U_1, U_2 \in \Lambda_D$, we have $\operatorname{Tr}(U_1 U_2)^2 \ge 4 \det(U_1 U_2)$.

Proof. By the definition of Λ_D , we can write $D = e_i^2 + 4 \det(U_i) = e_i^2 + 4N_i$, where $e_i \ge 0$. We can also assume that

$$U_i = \begin{pmatrix} \mu_i & b_i D \\ -a_i & -\mu_i' \end{pmatrix}$$

satisfies

$$\mu_i \equiv (x_i + y_i \sqrt{D})/2 \equiv (e_i + \sqrt{D})/2 \mod \mathcal{D}_D$$

(replacing U_i with $-U_i$ if necessary). It follows that y_i is odd and $x_i = e_i \mod D$, which implies

$$\operatorname{Tr}(U_1U_2) \equiv \operatorname{Tr}(\mu_1\mu_2) = (x_1x_2 + Dy_1y_2)/2 \equiv (e_1e_2 - D)/2 \mod D.$$
 (4.1)

(The factor of 1/2 presents no difficulties, because x_i is even when D is even.)

Now suppose

$$\operatorname{Tr}(U_1 U_2)^2 < 4 \det(U_1 U_2) = 4N_1 N_2.$$
 (4.2)

Then we have $|\operatorname{Tr}(U_1U_2)| < 2\sqrt{N_1N_2} \leq D/2$, and thus (4.1) implies

$$\operatorname{Tr}(U_1 U_2) = (e_1 e_2 - D)/2.$$

But this implies

$$4 \operatorname{Tr}(U_1 U_2)^2 = (D - e_1 e_2)^2$$

$$\geq (D - e_1^2)(D - e_2^2) = (4N_1)(4N_2) = 16 \operatorname{det}(U_1 U_2),$$

contradicting (4.2).

Small discriminants. To conclude we record a few cases where Λ_D admits a particularly economical description.

For concreteness, we will present Λ_D as a set matrices in $\operatorname{GL}_2^+(\mathbb{R})$ using the chosen real place $\iota_1 : K \to \mathbb{R}$. This works even when $D = d^2$, since both μ and μ' appear on the diagonal of $U \in \Lambda_D$ (no information is lost). Under the standard action $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = (az + b)/(cz + d)$ of $\operatorname{GL}_2^+(\mathbb{R})$ on \mathbb{H} , we can then write

$$\widetilde{X}_D(1) = \bigcup_{\Lambda_D} \{ (\tau_1, \tau_2) : \tau_2 = U(\tau_1) \}.$$

This holds despite the twist in the definition (3.5) of \mathbb{H}_U , because Λ_D is invariant under $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d & b \\ c & a \end{pmatrix}$.

Theorem 4.4 For D = 4, 5, 8, 9 and 13 respectively, we have:

$$\begin{split} \Lambda_4 &= \{ U \in \mathcal{M}_2(\mathbb{Z}) : \det(U) = 1 \text{ and } U \equiv \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \mod 4 \}, \\ \Lambda_5 &= \{ U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix} : \det(U) = 1 \}, \\ \Lambda_8 &= \Lambda_8^1 \cup \Lambda_8^2 = \left\{ U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix} : \det(U) = 1 \text{ or } 2 \right\}, \\ \Lambda_9 &= \{ U \in \mathcal{M}_2(\mathbb{Z}) : \det(U) = 2 \text{ and } U \equiv \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \mod 9 \}, \quad and \\ \Lambda_{13} &= \Lambda_{13}^1 \cup \Lambda_{13}^3 = \left\{ U = \begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix} : \det(U) = 1 \text{ or } 3 \right\}, \end{split}$$

where it is understood that $a, b \in \mathbb{Z}$ and $\mu \in \mathcal{O}_D$.

Proof. Recall from Theorem 3.9 that $X_D(1) = \bigcup_{e^2+4N=D} T_N$ when D = 4, 5, 8, 9 and 13. When this equality holds, we can ignore the condition on $\nu(U)$ in the definition of Λ_D . The cases D = 5, 8 and 13 then follow directly from the definition of Λ_D^N . For D = 9, we note that any integral matrix satisfying det $\begin{pmatrix} x & 9b \\ -a & y \end{pmatrix} = 2$ also satisfies $x + y = 0 \mod 3$, and thus it can be written in the form $\begin{pmatrix} \mu & bD \\ -a & -\mu' \end{pmatrix}$ with

$$\mu = \frac{(x-y) + (x+y)\sqrt{9}/3}{2}.$$

Similar considerations apply when D = 4.

5 Foliations of Teichmüller space

In this section we introduce a family of foliations \mathcal{F}_i of Teichmüller space, related to normalized Abelian differentials and their periods $\tau_{ij} = \int_{b_i} \omega_j$. We then show:

Theorem 5.1 There is a unique holomorphic section of the period map

 $au_{ii}: \mathcal{T}_g \to \mathbb{H}$

through any $Y \in \mathcal{T}_q$. Its image is the leaf of \mathcal{F}_i containing Y.

The case g = 2 will furnish the desired foliations of Hilbert modular surfaces. **Abelian differentials.** Let Z_g be a smooth oriented surface of genus g. Let \mathcal{T}_g be the Teichmüller space of Riemann surfaces Y, each equipped with an isotopy class of homeomorphism or marking $Z_g \to Y$. The marking determines a natural identification between $H_1(Z_g)$ and $H_1(Y)$ used frequently below.

Let $\Omega \mathcal{T}_g \to \mathcal{T}_g$ denote the bundle of nonzero Abelian differentials (Y, ω) , $\omega \in \Omega(Y)$. For each such form we have a *period map*

$$I(\omega): H_1(Z_q, \mathbb{Z}) \to \mathbb{C}$$

given by $I(\omega) : C \to \int_C \omega$. There is a natural action of $\operatorname{GL}_2^+(\mathbb{R})$ on $\Omega \mathcal{T}_g$, satisfying

$$I(A \cdot \omega) = A \circ I(\omega) \tag{5.1}$$

under the identification $\mathbb{C} = \mathbb{R}^2$ given by x + iy = (x, y).

Each orbit $\operatorname{GL}_2^+(\mathbb{R})\cdot(Y,\omega)$ projects to a *complex geodesic*

 $f:\mathbb{H}\to\mathcal{T}_g,$

which can be normalized so that f(i) = Y and

$$\nu = \left. \frac{df}{dt} \right|_{t=i} = \frac{i}{2} \frac{\overline{\omega}}{\omega}$$

The subspace of $H^1(Z_g, \mathbb{R})$ spanned by $(\operatorname{Re} \omega, \operatorname{Im} \omega)$ is constant along each orbit (cf. [Mc7, §3]).

Symplectic framings. Now let $(a_1, \ldots, a_g, b_1, \ldots, b_g)$ be a real symplectic basis for $H_1(Z_g, \mathbb{R})$ (with $\langle a_i, b_i \rangle = -\langle b_i, a_i \rangle = 1$ and all other products zero). Then for each $Y \in \mathcal{T}_g$, there exists a unique basis $(\omega_1, \ldots, \omega_g)$ of $\Omega(Y)$ such that $\int_{a_i} \omega_j = \delta_{ij}$. The period matrix

$$\tau_{ij}(Y) = \int_{b_i} \omega_j$$

then determines an embedding

$$\tau: \mathcal{T}_g \to \mathfrak{H}_g.$$

This agrees with the usual Torelli embedding, up to composition with an element of $\operatorname{Sp}_{2g}(\mathbb{R})$. Note that $\operatorname{Im}(\tau_{ii}(Y)) > 0$ since $\operatorname{Im} \tau$ is positive definite.

The normalized 1-forms (ω_i) give a splitting

$$\Omega(Y) = \oplus_1^g \mathbb{C}\omega_i = \oplus_1^g F_i(Y),$$

and corresponding subbundles $F_i \mathcal{T}_q \subset \Omega \mathcal{T}_q$.

Complex subspaces. Let (a_i^*, b_i^*) denote the dual basis for $H^1(Z_g, \mathbb{R})$, and let S_i be the span of (a_i^*, b_i^*) . It easy to check that the following conditions are equivalent:

- 1. S_i is a complex subspace of $H^1(Y, \mathbb{R}) \cong \Omega(Y)$.
- 2. S_i is spanned by $(\operatorname{Re} \omega_i, \operatorname{Im} \omega_i)$.
- 3. The period matrix $\tau(Y)$ satisfies $\tau_{ij} = 0$ for all $j \neq i$.

Let $\mathcal{T}_g(S_i) \subset \mathcal{T}_g$ denote the locus where these condition hold. Note that condition (3) defines a totally geodesic subset

$$H_i \cong \mathbb{H} \times \mathfrak{H}_{g-1} \subset \mathfrak{H}_g$$

such that $\mathcal{T}_g(S_i) = \tau^{-1}(H_i)$.

Foliations. Next we show that the complex geodesics generated by the forms (Y, ω_i) give a foliation of Teichmüller space.

Theorem 5.2 The sub-bundle $F_i \mathcal{T}_g \subset \Omega \mathcal{T}_g$ is invariant under the action of $\operatorname{GL}_2^+(\mathbb{R})$, as is its restriction to $\mathcal{T}_q(S_i)$.

Proof. The invariance of $F_i \mathcal{T}_g$ is immediate from (5.1). To handle the restriction to $\mathcal{T}_g(S_i)$, recall that the span W of $(\operatorname{Re} \omega_i, \operatorname{Im} \omega_i)$ is constant along orbits; thus the condition $W = S_i$ characterizing $\mathcal{T}_g(S_i)$ is preserved by the action of $\operatorname{GL}_2^+(\mathbb{R})$.

Corollary 5.3 The foliation of $F_i\mathcal{T}_g$ by $\operatorname{GL}_2^+(\mathbb{R})$ orbits projects to a foliation \mathcal{F}_i of \mathcal{T}_g by complex geodesics.

Corollary 5.4 The locus $\mathcal{T}_g(S_i)$ is also foliated by \mathcal{F}_i : any leaf meeting $\mathcal{T}_q(S_i)$ is entirely contained therein.

Proof of Theorem 5.1. The proof uses Ahlfors' variational formula [Ah] and follows the same lines as the proof of [Mc4, Thm. 4.2]; it is based on the fact that the leaves of \mathcal{F}_i are the geodesics along which the periods of ω_i change most rapidly.

Let $s : \mathbb{H} \to \mathcal{T}_g$ be a holomorphic section of τ_{ii} . Let $v \in \mathbb{TH}$ be a unit tangent vector with respect to the hyperbolic metric $\rho = |dz|/(2 \operatorname{Im} z)$ of constant curvature -4, mapping to $Ds(v) \in \operatorname{T}_Y \mathcal{T}_g$. By the equality of the Teichmüller and Kobayashi metrics [Gd, Ch. 7], Ds(v) is represented by a Beltrami differential $\nu = \nu(z)d\overline{z}/dz$ on Y with $\|\nu\|_{\infty} \leq 1$. But s is a section, so the composition

$$\tau_{ii} \circ s : \mathbb{H} \to \mathbb{H}$$

is the identity; thus the norm of its derivative, given by Ahlfors' formula as

$$\|D(\tau_{ii} \circ s)(\nu)\| = \left|\int_Y \omega_i^2 \nu\right| / \int_Y |\omega_i|^2 ,$$

is one. It follows that $\nu = \overline{\omega}_i/\omega_i$ up to a complex scalar of modulus one, and thus Ds(v) is tangent to the complex geodesic generated by (Y, ω_i) . Equivalently, $s(\mathbb{H})$ is everywhere tangent to the foliation \mathcal{F}_i ; therefore its image is the unique leaf through Y.

6 Genus two

We can now obtain results on Hilbert modular surfaces by specializing to the case of genus two. In this section we will show:

Theorem 6.1 There is a unique holomorphic section of τ_1 passing through any given point of $\mathbb{H} \times \mathbb{H} - \widetilde{X}_D(1)$.

Here $\tau_1 : \mathbb{H} \times \mathbb{H} \to \mathbb{H}$ is simply projection onto the first factor. This result is a restatement of Theorem 1.2; as in §1, we assume $D \ge 4$.

Framings for real multiplication. Let g = 2, and choose a symplectic isomorphism

$$L = H_1(Z_g, \mathbb{Z}) \cong \mathcal{O}_D \oplus \mathcal{O}_D^{\vee}.$$

We then have an action of \mathcal{O}_D on $H_1(Z_g, \mathbb{Z})$, and the elements $\{a, b\} = \{(1,0), (0,1)\}$ in L give a distinguished basis for

$$H_1(Z_g,\mathbb{Q})=L\otimes\mathbb{Q}\cong K^2$$

as a vector space over $K = \mathcal{O}_D \otimes \mathbb{Q}$. Using the two Galois conjugate embeddings $K \to \mathbb{R}$, we obtain an orthogonal splitting

$$H_1(Z_g,\mathbb{R}) = L \otimes \mathbb{R} = V_1 \oplus V_2$$

such that $k \cdot (C_1, C_2) = (kC_1, k'C_2)$. The projections (a_i, b_i) of $a, b \in L$ to each summand yield bases for V_i , which taken together give a standard symplectic basis for $H_1(Z_g, \mathbb{R})$. (Note that (a_i, b_i) is generally *not* an integral sympletic basis; indeed, when K is a field, the elements (a_i, b_i) do not even lie in $H_1(Z_g, \mathbb{Q})$.)

Let $S_i^D \subset H^1(Z_g, \mathbb{R})$ be the span of the dual basis a_i^*, b_i^* .

Theorem 6.2 The ring $\mathcal{O}_D \subset \operatorname{End}(L)$ acts by real multiplication on $\operatorname{Jac}(Y)$ if and only if $Y \in \mathcal{T}_g(S_1^D)$.

Proof. Since g = 2 we have $S_2^D = (S_1^D)^{\perp}$, and thus $\mathcal{T}_g(S_1^D) = \mathcal{T}_g(S_2^D)$. But Jac(Y) has real multiplication iff S_1^D and S_2^D are complex subspaces of $H^1(Y, \mathbb{R}) \cong \Omega(Y)$ so the result follows. (Cf. [Mc4, Lemma 7.4].) Sections. Let $E_D = X_D - X_D(1)$ denote the space of Jacobians in X_D , and $\tilde{E}_D = \mathbb{H} \times \mathbb{H} - \tilde{X}_D(1)$ its preimage in the universal cover. (The notation comes from [Mc7, §4], where we consider the space of eigenforms ΩE_D as a closed, $\mathrm{GL}_2^+(\mathbb{R})$ -invariant subset of $\Omega \mathcal{M}_g$.)

By the preceding result, the Jacobian of any $Y \in \mathcal{T}_g(S_1^D)$ is an Abelian variety with real multiplication. Moreover, the marking of Y determines a marking

$$L \cong H_1(Y, \mathbb{Z}) \cong H_1(\operatorname{Jac}(Y), \mathbb{Z})$$

of its Jacobian, and thus a map

$$\operatorname{Jac}: \mathcal{T}_g(S_1^D) \to \widetilde{E}_D = \widetilde{X}_D - \widetilde{X}_D(1).$$

The basis (a_i, b_i) yields a pair of normalized forms $\omega_1, \omega_2 \in \Omega(Y)$. Similarly, we have a pair of normalized eigenforms $\eta_1, \eta_2 \in \Omega(A_\tau)$ for each $\tau \in \tilde{X}_D$, characterized by (3.2). Under the identification $\Omega(Y) = \Omega(\operatorname{Jac}(Y))$, we find:

Theorem 6.3 The forms ω_i and η_i are equal for any $Y \in \mathcal{T}_g(S_1^D)$. Thus $\operatorname{Jac}(Y) = A_{(\tau_1, \tau_2)}$, where

$$\begin{pmatrix} \tau_1 & 0\\ 0 & \tau_2 \end{pmatrix} = \tau_{ij}(Y) = \left(\int_{b_i} \omega_j\right).$$
(6.1)

Proof. The period map $\phi_{\tau}: L \to \mathbb{C}^2$ for $A_{\tau} = \operatorname{Jac}(Y)$ is given by

$$\phi_{\tau}(C) = \left(\int_C \eta_1, \int_C \eta_2\right) = (x_1 + x_2\tau_1, x_1' + x_2'\tau_2),$$

where $C = (x_1, x_2) \in \mathcal{O}_D \oplus \mathcal{O}_D^{\vee}$; in particular, we have

$$\phi_{\tau}(a) = \phi_{\tau}(1,0) = (1,1).$$

Since ϕ_{τ} diagonalizes the action of K, we also have

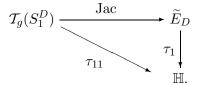
$$\phi_{\tau}(C) = \left(\int_{C_1} \eta_1, \int_{C_2} \eta_2\right)$$

for any $C = C_1 + C_2 \in L \otimes \mathbb{R} = V_1 \oplus V_2$. Setting C = a, this implies $\phi_{\tau}(a_1) = (1,0)$ and $\phi_{\tau}(a_2) = (0,1)$; thus $\int_{a_i} \eta_j = \delta_{ij}$, and therefore $\eta_i = \omega_i$ for i = 1, 2. Similarly, we have

$$\phi_{\tau}(b) = (\tau_1, \tau_2) = (\tau_{11}, \tau_{22}),$$

which implies Y and A_{τ} are related by (6.1).

Corollary 6.4 We have a commutative diagram



Proof of Theorem 6.1. Using the Torelli theorem, it follows easily that Jac : $\mathcal{T}_g(S_1^D) \to \widetilde{E}_D$ is a holomorphic covering map. Since \mathbb{H} is simply-connected, any section s of τ_1 lifts to a section $\operatorname{Jac}^{-1} \circ s$ of τ_{11} . Thus Theorem 5.1 immediately implies Theorem 6.1.

7 Holomorphic motions

In this section we use the theory of holomorphic motions to define and characterize the foliation \mathcal{F}_D .

Holomorphic motions. Given a set $E \subset \widehat{\mathbb{C}}$ and a basepoint $s \in \mathbb{H}$, a holomorphic motion of E over (\mathbb{H}, s) is a family of injective maps

$$F_t: E \to \widehat{\mathbb{C}}, \quad t \in \mathbb{H},$$

such that $F_s(z) = z$ and $F_t(z)$ is a holomorphic function of t.

A holomorphic motion of E has a unique extension to a holomorphic motion of its closure \overline{E} ; and each map $F_t : E \to \widehat{\mathbb{C}}$ extends to a quasiconformal homeomorphism of the sphere. In particular, $F_t | \operatorname{int}(E)$ is quasiconformal (see e.g. [Dou]).

These properties imply:

Theorem 7.1 Let P be a partition of $\mathbb{H} \times \mathbb{H}$ into disjoint graphs of holomorphic functions. Then:

- 2. If we adjoin the graphs of the constant functions $f : \mathbb{H} \to \partial \mathbb{H}$ to P, we obtain a continuous foliation of $\mathbb{H} \times \overline{\mathbb{H}}$.

The foliation \mathcal{F}_D . Recall that every component of $\widetilde{X}_D(1) \subset \mathbb{H} \times \mathbb{H}$ is the graph of a Möbius transformation. By Theorem 6.1, there is a unique partition of $\mathbb{H} \times \mathbb{H} - \widetilde{X}_D(1)$ into the graphs of holomorphic maps as well.

Taken together, these graphs form the leaves of a foliation $\widetilde{\mathcal{F}}_D$ of $\mathbb{H} \times \mathbb{H}$ by the preceding result. Since $\widetilde{X}_D(1)$ is invariant under $\mathrm{SL}(\mathcal{O}_D \oplus \mathcal{O}_D^{\vee})$, the foliation $\widetilde{\mathcal{F}}_D$ descends to a foliation \mathcal{F}_D of X_D .

To characterize \mathcal{F}_D , recall that the surface X_D admits a holomorphic involution $\iota(\tau_1, \tau_2) = (\tau_2, \tau_1)$ which preserves $X_D(1)$.

Theorem 7.2 The only leaves shared by \mathcal{F}_D and $\iota(\mathcal{F}_D)$ are the curves in $X_D(1)$.

Proof. Let $f : \mathbb{H} \to \mathbb{H}$ be a holomorphic function whose graph F is both a leaf of $\widetilde{\mathcal{F}}_D$ and $\iota(\widetilde{\mathcal{F}}_D)$. Then $\iota(F)$ is also a graph, so f is an isometry. But if $F \cap \widetilde{X}_D(1) = \emptyset$, then F lifts to a leaf of the foliation \mathcal{F}_1 of Teichmüller space, and hence f is a contraction by [Mc4, Thm. 4.2].

Corollary 7.3 The only leaves of $\widetilde{\mathcal{F}}_D$ that are graphs of Möbius transformations are those belonging to $\widetilde{X}_D(1)$.

Complex geodesics. Let us say \mathcal{F} is a foliation by *complex geodesics* if each leaf is a hyperbolic Riemann surface, isometrically immersed for the Kobayashi metric. We can then characterize \mathcal{F}_D as follows.

Theorem 7.4 Up to the action of ι , \mathcal{F}_D is the unique extension of the lamination $X_D(1)$ to a foliation of X_D by complex geodesics.

Proof. Let \mathcal{F} be a foliation by complex geodesics extending $X_D(1)$. Then every leaf of its lift $\tilde{\mathcal{F}}$ to \tilde{X}_D is a Kobayashi geodesic for $\mathbb{H} \times \mathbb{H}$. But a complex geodesic in $\mathbb{H} \times \mathbb{H}$ is either the graph of a holomorphic function or its inverse, so every leaf belongs to either $\tilde{\mathcal{F}}_D$ or $\iota(\tilde{\mathcal{F}}_D)$. Consequently every leaf of \mathcal{F} is a leaf of \mathcal{F}_D or $\iota(\mathcal{F}_D)$. Since these foliations have no leaves in common on the open set $U = X_D - X_D(1)$, \mathcal{F} coincides with one or the other.

Stable curves. The Abelian varieties $E \times F$ in $X_D(1)$ are the Jacobians of certain *stable curves* with real multiplication, namely the nodal curves $Y = E \vee F$ obtained by gluing E to F at a single point. If we adjoin these stable curves to \mathcal{M}_2 , we obtain a partial compactification \mathcal{M}_2^* which maps isomorphically to \mathcal{A}_2 . The locus $X_D(1)$ can then be regarded as the projection to X_D of a finite set of $\operatorname{GL}_2^+(\mathbb{R})$ orbits in $\Omega \mathcal{M}_2^*$, giving another proof that it is a lamination.

8 Quasiconformal dynamics

In this section we use the relative period map $\rho = \int_{y_1}^{y_2} \eta_1$ to define a meromorphic quadratic differential $q = (d\rho)^2$ transverse to \mathcal{F}_D . We then show the transverse dynamics of \mathcal{F}_D is given by Teichmüller mappings relative to q.

Absolute periods. The level sets of τ_1 form the leaves of a holomorphic foliation $\widetilde{\mathcal{A}}_D$ on $\mathbb{H} \times \mathbb{H}$ which covers foliation \mathcal{A}_D of X_D . By (3.2), every $\tau = (\tau_1, \tau_2)$ determines a pair of eigenforms $\eta_1, \eta_2 \in \Omega(A_\tau)$ such that the *absolute periods*

$$\int_C \eta_1, \quad C \in H_1(A_\tau, \mathbb{Z})$$

are constant along the leaves of $\widetilde{\mathcal{A}}_D$. Since every leaf of $\widetilde{\mathcal{F}}_D$ is the graph of a function $f : \mathbb{H} \to \mathbb{H}$, we have:

Theorem 8.1 The foliation \mathcal{A}_D is transverse to \mathcal{F}_D .

The Weierstrass curve. Recall that $E_D \subset X_D$ denotes the locus of Jacobians with real multiplication by \mathcal{O}_D . For $[A_\tau] = \operatorname{Jac}(Y) \in E_D$ we can regard the eigenforms η_1, η_2 as holomorphic 1-forms in $\Omega(Y) \cong \Omega(A_\tau)$.

Let $W_D \subset E_D$ denote the locus where η_1 has a double zero on Y. By [Mc5] we have:

Theorem 8.2 The locus W_D is an algebraic curve with one or two irreducible components, each of which is a leaf of \mathcal{F}_D .

We refer to W_D as the Weierstrass curve, since η_1 vanishes at a Weierstrass point of Y.

Relative periods. Let $E_D(1,1) = X_D - (W_D \cup X_D(1))$ denote the Zariski open set where η_1 has a pair of simple zeros, and let $\tilde{E}_D(1,1)$ be its preimage in the universal cover \tilde{X}_D . Let

$$\mathbb{H}_s = \{s\} \times \mathbb{H} \subset \mathbb{H} \times \mathbb{H},$$

and let $\mathbb{H}_s^* = \mathbb{H}_s \cap \widetilde{E}_D(1, 1)$.

For each $\tau \in \mathbb{H}_s^*$, let y_1, y_2 denote the zeros of the associated form $\eta_1 \in \Omega(Y)$. We can then define the (multivalued) relative period map $\rho_s : \mathbb{H}_s^* \to \mathbb{C}$ by

$$\rho_s(\tau) = \int_{y_1}^{y_2} \eta_1.$$

To make $\rho_s(\tau)$ single-valued, we must (locally) choose (i) an ordering of the zeros y_1 and y_2 , and (ii) a path on Y connecting them.

Quadratic differentials. Let z be a local coordinate on \mathbb{H}_s , and recall that the absolute periods of η_1 are constant along \mathbb{H}_s . Thus if we change the choice of path from y_1 to y_2 , the derivative $d\rho/dz$ remains the same; and if we interchange y_1 and y_2 , it changes only by sign. Thus the quadratic differential

$$q = (d\rho/dz)^2 \, dz^2$$

is globally well-defined on \mathbb{H}_{s}^{*} .

Theorem 8.3 The form q extends to a meromorphic quadratic differential on \mathbb{H}_s , with simple zeros where \mathbb{H}_s meets \widetilde{W}_D , and simple poles where it meets $\widetilde{X}_D(1)$.

Proof. It is a general result that the period map provides holomorphic local coordinates on any stratum of $\Omega \mathcal{M}_g$ (see [V2], [MS, Lemma 1.1], [KZ]). Thus $\rho_s |\mathbb{H}_s^*$ is holomorphic with $d\rho_s \neq 0$, and hence $q |\mathbb{H}_s^*$ is a nowhere vanishing holomorphic quadratic differential.

To see q acquires a simple zero when η_1 acquires a double zero, note that the relative period map

$$\rho(t) = \int_{-\sqrt{t}}^{\sqrt{t}} (z^2 - t) \, dz = (-4/3)t^{3/2}$$

of the local model $\eta_t = (z^2 - t) dz$ satisfies $(d\rho/dt)^2 = 4t$. Similarly, a point of $\mathbb{H}_s \cap \widetilde{X}_D(1)$ is locally modeled by the family of connected sums

$$(Y_t, \eta_t) = (E_1, \omega_1) \#_I(E_2, \omega_2),$$

with $I = [0, \rho(t)] = [0, \pm \sqrt{t}]$. Since $(d\rho/dt)^2 = 1/(4t)$, at these points q has simple poles.

See $[Mc7, \S6]$ for more on connected sums.

Teichmüller maps. Now let $f : \mathbb{H}_s \to \mathbb{H}_t$ be a quasiconformal map. We say f is a *Teichmüller map*, relative to a holomorphic quadratic differential q, if its complex dilatation satisfies

$$\mu(f) = \left(\frac{\partial f/\partial \overline{z}}{\partial f/\partial z}\right) \frac{d\overline{z}}{dz} = \alpha \frac{\overline{q}}{|q|}$$

for some $\alpha \in \mathbb{C}^*$. This is equivalent to the condition that w = f(z) is real-linear in local coordinates where $q = dz^2$ and dw^2 respectively. In such charts we can write

$$w = w_0 + D_q(f) \cdot z,$$

with $D_q(f) \in SL_2(\mathbb{R})$. We refer to $D_q(f)$ as the *linear part* of f; it is only well-defined up to sign, since $z \mapsto -z$ preserves dz^2 .

Theorem 8.4 Given $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(\mathcal{O}_D \oplus \mathcal{O}_D^{\vee})$ and $s \in \mathbb{H}$, let $\mathbb{H}_t = g(\mathbb{H}_s)$. Then the linear part of $g : \mathbb{H}_s \to \mathbb{H}_t$ is given by $D_q(g) \cdot z = (d - cs)^{-1}z$.

Proof. Since the Riemann surfaces Y at corresponding points of \mathbb{H}_s and \mathbb{H}_t differ only by marking, the relative period maps ρ_s and ρ_t differ only by the normalization of η_1 . This discrepancy is accounted for by equation (3.4), which gives $\rho_t/\rho_s = \chi(g,s) = (d-cs)^{-1}$. Since the coordinates ρ_s and ρ_t linearize q, the map $D_q(g)$ is given by multiplication by $(d-cs)^{-1}$.

Now let $C_{st} : \mathbb{H}_s \to \mathbb{H}_t$ be the unique map such that z and $C_{st}(z)$ lie on the same leaf of $\widetilde{\mathcal{F}}_D$.

Theorem 8.5 The linear part of C_{st} is given by $D_q(C_{st}) = A_t A_s^{-1}$, where $A_u = \begin{pmatrix} 1 \operatorname{Re}(u) \\ 0 \operatorname{Im}(u) \end{pmatrix} \in \operatorname{PSL}_2(\mathbb{R}).$

Proof. By the definition of \mathcal{F}_D , the forms η_1 at corresponding points of \mathbb{H}_s^* and \mathbb{H}_t^* are related by some element $B \in \mathrm{GL}_2^+(\mathbb{R})$ acting on $\Omega \mathcal{T}_g$. Thus $\rho_t = B \circ \rho_s$ and therefore $D_q(C_{st}) = B$. Since the action of B on the absolute periods of η_1 satisfies

$$B(\mathcal{O}_D \oplus \mathcal{O}_D^{\vee} s) = \mathcal{O}_D \oplus \mathcal{O}_D^{\vee} t$$

(in the sense of equation (3.1)), we have B(1) = 1 and B(s) = t, and thus $B = A_t A_s^{-1}$ as above.

Dynamics. Every leaf of \mathcal{F}_D meets the transversal \mathbb{H}_s in a single point. Thus the action of $g \in \mathrm{SL}(\mathcal{O}_D \oplus \mathcal{O}_D^{\vee})$ on the space of leaves determines a holonomy map

$$\phi_q: \mathbb{H}_s \to \mathbb{H}_s$$

characterized by the property that $(s, \phi_g(z))$ lies on the same leaf as g(s, z).

Theorem 8.6 The group $SL(\mathcal{O}_D \oplus \mathcal{O}_D^{\vee})$ acts on \mathbb{H}_s by Teichmüller mappings, satisfying $D_q(\phi_g) = g$ in the case s = i.

(As usual we regard g as a real matrix using $\iota_1 : K \to \mathbb{R}$.)

Proof. Let $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, and t = (as - b)/(-cs + d); then $\mathbb{H}_t = g(\mathbb{H}_s)$.

Since $\phi_g(z)$ is obtained from g(s, z) by combing it along the leaves of $\widetilde{\mathcal{F}}_D$ back into \mathbb{H}_s , we have $\phi_g(s, z) = C_{ts}(g(s, z))$. Thus the chain rule implies

$$D_q(\phi_g) \cdot z = B \cdot z = A_s \circ A_t^{-1}(z/(-cs+d)).$$

Now assume s = i. Then we have $B(ai - b) = A_t^{-1}(t) = i$ and $B(-ci + d) = A_t^{-1}(1) = 1$; therefore $B^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ and thus $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = g$.

Corollary 8.7 The foliation \mathcal{F}_D carries a natural transverse invariant measure.

Proof. Since det $D_q(\phi_g) = 1$ for all g, the form |q| gives a holonomy-invariant measure on the transversal \mathbb{H}_s .

Finally we show that, although $\phi_g | \mathbb{H}_s$ is quasiconformal, its continuous extension to $\partial \mathbb{H}_s$ is a Möbius transformation.

Theorem 8.8 For any $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(\mathcal{O}_D \oplus \mathcal{O}_D^{\vee})$ and $z \in \partial \mathbb{H}_s$, we have

$$\phi_q(z) = (a'z - b')/(-c'z + d').$$

Proof. By Theorem 7.1, the combing maps C_{st} extend to the identity on $\partial \mathbb{H}_s$. Thus $(t, \phi_g(z)) = g(s, z)$, and the result follows from equation (3.3).

Note: if we use the transversal \mathbb{H}_t instead of \mathbb{H}_s , the holonomy simply changes by conjugation by C_{st} .

9 Further results

In this section we summarize related results on the density of leaves, isoperiodic forms, holomorphic motions and iterated rational maps.

I. Density of leaves. By [Mc7], the closure of the complex geodesic $f : \mathbb{H} \to \mathcal{M}_2$ generated by a holomorphic 1-form is either an algebraic curve, a Hilbert modular surface or the whole moduli space. Since the leaves of \mathcal{F}_D are examples of such complex geodesics, we obtain:

Theorem 9.1 Every leaf of \mathcal{F}_D is either a closed algebraic curve, or a dense subset of X_D .

It is easy to see that the union of the closed leaves is dense when $D = d^2$. On the other hand, the classification of Teichmüller curves in [Mc5] and [Mc6] implies:

Theorem 9.2 If D is not a square, then \mathcal{F}_D has only finitely many closed leaves. These consist of the components of $W_D \cup X_D(1)$ and, when D = 5, the Teichmüller curve generated by the regular decagon.

II. Isoperiodic forms. Next we discuss interactions between the foliations \mathcal{F}_D and \mathcal{A}_D . When $D = d^2$ is a square, the surface X_D is finitely covered by a product, and hence every leaf of \mathcal{A}_D is closed.

Theorem 9.3 If D is not a square, then every leaf L of \mathcal{A}_D is dense in X_D , and $L \cap F$ is dense in F for every leaf F of \mathcal{F}_D .

Proof. The first result follows from the fact that $\operatorname{SL}(\mathcal{O}_D \oplus \mathcal{O}_D^{\vee})$ is a dense subgroup of $\operatorname{SL}_2(\mathbb{R})$, and the second follows from the first by transversality of \mathcal{A}_D and \mathcal{F}_D .

Let us say a pair of 1-forms $(Y_i, \omega_i) \in \Omega \mathcal{M}_g$ are *isoperiodic* if there is a symplectic isomorphism

$$\phi: H_1(Y_1, \mathbb{Z}) \to H_1(Y_2, \mathbb{Z})$$

such that the period maps

$$I(\omega_i): H_1(Y_i, \mathbb{Z}) \to \mathbb{C}$$

satisfy $I(\omega_1) = I(\omega_2) \circ \phi$. Since the absolute periods of η_1 are constant along the leaves of \mathcal{A}_D , from the preceding result we obtain:

Corollary 9.4 The $SL_2(\mathbb{R})$ -orbit of any eigenform for real multiplication by \mathcal{O}_D , $D \neq d^2$, contains infinitely many isoperiodic forms.

For a concrete example, let $Q \subset \mathbb{C}$ be a regular octagon containing [0, 1] as an edge. Identifying opposite sides of Q, we obtain the *octagonal form*

$$(Y,\omega) = (Q,dz)/\sim$$

of genus two.

Let $\mathbb{Z}[\zeta] \subset \mathbb{C}$ denote the ring generated by $\zeta = (1+i)/\sqrt{2} = \exp(2\pi i/8)$, equipped with the symplectic form

$$\langle z_1, z_2 \rangle = \operatorname{Tr}_{\mathbb{Q}}^{\mathbb{Q}(\zeta)}((\zeta + \zeta^2 + \zeta^3)z_1\overline{z}_2/4).$$

Then it is easy to check that:

- 1. The octagonal form ω has a single zero of order 2, and
- 2. Its period map $I(\omega)$ sends $H_1(Y,\mathbb{Z})$ to $\mathbb{Z}[\zeta]$ by a symplectic isomorphism.

However, these two properties do *not* determine (Y, ω) uniquely. Indeed, ω is an eigenform for real multiplication by \mathcal{O}_8 , so the preceding Corollary ensures there are infinitely many isoperiodic forms (Y_i, ω_i) in its $SL_2(\mathbb{R})$ orbit. In other words we have:

Corollary 9.5 There are infinite many fake octagonal forms in $\Omega \mathcal{M}_2$.

Note that the forms (Y_i, ω_i) cannot be distinguished by their relative periods either, since they all have double zeros.

A similar statement can be formulated for the pentagonal form on the curve $y^2 = x^5 - 1$.

III. Top-speed motions. Let $F_t : E \to \mathbb{H}$ be a holomorphic motion of $E \subset \mathbb{H}$ over (\mathbb{H}, s) . By the Schwarz lemma, we have $||dF_t(z)/dt|| \leq 1$ with respect to the hyperbolic metric on \mathbb{H} . Let us say F_t is a *top-speed* holomorphic motion if equality holds everywhere; equivalently, if $t \mapsto F_t(z)$ is an isometry of \mathbb{H} for every $z \in E$.

A top-speed holomorphic motion is *maximal* if it cannot be extended to a top-speed motion of a larger set $E' \supset E$.

Theorem 9.6 For any discriminant $D \ge 4$, the map

$$F_t(U(s)) = U(t), \quad U \in \Lambda_D$$

gives a maximal top-speed holomorphic motion of $E = \Lambda_D \cdot s$ over (\mathbb{H}, s) .

Proof. Let $t \mapsto f(t) = F_t(z)$ be an extension of the motion to a point $z \notin E$. Then the graph of f is a leaf of $\tilde{\mathcal{F}}_D$, since it is disjoint from $\tilde{X}_D(1)$. But the only leaves that are graphs of Möbius transformations are those in $\tilde{X}_D(1)$, by Corollary 7.3.

Corollary 9.7 The group $\Gamma(2) = \{A \in SL_2(\mathbb{Z}) : A \equiv I \mod 2\}$ gives a maximal top-speed holomorphic motion of $E = \Gamma(2) \cdot s$ over (\mathbb{H}, s) .

Proof. We have
$$\Gamma(2) = g\Lambda_4 g^{-1}$$
, where $g = \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix}$ (Theorem 4.4).

IV. Iterated rational maps. Finally we explain how the foliation \mathcal{F}_4 of X_4 arises in complex dynamics.

First recall that the moduli space of elliptic curves can be described as the quotient orbifold $\mathcal{M}_1 = \widetilde{\mathcal{M}}_1/S_3$, where

$$\widetilde{\mathcal{M}}_1 = \mathbb{H}/\Gamma(2) \cong \mathbb{C} - \{0, 1\}.$$

The deck group S_3 also acts diagonally on $\widetilde{\mathcal{M}}_1 \times \widetilde{\mathcal{M}}_1$, preserving the diagonal Δ .

Theorem 9.8 For D = 4, we have $(X_D, X_D(1)) \cong (\widetilde{\mathcal{M}}_1 \times \widetilde{\mathcal{M}}_1, \Delta)/S_3$.

Proof. Since $\mathcal{O}_4^{\vee} = (1/2) \mathcal{O}_4$, the surface X_4 is isomorphic to $(\mathbb{H} \times \mathbb{H}) / \operatorname{SL}_2(\mathcal{O}_4)$. In these coordinates we have $\Lambda_4 = \Gamma(2)$. Since

$$\operatorname{SL}_2(\mathcal{O}_4) \cong \{ (A_1, A_2) \in \operatorname{SL}_2(\mathbb{Z}) : A_1 \equiv A_2 \operatorname{mod} 2 \}$$

contains $\Gamma(2) \times \Gamma(2)$ as a subgroup of index 6, the result follows.

Now consider, for each $t \in \widetilde{\mathcal{M}}_1$, the elliptic curve E_t defined by $y^2 = x(x-1)(x-t)$. There is a unique rational map $f_t : \mathbb{P}^1 \to \mathbb{P}^1$ such that

$$x(2P) = f_t(x(P))$$

with respect to the usual group law on E_t . Indeed, using the fact that -2P lies on the tangent line to E_t at P, we find

$$f_t(z) = \frac{(z^2 - t)^2}{4z(z - 1)(z - t)}$$

Note that the *postcritical set*

$$P(f_t) = \bigcup \{ f_t^n(z) : n > 0, f_t'(z) = 0 \}$$

coincides with the branch locus $\{0, 1, t, \infty\}$ of the map $x : E_t \to \mathbb{P}^1$.

The rational maps $f_t(z)$ form a stable family of Lattès examples. It is well-known that the Julia set of any Lattès example is the whole Riemann sphere; and that in any stable family, the Julia set varies by a holomorphic motion respecting the dynamics (see e.g. [MSS], [Mc1, Ch. 4], [Mil].) **Theorem 9.9** As t varies in $\widetilde{\mathcal{M}}_1$, the holomorphic motion of $J(f_t)$ sweeps out the lift of the foliation \mathcal{F}_4 to the covering space $\widetilde{\mathcal{M}}_1 \times \widetilde{\mathcal{M}}_1$ of X_4 .

Proof. Let \mathcal{G} be the foliation of $\widetilde{\mathcal{M}}_1 \times \mathbb{P}^1$ swept out by $J(f_t)$. Since the holomorphic motion respects the dynamics, it preserves the post-critical set, and thus the leaves of \mathcal{G} include the loci $z = 0, 1, \infty$ as well as the diagonal t = z. In particular, \mathcal{G} restricts to a foliation of the finite cover $\widetilde{\mathcal{M}}_1 \times \widetilde{\mathcal{M}}_1 - \Delta$ of $X_4 - X_4(1)$. Since each leaf of \mathcal{G} lifts to the graph of a holomorphic function in the universal cover $\mathbb{H} \times \mathbb{H}$, it lies over a leaf of \mathcal{F}_D by the uniqueness part of Theorem 1.2.

Algebraic curves. The loci $f_t^n(z) = \infty$ form a dense set of algebraic leaves of \mathcal{G} that can easily be computed inductively. The real points of these curves are graphed in Figure 1; thus the figure depicts the lift of \mathcal{F}_4 to the finite cover $\widetilde{\mathcal{M}}_1 \times \widetilde{\mathcal{M}}_1$ of X_4 .

References

- [Ah] L. Ahlfors. The complex analytic structure of the space of closed Riemann surfaces. In Analytic Functions, pages 45–66. Princeton Univ. Press, 1960.
- [BR] L. Bers and H. L. Royden. Holomorphic families of injections. Acta Math. 157(1986), 259–286.
- [BL] C. Birkenhake and H. Lange. Complex Abelian Varieties. Springer-Verlag, 1992.
- [Br1] M. Brunella. Feuilletages holomorphes sur les surfaces complexes compactes. Ann. Sci. École Norm. Sup. 30(1997), 569–594.
- [Br2] M. Brunella. Subharmonic variation of the leafwise Poincaré metric. Invent. math. 152(2003), 119–148.
- [Dou] A. Douady. Prolongement de mouvements holomorphes (d'après Słodkowski et autres). In Séminaire Bourbaki, 1993/94, pages 7– 20. Astérisque, vol. 227, 1995.
- [EKK] C. J. Earle, I. Kra, and S. L. Krushkal. Holomorphic motions and Teichmüller spaces. Trans. Amer. Math. Soc. 343(1994), 927–948.

- [Gd] F. Gardiner. *Teichmüller Theory and Quadratic Differentials*. Wiley Interscience, 1987.
- [vG] G. van der Geer. *Hilbert Modular Surfaces*. Springer-Verlag, 1987.
- [GKZ] B. H. Gross, W. Kohnen, and D. Zagier. Heegner points and derivatives of L-series. Math. Ann. 278(1987), 497–562.
- [HH] W. F. Hammond and F. Hirzebruch. *L*-series, modular embeddings and signatures. *Math. Ann.* **204**(1973), 263–270.
- [Hir] F. Hirzebruch. Hilbert modular surfaces. Enseign. Math. 19(1973), 183–281.
- [HZ1] F. Hirzebruch and D. Zagier. Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. *Invent.* math. 36(1976), 57–113.
- [HZ2] F. Hirzebruch and D. Zagier. Classification of Hilbert modular surfaces. In *Complex Analysis and Algebraic Geometry*, pages 43–77. Cambridge University Press and Iwanami Shoten, 1977.
- [KZ] M. Kontsevich and A. Zorich. Connected components of the moduli spaces of Abelian differentials with prescribed singularities. *Invent.* math. 153(2003), 631–678.
- [MR] C. Maclachlan and A. W. Reid. The Arithmetic of Hyperbolic 3-Manifolds. Springer-Verlag, 2003.
- [MSS] R. Mañé, P. Sad, and D. Sullivan. On the dynamics of rational maps. Ann. Sci. Éc. Norm. Sup. 16(1983), 193–217.
- [Mn] W. R. Mann. Gross-Zagier revisited (Appendix). In Heegner Points and Rankin L-Series, volume 49 of Math. Sci. Res. Inst. Publ., pages 139–162. Cambridge Univ. Press, 2004.
- [MS] H. Masur and J. Smillie. Hausdorff dimension of sets of nonergodic measured foliations. Annals of Math. 134(1991), 455–543.
- [Mc1] C. McMullen. Complex Dynamics and Renormalization, volume 135 of Annals of Math. Studies. Princeton University Press, 1994.
- [Mc2] C. McMullen. The classification of conformal dynamical systems. In *Current Developments in Mathematics*, 1995, pages 323–360. International Press, 1995.

- [Mc3] C. McMullen. Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations. Ann. scient. Éc. Norm. Sup. 33(2000), 519–560.
- [Mc4] C. McMullen. Billiards and Teichmüller curves on Hilbert modular surfaces. J. Amer. Math. Soc. 16(2003), 857–885.
- [Mc5] C. McMullen. Teichmüller curves in genus two: Discriminant and spin. Math. Ann. 333(2005), 87–130.
- [Mc6] C. McMullen. Teichmüller curves in genus two: Torsion divisors and ratios of sines. *Invent. math.* **165**(2006), 651–672.
- [Mc7] C. McMullen. Dynamics of $SL_2(\mathbf{R})$ over moduli space in genus two. Annals of Math., To appear.
- [McS] C. McMullen and D. Sullivan. Quasiconformal homeomorphisms and dynamics III: The Teichmüller space of a holomorphic dynamical system. Adv. Math. 135(1998), 351–395.
- [Mil] J. Milnor. On Lattès maps. In P. G. Hjorth and C. L. Petersen, editors, *Dynamics on the Riemann sphere*, pages 9–44. European Math. Soc., 2006.
- [Ru] B. Runge. Endomorphism rings of abelian surfaces and projective models of their moduli spaces. *Tôhoku Math. J.* 51(1999), 283–303.
- [Sl] Z. Słodkowski. Holomorphic motions and polynomial hulls. Proc. Amer. Math. Soc. 111(1991), 347–355.
- [Sul] D. Sullivan. Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups. Acta Math. 155(1985), 243–260.
- [V1] W. Veech. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. *Invent. math.* 97(1989), 553– 583.
- [V2] W. Veech. Moduli spaces of quadratic differentials. J. Analyse Math. 55(1990), 117–171.
- [Vi] M.-F. Vigneras. Arithmétique des algèbres de quaternions, volume 800 of Lectures Notes in Mathematics. Springer-Verlag, 1980.

Mathematics Department Harvard University 1 Oxford St Cambridge, MA 02138-2901