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ECONOMIC PROFITABILITY VERSUS ECOLOGICAL
ENTROPY*

MARTIN L. WEITZMAN

There is a long-standing trade-off in bioculture between concentrating on
high-yield varieties and maintaining sufficient diversity to lower the risks of
catastrophic infection. The paper uses a simple ecology-based model of endogenous
disease to indicate how a local decision to plant more of a widely grown crop creates
negative externalities by increasing the probability that new pathogens will evolve
to attack the crop globally. Society’s basic issue concerns where to locate on an
efficiency frontier between economic profitability and a standard formula for
ecological entropy—proved here to be a rigorous measure of ‘‘generalized resis-
tance’’ to crop-ecosystem failure.

INTRODUCTION

Privately, the most profitable human use of biological mass is
to concentrate intensively on the cultivation of a relatively few
high-yield crop varieties. But such widespread monoculture pat-
terns create large target hosts, effectively inviting new potentially
lethal pathogens to evolve.

The essence of this trade-off can be understood quite in-
tuitively. Whether in agriculture, aquaculture, horticulture, silva-
culture, vinoculture, dairy-culture, or any other biological culture,
high yields come from specialization to cultivating just a few
genetically uniform varieties of only a relatively small number of
domesticated species. But parasites—in the form of bacteria,
viruses, fungi, yeasts, protozoans, nematodes, insects, or others—
also come in species and strains. And these parasitic species and
strains themselves tend naturally to specialize, in this case to
specific hosts. The incredible specificity of most parasite-host
relationships is a well-known theme in biology. Other things being
equal (and speaking loosely), the more prevalent is the host, the
bigger is the size of the evolutionary dining-room area within
which the host-specific parasites have leeway to play with new
genetic combinations, or to experiment with the increased com-
parative advantage that comes from specializing to finer-grained
subniches within the host organism. An eventual proliferation of
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new parasitic species and strains, including pathogens, is the
ages-old natural outcome of selective pressures when the host
population is artificially increased.

In this analogy the total biomass of a genetically uniform host
is like an island in a sea of other biomass, and a ubiquitous finding
of ecology is that, other things being equal, the bigger the size of
an island the more species will be located there. Ecologists may
debate the ultimate theoretical origins of this rule, but there is
little question about its empirical validity. A positive species-area
relationship is arguably the most pervasive and the most robust
single stylized fact in all of biogeography. Every basic ecology
textbook prominently displays a number of scatter diagrams
showing that the log of species count is approximately linear in
the log of area—over a wide range of contexts and with many
different definitions of ‘‘area’’ including, for parasitic species, the
total (‘area’) occupied by the host. In the context of this paper it is
relevant to note that human-created cropping patterns also
constitute an ecosystem, even though the ecological interactions
that will be modeled here are restricted to having the same crop,
in different locations, being preyed upon by the same mutually
shared class of host-specific pathogen predators. Seen this way,
the paper is just pushing through to its logical conclusion an
ecological interpretation of the history of worldwide biocul-
ture—as representing a very large series of artificial experiments
in island biogeography, and therefore as being subject to the same
basic underlying rules and regularities as any other experiments
in ecology.

When the size of a host population is artificially changed, the
number of host-specific parasite species or strains may perhaps
remain quasi-fixed for a while at the previous equilibrium level.
Thus, in the short run there may appear to be no ‘‘disease penalty’’
for increasing the biomass target area of a cultivated crop.
But this is a temporary illusion. Given enough time, forces of
immigration and pressures of natural selection will operate
among parasite strains, much as Malthusian forces operate
within strains. In the long run the equilibrium number of different
pathogens cannot be taken as given, but must instead be viewed
as endogenously determined by the size of the host population
itself.

When humans artificially create or maintain genetically
homogeneous host-crop target areas, they are also creating or
maintaining breeding grounds with higher probabilities that
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potentially lethal pathogens will emerge, some of which, by the
laws of chance, could wipe out the very monocultures that
spawned or supported them. Thus, there is an inescapable
long-run trade-off between the gains of increased crop specializa-
tion and the increased risks of lethal infection. Furthermore, this
trade-off involves a ‘‘disease externality’’ that makes privately
optimal specialization patterns not be socially optimal. When a
farmer is deciding which crops to grow, he takes no account of the
effects of his local decisions on the global probabilities of crop-
ecosystem failures.

Decentralized decision-making farmers will take account of
some aspects of disease risks of crop failure on other plots—as well
as on their own. For example, an individual farmer will allow for
the fact that if one crop is wiped out by disease, then prices will be
higher for other crops. The problem here is not risk per se, nor
being unaware of what other farmers are doing, but the particular
negative-externality risk created by the individual farmer’s encour-
aging the development of more crop-specific parasites globally
whenever he decides locally to plant more of that crop. This
induced-disease risk represents a genuine externality because
there is no automatically self-correcting feedback mechanism,
since the individual farmer bears but a negligible fraction of the
total disease burden that he may be putting on others every time
he makes a cropping decision.

In this particular respect, farmers on their own restricted-
access private property behave more like fishermen with free
access to common property. For both situations the individual
calculates only the effect of his own decision on his own (expected)
yield, taking no account of the effects of his decision on the
(expected) yields of other fishermen or farmers. In what follows
throughout the paper, when I talk about ‘‘risk’’ or ‘‘externality’’ it is
this ‘‘disease-externality risk’’ I will have in mind. To clarify the
terminology and to focus the paper very sharply, there are no other
externalities in the model and all of the other kinds of risks are
embedded into the problem by just dealing with their expected
values.

The risk of catastrophic crop failure can be lowered by
undertaking various preventative or reactive measures, which, of
course, is what is done in practice all the time. But the risk can
almost never be totally eliminated by some scientific magic bullet,
real or imagined. In this spirit, and in such a complicated
actuality, I think an appropriate modeling strategy is to take the
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probability of failure as being extremely small, but not zero. That
is to say, a first-pass model aimed at the big picture might be
allowed, by a willing suspension of disbelief, to concentrate on a
reduced-form approximation where the probability of any one unit
succumbing is parametrically given by some positive epsilon.
After the relevant scientific measures have been undertaken, this
epsilon approaches zero, but yet never quite gets there. The goal of
the paper is to identify general principles of optimal behavior that
are robust when epsilon is a small but unknown positive number.
While the model treats such an epsilon as if exogenously given, I
believe that the basic insights would survive a more complete
treatment that might take into explicit account the costs of
reducing it.

Note that the cataclysmic collapse of a monoculture ecosys-
tem is not automatically a negligible event just because its
probability of occurrence may be an extremely small positive
number—since the consequences of this occurrence, which presum-
ably include widespread prolonged famine, must be envisaged as
an extremely large negative utility. Thus, the expected worst-case
welfare loss from worldwide crop specialization may actually
represent a very significant global externality, even though only
very small probabilities are involved.

My point of departure is the idea that humans may be so
stuck in the trenches, battling pathogen foes every day, that we
fail to stand back a sufficient distance to take full measure of the
fundamental character of this long-running war against nature,
in which we have been engaged, with accelerating intensity, since
neolithic times. Given enough expenditures of money and time,
we can usually defeat any one pathogen insurrection, or at least
make the probability of crop failure an acceptably small positive
number. But is this strategy of putting out fires as they arise a
good use of resources overall? Would it not be more prudent to
invest, so to speak, in less-flammable biomass proportions right
from the beginning? After all, in one way or another, reduced
probabilities of extinctions translate, ultimately, into cost savings
somewhere in the system.

The purpose of this paper is to analyze the properties of a
pervasive long-run relation between social externality risk and
private economic return, which arises naturally from applying
first principles of probability theory to the simplest possible model
of endogenously determined disease and extinction in genetically
uniform host populations. I will show, at a high level of abstrac-
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tion to be sure, that it is possible to give a concise conceptual
interpretation ‘‘as if ’’ in terms of a trade-off between net marginal
economic profitability, representing the private return, and ecologi-
cal entropy, standing as the relevant proxy for the social risk
externality.1 This very same net marginal economic profitability
can also be given a meaningful interpretation as representing the
socially ideal tax or subsidy on a crop, which corrects for the
negative or positive marginal contribution of that crop to overall
biodiversity.

It then turns out that these corrective taxes or marginal
economic profitabilities are related to the socially efficient bio-
mass proportions of the crop by a very simple mathematical
formula. This simple rule implies directly a strong rigorously
based sense in which, from a worldwide social perspective, it is
extremely desirable to maintain as insurance small but viable
samples of genetically diversified alternative crops, even though
they may be far less profitable than the monoculture-type cash
crops currently favored for their profitability. Some further impli-
cations and applications of this paper’s framework are also
discussed briefly.

ENTROPY AS GENERALIZED RESISTANCE TO ECOSYSTEM FAILURE

In this section I attempt to give a short explanation of the
main contribution of the paper to ecology per se. While this brief
description might be seen as somewhat of an aside for a ‘‘pure’’
economist reader, my own view is that economic and ecological
understandings of the meaning and use of entropy measures
complement each other considerably.

Suppose that a given ecosystem community consists of n
species. Let the relative biomass2 of species i (i 5 1,2, . . . , n) be

1. Remember, in the paper the disease-externality risk is simultaneously the
only externality and also the only source of uncertainty. Perhaps, therefore, it is
slightly more accurate to identify ‘‘net marginal economic profitability’’ as includ-
ing both the private and the social return (for ‘‘ordinary’’ externalities), but
excluding the extra cost associated with catastrophic crop failure, which is
captured by the (extra-ordinary) ‘‘social risk externality.’’

2. ‘‘Biomass’’ is a widely used measure of the total (usually dry) weight of
organic material associated with a crop. ‘‘Live biomass’’ refers to the part of the
organic material that is currently alive, like the inner bark of a tree, as opposed to
the ‘‘dead biomass’’ of the heartwood (or the living mussels, as opposed to the dead
mussel shells composing the reef). Of these two biomass measures, we use
whichever one is the more economically relevant in a given context.
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denoted qi, where qi $ 0 and

(1) o
i51

n

qi 5 1.

Perhaps the most widely used measure of community-level
biodiversity is the Boltzmann-Shannon entropy formula,

(2) H8 5 2o
i51

n

qi log qi.

The above formula can be defended on several plausible
grounds. Sometimes a series of informal arguments are made ‘‘by
analogy with’’ thermodynamics or information theory.3 More
typically, it is shown heuristically that actually using H8 as a
criterion gives intuitively desirable results in a number of hypo-
thetical and actual examples. However, the only rigorous justifica-
tion advanced in the ecology literature is that (2) represents the
unique functional form allowing consistent aggregation over
classification levels. While this is truly a desirable and an
important property for a biodiversity measure to possess, it is
perhaps even more important to be aware that the ‘‘ecological
entropy’’ formula as it currently stands has no direct ecological
interpretation.4

In this respect, economics is somewhat like ecology. The
entropy formula (2) is used in economics primarily for its conge-
nial analytical properties as a measure of inequality.5 But there is
no direct interpretation of H8 in terms of some underlying
economic process.

Coming at this issue of directly interpreting H8 from another
direction, conventional ecological wisdom traditionally holds that
more diverse communities are in some sense more stable. Yet, the

3. In statistical mechanics the probabilities refer to the relative numbers of
microstates in position-momentum phase space that lie behind observable mac-
rostates, like temperature or pressure, and as such entropy is widely interpreted
as measuring the overall ‘‘disorderliness’’ of a thermodynamic system; see, e.g.,
Sears [1953]. In information theory, the entropy formula is widely used to quantify
the information content of a message source, as measured by the minimum
required channel capacity for its meaningful transmission; see, e.g., Raisbeck
[1964].

4. On this subject, Pielou [1977], who is a widely recognized authority, writes:
‘‘There has been much debate on whether H8 is a suitable measure of ecological
diversity. The fact that it measures ‘‘information’’ and ‘‘entropy’’ is beside the point;
these fashionable words have been bandied about out of their proper context (the
mathematical theory of information) and have led to false analogies that produced
no noticeable advance in ecological understanding.’’

5. See, e.g., Cowell [1995] or Theil [1967].
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formal connection has remained elusive.6 The basic contribution
of the present paper to ecology proper is a demonstration that
there exists an internally consistent ecology model showing that
the ecological entropy formula (2) can, at least in principle, be
interpreted rigorously as an exact theoretical measure of a
particular type of ecosystem stability—essentially the probability
that the system can successfully resist a catastrophic ‘‘extinction
shock’’ from endogenously generated independently acting patho-
gens. Furthermore, it will be shown that there is an exact sense in
which entropy is ‘‘partitionable’’ to any level of inclusivity of the
system, and hence might be considered a ‘‘generalized measure’’ of
resistance to extinction failure of this kind.

The finding that entropy is interpretable as an index of a
certain kind of ecosystem robustness may be of some interest
worth noting for ecology, since the concept has previously lacked
any direct interpretation. However, my main purpose in the paper
is not so much to demonstrate this interpretation as to use it in
characterizing the kind of macro-level long-run aggregate trade-
off that the world faces in choosing between high crop yields from
specialization, on the one side, and, from the other side, the
associated vulnerability to failure of an artificially selected mono-
culture-type ecosystem.

COMPETITIVE EQUILIBRIUM AND EXTERNALITY-CORRECTING TAXES

The primary aim of this paper is to explore the nature and
significance of a particular form of externality—called here a
‘‘disease externality.’’ Before proceeding further, it would be well
to lay out a general framework now, the better to understand later
where this particular type of externality fits into the standard
analysis.

Throughout the remainder of this paper, the word ‘‘crop’’ is
intended to be used in a generic sense, to stand for some
artificially cultivated variety (‘‘cultivar’’) of domesticated plant,
animal, yeast, or bacteria, which is, or can be, raised in agricul-
ture, aquaculture, horticulture, silvaculture, vinoculture, dairy-
culture, or any other form of bioculture.

We begin at a global level of abstraction. Suppose that the
total number of potential domesticates on the planet, which are or

6. For a textbook discussion of the issues and debates, see, e.g., Chapter 23 of
Begon, Harper, and Townsend [1990] or Chapter 17 of Pianka [1994].
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might be considered potentially useful, is denoted by n, which is
likely to be a large number absolutely, yet is probably quite small
by comparison with the total number of all wild types of species
and varieties existing in the natural world.

Let the worldwide annual biomass harvest of crop i
(i 5 1,2, . . . , n) be denoted Bi, with associated n-vector B 5 (Bi).
Suppose that the utility of biomass harvest B $ 0 is given by the
smoothly differentiable increasing concave function,

(3) U(B).

Let the price of a unit of crop i (i 5 1,2, . . . , n) be denoted pi,
with associated n-vector p 5 (pi). Denote the demand function for
B $ 0 as

(4) D(p),

where, for all values of B $ 0 it holds that

(5) D(U8(B)) 5 B.

It will be convenient to treat externalities here as a difference
between social and private costs. Let the private cost function,
which represents the least-cost way of producing the biomass
vector B $ 0 in a private, decentralized, competitive economy,
taking no account of externalities, be given by the smoothly
differentiable increasing convex function,

(6) C(B).

Let the corresponding social cost function, which represents
the efficient least-cost ideally planned way of producing the
biomass vector B, as if internalizing all externalities, be denoted

(7) C(B).

The decentralized private supply function is

(8) S(p),

where for all values of B $ 0, it must hold that

(9) S(C8(B)) 5 B.

The decentralized private equilibrium here occurs at prices p

and quantities B $ 0, where

(10) D(p) 5 S(p) 5 B.
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What might be called the private net economic value of
biomass harvest B $ 0 is

(11) V(B) ; U(B) 2 C(B),

while the social value of biomass harvest B $ 0 is

(12) V*(B) ; U(B) 2 C(B).

The decentralized private-equilibrium biomass vector B 5

D(p) 5 S(p) can be interpreted as if maximizing the private net
economic value expression (11), which results in the standard
duality conditions,

(13) V8(B) # 0, B $ 0, V8(B) · B 5 0.

However, in the presence of externalities B is not socially
optimal. The socially optimal value of B would instead maximize
the social value expression (12).

It is convenient here to rewrite (12) as

(14) V*(B) ; V(B) 1 E(B),

where

(15) E(B) ; C(B) 2 C(B)

represents the social-externality value of B. The purpose of using
the form (14) is to decompose V*(B) into two conceptually distinct
components. The first component V*(B) represents the private-
economic value of B. The second component E(B) represents the
social-externality value of B.

The socially optimal biomass vector B* maximizes (14),
resulting in the first-order condition,

(16) V8(B*) 5 E8(B*).

An important role in the paper will be played by the vector,

(17) t* ; V8(B*) (5 2E8(B*)).

The vector t* is interpretable from (17) and (11) as being the
set of socially optimal net marginal economic profitability coeffi-
cients. An important equivalent interpretation is that t* repre-
sents the set of socially optimal externality-correcting taxes—in
the sense that imposing taxes t* would indirectly induce the
socially optimal equilibrium response,

(18) B* 5 D(p*) 5 S(p* 2 t*),
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for the socially optimal equilibrium price vector,

(19) p* ; D21(B*).

The coefficient t*i in this paper represents the ideal ‘‘monocul-
ture tax’’ (if positive) or ‘‘diversity subsidy’’ (if negative), which
corrects for the marginal disease-externality effects of growing
one more unit of crop i. Equivalently, t*i is simply the (socially
ideal) net marginal economic profitability of raising one more unit
of crop i. A negative value of t*i corresponds here to a currently
unprofitable crop, which may yet be worthwhile growing for its
value as a backup alternative if some mainline cash crops were to
fail.

In this paper the only externality being considered is the
‘‘disease-externality risk’’ of crop infection. What stands in for E in
expressions (14) and (16) will then essentially turn out to be
ecological entropy, which, it will later be proved, is here the
appropriate externality measure of generalized resistance to
crop-ecosystem failure. For cost-benefit or decentralization
purposes on the margin, t will here represent the relevant
private-economic components of welfare for small changes, while
corresponding changes in E will represent the relevant social-
externality components of welfare.

A MODEL OF ENDOGENOUS DISEASE

The spirit of this model is in the tradition of a macro-level
style of analysis that tolerates assumptions of extreme symmetry
on the micro level—the better to focus, at the appropriate large
scale for viewing the big picture, on the overarching relationship
between important aggregates. The treatment here of en-
dogenously determined disease and extinction is not at all fancy,
being just the simplest imaginable application of basic probability
laws. In a sense, the underlying notion of a distinctive crop
‘‘variety’’ is allowed to be sufficiently elastic to permit the sharp
symmetry and independence assumptions of the paper to hold as
approximations. The model is so highly aggregated that specifica-
tions of timing and dynamics are necessarily oversimplified. At
the end of the day, my only excuse for such a formulation is that it
may deliver a conceptually useful benchmark that might other-
wise be obscured by having too many local details. Without
further apologies for simplicity or abstraction, I proceed directly
to the model.
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In what follows, we assume that the ‘‘unit of effective bio-
mass’’ has been standardized across all crops so that the carrying
capacity for parasites is symmetrically identical. With respect to
location, a crop is presumed to be randomly dispersed geographi-
cally in a noncontiguous checkerboard-like micro-pattern, so that,
from the lofty vantage of the macrolevel, the grid squares look
small enough to allow abstraction away from the issue of ‘‘contact
contagion’’ arising because adjacent plots grow identical crops.
For convenience, in what follows, suppose that every grid-square
pure stand of a crop is of unit-biomass size.

In the short run, let the total biomass of crop i be fixed at

(20) Bi,

while the number of potentially lethal strains of i-relevant
pathogens is fixed at

(21) Si.

The model of disease here is so crudely basic that it abstracts
away from most dynamic issues, such as the time trajectories of
contagion, infection, spread, and so forth. Essentially, every
member of the host population in this model is postulated to have
symmetrically identical exposure and resistance. Pathogens are
endogenously generated with a delay lag of one period. All of the
subsequent action then plays itself out as if it were occurring
instantaneously.

The simplest way of modeling crop mortality is to assume
that ‘‘resistance’’ is random, or, what is essentially the same thing
in this model, that pathogen-induced deaths are independently
distributed across biomass grid squares. Let the probability of one
particular i-relevant pathogen becoming virulent and wiping out
completely one particular stand of a unit of biomass of crop i be

(22) e.

Then the corresponding probability that Si independently
acting pathogens will destroy completely one particular stand of a
unit of biomass of crop i is

(23) 1 2 (1 2 e)Si.

Finally, the probability of a catastrophic worldwide extinction
of crop i is

(24) [1 2 (1 2 e)Si]Bi.
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Note that as Si is made larger, or Bi is made smaller,
expression (24) increases monotonically toward one, whereas Bi

made larger, or Si made smaller, causes (24) to decline monotoni-
cally toward zero. It is not immediately obvious what would
happen if both Si and Bi were simultaneously increased or
decreased. Presumably, the outcome would depend on the nature
of the underlying relationship between them, to which topic we
now turn.

Let us envision the model dynamics as if unfolding in three
discrete periods. Thus far, in the short run, which here stands for
the past, Bi has been exogenously fixed at Bi, and Si has been
exogenously fixed at Si. Suppose, next, that in the medium run,
symbolizing the present, Bi is allowed to vary artificially by
human intervention, while Si remains fixed at Si. In the long run,
standing for the future, there is postulated to be a natural
parasite-host reactive relationship of the form,

(25) Si 5 k(Bi)z,

where k and z are positive constants. (I think that such a naively
discrete timing sequence captures fairly the analytical essence of
the problem, but it does abstract away from potentially compli-
cated dynamic interactions and strategies.)

There is an enormous amount of ecology literature justifying,
as a reduced-form empirical approximation holding over a wide
range of contexts, a log-log linear relationship of exactly the form
(25) between species and area.7 In such studies, ‘‘area’’ may have a
very general meaning, including, for parasites, how widespread is
the host; i.e., in how many grid squares on a map is the host found.
The model here is implicitly dealing with a long run of sufficient
duration that forces of immigration and pressures of natural
selection on micro-parasites, including pathogens, permit (25) to
operate as a valid approximation. While it was never contem-
plated by ecologists that (25) might be applied on the scale
envisioned by this paper, I am here making that leap of faith.

We now have a crude but workable theory of endogenous
disease that is at least not openly inconsistent with the highly
stylized ecological facts summarized by (25). Combining (25) with
(24), the long-run endogenously determined probability of the

7. See, for example, Begon, Harper, and Townsend; [1990], Conner and McCoy
[1979]; MacArthur and Wilson [1967]; Meffe and Carroll [1994]; Pianka [1995];
and Huston [1994]. Values of z for islands typically are within a relatively narrow
range from about 0.24 to about 0.34.
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complete extinction of crop i is

(26) Pi(Bi) 5 [1 2 (1 2 e)k(Bi)
z
]Bi.

Expression (26) is a measure of the long-run vulnerability of
crop i. Forces of natural selection favor the evolution of parasites
that do not kill off their hosts too rapidly or too completely. In this
spirit, (26) describes the probability of pathogens randomly or
‘‘inadvertently’’ becoming sufficiently virulent that they destroy
their host species and, with the host, themselves.

From applying l’Hôpital’s rule multiple times to the loga-
rithm of the right-hand side of (26), we obtain the following two
simple but important inferences about long-run limiting crop
vulnerability at the two biomass extremes:

(27) lim
B=0

[1 2 (1 2 e)k(B)z
]B 5 1,

and

(28) lim
B=`

[1 2 (1 2 e)k(B)z
]B 5 1.

Condition (27) means that when there are very small num-
bers in a host population, then there is also a very great
vulnerability of losing the entire population to pathogens. Essen-
tially, this occurs because not many members then need be killed
to cause extinction. In the ‘‘contest of small numbers’’ between an
exogenously determined smaller host population and the en-
dogenously generated smaller number of corresponding patho-
gens, the pathogens ‘‘prevail’’ in the sense of extinguishing the
host. It should be appreciated that such a result is not obvious.
When Bi alone is made to approach zero, then expression (24)
approaches one, the converse of the idea that there is ‘‘safety in
numbers’’ for the host. What is not so clear, however, is what
should happen to expression (24) as both Si and Bi are simulta-
neously decreased, since the disease threat ultimately causing
extinction is thereby eliminated altogether in the limit. Viewed in
this light, result (27) may be seen as extending or strengthening,
to a situation that takes explicit account of endogenously induced
diseases, our natural biological intuitions about the importance of
having some minimum viable population size to avoid random
extinctions.

Equation (27) describes an extinction event that may occur in
the wild, and in fact happens continually on an evolutionary time
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scale. By contrast, condition (28) is more brazenly counterintui-
tive to ecological principles because it is describing an artificial
experiment that has no natural counterpart on nature’s time scale
of evolutionary interactions—even, possibly, for relatively quick-
reacting pathogens such as bacteria or viruses.

The limiting operation in (28) is describing a delayed density-
dependent situation where humans in historical time are very
rapidly forcing a crop to exist on a biomass scale far beyond the
level that nature, who would ‘‘react’’ to a slower process by
continuously ‘‘creating’’ new pathogen strains, would ever allow to
transpire in the wild. But, it turns out here, nature cannot be
pushed indefinitely far in this direction. Eventually, the patho-
gens will catch up, and then with a lagged vengeance, to the
artificially expanded host biomass. Equation (28) means that for
any positive e, there is some sufficiently large Bi, which will make
crop i crash completely after the pathogens react.

Thus, the complete long-run extinction of crop i becomes a
certainty in the limit as Bi is made indefinitely large. If all of world
agriculture were devoted to growing just one food cultivar, then a
delayed catastrophic extinction failure would almost be assured in
the long run, as the number of potentially lethal pathogens
‘‘locking in’’ over time to this one host’s genetically uniform
biomass would become correspondingly large, eventually over-
whelming every member of the host population.

There is no safety in numbers here. Just the opposite is
true—very high forced numbers will kill off a population in the
long run as surely as very low numbers. In the ‘‘contest of big
numbers’’ between an exogenously determined larger host popula-
tion, each of whom must be independently killed off for there to be
an extinction event here, and the endogenously generated larger
numbers of corresponding pathogens, the pathogens will ulti-
mately ‘‘prevail’’ by truly killing off every single last host member.
Therefore, depending on the lag parameters, it is theoretically
conceivable that humans may inadvertently be constructing some
kind of a delayed-fuse time bomb by offering up so much tempting
monoculture biomass to viruses, bacteria, and various other
mutation-prone reactive pathogens. If such an effect is empirically
relevant, I think it is less likely to actually manifest itself in the
real world by anything so dramatic as the food supply evaporating
some day. Rather, I believe it is more likely to show up as a
gradual future increase in real crop-security-related expendi-
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tures, somewhat analogous to the steady rise over time of medical
spending.

Let us next examine from (26) the behavior of Pi as a
(continuous) function of Bi. Implicit in the following exercises, e is
taken to be some very small positive number.

From (27) we know that Pi(0) 5 1. As Bi is increased up from
zero, the function Pi(Bi) declines rapidly toward zero. The drop in
Pi(Bi) from Pi(0) 5 1 to ‘‘near-zero’’ for Bi . 0 is more precipitous as
e is smaller. (In the limit as e is made to approach zero, Pi(Bi)
drops instantaneously and discontinuously from Pi(0) 5 1 to
Pi(Bi) 5 0 for all Bi . 0.)

For small positive e, as Bi is increased further, Pi(Bi) hovers
slightly above zero for a wide range of Bi . 0. The smaller is e, the
closer is Pi(Bi) to zero, and the wider is the range over which the
function is nearly zero. Then, quite abruptly, at some point as Bi is
increased further, the function (26) relatively suddenly climbs
rapidly toward one and thereafter remains very near to but just
below one, approaching ever closer asymptotically. The transition
of Pi(Bi) from ‘‘near zero’’ to ‘‘near one’’ is more precipitous as e is
smaller. In the limit as e is made to approach zero, the derivative
of (26) at the ‘‘transition point’’ approaches infinity.

I think there are two basic messages that emerge from
examining carefully the properties of the function Pi(Bi) defined
by (26) for small positive e. The relatively sudden transition from
Pi(0) 5 1 to Pi(Bi) , 0 for Bi . 0 is sufficiently dramatic for small e
that the model seems to be warning us to keep away from the Bi 5
0 region. At the opposite extreme of large and increasing Bi, the
sudden transition from the Pi , 0 phase to the Pi , 1 phase seems
also to be trying to convey an intended message. I think the model
here may be trying to alert us that, in a real world having
delayed-response lags for the evolutionary development of new
pathogens, monoculture-like patterns of extreme crop specializa-
tion in the recent past and in the present might conceivably be
building surreptitiously toward some nasty surprises, which may
only become apparent in the future.

Taken together, equations (26), (27), and (28) presage the
main theme of the paper. Pathogens ‘‘prevail’’ in driving their
hosts (and themselves) to long-run extinction at the extremes of
host populations, while crops and their patrons ‘‘prevail’’ in the
middle. Furthermore, the middle here may quite possibly be
comfortably large for small e, but then, to the extent that this is
true, it is also true that the transition to extinction is uncomfort-
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ably abrupt. The overall message, I think, is that as patrons it
greatly behooves us to have sufficient balance built into the
overall design of our cropping ecosystems, so that the impacts of
long-run extinction events corresponding to (27) or (28) are
somehow marginalized. In a sense, the rest of the paper builds
upon this basic theme, the core elements of which flow so
naturally from simply noting the consequences of (27) and (28),
along with examining the behavior of (26) for small e.

From (26) it follows that the long-run endogenously deter-
mined probability of an ultra-catastrophic lagged mass extinction
of all crops is

(29) P(B) 5 p
i51

n

Pi (Bi).

Expression (29) is a measure of the overall long-run vulnerabil-
ity of the planetary cropping ecosystem to catastrophic extinction
failure. This kind of a cataclysmic worldwide disappearance of all
domesticated varieties represents a biological extinction event
that, by standards of natural history, is actually relatively small
in terms of numbers of species or races involved, but would be
about as horrific for humanity as a medium-large-sized asteroid
hitting the earth. A catastrophic collapse of the cropping ecosys-
tem is a possibility that humankind does not want to begin to
contemplate, even remotely. Thus, any rational person would
insist that world bioculture be designed with a very large safety
margin, so that expression (29) is kept at a very small value.

I believe that the concept of the vulnerability of an ecosystem
to lagged ‘‘extinction failure’’ may serve as a useful guide for
thinking about cropping-biomass design issues for much less
extreme situations than total worldwide collapse. While the model
has thus far been phrased in terms of a global extinction of all
crops, it will be shown later that exactly the same methodology
pertains to any subset of crops, whatever the level of application.
Because of this important corollary to the theory, it will be
possible to interpret (29) as a generalized measure of the probabil-
ity of failure, applicable equally for analyzing any combination of
extinction events. Keeping expression (16) low may then be seen
as a proxy for maintaining an ecosystem in sufficient balance, at
all levels, so that damaging extinctions are generally unlikely, or
at least are less likely in general than they might otherwise be.

This paper does not explicitly model the externality costs of
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extinction failures. The formulation here does not lay out the
alternatives in a standard risk-versus-return framework based on
expected utility theory. There are two reasons for this. First of all,
the standard expected-utility formulation is analytically intrac-
table here, resulting in an uninterpretable mess, when what we
are really after is a few robust principles to help guide us through
the morass. Second, and more substantively, it is not the least bit
clear that the underlying axioms justifying the expected-utility
hypothesis should apply here at all.8

The kind of ‘‘risk’’ that this paper is concerned with is the
low-probability, high-impact, nonstandard possibility of some
monoculture-type cultivars being so decimated by lagged en-
dogenously generated diseases that, for practical purposes of
further usage, they are rendered extinct. For such an extreme
event, it is unclear whether the expected-utility approach has
more claim to primacy than any other intuitively plausible
framework. In the paper this very complicated set of issues is
approached indirectly. The approach taken here is simply to
examine on the margin the trade-off between a generalized
measure of economic welfare and a generalized measure of
ecosystem vulnerability. In such a context, the full justification for
viewing expression (29) as a generalized measure of vulnerability
to extinction failure must await Corollary 2, which, unfortunately,
cannot meaningfully be pulled out of its logical sequence and
developed independently here.

At this point in the paper, the most immediate task is to
specify those basic underlying principles of efficient design that
might indicate how high values of (11) may be maintained while
ensuring that (29) is tolerably low. For now, the construction of the
efficient-possibilities frontier showing how V(B) trades off against
P(B) is taken as an intuitively plausible desideratum in its own
right, since it can be viewed as representing a useful input to any
subsequent decision-making process.

Thus, the approach of this paper is to explain, in the spirit of
how a technocratic consultant might present options to a client
who will make the final decisions, the nature of the choice between
a generalized measure of economic welfare and a generalized
measure of resistance to ecosystem failure. As it turns out, the
relevant generalized measure of resistance to ecosystem failure,
which proxies the unlikelihood of damaging extinctions when e is

8. Some discussion of this set of issues is contained in Schwarz [1998].
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small, will be none other than ‘‘ecological entropy.’’ The ecologi-
cal content of the main theorem then can be seen as indicat-
ing an exact limiting sense in which the ecosystem-balance
measure H8 (formula (2)) may be considered to be a decreasing
monotone transformation of ecosystem vulnerability P (formula
(29)).

THE BASIC RESULT

Consider a long-run efficient-biomass trade-off problem of the
canonical form, mimimize over Bi $ 0

(30) p
i51

n

[1 2 (1 2 e)k(Bi)
z
]Bi,

subject to

(31) V(5Bi6) $ V,

where the parametrically fixed V represents some predetermined
level of economic value.

It is not difficult to show that the solution of problem (30)–(31)
can be written as a set of well-behaved parametric functions of the
form,

(32) B̃i(V;e),

for all i 5 1,2, . . . , n.
Next, as seems appropriate to the context of a problem where

the failure rate is being taken as an extremely small but positive
parameter, let e approach zero.9 Define

(33) B*i(V ) ; lim
e=0

B̃i(V;e).

Finally, define 5B*i 6 to be an efficient biomass allocation (at
very low individual failure rates) if it is efficient for some V; i.e., if
there exists a value V such that

(34) B*i 5 B*i(V)

9. Mathematically, what I have in the back of my mind is a corresponding
offsetting change in the measurement units of B, which leaves identical the overall
probabilities of extinction. A rigorous treatment developed along these more
complicated lines gives essentially the same result as the simpler convention
adopted in the paper of just letting e alone vary.
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for all i 5 1,2, . . . , n. Let the corresponding set of marginal
profitability coefficients, from (17), be denoted 5t*i 6.

The corresponding efficient aggregate biomass B̂ is defined as

(35) B̂ ; o
i51

n

B*i,

while the corresponding set of efficient biomass proportions 5q*i 6 is
defined as

(36) q*i ; B*i /B̂.

The following theorem is the main result of the paper.

THEOREM: Any set of efficient biomass proportions 5q*i6 must be
supported by some positive value of l as the solution of the
following problem: maximize over qi $ 0

(37) o
i51

n

t*iqi 1 l 32o
i51

n

qi log qi4,
subject to

(38) o
i51

n

qi 5 1.

Proof of Theorem. Define

(39) B̃(V;e) ; o B̃i(V;e).

In what follows, the explicit dependence of B̃ on V and e is
suppressed for notational convenience.

Consider next the following optimization problem expressed
in biomass proportions, which, given B̃, is equivalent to (30)–(31):
minimize over 5qi6 $ 0

(40) p
i51

n

[1 2 (1 2 e)k(B̃qi)
z
]B̃qi.

subject to

(41) V(5B̃qi6) $ V,

and

(42) o qi 5 1.
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From a Taylor series approximation, we have that

(43) 1 2 (1 2 e)k(B̃qi)
z

5 ek(B̃qi)z[1 1 Oi(e;qi)],

where, because the function being approximated is regular in its
interior domain, we have that the first-order term Oi(e;qi) con-
verges uniformly to zero in the limit as e approaches zero.

Substituting from (43), and making use of (38), the objective
function (40) becomes transformed into

(44) eB̃kB̃B̃zB̃ p
i51

n

[(1 1 Oi(e;qi)) · (qi)]zB̃qi.

Next, dividing the objective function (44) by the positive
expression,

(45) eB̃kB̃(B̃)zB̃,

will not effect the optimization problem because none of the terms
in (45) is dependent upon 5qi6. Thus, the form (44) may be replaced
by an equivalent objective function of the form,

(46) p
i51

n

(1 1 Oi(e;qi))zB̃qi p
i51

n

(qi)zB̃qi.

But note that

(47) lim
e=0

p
i51

n

(1 1 Oi(e;qi))zB̃qi 5 1.

Therefore, as e is made to approach zero, B̃ = B̂, and the
solution of the original problem (30)–(31) becomes equivalent to
the solution of the problem of minimizing

(48) p
i51

n

(qi)zB̂qi

subject to (41), for B̃ ; B̂, and to (42).
But minimizing an objective function of the form (48) is

equivalent to minimizing the logarithm of (48), which is equiva-
lent to minimizing

(49) o qi log qi,

which in its turn is equivalent to maximizing the entropy expres-
sion (2).
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Summarizing a long chain of reasoning, to this point we have
demonstrated that the 5q*i6 defined by (36) must maximize (2)
subject to (41) for B̃ ; B̂, and subject to (42). It is readily shown
that this problem has a very well-behaved convex structure with
an interior solution. Uniqueness of solution is guaranteed by the
strict concavity of (2). All that remains is to specify the correspond-
ing dual multipliers.

Let

(50) µ . 0

represent the positive shadow price on the limiting version of
inequality (41) relative to the objective function (2). Then define

(51) l ; 1/µB̂.

Finally, a routine application of duality theory implies that
5q*i 6 must be the unique solution of (37)–(38). j

TWO USEFUL COROLLARIES

Before proceeding to a discussion, it will be helpful first to lay
out formally two basic implications of the main theorem.

COROLLARY 1 (CLOSED-FORM CHARACTERIZATION OF EFFICIENT BIO-
MASS PROPORTIONS).
For all i 5 1,2, . . . , n, the solution of problem (37)–(38) is the
closed-form expression,

(52) q*i 5
et*i /l

S et*i /l
.

Alternatively, the relationship between any two socially
optimal ‘‘disease-externality taxes’’ (or, if negative, ‘‘diversity
subsidies’’) is of the form,

(53) t*j 2 t*i 5 l (log q*j 2 log q*i).

Proof of Corollary 1. If u is the Lagrange multiplier for
equation (38), relative to the objective (37), then the necessary and
sufficientfirst-order conditions for the problem are

(54) t*i 5 l log q*i 1 l 1 u.

The desired result (52) follows directly from combining the
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exponentiated version of condition (54) with equation (38). Condi-
tion (53) follows directly from (52). j

COROLLARY 2 (INVARIANCE OF EFFICIENT BIOMASS PROPORTIONS TO

DECOMPOSITION).
There are (2n-1) possible subsets that can be formed out of n
elements (excluding the null set). Consider any such subset
economy/ecology consisting of m cultivated varieties, without
loss of generality here indexed by j 5 1,2, . . . , m, where m #

n. Let 5p*j 6 be the solution of the following subproblem:
maximize over pj $ 0

(55) o
j51

m

t*j pj 1 l 32 o
j51

m

pj log pj4,
subject to

(56) o
j51

m

pj 5 1.

Then, for all j 5 1,2, . . . , m,

(57) p*j 5
q*j

Sj51
m q*j

.

Proof of Corollary 2. From Corollary 1,

(58) p*j 5
et*j /l

Sj51
m et*j /l

,

for j 5 1,2, . . . , m, while

(59) q*j 5
et*j /l

Si51
n et*i /l

,

and

(60) o
j51

m

q*j 5
Sj51

m et*j /l

Si51
n et*i /l

.

Now combine (58) with (59) and (60) to yield the desired
expression (57). j
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DISCUSSION

The main theorem expresses the idea that when crop mortal-
ity is endogenously determined, efficient combinations of social-
externality ‘‘risk’’ and private-economic ‘‘return’’ in this context
may be conceptualized as if optimal crop proportions are being
generated by maximizing net marginal economic profitability,
represented by the coefficients-vector t*, plus the parameter l
times ecological entropy H8. (The economic-profitability coefficient
t*i is equivalently interpretable as representing the socially ideal
‘‘disease-externality tax’’ levied per unit of crop i. A negative tax
here is understood as representing a ‘‘diversity subsidy,’’ which
assesses the marginal contribution of crop i to overall biodiver-
sity.) The weight l reflects the value that society places on overall
ecosystem security relative to the more standard type of economic
welfare function, measured in dollars, which appears throughout
the paper as V (or t* ; V8(B*)).

Corollary 2 shows that the very same way of thinking about
efficient biomass proportions gets replicated at all possible levels
of subgroup combinations. For any possible combination of crops
here lumped together as a decision unit, a decentralized decision-
maker can think in terms of exactly the same kind of balance
between the relevant decentralized component of standard eco-
nomic welfare, represented by the applicable subset of net mar-
ginal profitability coefficients, and the relevant decentralized
component of crop security, represented by the entropy of crop
proportions—with both components pertaining only to this particu-
lar decision unit.

It is important to realize that, among all possible candidates
for a diversity function, just the entropy formula is ‘‘partitionable’’
in this unique manner, which allows efficient biomass proportions
to be consistently replicated for every possible subset by using the
same diversity function of the proportions of that subset alone. Of
course, this partitioning result depends on the benchmark assump-
tion of independent probabilities, but it does indicate at least a
context or a sense in which ecological entropy H8 can be thought of
as ‘‘a generalized measure of resistance to extinction,’’ because this
very same measure is then able to be repartitioned and reapplied
at every level of organization or analysis as ‘‘the’’ stand-in proxy for
the unlikelihood of extinction failure at that level. For each of the
(2n-1) conceivable family, geographic, or any other cross-sectional
subgroupings of different potential cultivars, there is thus a
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rigorous sense in which we may be entitled to conceptualize the
design of efficient biomass proportions as involving essentially the
same basic trade-offs and the same basic principles.

Corollary 1 indicates that the problem possesses enough
structure to allow a striking characterization of efficient biomass
proportions in the form of (52). The possibility of a tidy closed-
form relation emerging from such a seemingly complicated prob-
lem is yet another unexpectedly neat consequence of the entropy
expression H8 appearing in the objective function.

Equation (52) implies that an optimal balance preserves some
strictly positive level of biomass for every crop variety. Even if t*j is
negative, meaning preservation is costly for society, the model still
wants some of crop variety j to be grown. The reason for such a
strong conclusion has its origins based in the underlying model of
endogenously determined disease. It is always worthwhile devot-
ing some resources to preserving at least a small amount of each
variety for a combination of the following two reasons. First of all,
you never know when you may wish you had maintained the crop
because you might want it some day if anything bad happens to
some other crops. Taken alone, this is not nearly a sufficient
reason for preservation, since it applies to almost everything on
earth, and conservation is not free. But it becomes a powerful
generic argument when combined with the second reason, as
follows.

In this model, the ‘‘disease load’’ of endogenously determined
host-specific pathogens on small host populations is so low that
the correspondingly high host survivability per unit of host
biomass represents, on the margin, a very attractive insurance
investment. The model is abstracting away from all other sources
of mortality, and hence, perhaps, emphasizes this limiting result
excessively dramatically. Evaluated at near-zero biomass, in this
world the marginal value of any species or variety is essentially
infinite, because so few host-specific pathogens will be endoge-
nously generated that a relatively significant enhancement of
ecosystem survivability is possible on the margin. Therefore, the
model wants us to devote some positive effort to preserving some
small population of crop variety j, no matter how negative is t*j,
because it is still worthwhile on the margin. Implicit in such a
viewpoint is an underlying dynamic perspective indicating that
even one surviving acre of crop j may be valuable for rebuilding a
j-based agriculture—if all else has failed. For even those least-
promising crops having highly negative values of t*j, the model is
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willing to sacrifice (part of ) an acre to j, but does not really care
whether we actually plant the acre or just store some viable seed,
provided merely that the equivalent opportunity-cost effort is
expended to preserve the small acre’s-worth of population.

The basic point that it is appropriate to maintain specimens
of every variety is sufficiently central that some, possibly sub-
dued, form of it should emerge, mutatis mutandis, even under a
more general formulation. I think of the probability formulation of
the paper as representing a no-frills core version of extinction by
endogenously generated parasites, which, in the end, comes down
to pathogen-induced deaths being randomly distributed among
remaining host members at some quasi-fixed limiting rate, here e.
Any reasonable model of disease and epidemics, it seems to me,
will be reduced, in the limit as the host population is approaching
extinction, to the same basic mathematical structure involved
here—although other such models may emphasize dynamic as-
pects of contagion omitted in this paper, or might be more
disaggregated and more detailed, or may be phrased in the
plant-genetics language of plague-resistant host phenotypes, and
so forth.10

Thus, I believe the single most enduring message of this
paper is that a relatively cheap way of buying catastrophe
insurance is to cultivate or hold small positive amounts of as
many different kinds of potential domesticates as it may be
possible to preserve. The actual mathematical argument justify-
ing such a conclusion, however, involves taking, and interpreting,
some quite tricky limits, and goes to show the value here, indeed
the necessity, of a rigorously formulated model.

It is interesting to note what happens to equation (52) for
extreme values of l. As l is increased, the optimal distribution of
biomass proportions becomes more evenly spread out among all of
the varieties, approaching a uniform biomass fraction of 1/n per
crop in the limit as l = `. As l is made smaller, the solution
becomes increasingly concentrated on successively narrower sub-
sets of only the more profitable ‘‘higher-t’’ crop varieties. In the
extreme limit as l = 0, there is complete specialization to the
crops having the highest profitability. In the purely private l 5 0
competitive equilibrium corresponding to (13), the only crops

10. See, e.g., Burdon [1987]. Sometimes the language and jargon employed by
plant pathologists is so specific as to give the misleading impression that the
underlying principles are other than basic ecological concepts applicable to
host-parasite-pathogen relations generally.
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grown commercially will each have zero net marginal economic
profitability—but there will also be a very large residual subset of
potentially usable crop varieties with negative net marginal
economic profitability, which stand for wild or obsolete strains
that are ignored, or even eradicated to make way for more
economically profitable land usage.

Two opposing forces are at play here. An ‘‘economic force,’’
represented by low values of l, pulls the system toward specializa-
tion on ‘‘higher-t’’ varieties, which means severely unequal bio-
mass proportions compared with any natural distribution. An
‘‘ecological force,’’ symbolized by high values of l, pulls the system
toward more equalitarian biomass proportions, stylistically closer
to the way nature arranges things. For less extreme values of l
than zero or infinity, efficient combinations reflect a balance
between these two opposing forces.

I will refrain here from inflicting on the reader a detailed
exposition of everything that is left out of the model, since such an
endeavor might well constitute a paper of its own. The core issue,
as usual, is whether or not there is some essential misrepresenta-
tion of reality—something critical left out that should be included
or something critical put in that does not belong—which might
undermine the framework or the conclusions. Here I will give but
two examples of ‘‘tweaking’’ the model with alternative formula-
tions.

As a first example here, consider the idea that positive
externalities may be generated by a farmer planting more of the
same crop. One could tell stories about encouraging the develop-
ment of complementary technologies because biotech companies
are more likely to develop new herbicides, pesticides, seeds,
fertilizers, and so forth for crops that are more widely planted.

I do not think that such type of example will alter the
fundamental conclusions of the paper. First of all, absent some
underlying economy of scale, the example appears to involve a
pecuniary externality. The issue that the paper concerns, with or
without genuine biotech externalities, is whether it is more
economical for society as a whole not to leave quite so many
flammable materials lying around, instead of having to extinguish
the consequent fires when they inevitably arise. If we are talking
about genuine nonpecuniary positive externalities, then these are
unlikely to disrupt the main conclusion that it is appropriate to
maintain some specimens of every variety, because the marginal
diversity benefit goes to infinity for small crop sizes, while any
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nonpecuniary positive externalities to growing more of an existing
crop are likely to be quite bounded.

As a second example here, consider what might happen if, as
is undoubtedly true in reality, the probabilities going into the
calculations of the paper are not actually independent. A pathogen
wiping out one strain or stand of a crop is more likely to wipe out a
closely related strain or a closely located stand. In this case, the
micro-level individual-crop equations corresponding to (52) and
(53) will be modified by the presence of various combinations of
relevant correlation coefficients, and some complicated generaliza-
tion of the entropy formula will be required. But, as far as I can
see, the big-picture macro-level view will be unaffected.

CONCLUSION

In the final analysis, what is one to take away from this
model, which is expressed at such a very high level of abstraction?
My hope is that such a way of combining economic with ecological
modes of reasoning may be seen as giving some useful basic
insights generally, and perhaps, for this particular issue of
optimal cropping proportions, more useful basic insights than can
be gotten from either worldview alone.

HARVARD UNIVERSITY
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