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PACS. 02.70 — Computational techniques.
PACS. 47.25C - Isotropic turbulence.
PACS. 92.10L - Turbulence, diffusion, and mixing.

Abstract. — A novel multigrid method for the accurate and efficient simulation of turbulent flows
is described and demonstrated. The method’s efficiency relative to direet simulations is of the
order of the ratio of required integration time to the smallest-eddy turnover time, potentially
resulting in orders-of-magnitude improvement for a large class of turbulence problems.

The numerical simulation of high-Reynolds-number (Ze) turbulent flows poses a major
challenge because of the large number of degrees of freedom characterizing such flows.
Numerical simulations of such flows are divided into direct simulations (DS), in which all
scales are resolved, and large eddy simulations (LES), in which only the largest turbulent
scales are explicitly simulated, with smaller scales modelled by some closure scheme. While
DS are more accurate, they are still limited at present to Re that are significantly lower than
what occurs in natural flows for both 2D and 3D turbulence studies [1]. LES, on the other
hand, can be used at much higher Re, but their accuracy, of course, depends on the quality of
the closure scheme used. Yet, even LES still require prohibitively large computational
resources when applied to natural flows, while their accuracy is often not satisfactory [2].
Clearly a novel algorithm for the simulation of turbulent flows is badly needed.

We propose here a novel method for the simulation of turbulent flows, that is motivated by
and based on the powerful multigrid (MG) formalism [3]. The method, called «Multilevel
Turbulence Simulations» (MTS), is potentially more efficient and more accurate than
LES.

Physical basis of the mathematical algorithm. — In many physical problems one is
interested in the effects of the small scales on the larger ones, or in a typical realization of the
flow, and not in the detailed time history of each small-scale feature. MTS take advantage of
the fact that the detailed simulation of small scales is not needed at all times, in order to make
the calculation significantly more efficient, while accurately accounting for the effects of the
small scales on the larger scale of interest.



240 ) EUROPHYSICS LETTERS

In MTS, models of several resolutions (i.e. number of grid points or Fourier components)
are used to represent the turbulent flow. The coarsest grid is referred to as the lowest MG
level, and the finest grid is the highest MG level. The model equations in each coarse level
incorporate a closure term (roughly corresponding to the «t correction» in the MG
formalism [3]) that accounts for the effects of the unresolvable scales on that grid. The finer-
resolution grids are used only for a small portion of the simulation time in order to evaluate
the closure terms for the coarser grids, while the coarse-resolution grids are then used to
accurately and efficiently calculate the evolution of the larger scales. This clearly implies that
MTS should not be applied to problems where the precise location and time history of specific
small eddies are needed. Assuming that the resolution (per spatial dimension) of each MTS
level is half of that of the next finer level, a coarse grid is 16 times more efficient (for a 8D
model) in integrating the model for a given time than the next finer grid, so that the potential
saving achieved with several grids is significant, to say the least.

Expected saving. — Consider first a simple turbulence problem where there are two main
scales: small energy-containing eddies, and larger slowly evolving mean flows. In this case,
two grids will be used and we may regard a «work unit» in MTS as the work needed to
integrate the model on the finer level for a time of the order of the eddy turnover time. Now,
the integration time and, therefore, the work required in DS, are proportional to the time
scale of the slowly evolving mean flows, while MTS requires «a few work units» [3], i.e. work
of the order of the eddy turnover time. The saving is therefore of the order of the ratio of the
two times, which could be very significant for many turbulence problems. This restricts the
application of MTS to applications that require integrating the model to longer times than the
eddy turnover time, such as nearly all geophysical applications and most engineering
applications. In most turbulence problems there is a continuum of time and space scales, and
accordingly many grids will be used in MTS, with efficiency rapidly increasing with the
number of grids used.

An interesting related previous effort was carried out in [4], yet not actually following the
MG formalism, and concluding that no more than two grids can be used for this purpose. The
above discussion implies that, when applied to the right problem, MTS can be used with as
many grids as needed, with a significant saving resulting.

Detailed algorithm. — The MTS cycle, denoted MTS (k, y, n¥, n%), is schematically shown
in fig. 1 and is defined recursively following the FAS (Full Approximation Scheme) MG
algorithm [8]: @) Once at level k, integrate the turbulence model for a time n%, and compute a
closure scheme for the coarser level k — 1 (the t correction); b) transfer the model solution
(e.g., the velocity #*) at the end of the integration at level k to the coarser grid at level k — 1;
¢) make y MTS eycles at level k — 1 to update the solution at that level; d) return to the finer
level k. Correct the coarse part of the solution on level & with the updated coarse solution
obtained by integrating the model on the coarser level k — 1. The fine portion of the solution
on level k remains frozen there during the integration on coarser levels; finally ), integrate
the model on level & for a time n% to obtain the updated solution at level k.

The fine-to-coarse transfer from level k to level k — 1 can be done by simply setting the
wave number amplitudes on the coarse model to those of the corresponding wave numbers in
the fine-resolution model (using fast Fourier transform (FFT) in a finite-difference model).
The coarse-to-fine transfer of the coarse solution #* ! to level k can be similarly defined as
transferring the wave numbers represented on level k — 1 to level k, while not changing the
amplitudes of the high wave numbers represented on the finer level alone.

During the fine-to-coarse part of the cycle at MTS level k (steps a) and b) above), the
closure model for level k — 1 is caleulated in the manner described below. In addition, the
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Fig. 1. — Schematic plot of a multigrid cycle in MTS for y =1 (V-cycle), including the FMG
initialization. :

model is stepped in time to efficiently and accurately calculate the evolution of the scales
resolved at level k.

During the coarse-to-fine part of the cycle (steps d) and e) above), the model is run on level
k in order to allow the frozen smallest scales resolved on this grid to readjust to the updated
larger scales calculated on the previously visited coarser grid k — 1. This readjustment
requires an integration time roughly equal to the eddy turnover time for the smallest eddies
represented on level k. This minimum integration time on each grid had led [4] to state that
only two-level calculations of turbulent flows are feasible, although it is simply a
reassessment of the restriction of MTS to integrations that are significantly longer than the
eddy turnover time. The freezing of the fine scales between visits to the fine grids is justified
by the assumption that the averaged effect of these scales on the larger ones changes over a
slow time scale, typical of the large scales. It is sufficient, therefore, to update the small
scales only occasionally, once the larger scales have changed to a significant degree. The
updating interval depends, of course, on the time scale of the large-scale physics and of the
forcing and needs to be chosen very carefully for the results to be accurate. The frozen small
scales simply provide reasonable initial conditions that make it easy for these small scales to
reach statistical equilibrium with the larger scales during the fine-grid integration.

The 7 correction. — The correct representation of the unresolved subgrid scales at each
level by the t correction term is perhaps the most crucial part of the MTS algorithm. Trying
to simply integrate level & with fixed Reynolds stresses evaluated at level k + 1 led to
numerical instabilities in our numerical experiments. We therefore chose to tune the closure
scheme on a given coarse grid using the results of the next finer grid by requiring the
simulation on the coarse grid to be accurate. The meaning of «accuracy» here depends on the
physical problem and needs to be carefully defined and understood. Due to the inherent
unpredictability of turbulent flows, it is only possible to require the accuracy of statistical
quantities such as the total energy or enstrophy, as well as the energy or enstrophy spectrum
of the flow. When an averaged flow is present, it may be required to be the same on all
grids.

For the case of isotropic and homogeneous turbulence considered below as an example, we
can caleulate the optimal parameter(s) of a closure scheme for level k (e.g., an eddy viscosity,
v¥), that best represent the subgrid scales, by minimizing a cost function which is a measure
of the area between the time-averaged spectra of levels k and & + 1 on a log-log plot of energy



242 EUROPHYSICS LETTERS

spectrum vs. wave number
J(*) = Zllog (B*(q)) - log (E**1(¢))FF Alog q.

The angled brackets here denote a time averaging over a period Tx,, of the order of eddy
turnover time for the smallest eddies resolved on level k; A log g = log (¢ + 1) — log(g); and
the sum is over all wave numbers represented on both the k and k + 1 levels.

The averaged fine-grid spectrum, (E**1(q)), is calculated during the final stage of the
integration on level k + 1 during the fine-to-coarse part of the MTS cycle. (E k(q)) is
calculated by averaging over the same time as (E**!(g)) and starting from the same initial
conditions (as transferred to the coarse grid). Thus, there is a short overlap in the
integrations on the fine and coarse grids, used to calculate the t correction term. The closure
parameters are calculated by repeatedly running the coarse grid (k) with different values of
v¥, until an approximate minimum is reached. These iterations are quite inexpensive, as they
involve integrating only the coarse model for a relatively short time. In applying MTS to a
given problem, we can use the closure schemes judged best in relevant past LES studies,
with the additional advantage that the closure parameters are directly and continuously
calculated during the simulation using the results of the fine grids.

Spin-up using FMG initialization. — The initialization of a turbulence simulation to
statistical steady state (spin-up) can be rather expensive [2]. In MTS, the spin-up stage is
efficiently done using a Full Multigrid cycle (FMG) [3], as seen in fig. 1, by starting the model
integration at the coarsest level, and gradually refining the resolution following the usual MG
cycling rules.

Computational example. — As a simple, yet far from trivial, example that is intended as a
«proof of concept», rather than an application of MTS to a fully complex turbulence problem,
consider a model of two-dimensional homogeneous and isotropic turbulence, governed by the
2D vorticity equation that for level k takes the form

It =g+ T+ereR); =V,

where ¢* is the vorticity at level k, ¢* the stream function, & an energy dissipation term
acting as an energy sink at low wave numbers, & a random steering force at a limited
low-wave-number range, and G *(v*) the closure term representing the subgrid scales. Both
& and @ are well represented on the coarsest grid, with their wave number ranges and
amplitudes chosen such that no coherent structures develop (Kurtosis values are about 3 for
both ¢ and ¢), and the small scales may therefore be expected to be reasonably well
represented in terms of a simple closure scheme. For this 2D turbulence problem the closure
scheme is the anticipated-potential-vorticity method [5]; the cost function measures the
difference between enstrophy spectra on the fine and coarse grids; and vorticity is the
quantity transferred between the grids (using FFT as explained above). Three MG levels are
used: a 64 X 64 grid is level 1, a 128 x 128 grid is level 2, and a 256 x 256 grid is level 3. The
minimization used to calculate the closure parameters was stopped within 10% of the absolute
minimum, which typically required five iterations.

The usefulness of the MTS approach will now be demonstrated by showing that it is more
efficient than DS, and also accurate in the statistical sense defined above.

Consider two simulations beginning from zero initial conditions, one using a direct
simulation with a 256 X 256 resolution, and the other following the MTS approach. Figure 2
shows the MG level during the calculation (upper curve). The total enstrophy (middle two
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curves) and total kinetic energy (KE, lower two curves) are also shown for both the MTS
calculation (full curves) and the DS (dashed curves). The slow time scale in this problem is of
the forcing &, whose amplitude was proportional to (1 —exp[— t/15])exp [ — t/10], while
the eddy turnover time here is of the order of about 1/3. The MTS curve is thicker when
integration is on the finest level (level 3), where it should be compared to the DS using the
same resolution. Clearly, the MTS approach has done quite well in reproducing the DS
results. Note that the total enstrophy changes more than the total kinetic energy upon
transition between MG levels. That is simply because the enstrophy tends to be concentrated
in the small scales, and a smaller portion of it is therefore represented on the coarse grids
than for the energy which tends to be concentrated in the larger scales. Measuring the work
done in the numerical simulation as the number of time steps times the number of grid points,
MTS (including the calculation of the t correction) required less than 1/6 of the work
required by the DS in this case. This saving could be significantly larger for integrations in
which the ratio between the slow time scale and the eddy turnover time is larger.

The importance of the © correction is demonstrated in fig. 3, which shows the enstrophy
spectrum at time ¢ =5 for the DS (solid curve), for MTS with 7 correction (long-dashed
carve) and for MTS without the v correction (short-dashed curve). Clearly, the MTS
calculation with the = correction is a better approximation to the DS solution. The case shown
without the 7 correction is one with a seemingly reasonable, yet intentionally low, specified
value of the eddy viscosity. The fit of the MTS and DS spectra at the lowest wave numbers is
not as good as that at higher wave numbers for the following reason. The model is forced at
the low wave numbers by random forcing. The flow of KE to low wave numbers in 2D
turbulence results therefore in a strong dependence of the instantaneous lowest-
wave-number amplitudes on the detailed history of the random force. This history is
different, of course, for the DS and MTS simulations, hence the difference in fig. 3. This
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Fig. 2. - Comparing total enstrophy and kinetic energy of a two-dimensional turbulence model using
MTS and DS. See text for details.

Fig. 3. — Enstrophy spectra using DS, and MTS with and without 7 correction. See text for
details.
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should not be a problem in physical probiems with non-random large seale or when comparlng}
long-term-averaged spectra from DS and MTS.

Conclusions. — We have demonstrated that the Multilevel Turbulence Simulations
approach results in an efficient and accurate simulation in the specific problem examined.
While the success of this test problem cannot guarantee the success of the MTS approach
under more general circumstances, it does indicate very clearly that the method is at least
potentially a most useful tool for turbulence studies.

We can see three different situations in which MTS can be useful in turbulence
simulations. First, in accelerating the convergence of a high-resolution turbulence model to a
statistical steady state (fully developed turbulence). Second, in accurately and efficiently
integrating turbulence models in which the detailed history of the small scales is not of
interest. Finally, in accelerating the ecalculation of the statistics of a high-resolution
turbulence simulation by calculating the statistics on the finest MTS level and using MTS to
efficiently obtain different statistical regimes of the turbulent flow. Experience obtained in
completely different computational problems indicates that the multigrid algorithm [3] is a
most powerful tool from which turbulence studies may benefit as well. We hope the present
work will serve as the first step in this direction.

* ok ok

We are grateful to Dr. R. MILLIFF for his help during the development of the two-
dimensional turbulence model, and to Drs. J. MCWILLIAMS, A. BRANDT and 1. PrRocACCIA for
many useful discussions.

REFERENCES

[1] VINCENT A. and MENEGUZZI M., J. Fluid Mech., 225 (1991) 1; ZHEN-SU SHE, JACKSON E. and
OrszaG S. A., Nature, 344 (1990) 226; SANTANGELO P., BENZI R. and LEGRAS B., Phys. Fluids A, 1
(1987) 1027; McWiLLiams J. C., J. Fluid Mech., 146 (1984) 21.

{2] Bryan F. O. and HoLLanD W. R., in Parameterization of Small Scale Processes (Special
Publication of the Institute of Geophysics, University of Hawaii, 1989) p. 99; SEMTNER J. A. and
CHERVIN R. M. J., Geophys. Res., 93, C12, (1988) 15, 502, 522.

[3] BRANDT A, Multzgmd Techniques: 1984 guide, Monograph, GMD studie 85, GMD-FIT, Postfach
1240, D-5205, St. Augustin 1, Germany (1984).

[4] Voxe R. P., Technical report QMW EP-1082, Aeronautical Engineering, Queen Mary and
Westfield College (1990).

[5] SApoURNY R. and BaspEVANT C., J. Atmos. Sci., 42 (1985) 1353; VaLLis K. G. and Hua B. L., J.
Atmos. Sci., 45 (1988) 617.



